分式(1)(分式概念、基本性质)

合集下载

分式讲义(一))

分式讲义(一))

分式讲义(一)一、知识点: 1.分式的概念:(1)分式的定义:一般地A ,B 是两个_______,且_____中含有字母,那么BA 叫分式(2)分式有意义的条件是___________不等于0 (3)分式无意义的条件是___________等于0(4)分式为零的条件是________不等于0,且_________等于0 2.分式的基本性质:(1)分式的分子分母同乘(或除以)一个__________________,分式的值_________ (2)分子,分母的公因式,系数的_________与各______因式的_________的积(3)各分式的最简公分母,各分母系数的___________与_______因式___________的积 3.分式的运算法则:(1)乘法法则________________________________________ (2)除法法则________________________________________ 二、范例讲解:题型一:考查分式的定义【例1】下列代数式中:yx y x yx yxba b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件【例2】当x 有何值时,下列分式有意义(1)44+-x x (2)232+xx (3)122-x(4)3||6--x x (5)xx 11-题型三:考查分式的值为0的条件【例3】当x 取何值时,下列分式的值为0.(1)31+-x x (2)42||2--xx (3)653222----x xx x题型四:考查分式的值为正、负的条件【例4】(1)当x 为何值时,分式x-84为正;(2)当x 为何值时,分式2)1(35-+-x x 为负;(3)当x 为何值时,分式32+-x x 为非负数.练习:1.当x 取何值时,下列分式有意义:(1)3||61-x (2)1)1(32++-x x (3)x111+2.当x 为何值时,下列分式的值为零:(1)4|1|5+--x x (2)562522+--x x x(二)分式的基本性质及有关题型1.分式的基本性质:MB M A MB M A B A ÷÷=⨯⨯=2.分式的变号法则:ba ba ba ba =--=+--=--题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)yx yx 41313221+-(2)ba b a +-04.003.02.0题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)yx y x --+- (2)ba a ---(3)ba ---题型三:化简求值题【例3】已知:511=+y x ,求yxy x y xy x +++-2232的值.【例4】已知:21=-xx ,求221xx +的值.【例5】若0)32(|1|2=-++-x y x ,求yx 241-的值.练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数.(1)yx y x 5.008.02.003.0+- (2)ba ba 10141534.0-+2.已知:31=+xx ,求1242++x xx 的值. 3.已知:311=-ba,求aab b b ab a ---+232的值.4.若0106222=+-++b b a a ,求ba b a 532+-的值.(三)分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母因式取各分母所有字母的最高次幂.2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂.题型一:约分【例2】约分: (1)322016xyy x -; (3)nm mn--22; (3)6222---+x xx x题型二:通分【例1】将下列各式分别通分. (1)cb ac a bab c225,3,2--; (2)ab bb a a22,--;(3)22,21,1222--+--x xx x xx x ; (4)aa -+21,2三、作业:⒈当x 时,分式1223+-x x 有意义;当x 时,分式xx --112的值等于零.⒉分式ab c32、bc a3、acb25的最简公分母是 ;化简:242--x x = .⒊xx 231--=32(_____)-x =-32____)-x (⒋当x 、y 满足关系式________时,)(2)(5y x x y --=-255.若使下列各分式值为零,x 的值分别为:(1)2213xx +-,则x = ;(2)1233--x x ,则x = ;(3))2)(3(2+--x x x ,则x = ;(4))1)(3(1+--x x x ,则x = .6、分式xx ---112的结果是________.7、2241ba 与cab x36的最简公分母是__________.8、b a 1,1,31通分后,它们分别是_________, _________,________. 9、acb b ac c b a 107,23,5422的最简公分母是______,通分时,这三个分式的分子分母依次乘以______, , 。

分式概念及意义知识讲解

分式概念及意义知识讲解

分式的意义和性质一、分式的概念1、用A、B表示两个整式,A÷B可以表示成的形式,其中A叫做分式的分子,B叫做分式的分母,如果除式B中含有字母,式子就叫做分式。

这就是分式的概念。

研究分式就从这里展开。

2、既然除式里含有字母的有理代数式叫做分式,那么,在分式里分母所包含的字母,就不一定可以取任意值。

分式的分子A可取任意数值,但分母B不能为零,因为用零做除数没有意义。

一般地说,在一个分式里,分子中的字母可取任意数值,但分母中的字母,只能取不使分母等于零的值。

3.(1)分式:,当B=0时,分式无意义。

(2)分式:,当B≠0时,分式有意义。

(3)分式:,当时,分式的值为零。

(4)分式:,当时,分式的值为1。

(5)分式:,当时,即或时,为正数。

(6)分式:,当时,即或时,为负数。

(7)分式:,当时或时,为非负数。

三、分式的基本性质:1、学习分式的基本性质应该与分数的基本性质类比。

不同点在于同乘以或同除以同一个不等于零的整式,这个整式可以是数也可以是字母,只要是不为零的整式。

2、这个性质可用式子表示为:(M为不等于零的整式)3、学习基本性质应注意几点:(1)分子与分母同乘或同除的整式的值不能为零;(2)易犯错误是只乘(或只除)分母或只乘(或只除)分子;(3)如果分子或分母是多项式时,必须乘以多项式的每一项。

4、分式变号法则的依据是分式的基本性质。

5、分式的分子,分母和分式的符号,改变其中任何两个,分式的值不变,如下列式子:,。

四、约分:1、约分是约去分子、分母中的公因式。

就是用分式中分子和分母的公因式去除分子和分母,使分式化简为最简分式,最简分式又叫既约分式。

2、约分的理论依据是分式的基本性质。

3、约分的方法:(1)如果分式的分子和分母都是几个因式乘积的形式,就约去分子和分母中相同因式的最低次幂,当分子和分母的系数是整数时,还要约去它们的最大公约数。

例1,请说出下列各式中哪些是整式,那些是分式?(1)(2)(3)(4)(5)a2-a(6)。

分式和分式的基本性质

分式和分式的基本性质

分式和分式的基本性质(一)一、知识要点1.分式的意义一般地,如果A﹑B表示两个整式,并且B中含有字母,那么代数式AB叫做分式,其中A是分式的分子,B是分式的分母。

说明:(1)分式是两个整式相除的商式,其中分子是被除式,分母是除式,而分数线起着除号和括号的作用。

(2)分式的分子可以含有字母,也可以不含有字母,但分式的分母中一定要含有字母。

(3)分式的分母不能为0是分式概念的重要组成部分。

2.有理式的概念及分类有理式是整式和分式的统称。

3.分式有意义、无意义、值为零的条件(1)分式AB有意义的条件是:_________________________;(2)分式AB无意义的条件是:_________________________;(3)分式AB值为零的条件是:_________________________。

4.分式的基本性质分式的分子和分母都乘以(或除以)同一个不等于0的整式,分式的值不变。

用式子表示就是______________________________________________________________________。

5.分式的变号法则分式的分子、分母及分式本身的符号,改变其中任何两个,分式的值不变,即A A A AB B B B--==-=---。

6.将分数系数化成整数系数分式的系数化整问题,是利用分式的基本性质,将分子、分母都乘以一个适当的不等于0的数,使分子、分母中的数全都化为整数。

7.分式的约分根据分式的基本性质,把一个分式的分子和分母分别除以它们的公因式叫做分式的约分。

8.分式的通分根据分式的基本性质,把几个不同分母的分式化成同分母的分式叫做分式的通分。

说明:(1)最简公分母的概念:异分母通分时,我们常取各分母的系数的最小公倍数和所有因式的最高次幂的积作为公分母,这样的公分母叫做最简公分母。

(2)求最简公分母的步骤与方法①取各分母系数的最小公倍数;②凡在各分母中出现的以字母(或含有字母的式子)为底的幂的因式都要取;③相同字母(或含有字母的式子)的幂的因式取指数最大的。

分式的概念及其基本性质优秀教案

分式的概念及其基本性质优秀教案

9.1分式(1)教学设计一、教材分析1.内容:分式的概念,分式有意义的条件。

2.内容解析:分式是描述实际问题中两个量之比的一类代数式。

从运算角度看,分式表示两个整式相除的商,这与分数表示两个整数相除的商类似。

正因为都是表示两个量相除的商,因此,分式与分数具有相似的基本性质和运算法则、相似的研究思路和方法。

分式是分数的分子分母分别进行符号抽象的结果,分式是分数的一般化,分数是分式中字母取一些特殊值时具体的结果。

本课是分式一章的起始课,核心是分式的概念。

作为起始课教学,需要引导学生类比分数的学习构建分式研究的整体思路和方法,在这一过程中能发展学生系统结构抽象的素养;类比分数表示整数运算结果的方法,研究整式的运算,产生分式,抽象分式概念,类比有理数的概念抽象有理式的概念,发展学生数学概念抽象的素养。

因此,本课的重点是:类比分数抽象分式的概念,整体构建分式的研究思路和方法。

二、目标与目标解析1.目标(1)了解分式的概念和分式有意义的条件。

(2)能根据实际情境列出分式。

(3)能类比分数抽象分式的概念,提出分式研究的整体思路和方法。

2.目标解析(1)目标(1)要求学生能判断一个代数式是否是分式,知道分式与分数、分式与整式的关系,能确定分式有意义的字母取值范围;(2)目标(2)要求学生能根据实际问题中的数量关系列出分式;(3)目标(3)要求类比分数得到分式的概念,提出分式研究的整体思路“定义——性质—运算”。

三、教学问题诊断分析学生已经学习过整式及其运算,分数及其运算,这为分式的学习奠定了知识基础,提供了学习经验。

学生从字面上理解分式的概念并不困难,难的是理解分式所反映的数量关系的本质,理解分数与分式、整式与分式之间的联系与区别。

因此,设计合理的活动,让学生类比分数,经历分式概念的形成过程是帮助学生突破难点的关键,也是发展学生数学抽象素养的抓手。

四、教学整体思路从整数四则运算的封闭性出发,引导学生回顾引入分数表示整数的商的做法;在此基础上,引导学生类比这一思路,考察整式四则运算的封闭性,用类似分数的方法表示两个整式相除的商,发现一类新的代数式,在这个过程中,插入字母表示数的抽象活动;接着类比分数提出研究这类新代数式的整体思路:用定义明确研究对象——探索性质——研究运算;然后,让学生列出实际问题中的分式,类比分数概括分式的本质属性——两个整式的商,分母含有字母;再给出分式的定义,用数系扩充的思想指导学生类比从整数到有理数的扩充过程得到有理式的概念;最后引导学生辨别分式与整式、分式与分数的联系与区别,确定分式有意义的条件。

分式的概念、性质及运算

分式的概念、性质及运算

分式的概念和性质要点一、分式的概念一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式.其中A 叫做分子,B 叫做分母.要点诠释:分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式不能先化简,如2x y x是分式,与xy 有区别,xy 是整式,即只看形式,不能看化简的结果. 要点二、分式有意义,无意义或等于零的条件1.分式有意义的条件:分母不等于零.2.分式无意义的条件:分母等于零.3.分式的值为零的条件:分子等于零且分母不等于零.要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值.要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A M B B M B B M⨯÷==⨯÷,(其中M 是不等于零的整式). 要点诠释:在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化.例如:,在变形后,字母x 的取值范围变大了. 要点四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变其中任何一个或三个,分式成为原分式的相反数.要点诠释:根据分式的基本性质有b b a a -=-,b b a a-=-.根据有理数除法的符号法则有b b b a a a -==--.分式a b 与a b-互为相反数.分式的符号法则在以后关于分式的运算中起着重要的作用.要点五、分式的约分,最简分式与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式.要点诠释:(1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分母再没有公因式.(2)约分的关键是确定分式的分子与分母的公因式.分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幂的积;当分式的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子与分母是不能再分解的因式积的形式,然后再进行约分. 要点六、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分.要点诠释:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最高次幂的积作为公分母.(2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的最高次幂的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母.(3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言.【典型例题】1. 下列各式中,m 取何值时,分式有意义?(1)2m m +;(2)1||2m -;(3)239m m --.2. 若分式6522+--x x x 的值为0,则x 的值为___________________.3. 当x 取何值时,分式226x x -+的值恒为负数?4. 填写下列等式中未知的分子或分母.(1)22?x y x y x y +-=-; (2)()()?()()()b a c b a c a b b c a c --=----.【变式1】将下列各式约分:(1)23412ax x ;(2)243153n n x y x y+-;(3)211a a --;(4)321620m m m m -+-.【变式2】将下列各式通分:(1)4b ac ,22a b c ;(2)22x x +,211x -.(3)232a b 与2a b ab c -;(4)12x +,244x x -,22x -.5. 若2x y =-,求22222367x xy y x xy y----的值.要点七、分式的乘除法1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用字母表示为:a c ac b d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用字母表示为:a c a d adb d bc bc ÷=⋅=,其中a b cd 、、、是整式,0bcd ≠. 要点诠释:(1)分式的乘除法都能统一成乘法,然后约去公因式,化为最简分式或整式.(2)分式与分式相乘,若分子和分母是多项式,则先分解因式,看能否约分,然后再乘.(3)整式与分式相乘,可以直接把整式(整式可以看作分母是1的代数式)和分式的分子相乘作为分子,分母不变.当整式是多项式时,同样要先分解因式,便于约分.(4)分式的乘除法计算结果,要通过约分,化为最简分式或整式.要点八、分式的乘方分式的乘方运算法则:分式的乘方是把分子、分母分别乘方,用字母表示为:nn n a a b b ⎛⎫= ⎪⎝⎭(n 为正整数). 要点诠释:(1)分式乘方时,一定要把分式加上括号.不要把n n n a a b b ⎛⎫= ⎪⎝⎭写成n n a a b b ⎛⎫= ⎪⎝⎭(2)分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.(3)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分.(4)分式乘方时,应把分子、分母分别看作一个整体.如()222222a ba b a bb b b---⎛⎫=≠⎪⎝⎭.6、计算:(1)422449158a b xx a b;(2)222441214a a aa a a-+--+-.7、计算:(1)222324a b a bc cd-÷;(2)2222242222x y x yx xy y x xy-+÷+++.8、计算:(1)432xy⎛⎫⎪-⎝⎭;(2)323a bc⎛⎫⎪-⎝⎭.9、计算:(1)23422x y yy x x⎛⎫⎛⎫⎛⎫--÷-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)222223()a b aba abb b a⎛⎫-⎛⎫÷+⎪ ⎪-⎝⎭⎝⎭.。

分式的基本概念及性质

分式的基本概念及性质

分式的概念:当两个整数不能整除时,出现了分数;类似的当两个整式不能整除时,就出现了分式.一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式.整式与分式统称为有理式.在理解分式的概念时,注意以下三点:⑴分式的分母中必然含有字母;⑵分式的分母的值不为0;⑶分式必然是写成两式相除的形式,中间以分数线隔开.分式有意义的条件:两个整式相除,除数不能为0,故分式有意义的条件是分母不为0,当分母为0时,分式无意义.如:分式1x,当0x≠时,分式有意义;当0x=时,分式无意义.分式的值为零:分式的值为零时,必须满足分式的分子为零,且分式的分母不能为零,注意是“同时”.分式的基本性质:分式的基本性质:分式的分子与分母同时乘(或除以)一个不等于0的整式,分式的值不变.上述性质用公式可表示为:a amb bm=,a a mb b m÷=÷(0m≠).注意:①在运用分式的基本性质时,基于的前提是0m≠;②强调“同时”,分子分母都要乘以或者除以同一个“非零”的数字或者整式;③分式的基本性质是约分和通分的理论依据.一、分式的基本概念【例1】在下列代数式中,哪些是分式?哪些是整式?1 t ,(2)3xx+,2211x xx-+-,24xx+,52a,2m,21321xx x+--,3πx-,323a aa+【例2】代数式22221131321223x x x a b a b abm n xyx x y+--++++,,,,,,,中分式有()A.1个B.1个C.1个D.1个分式的基本概念及性质二、分式有意义的条件【例3】求下列分式有意义的条件:⑴1x⑵33x+⑶2a ba b+--⑷21nm+⑸22x yx y++⑹2128x x--⑺293xx-+【例4】x为何值时,分式2141xx++无意义?【例5】x为何值时,分式2132x x-+有意义?【例6】x为何值时,分式211xx-+有意义?【例7】要使分式23xx-有意义,则x须满足的条件为.【例8】x为何值时,分式1111x++有意义?【例9】要使分式241312aaa-++没有意义,求a的值.【例10】x为何值时,分式1122x++有意义?【例11】x为何值时,分式1122xx+-+有意义?【例12】若分式25011250xx-++有意义,则x;若分式25011250x x-++无意义,则x ;【例13】 若33aa-有意义,则33a a -( ).A. 无意义B. 有意义C. 值为0D. 以上答案都不对【例14】 x 为何值时,分式29113x x-++有意义?【例15】 ⑴ 若分式216(3)(4)x x x --+有意义,则x ;⑵ 若分式216(3)(4)x x x --+无意义,则x ;三、分式值为零的条件【例16】 当x 为何值时,下列分式的值为0?⑴1x x+ ⑵211x x -+ ⑶33x x -- ⑷237x x ++ ⑸2231x x x +--⑹2242x x x-+【例17】 当x 为何值时,下列分式的值为0?⑴213x x -+ ⑵223(1)(2)x x x x --++ ⑶2656x x x --- ⑷221634x x x -+-⑸288xx + ⑹2225(5)x x -- ⑺(8)(1)1x x x -+-【例18】 若分式41x x +-的值为0,则x 的值为 .【例19】 若分241++x x 的值为零,则x 的值为________________________.【例20】 若分式242x x --的值为0,则x 的值为 .【例21】 若分式 242a a -+ 的值为0,则a 的值为 .【例22】 若分式221x x -+的值为0,则x = .【例23】 (2级)(2010房山二模)9. 若分式221x xx +-的值为0,则x 的值为 .【例24】 若分式231x x ++的值为零,则x = ________________.【例25】 (2级)(2010平谷二模)已知分式11x x -+的值是零,那么x 的值是( ) A .1 B. 0 C. 1- D. 1±【例26】 若分式2532x x -+的值为0,则x 的值为 .【例27】 如果分式2321x x x -+-的值是零,那么x 的取值是 .【例28】 若分式()()321x x x +-+的值不为零,求x 的取值范围.【例29】 若22x x a-+的值为0,则x = .【例30】 x 为何值时,分式29113x x-++分式值为零?【例31】 若22032x xx x +=++,求21(1)x -的值.【例32】 x 为何值时,分式23455x xx x ++-+值为零?【例33】 若分式2160(3)(4)x x x -=-+,则x ;【例34】 若分式233x x x--的值为0,则x = .【巩固】 若分式250011250x x-=++,则x .【例35】 若2(1)(3)032m m m m --=-+,求m 的值.四、分式的基本性质【例36】 填空:(1)()2ab ba = (2)()32x x xy x y =++(3)()2x y x xyxy ++=(4)()222x y x y x xy y +=--+【例37】 若x ,y 的值扩大为原来的3倍,下列分式的值如何变化?⑴x y x y +- ⑵xy x y - ⑶22x y x y -+【例38】 把下列分式中的字母x 和y 都扩大为原来的5倍,分式的值有什么变化?(1)2x y x y ++ (2)22923x x y +【例39】 若x ,y 的值扩大为原来的3倍,下列分式的值如何变化?⑴2222x y x y +-⑵3323x y⑶223x y xy-【例40】 不改变分式的值,把下列各式的分子与分母的各项系数都化为整数. ⑴1.030.023.20.5x y x y +- ⑵32431532x yx y -+【例41】 不改变分式的值,把下列各式分子与分母的各项系数都化为整数。

分式基础知识讲解

分式基础知识讲解

分式的概念和性质(基础)【学习目标】1.理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2 •掌握分式的基本性质,并能利用分式的基本性质将分式恒等变形,进而进行条件计算.【要点梳理】要点一、分式的概念一般地,如果A、B表示两个整式,并且B中含有字母,那么式子-叫做分式.其中AB叫做分子,B叫做分母.要点诠释:(1)分式的形式和分数类似,但它们是有区别的.分数是整式,不是分式,分式是两个整式相除的商式.分式的分母中含有字母;分数的分子、分母中都不含字母.(2 )分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况.(3)分母中的“字母”是表示不同数的“字母”,但n表示圆周率,是一个常数,不是字母,如-是整式而不能当作分式.(4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式2不能先化简,如疋分式,与xy有区别,xy疋整式,即只看形式,x不能看化简的结果要点二、分式有意义,无意义或等于零的条件1.分式有意义的条件:分母不等于零.2.分式无意义的条件:分母等于零.3.分式的值为零的条件:分子等于零且分母不等于零.要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值.要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是: A AM,A AM (其中M是不等于零的整式)B B M B B M要点诠释:(1)基本性质中的A、B、M表示的是整式.其中B M 0是已知条件中隐含着的条件,一般在解题过程中不另强调;博0是在解题过程中另外附加(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化•例如:——,在变形后,字母x的取值范围变大了.要点四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变其中任何一个或三个,分式成为原分式的相反数.要点诠释:根据分式的基本性质有—b,亠—.根据有理数除法的符号法则有a a a a——b.分式a与a互为相反数.分式的符号法则在以后关于分式的运算中起着重a a ab b要的作用.要点五、分式的约分,最简分式与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式.要点诠释:(1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分母再没有公因式.(2)约分的关键是确定分式的分子与分母的公因式.分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幕的积;当分式的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子与分母是不能再分解的因式积的形式,然后再进行约分.分式的乘除(基础)【学习目标】1.学会用类比的方法总结出分式的乘法、除法法则•2.会分式的乘法、除法运算.3.掌握乘方的意义,能根据乘方的法则,先乘方,再乘除进行分式运算•【要点梳理】要点一、分式的乘除法1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母用字母表示为:-—兰,其中a、b、c、d是整式,bd 0 . b d bd2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘-—-—,其中a、b c d 是整式,bcd 0. b d b c bc用字母表示为:要点诠释:(1)分式的乘除法都能统一成乘法,然后约去公因式,化为最简分式或整式•(2)分式与分式相乘,右分子和分母是多项式,则先分解因式,看能否约分, 然后再乘•(3)整式与分式相乘,可以直接把整式(整式可以看作分母是1的代数式)和分式的分子相乘作为分子,分母不变•当整式是多项式时,同样要先分解因式,便于约分.(4)分式的乘除法计算结果,要通过约分,化为最简分式或整式要点二、分式的乘方分式的乘方运算法则:分式的乘方是把分子、分母分别乘方,用字母表示为:n na a-(n为正整数).b b nnn nn要点诠释:(1)分式乘方时,一定要把分式加上括号•不要把- 冷写成- —b b n b b(2)分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.(3)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分.(4)分式乘方时,应把分子、分母分别看作一个整体.如a b 2 a b a2b2〒b2b2.分式的加减(基础)【学习目标】1•能利用分式的基本性质通分.2•会进行同分母分式的加减法.3•会进行异分母分式的加减法.【要点梳理】要点一、同分母分式的加减同分母分式相加减,分母不变,把分子相加减;上述法则可用式子表为:a b a bc c c要点诠释:(1)“把分子相加减”是把各分式的分子的整体相加减,即各个分子都应用括号,当分子是单项式时,括号可以省略;当分子是多项式时,特别是分子相减时,括号不能省,不然,容易导致符号上的错误•(2)分式的加减法运算的结果必须化成最简分式或整式.要点二、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分要点诠释:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最高次幕的积作为公分母.(2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的最高次幕的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母(3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言•要点三、异分母分式的加减异分母分式相加减,先通分,变为同分母的分式,再加减上述法则可用式子表为:要点诠释:(1)异分母的分式相加减,先通分是关键•通分后,异分母的分式加减法变成 同分母分式的加减法•(2)异分母分式加减法的一般步骤:①通分,②进行同分母分式的加减运算,③把结果化 成最简分式• 要点四、分式的混合运算与分数的加、减乘、除混合运算一样,分式的加、减乘、除混合运算,也是先算乘、除,后算加、减;遇到括号,先算括号内的,按先小括号,再中括号,最后大括号的顺序 计算.分式运算结果必须达到最简,能约分的要约分,保证结果是最简分式或整式 •要点诠释:(1)正确运用运算法则:分式的乘除(包括乘方)、加减、符号变化法则是正 确进行分式运算的基础,要牢牢掌握..(2) 运算顺序:先算乘方,再算乘、除,最后算加、减,遇有括号,先算括号内的(3) 运算律:运算律包括加法和乘法的交换律、结合律,乘法对加法的分配律.能灵活运用运算律,将大大提高运算速度• 分式方程的解法及应用(基础)【学习目标】b a db bd1.了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程.2.会列出分式方程解简单的应用问题.【要点梳理】要点一、分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.要点二、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程. 转化方法是方程两边都乘以最简公分母,去掉分母. 在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根. 因为解分式方程时可能产生增根,所以解分式方程时必须验根.解分式方程的一般步骤:( 1 )方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式时,先分解因式,再找出最简公分母)?方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.要点三、解分式方程产生增根的原因方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根.要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的. 根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0 的数,所得方程是原方程的同解方程. 如果方程的两边都乘以的数是0,那么所得方程与原方程不是同解方程,这时求得的根就是原方程的增根.(2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的.要点四、分式方程的应用分式方程的应用主要就是列方程解应用题.列分式方程解应用题按下列步骤进行:1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;(2)设未知数;(3)找出能够表示题中全部含义的相等关系,列出分式方程;(4)解这个分式方程;(5)验根,检验是否是增根;(6)写出答案.分式全章复习与巩固(基础)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0 的条件.2.了解分式的基本性质,掌握分式的约分和通分法则.3.掌握分式的四则运算.4.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想.【知识网络】【要点梳理】要点一、分式的有关概念及性质1 •分式一般地,如果A、B表示两个整式,并且B中含有字母,那么式子-叫做分式•其中AB叫做分子,B叫做分母.要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B H 0时,分式A才有意义.B2.分式的基本性质匸上--匕(M为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.要点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3 •基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下(1)加减运算同分母的分式相加减,分母不变,把分子相加减异分母的分式相加减,先通分,变为同分母的分式,再加减a c ac⑵乘法运算bc bc ,其中a 、bc 、d 是整式,bd 0.两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母(3)除法运算 a — a d -ad ,其中a b 、c 、d 是整式,bcd 0.b d bc bc两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘 .分式的乘方,把分子、分母分别乘方4. 分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的 要点三、分式方程1 •分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法hd (4)乘方运算解分式方程的关键是去分母, 即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题增根的产生:分式方程本身隐含着分母不为0 的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.要点诠释:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.要点四、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.。

分式的性质

分式的性质

分式的性质一、分式的定义(1)分式的概念:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子A/B叫做分式.(2)因为0不能做除数,所以分式的分母不能为0.(3)分式是两个整式相除的商,分子就是被除式,分母就是除式,而分数线可以理解为除号,还兼有括号的作用.(4)分式的分母必须含有字母,而分子可以含字母,也可以不含字母,亦即从形式上看符合分式概念的形式,从本质上看分母必须含有字母,同时,分母不等于零,且只看初始状态,不要化简.二、分式有意义的条件(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.(3)分式的值为正数的条件是分子、分母同号.(4)分式的值为负数的条件是分子、分母异号.三、分式的值为零的条件分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.四、分式的值分式求值历来是各级考试中出现频率较高的题型,而条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.五、分式的基本性质(1)分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.(2)分式中的符号法则:分子、分母、分式本身同时改变两处的符号,分式的值不变.【方法技巧】利用分式的基本性质可解决的问题1.分式中的系数化整问题:当分子、分母的系数为分数或小数时,应用分数的性质将分式的分子、分母中的系数化为整数.2.解决分式中的变号问题:分式的分子、分母及分式本身的三个符号,改变其中的任何两个,分式的值不变,注意分子、分母是多项式时,分子、分母应为一个整体,改变符号是指改变分子、分母中各项的符号.3.处理分式中的恒等变形问题:分式的约分、通分都是利用分式的基本性质变形的.六、最简分式最简分式的定义:一个分式的分子与分母没有公因式时,叫最简分式.和分数不能化简一样,叫最简分数.七、约分(1)约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.(2)确定公因式要分为系数、字母、字母的指数来分别确定.①分式约分的结果可能是最简分式,也可能是整式.②当分子与分母含有负号时,一般把负号提到分式本身的前面.③约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.(3)规律方法总结:由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.。

分式初步认识分式的基本结构和性质

分式初步认识分式的基本结构和性质

分式初步认识分式的基本结构和性质分式:初步认识分式的基本结构和性质分式是数学中常见的一种表示形式,它以分数的形式表示两个数的关系。

在分式中,有分子(numerator)和分母(denominator)两个部分,分子表示被分的数,分母表示分的份数。

分式具有以下基本结构和性质。

基本结构:分式的基本结构由分子和分母两部分组成,它们之间用一条水平线隔开。

分子和分母都可以是整数、小数、甚至是其他的分式。

比如,1/2、3/4、5/6等都是分式的基本结构。

性质一:分数的值分式表示两个数之间的关系,其中分母表示分的份数。

当分母为1时,分式的值等于分子本身。

例如,2/1等于2,3/1等于3。

这是因为将一个数分成1份,相当于保持原数不变。

性质二:分数的大小比较分数的大小可以通过比较分子和分母的大小来确定。

当分母相同时,分子越大,分数越大。

例如,1/2和3/2,由于分母相同,分子3大于1,所以3/2大于1/2。

当分子相同时,分母越大,分数越小。

例如,1/2和1/4,由于分子相同,分母1/4大于1/2,所以1/4小于1/2。

性质三:分数的乘除运算分数的乘法运算可以通过将两个分数的分子和分母相乘得到。

例如,1/2乘以2/3等于1/3。

分数的除法运算可以通过将第一个分数的分子和第二个分数的分母相乘,分子和分母交换位置,然后简化得到。

例如,1/2除以3/4等于2/3。

性质四:分数的加减运算分数的加减运算可以通过找到它们的公共分母,然后将分子进行相应的加减得到。

例如,1/2加上1/3等于5/6,1/2减去1/3等于1/6。

当分数的分母不同的时候,需要找到它们的公共分母,然后进行运算。

除了上述基本结构和性质之外,分式还有一些特殊形式和运算规则,例如约分、分式的乘方、复杂分式等。

这些内容可以在进一步学习分式的过程中进行了解和掌握。

综上所述,分式是数学中重要的概念,它以分数的形式表示两个数的关系。

分式的基本结构包括分子和分母,分数的大小可以通过比较分子和分母的大小来确定。

分式知识归纳

分式知识归纳

第十六章分式【知识点1】分式1.分式的概念:形如(A、B是整式,且B中含有字母,B≠0)的式子叫做分式.其中,A叫分式的分子,B叫分式的分母.2.分式有意义的条件:因为两式相除的除式不能为零,即分式的分母不能为零,所以,分式有意义的条件是:分式的分母必须不等于零,即B≠0,分式有意义.3.分式的值为零的条件:分子等于0,分母不等于0,二者缺一不可.【知识点2】有理式有理式的分类:有理式【知识点3】分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示为:(其中M≠0)【知识点4】约分和通分1.分式的约分:把一个分式的分子与分母中的公因式约去叫约分.2.分式的通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫通分.【知识点5】最简分式与最简公分母:约分后,分式的分子与分母不再有公因式,我们称这样的分式为最简分式.取各分母所有因式的最高次幂的积作为公分母,这样的公分母称为最简公分母.●知识链接:1分数的意义2.分数的基本性质3.分数基本性质的作用●中考考点本节的常考知识点有:1. 分式的有关概念,分式的意义,分式的值等于零.2. 分式的约分,分式的分子、分母的系数化整化正.3. 求分式的值以及分式与其它题的综合分式方程●学习目标1. 理解分式方程的定义,会解可化为一元一次方程的分式方程,了解产生增根的原因,并会验根.2. 列出分式方程,解简单的应用题.●重点难点重点:把分式方程转化为整式方程求解的化归思想及具体的解题方法.难点:(1)了解产生增根的原因,并有针对性地验根;(2)应用题分析题意列方程.●知识概要1. 分式方程的概念2. 解可化为一元一次方程的分式方程的一般方法和步骤:①去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程;②解这个整式方程;③验根:把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 列分式方程解应用题的一般步骤:(1)审:审清题意;(2)设:设未知数;(3)找:找出等量关系;(4)列:列出分式方程;(5)解:解这个分式方程;(6)验:既要验证根是否为原分式方程的根,又要检验根是否符合题意;(7)答:写出答案.●知识链接解分式方程主要是将其转化成整式方程来解.解完方程要注意验根即是否使最简公分母为零.●中考视点: 本节内容在中考中经常出现,通常是以计算题或应用题的形式出现,并且多与其它章节如函数、方程等知识结合,因此,一定要注意含有字母系数的方程的解法以及可化为一元一次方程的分式方程的解法和应用,切记一定要验根.第二节、教材解读一、约分的根据、实质与关键约分的根据是分式的基本性质;约分的实质是将一个分式化成最简分式——分子与分母没有公因式的分式;约分的关键是确定一个分式的分子与分母的公因式.二、确定分子、分母公因式的方法分子与分母的公因式是:分子、分母的系数的最大公约数与相同因式的最低次幂的积.三、约分时应防止的三类错误1.有关分式的概念辨析,字母或分式的取值等问题,一般不用约分,否则会造成错误.2.约分时,分子的整体与分母的整体都要除以同一个(公)因式,当分子或分母是多项式时,要用分子、分母的公因式去除整个多项式,不能只除某一项,更不能减去某一项.等都是错误的.其中(1)中的分式已是最简分式,不需再约分;(2)的正确答案是.为此,必须牢记,只有当分子、分母都是乘积形式时才能约分.3.分式的分子与分母是同底数的幂做因式时,应约去最低次幂,切不可对指数进行约分.就犯了用指数6与2约分的错误,正确的结果是四、掌握解分式方程的步骤解分式方程的一般步骤是:一是方程两边同乘最简公分母,化分式方程为整式方程;二是解这个整式方程;三是检验.如:解方程: .第一步:方程两边都乘以x(x+6),得90x+540=60x;第二步:解这个整式方程,得x=-18;第三步:检验:把x=-18代入原方程的左、右两边有左边=右边,即-18是原分式方程的解.五、列分式方程解简单的实际应用问题列分式方程解简单的实际应用题的步骤简单地可分为:审、设、找、列、解、检、答七个步骤.其中关键是“列”,难点是“找”.如:如图,小明家到王老师家的路程为3km,王老师家到学校的路程为0.5km,为了使他能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20min,问王老师的步行速度及骑自行车的速度各是多少?解:第一步:审清题意;第二步:设王老师的步行速度为xkm/h,则骑自行车的速度为3xkm/h;第三步:王老师现在骑车所用的时间-原来步行所用时间=20min;第四步:根据题意,得;第五步:解这个方程:去分母,得3+3+0.5-1.5=x,即x=5;第六步:经检验x=5是原方程的解,所以3x=15;第七步:答:王老师的步行速度及骑自行车的速度分别为5km/h和15km/h.列分式方程解应用题一定要验根,还要保证其结果符合实际意义.第三节、错题剖析分式概念是本章学习的基础,由于学生的认知水平和经验的不足,特别容易出现一些常见的通病.下面将通过举例讲解,让同学们少走弯路,更快地学好分式的基础知识.同学们在学习过程中可能会犯以下错误.一、分式概念理解偏差【例1】下列各式是分式的是()错解1:显然B 式分母中含有字母,又是的形式,所以选B.错解2:显然A 、D 都是整式,经过同底数的幂相除化为3a也是整式,故选B.错解分析:前者误认为π是字母.其实π是常数;后者先约分再判断是不行的.正解:选C.反思:(1)把握判断分式的唯一标准是看分母中是否含有字母.分母中不含字母的是整式,分母中含有字母的是分式.(2)分式的判断是看形式,数的判断是看结果.如数的结果是3,所以是有理数不是无理数.二、分式的值为零的条件混乱【例2】当x 取何值时,的值为0?错解1:因为x无论等于2还是-2,分式的值为0,均无意义,故x没有值可取;错解2:x=±2错解分析:前者误认为分式的值为0属于无意义,后者却忽视分式的值为0的前提条件是分式有意义.正解:x=2.反思:弄清分式的值为零的条件有两个:(1)分子的值为零;(2)分母的值不为零.这两个条件必须同时具备才可.三、分式无意义的条件不清【例3】当x _____ 时,分式无意义.错解:因为当x=1时,分母的值为0,故x=1.错解分析:这个答案只考虑了分母为零时x=1,忽视了-1=0时x=±1都使分母为零.属于思维习惯上的问题.正解:x=±1.四、分式基本性质理解错误【例4】不改变分式的值,把分式的分子、分母中的各项系数都化为整数错解:错解分析:错解的分子、分母所乘的不是同一个数,而是两个不同的数,虽然把各项系数化成了整数,但分式的值改变了,违背了分式的基本性质.五、去分母时常数漏乘公分母【例5】解方程错解:方程两边都乘以(x-3),得2-x=-1-2,解这个方程,得x=5.错解分析:解分式方程需要去分母,根据等式的性质,在方程两边同乘以(x-3)时,应注意乘以方程的每一项.错解在去分母时,-2这一项没有乘以(x-3),另外,求到x=5没有代入原方程中检验.正解:方程两边都乘以(x-3),得2-x=-1-2(x-3),解得x=3检验:将x=3代入原方程,可知原方程的分母等于0,所以x=3是原方程的增根,所以原方程无解.六、去分母时,分子是多项式不加括号【例6】解方程错解:方程化为,方程两边同乘以(x+1)(x-1),得3-x-1=0,解得x=2.所以方程的解为x=2.错解分析:当分式的分子是一个多项式,去掉分母时,应将多项式用括号括起来.错解在没有用括号将(x -1)括起来,出现符号上的错误,而且最后没有检验.正解:方程两边都乘以(x+1)(x-1),得3-(x-1)=0,解这个方程,得x=4.检验:当x=4时,原方程的分母不等于0,所以x=4是原方程的根.七、方程两边同除可能为零的整式【例7】解方程 .错解:方程两边都除以3x-2,得,所以x+3=x-4,所以3=-4,即方程无解.错解分析:错解的原因是在没有强调(3x-2)是否等于0的条件下,方程两边同除以(3x-2),结果导致方程无解.正解:方程两边都乘以(x-4)(x+3),得(3x-2)(x+3)=(3x-2)(x-4),所以(3x-2)(x+3)-(3x-2)(x-4)=0.即(3x-2)(x+3-x+4)=0.所以7(3x-2)=0.解得x=.检验:当x=时,原方程的左边=右边=0,所以x=是原方程的解.第四节、思维点拨【例1】已知且a、b都不等于0,求的值【思考与分析】从题目的条件可以得出a、b的值代入要求的分式使得分式有意义即可求出分式值.得(a-b)·(a-2b)=0.所以a-b=0或a-2b=0;当a-b=0时,得a=b≠0,当a-2b=0时,得a=2b≠0,所以综上可得,【反思】本题是求含字母的分式,利用因式分解,两个因式的积为零,则可转化为两个因式中至少有一个为零,代入分式来求解,注意前提仍然是分式必须有意义.【思考与分析】可以灵活运用这个条件.①要求的分式也可以化成含的形式,整体代入即可;【反思】本题在求值过程中利用了分式的基本性质,并且采用多种方法来利用已知条件使问题简化.【例3】供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果同时到达.已知抢修车的速度是摩托车的速度的1.5倍,求这两种车的速度.解题思路一:寻求时间上的相等关系建立方程【解法1】:设摩托车的速度为x千米/时,则抢修车的速度为1.5x千米/时.根据题意得:解得x=40,经检验,x=40是原方程的根.所以1.5x=1.5×40=60答:摩托车的速度为40千米/时,抢修车的速度为60千米/时.解题思路二:寻求速度之间的相等关系建立方程【解法2】设摩托车行30千米所用的时间为x小时,则抢修车所用的时间为(x -)小时,根据“抢修车的速度是摩托车速度的1.5倍”得:解题思路三:寻求路程之间的相等关系建立方程【解法3】设摩托车行30千米所用的时间为x 小时,则抢修车行驶30千米所用的时间为(x-)小时,摩托车的速度为千米/时,抢修车的速度为×1.5千米/时,根据“抢修车的速度×抢修车所用的时间=总路程30千米”得:(×1.5)(x-)=30解题思路四:列方程组解答【解法4】设摩托车与抢修车每小时分别行驶x千米、y千米,根据题意得方程组:(2、3、4解答过程略)【小结】题中含有多种关系时,列方程组可降低思维难度.前面的各种解法中,若把所推出的代数式用新的未知数替换,则都能写成方程的形式.【例5】读下列一段文字,然后解答问题.已知:方程的解是;方程的解是;方程的解是;方程的解是.【探究一】观察上述方程及其解,再猜想方程的解,并写出检验过程.解:猜想方程的解是.检验:当x=11时,左边=,右边=,所以左边=右边;当x =时,左边=右边=.∴x1=11,x2=是方程的解.【探究二】你能猜想方程(n为正整数)的解吗?若能请你验证你的猜想是否合理?解:猜想方程(n 为正整数)的解是x1=n+1,x2=-.检验:当x=n+1时,左边=n+1-=,右边=,所以左边=右边;当x=-时,左边=右边=.∴x1=n+1,x2=-是方程x -=(n为正整数)的解.【例6】解方程【思考与分析】因为方程中有分母,所以首先应该去掉分母,只是注意,原来整式方程中分母全是数,而分式方程中则是代数式,因而去分母时应该两边同乘一个代数式,这里应该同乘x(x-1).解:去分母,两边同乘以x(x-1)得:x(x-1)-x(x-1)·=·x(x-1)化简得:x2-x-(x2-1)=2x去掉括号,得:3x=1,∴ x=检验:把x=代入原方程的各个分母,都不为0.∴x=是原方程的解.【反思】(1)在解分式方程时,因乘的是同一个代数式,最后求得的根可能使同乘的这个代数式的值为0,这样的根叫做增根,但不是每个方程都有增根.因此,在解完方程之后,一定要检验方程的根,如果是增根,就标出来并且舍去.(2)在去分母时,同乘的是一个代数式,在题目中,可能有的项没有分母,这种项也同样要乘以这个代数式.第五节、竞赛数学当题目中的未知数具有对称关系时,应用基本对称式:x+y=a,xy=b,进行替换,可使解题过程简化.现以部分竞赛题为例,介绍这种解题技巧在求分式值中的妙用.【思考与分析】首先看题目给的条件似乎没有必然的联系,但是经过化简含有可以利用建立联系解答.【例2】如果a2-3a+1=0,那么,的值是 ______ .【思考与分析】这题看起来没有对称关系,但是不要急,我们先从题目中所给的已知条件入手,可解出一个关于a 的新的关系式再将分别换元为x、y,所求的分式经过化简也可以用含有x、y的分式来求.【思考与分析】题目看起来很麻烦,无从下手,大家仔细观察已知分式与要求分式的对应项系数的关系,就可以知道将已知的等式取倒数就可以找到相应的关系了.【例4】若a、b 都是正实数,且求的值【思考与分析】由已知条件入手,可以得出这样就与要求的分式建立联系了,设可求出x与y的关系,代入要求的分式来解即可.【例5】证明恒等式【思考与分析】本题两边如果通分,可见其分母相同,若等式成立,则分子也必定相等,但这样运算量太大;如果把左边的分子灵活变形如b-c=(a-c)-(a-b)则可简化运算.证明: 原式左边=故原等式成立.【例6】使实数a、b、c 满足,求证:.【思考与分析】这里999是奇数,从题目的格式看,应该是对一般的奇数都成立,因而可以考虑由一般到特殊的证明方法.证明: ∵,故(bc+ca+ab)·(a+b+c)=abc.整理可得: (a+b)(b+c)(c+a)=0,故a=-b或b=-c或c=-a.不妨设a=-b,则a2n-1=-b2n-1,令n=500代入上式可得.小结:分式证明题形式多种多样,一般的证明途径有:(1)由繁到简,即从等式较复杂的一边入手,经过配方因式分解换元降次等多种变形,逐步推到另一边;(2)将等式两边同时变形为同一个代数式,从而推出相等的结果.第六节、本章训练基础训练题分式一、细心填一填(共7题,每题4分,共28分)1.x=3 分式的根(填“是”或“不是”).2.当x= 时,分式与的值相等.3.试写出一个解为x=2的分式方程 .4.分式方程的根是 .5.已知分式的值是零,那么x的值是 .6.若有增根,则增根为 .7. 在实数范围内定义一种运算“*”,其规则为,根据这个规则,方程5*(x-1)=3的解为 .二、精心选一选(共9题,每小题5分,共45分)8.下列方程中是分式方程的是()A. B. C.y+2=3 D.9.把分式方程的两边同时乘以(x-2),约去分母,得()A.1+(1-x)=x-2B.1+(1-x)=1C.1-(1-x)=x-2D.1-(1-x)=110.要把分式方程化为整式方程,方程两边需要同时乘以()A.2x-4B.xC.2(x-2)D.2x(x-2)11.方程的解是()A.1B.-1C.±1D.212.已知,用含x的代数式表示y,得()A.y=2x+8B.y=2x+10C.y=2x-10D.y=2x-813.关于x 的方程的解为x=1,则a等于()A.1B. -3C.-1D. 314.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件,则x应满足的方程为()A. B.C. D.15.用换元法解分式方程,如果设,则原方程可变形为()A. B. C.D.16.下列关于x的方程,其中不是分式方程的是()A. B. C.D.三、耐心做一做(第17题12分,第18题15分)17.解方程:18.八年级(2)班的学生周末乘汽车到游览区游览,游览区距学校120km,一部分学生乘慢车先行,出发1h后,另一部分学生乘快车前往,结果他们同时到达游览区,已知快车的速度是慢车速度的1.5倍,求慢车的速度.分式方程一、精心填一填(共8题,每小题4分,共32分)二、细心选一选(共8题,每小题5分,共40分)14.若代数式在实数范围内有意义,则x的取值范围为().A.x>0B.x≥0C.x≠0D.x≥0且x≠116.已知两个分式其中x≠±2,则A与B的关系是().A. 相等B. 互为倒数C. 互为相反数D. A大于B三.解答题(第17题12分,第18题16分)17.化简求值:其中x=-3.18.请将下面的代数式尽可能化简,再选择一个你喜欢的数(要合适哦!)代入求值:提高训练题4.解方程5.解方程:6.甲、乙两班参加绿化校园活动.已知乙班每小时比甲班多种2棵树,甲班种60棵树所用的时间与乙班种66棵树所用的时间相等.求甲、乙两班每小时各种多少棵树?7.已知x2-5x-2000=0,则代数式的值是().A.2001B.2002C.2003D.20048.化简(=.9.已知,则的值为.10.解关于x的方程:ax-b=2x-3.强化训练题一、精心选一选1.下列代数式中:是分式的有()A. 1个B. 2个C. 3个D. 4个2.下列判断中,正确的是()A.分式的分子中一定含有字母B.当B=0时,分式的值为0C.当A=0,B≠0时,分式的值为0(A、B为整式)D.分数一定是分式3.分式中,当x=-a时,下列结论正确的是()A.分式的值为零B.分式无意义C.若a≠-时,分式的值为零D.若a≠时,分式的值为零4.分式中的字母x、y都扩大为原来的4倍,则分式的值()A.不变B.扩大为原来的4倍C.扩大为原来的8倍D.缩小为原来的5.不改变分式的值,使分式的各项系数化为整数,分子、分母应乘以()A.10B.9C.45D.906.下列各分式中,最简分式是()二、细心填一填8.当x 时,分式有意义.9.当x 时,分式的值为零.10.当a=时,分式无意义.11.约分:=.三、耐心做一做12.当x 为何值时,分式的值为负?13.把化为整数系数.14.不改变分式的值,把下式分子、分母中最高次项的系数变为“+”号:.四、应用题15.2008年夏季奥运会将在北京举行.为了支持北京申奥成功,红、绿两支宣传北京申奥万里行的车队在距北京3000千米处会合,并同时向北京进发.绿队走完2000千米时,红队走完1800千米,随后,红队的速度提高20%,两车队继续同时向北京进发.(1)求红队提速前红、绿两支车队的速度比.(2)红、绿两支车队能否同时到达北京?说明理由.(3)若红、绿两支车队不能同时到达北京,那么哪支车队先到达北京?并求出第一支车队到达北京时,两车队间的距离.综合训练题一、选择题(每题5分,共30分)1.下列分式中,一定有意义的是()2.如果分式中,x,y的值都变为原来的一半,则分式的值()A.不变B.扩大2倍C.缩小2倍D.以上都不对3.下列变形正确的是()4.下列运算正确的是()5.将分式的分子、分母各项系数都化为整数,正确的结果是()6.如果从一捆粗细均匀的电线上截取1米长的电线,称得它的质量为a,再称得剩余电线的质量为b,那么原来这捆电线的总长度是()二、填空题(每题5分,共30分)7.当x= 时,分式的值为零.8.分式约分的结果是 .9.计算:= .10.一项工程,甲单独做x小时完成,乙单独做y小时完成,则两人一起完成这项工程需要小时.11.代数式中x的取值范围是 .12.方程=1的解是 .三、解答题(共40分)13.(11分)计算:-x14.(13分)计算,并把负指数化为正:(2mn-2)-3(-m-2n-1)-215.(16分)甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路驶向C城,已知A、C两城的距离为450km,B、C两城的距离为400km,甲车比乙车的速度快10km/h,结果两辆车同时到达C城,求两车的速度.。

分式必考知识点总结(1)(2)

分式必考知识点总结(1)(2)

考点卡片1.分式的定义(1)分式的概念:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式.(2)因为0不能做除数,所以分式的分母不能为0.(3)分式是两个整式相除的商,分子就是被除式,分母就是除式,而分数线可以理解为除号,还兼有括号的作用.(4)分式的分母必须含有字母,而分子可以含字母,也可以不含字母,亦即从形式上看是AB的形式,从本质上看分母必须含有字母,同时,分母不等于零,且只看初始状态,不要化简.(5)分式是一种表达形式,如x+1x+2是分式,如果形式都不是AB的形式,那就不能算是分式了,如:(x+1)÷(x+2),它只表示一种除法运算,而不能称之为分式,但如果用负指数次幂表示的某些代数式如(a+b)﹣2,y﹣1,则为分式,因为y﹣1=1y仅是一种数学上的规定,而非一种运算形式.2.分式有意义的条件(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.(3)分式的值为正数的条件是分子、分母同号.(4)分式的值为负数的条件是分子、分母异号.3.分式的值为零的条件分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.4.分式的值分式求值历来是各级考试中出现频率较高的题型,而条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.5.约分(1)约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.(2)确定公因式要分为系数、字母、字母的指数来分别确定.①分式约分的结果可能是最简分式,也可能是整式.②当分子与分母含有负号时,一般把负号提到分式本身的前面.③约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.(3)规律方法总结:由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.6.分式的乘除法(1)分式的乘法法则:分式乘分式,用分子的积作积的分子,分母的积作积的分母.(2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.(3)分式的乘方法则:把分子、分母分别乘方.(4)分式的乘、除、乘方混合运算.运算顺序应先把各个分式进行乘方运算,再进行分式的乘除运算,即“先乘方,再乘除”.(5)规律方法总结:①分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.②整式和分式进行运算时,可以把整式看成分母为1的分式.③做分式乘除混合运算时,要注意运算顺序,乘除法是同级运算,要严格按照由左到右的顺序进行运算,切不可打乱这个运算顺序.7.分式的加减法(1)同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减.(2)异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.:说明:①分式的通分必须注意整个分子和整个分母,分母是多项式时,必须先分解因式,分子是多项式时,要把分母所乘的相同式子与这个多项式相乘,而不能只同其中某一项相乘.②通分是和约分是相反的一种变换.约分是把分子和分母的所有公因式约去,将分式化为较简单的形式;通分是分别把每一个分式的分子分母同乘以相同的因式,使几个较简单的分式变成分母相同的较复杂的形式.约分是对一个分式而言的;通分则是对两个或两个以上的分式来说的.8.分式的化简求值先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.【规律方法】分式化简求值时需注意的问题1.化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤,代入求值的模式一般为“当…时,原式=…”.2.代入求值时,有直接代入法,整体代入法等常用方法.解题时可根据题目的具体条件选择合适的方法.当未知数的值没有明确给出时,所选取的未知数的值必须使原式中的各分式都有意义,且除数不能为0.9.零指数幂零指数幂:a0=1(a≠0)由a m÷a m=1,a m÷a m=a m﹣m=a0可推出a0=1(a≠0)注意:00≠1.10.解一元一次方程(1)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.(2)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(3)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式体现化归思想.将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a 为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负.11.分式方程的解求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.12.解分式方程(1)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.(2)解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解.所以解分式方程时,一定要检验.13.分式方程的增根(1)增根的定义:在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.(2)增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取哪些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.(3)检验增根的方法:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根.14.分式方程的应用1、列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.2、要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间等等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.15.一元一次不等式的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.。

2022最新湘教版初中数学八年级上册数学知识点大全

2022最新湘教版初中数学八年级上册数学知识点大全

第3章 实 数
要点梳理
一、平方根
1. 平方根的概念及性质 a (1)定义:若r2=a,则r叫作a的一个平方根. (2)性质:正数a有两个平方根,它们互为相反数;
0的平方根是0,负数没有平方根.
2. 算术平方根的概念及性质 a (1)定义:a的正平方根叫作a的算术平方根. (2)性质:0的算术平方根是0,只有非负数才有算术平
2. 线段垂直平分线性质定理的逆定理(判定) 到线段两端距离相等的点在线段的垂直平分线上.
3. 线段垂直平分线的作法
五、全等三角形 1.全等三角形的性质
对应角相等,对应边相等
2.全等三角形的判定 SAS ASA AAS SSS
3.三角形的稳定性
依据:SSS
六、用尺规作三角形 1.作一个角的平分线
方程; (2)解:解这个整式方程; (3)验:把整式方程的解代入最简公分母,如果最简公分母的
值不为0,则整式方程的解是原分式方程的解;否则, 这个解不是原分式方程的解,而是其增根,舍去;
(4)写根:写出原方程的根.
3.列分式方程解应用题的一般步骤: (1)审:审清题意,弄清楚已知量和未知量的关系; (2)找:找出题目中的等量关系; (3)设:根据题意设出未知数; (4)列:列出分式方程; (5)解:解这个分式方程; (6)验:检验,既要检验所求的解是否为所列分式方程
分式的除法
(1)同分母分式相加减
分式的乘方
(2)异分母分式加减时需通分化为同分母分式加减.这个相同的 分母叫公分母.
(确定公分母的方法:一般取各分母系数的最小公倍数与各分母各 个因式的最高次幂的积为公分母)
三、整数指数幂
1.同底数幂除法:a m an
amn
(a≠0, m、n为正整数且m>n)

七年级下册数学分式

七年级下册数学分式

七年级下册数学分式
一、分式的基本概念与性质
1.分式的定义:分式是指一个含有两个数的表达式,其中分母不能为零。

分式的形式为a/b,其中a称为分子,b称为分母。

2.分式的基本性质:
(1)分式的分子与分母同时乘以(或除以)同一个非零整式,分式的值不变。

(2)分式的分子与分母同时加减同一个整式,分式的值不变。

(3)分式的分子与分母同时乘以(或除以)同一个有理数,分式的值不变。

二、分式的运算
1.分式加减法:分式加减法实质上是通分后的同分母分式的加减运算。

首先确定最简公分母,然后将各分式的分子按照最简公分母进行变换,最后进行加减运算。

2.分式乘除法:分式乘除法实质上是分子与分母的乘除运算。

分子与分母的乘法遵循分配律,除法则是分子与分母的乘法的逆运算。

3.乘法公式在分式中的应用:平方差公式、完全平方公式等乘法公式在分式运算中同样适用。

三、分式方程与不等式
1.分式方程的解法:先将分式方程转化为整式方程,然后求解整式方程,最后验根。

2.分式不等式的解法:与分式方程类似,先将分式不等式转化为整式不等式,然后解整式不等式,最后验根。

四、分式应用题
1.实际问题与分式的联系:许多实际问题都可以用分式来表示,如速度与时间的关系、单价与数量的关系等。

2.解题策略与方法:分析题目中的数量关系,将未知数用分式表示,然后建立分式方程或不等式,最后求解。

分式是七年级下册数学的重要内容,掌握分式的基本概念、运算方法、方程与不等式的解法以及应用题的解题策略,有助于提高我们的数学素养。

分式的概念与基本性质

分式的概念与基本性质

分式的概念当两个整数不能整除时,出现了分数;类似的当两个整式不能整除时,就出现了分式. 一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式. 整式与分式统称为有理式.在理解分式的概念时,注意以下三点: ⑴分式的分母中必然含有字母; ⑵分式的分母的值不为0;⑶分式必然是写成两式相除的形式,中间以分数线隔开.分式有意义的条件两个整式相除,除数不能为0,故分式有意义的条件是分母不为0,当分母为0时,分式无意义. 如:分式1x,当0x ≠时,分式有意义;当0x =时,分式无意义. 分式的值为零分式的值为零时,必须满足分式的分子为零,且分式的分母不能为零,注意是“同时”.分式的基本性质分式的基本性质:分式的分子与分母同时乘(或除以)一个不等于0的整式,分式的值不变.上述性质用公式可表示为:a am b bm =,a a mb b m÷=÷(0m ≠).注意:①在运用分式的基本性质时,基于的前提是0m ≠;②强调“同时",分子分母都要乘以或者除以同一个“非零”的数字或者整式; ③分式的基本性质是约分和通分的理论依据.一、分式的基本概念【例1】 在下列代数式中,哪些是分式?哪些是整式?1t ,(2)3x x +,2211x x x -+-,24x x +,52a ,2m ,21321x x x +--,3πx -,323a a a +【考点】分式的基本概念【解析】根据分式的概念可知,分式的分母中必然含有字母,由此可知1t,2211x x x -+-,24x x +,21321x x x +--,323a a a +为分式.(2)x x +,5a ,2m ,3x-为整式.【答案】1t,1x -,24x x +,21321x x x +--,3a 为分式(2)3x x +,52a ,2m ,3πx-为整式.【例2】 代数式22221131321223x x x a b a b ab m n xy x x y +--++++,,,,,,,中分式有( )A.1个B.1个 C 。

分式(一)分式的基本性质

分式(一)分式的基本性质

分式(一)分式的基本性质【知识要点】1.用A ,B 表示两个整式,A ÷B 就可以表示成A B 的形式,如果B 中含有字母,式子AB就叫做分式。

对分式的概念要注意以下两点:①分母中应含有字母;②分母的值不能为零,若为零,则该分式就没有意义。

2.整式和分式统称为有理式。

3.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

用式子表示是,A A M A A MB B M B B M⨯÷==⨯÷(其中M 是不等于零的整式)。

4.分式的符号变换法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

【典型例题】例1 下列各式中,哪些是整式?哪些是分式?(1)1a ; (2)1x x +; (3)1()3x y +; (4)2212x y -; (5)x y x y +-;(6)5a ; (7)xπ; (8)0.3732a x y ++; (9)1323y x +-; (10)5(3)x y m x +-例2 x 取何值时,下列分式有意义?(1)132x x ++ (2)(1)(5)(1)(2)x x x x +--- (3)15x - (4)213x x -+例3 x 取何值时,下列分式没有意义? (1)261x x +; (2)2(2)(3)9x x x ---; (3)2111x-例4 x 取何值时,下列分式的值为零? (1)31x x + (2)55x x -+ (3)211x x +-例5 x为何值时,分式532xx-+的值为正?例6 不改变分式的值,把下列各式的分子与分母中的各项系数化为整数。

(1)0.030.20.080.5x yx y-+;(2)22110.32310.25x yx xy+++;(3)13225m nm n+-例7 不改变分式的值,使下列分式的分子与分母都不含有“-”号。

(1)23xy---;(2)2nm-(3)25ba-(4)21()nxy+---例8 不改变分式243422231253x x x xx x y xy x y+--+-++-的值,使分子与分母中的最高次项的系数为正数。

分式的定义分式有意义的条件分式的基本性质

分式的定义分式有意义的条件分式的基本性质

分式的定义:一般地,用A、B表示两个整式,A÷B就可以表示成的形式,如果B中含有字母,式子就叫做分式。

其中,A叫做分式的分子,B叫做分式的分母。

分式和整式通称为有理式。

注:(1)分式的分母中必须含有字母;(2)分母的值不能为零,如果分母的值为零,那么分式无意义。

分式的定义:一般地,用A、B表示两个整式,A÷B就可以表示成的形式,如果B中含有字母,式子就叫做分式。

其中,A叫做分式的分子,B叫做分式的分母。

分式和整式通称为有理式。

注:(1)分式的分母中必须含有字母;(2)分母的值不能为零,如果分母的值为零,那么分式无意义。

分式的概念包括3个方面:①分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。

这里,分母是指除式而言。

而不是只就分母中某一个字母来说的。

也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。

分式有意义的条件:(1)分式有意义条件:分母不为0;(2)分式无意义条件:分母为0;(3)分式值为0条件:分子为0且分母不为0;(4)分式值为正(负)数条件:分子分母同号时,分式值为正;分子分母异号时,分式值为负。

分式的区别概念:分式与分数的区别与联系:a.分式与分数在形式上是一致的,都有一条分数线,相当于除法的“÷”,都有分子和分母,都可以表示成(B≠0)的形式;b.分式中含有字母,由于字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况。

整式和分式统称为有理式。

带有根号且根号下含有字母的式子叫做无理式。

无限不循环小数也是无理式无理式和有理式统称代数式分式的基本性质是什么分式的基本性质是分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。

分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式(1)(分式概念、基本性质) 一、基础知识梳理:
1.分式的概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子B
A
做分式。

A 叫做分子,B 叫做分母. 分式的概念要注意以下几点:
(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;
(2)分式的分子可以含字母,也可以不含字母,但分母必须含有字母;
(3)分式有意义的条件是分母不能为0.
2.分式的基本性质:分式的分子分母同时乘以或除以同一个不为0的整式,分式的值不变.
3.分式的约分
(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分. (2)分式约分的依据:分式的基本性质.
(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式. 4.最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式. 二、针对性练习: (一)、填空题: 1.对于分式
1
22
x x -+(1)当________时,分式的值为0 ;
(2)当________时,分式的值为1;(3)当________时,分式无意义; (4)当________时,分式有意义.
2.填充分子,使等式成立;
()2
22(2)a a a -=
++; ()22233x x x -=-+- 3.填充分母,使等式成立:()
22
23434254x x x x -+-=-
-- ; ()2
1a a a c ++=(a ≠0). 4.化简:233812a b c a bc =_______;6425633224a b c a b c = ;22
4488a b
a b
-=- ;
223265a a a a ++=++ ;()()
x y a y x a --3
22= . 5.不改变分式的值,把下列各式的分子和分母中各项系数都化为整数:
0.010.50.30.04x y x y -=+ ;y x y x 6.02125.054-+= ;=-+b a b
a 4
13231
2
1 . 6.不改变分式的值,使下列各分式的分子、分母中最高次项的系数都是正数:
(1)2
2
11x x x y +++-= ; (2)343223324x x x x -+---= .
7.(1)已知:34y x =,则22
22
352235x xy y x xy y
-++-= . (2)已知
0345
x y m
==≠,则
x y m x y m +++-= . 8.若
||x x x x -+-=+1231
3
2
成立,则x 的取值范围是 . (二)、选择题:
9.在下列有理式221121
a x x m n x y x y y
a b ,,,,++-+-()()中,分式的个数是( ) A. 1
B. 2
C. 3
D. 4
10.把分式
x
x y
+(x ≠0,y ≠0)中的分子、分母的x ,y 同时扩大2倍,那么分式的值 ( ) A .扩大2倍 B .缩小2倍 C .改变 D .不改变 11.下列等式正确的是 ( )
A .22b b a a =
B .1a b a b -+=--
C .0a b a b +=+
D .0.10.330.22a b a b
a b a b
--=++
12.与分式
a b
a b
-+--相等的是 ( )
A .
a b a b +- B .a b a b -+ C .a b a b +-- D a b
a b
--+ 13.下列等式从左到右的变形正确的是 ( )
A .b a =11b a ++
B b bm a am =
C .2ab b a a
= D .22b b a a =
14.不改变分式的值,使2
1233
x
x x --+-的分子、分母中的最高次项的系数都是正数,则分式可化为 ( )
A .
22133x x x -+- B .22133x x x +++ C .22133x x x ++- D .2
21
33
x x x --+ 15.将分式253
x
y
x y -+的分子和分母中的各项系数都化为整数,应为 ( )
A .
235x y x y -+ B .151535x y x y -+ C .1530610x y x y -+ D .253x y
x y
-+
16.下列各式正确的是 ( )
A .
c c a b a b -=-++ B .c c a b b a -=-+- C .c c a b a b -=-++ D .c c
a b a b
-=
-+- 17.不改变分式的值,分式229
23
a a a ---可变形为 ( )
A .
31a a ++ B .31a a -- C .31a a +- D .3
1
a a -+ 18.不改变分式的值,把分式23
427431
a a a a a a -++--+-中的分子和分母按a 的升幂排列,是其中
最高项系数为正,正确的变形是 ( )
A .23437431
a a a a a a -++-+- B .23347413a a a a a a -+--++C .23434731a a a a a a +-+--+-D .23347413a a a a a a -++--++
19.已知a b ,为有理数,要使分式a
b
的值为非负数,a b ,应满足的条件是( ) A. a b ≥≠00, B. a b ≤<00,
C. a b ≥>00,
D. a b ≥>00,,或a b ≤<00,
20.已知
11
3a b
-=,求
2322a ab b a ab b ----的值( ) A. 12 B. 2
3 C. 95
D. 4
(三)、解答题:
21.已知:3x y -=20,求x xy y x xy y 22
22
323-++-的值.
22.已知:x x 2
10--=,求x x
4
41
+
的值. 23.化简:x x x x x x 3232
539
6512
++-++-. 24.把分式188248
3222a b ab a b
++++化为一个整式和一个分子为常数的分式的和,并且求出
这个整式与分式的乘积等于多少?
25. 已知:x y y y +=--=22402
,,求y x
y
-的值.
26. 已知:a b c ++=0,求a b c b c a c a b
()()()111111
3++++++的值. 27.已知:,a
c z
c b y b a x -=-=-求z y x ++的值.
28.已知:,0,1=++=++z c
y b x a c z b y a x 求222222c
z b y a x ++的值.。

相关文档
最新文档