专题6.1 导数中的构造函数-2121届高考数学压轴题讲义(选填题)(解析版)

合集下载

高考数学总复习重点知识专题讲解与训练6---导数构造辅导助函数问题(解析版)

高考数学总复习重点知识专题讲解与训练6---导数构造辅导助函数问题(解析版)

C. a = b
D.无法确定
【答案】B
【解析】构造函数 F (x) =
f (x) ex
,因
F
/ ex
f (x) > 0 ,故 F (x) =
f (x) ex

[0,+∞)
上单调递增,则 F (2) < F (3) ,即
f (2) < e2
f (3) e3
,也即
e3
f
(2)
<
f (x)
是 x
单调递减函数,因为 m ≤ n ,所以 F (m) ≥ F (n) ,即 f (m) ≥ f (n) ,也即 nf (m) ≥ mf (n) ,因
m
n
此应选 D.
12.已知定义在 R 上的函数 f (x) 的导函数为 f ′(x) ,且满足 f ′(x) > f (x) ,则下列结论
【答案】D[来源:学_科_网 Z_X_X_K]
【解析】令 t = ln x ,则; f (ln x) > 3ln x +1, f (t) > 3t +1, f (t) − 3t −1 > 0 ,
可构造函数, g(t)=f(t)-3t-1,g′(t)=f ′(t)-3,f ′(t)<3,g′(t) < 0 ,为减函数.
3 / 15
8 . 定 义 在 [0,+∞) 的 函 数 f ( x) 的 导 函 数 为 f '( x) , 对 于 任 意 的 x ≥ 0 , 恒 有 f '( x) > f ( x), a = e3 f (2),b = e2 f (3) ,则 a,b 的大小关系是( )
A. a > b

导数的综合运用:同构、构造函数选择填空压轴题(解析版)

导数的综合运用:同构、构造函数选择填空压轴题(解析版)

2024届高考数学专题:同构、构造函数选择填空压轴题一、单选题1.若对∀x ∈12e ,12,不等式(ax -4)ln x <2ln a -ax ln2恒成立,则实数a 的取值范围是()A.(0,4e ]B.(4e ,+∞)C.[4e ,+∞)D.(4e ,+∞)【答案】C【分析】不等式(ax -4)ln x <2ln a -ax ln2变形为ln (2x )2x <ln (ax 2)ax 2,令f x =ln xx ,利用导数研究函数单调性,解不等式求实数a 的取值范围.【详解】由已知得:a >0,由ax -4 ln x <2ln a -ax ln2,得ax ln 2x <2ln a +2ln x 即ax ln (2x )2<ln (ax 2),可得ln (2x )2x <ln (ax 2)ax 2.令f x =ln xx,x ∈0,+∞ ,则f (2x )<f (ax 2),求导得f (x )=1-ln x x2,f(x )>0,解得0<x <e ;f (x )<0,解得x >e ,∴f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,且当0<x <1时f (x )<0;当x >1时,f (x )>0,函数图像如图所示.∵x ∈12е,12,∴2x ∈1е,1,∴f (2x )<0,由f (2x )<f (ax 2)及f x =ln x x 的图像可知,2x <ax 2恒成立,即a >2x成立,而2x ∈(4,4e ),∴a ≥4е,实数a 的取值范围是[4e ,+∞).故选:C .2.对任意x ∈0,+∞ ,k e kx +1 -1+1xln x >0恒成立,则实数k 的可能取值为()A.-1B.13C.1eD.2e【答案】D【分析】将恒成立的不等式化为e kx +1 ln e kx >x +1 ln x ,构造函数f x =x +1 ln x ,利用导数可求得f x 单调性,从而得到e kx >x ,分离变量可得k >ln x x ;令h x =ln xx,利用导数可求得h x 最大值,由此可得k 的范围,从而确定k 可能的取值.【详解】当x >0时,由k e kx +1 -1+1xln x >0得:kx e kx +1 >x +1 ln x ,∴e kx +1 ln e kx >x +1 ln x ,令f x =x +1 ln x ,则f x =ln x +1+1x,令g x =f x ,则g x =1x -1x 2=x -1x 2,∴当x ∈0,1 时,g x <0;当x ∈1,+∞ 时,g x >0;∴f x 在0,1 上单调递减,在1,+∞ 上单调递增,∴f x ≥f 1 =2>0,∴f x 在0,+∞ 上单调递增,由e kx +1 ln e kx >x +1 ln x 得:f e kx >f x ,∴e kx >x ,即k >ln xx;令h x =ln x x ,则h x =1-ln xx 2,∴当x ∈0,e 时,h x >0;当x ∈e ,+∞ 时,h x <0;∴h x 在0,e 上单调递增,在e ,+∞ 上单调递减,∴h x ≤h e =1e,∴当x >0时,k >ln x x 恒成立,则k >1e,∴实数k 的可能取值为2e,ABC 错误,D 正确.故选:D .【点睛】关键点点睛:本题考查利用导数求解恒成立问题,解题关键是能够对于恒成立的不等式进行同构变化,将其转化为同一函数的两个函数值之间的大小关系的问题,从而利用函数的单调性来进行求解.3.已知对任意的x ∈0,+∞ ,不等式kx e kx +1 -x +1 ln x >0恒成立,则实数k 的取值范围是()A.e ,+∞B.1e ,eC.1e,+∞D.1e2,1e【答案】C【分析】对已知不等式进行变形,通过构造函数法,利用导数的性质、常变量分离法进行求解即可.【详解】因为kx e kx +1 >(x +1)ln x ,所以e kx +1 ln e kx >(x +1)ln x ①,令f (x )=(x +1)ln x ,则f (x )=1x +1+ln x ,设g (x )=f (x )=1x+1+ln x ,所以g (x )=-1x 2+1x =x -1x2,当0<x <1时,g(x )<0,当x >1时,g (x )>0,所以f (x )在(0,1)单调递减,在(1,+∞)单调递增,所以f x ≥f 1 =2,所以f (x )在(0,+∞)单调递增,因为①式可化为f e kx >f (x ),所以e kx >x ,所以k >ln xx,令h (x )=ln x x ,则h (x )=1-ln xx 2,当x ∈(0,e )时,h (x )>0,当x ∈(e ,+∞)时,h (x )<0,所以h (x )在(0,e )单调递增,在(e ,+∞)单调递减,所以h (x )max =h (e )=1e ,所以k >1e,故选:C .4.设实数a >0,对任意的x ∈1e3,+∞,不等式e 2ax -ln x 2a ≥1a -e 2ax ax 恒成立,则实数a 的取值范围是()A.1e ,+∞B.12e,+∞ C.0,1eD.1e2,+∞【答案】B【分析】将e 2ax-ln x 2a ≥1a -e 2ax ax化简为e 2ax 2ax +2 ≥x ln x +2 ,再构造函数f x =x ln x +2 ,求导分析单调性可得e 2ax ≥x 在区间1e3,+∞上恒成立,再参变分离构造函数求最值解决恒成立问题即可.【详解】因为e 2ax-ln x 2a ≥1a -e 2ax ax恒成立即2axe 2ax -x ln x ≥2x -2e 2ax ,可得e 2ax 2ax +2 ≥x ln x +2 ,令f x =x ln x +2 ,则f e 2ax ≥f x 恒成立.又f x =ln x +3,故当x ∈1e 3,+∞时,fx >0,故f x =x ln x +2 在区间1e3,+∞上为增函数.又f e 2ax ≥f x 恒成立,则e 2ax ≥x 在区间1e3,+∞上恒成立,即2ax ≥ln x ,2a ≥ln xx .构造g x =ln x x ,x ∈1e 3,+∞,则g x =1-ln xx2,令g x =0有x =e ,故当x ∈1e3,e时g x >0,g x 为增函数;当x ∈e ,+∞ 时g x <0,g x 为减函数.故g x ≤g e =1e ,故2a ≥1e ,即a ≥12e.故选:B 【点睛】方法点睛:恒(能)成立问题的解法:若f (x )在区间D 上有最值,则(1)恒成立:∀x ∈D ,f x >0⇔f x min >0;∀x ∈D ,f x <0⇔f x max <0;(2)能成立:∃x ∈D ,f x >0⇔f x max >0;∃x ∈D ,f x <0⇔f x min <0.若能分离常数,即将问题转化为:a >f x (或a <f x ),则(1)恒成立:a >f x ⇔a >f x max ;a <f x ⇔a <f x min ;(2)能成立:a >f x ⇔a >f x min ;a <f x ⇔a <f x max .5.已知函数f x =ln x +ax 2,若对任意两个不等的正实数x 1,x 2,都有f x 1 -f x 2x 1-x 2>2,则实数a 的取值范围是()A.14,+∞B.12,+∞C.14,+∞ D.12,+∞ 【答案】D【分析】构造函数g (x )=f (x )-2x =ln x +ax 2-2x (x >0),则转化得到g x 在(0,+∞)上单调递增,将题目转化为g (x )=1x+2ax -2≥0在(0,+∞)上恒成立,再利用分离参数法即可得到答案.【详解】由题意,不妨设x 1>x 2>0,因为对任意两个不等的正实数x 1,x 2,都有f x 1 -f x 2x 1-x 2>2,所以f x 1 -f x 2 >2x 1-2x 2,即f x 1 -2x 1>f x 2 -2x 2,构造函数g(x)=f(x)-2x=ln x+ax2-2x(x>0),则g x1>g x2,所以g(x)在(0,+∞)上单调递增,所以g (x)=1x+2ax-2≥0在(0,+∞)上恒成立,即a≥1x-12x2在(0,+∞)上恒成立,设m(x)=1x-12x2(x>0),则m (x)=-1x2+1x3=1-xx3,所以当x∈(0,1)时,m (x)>0,m(x)单调递增,x∈(1,+∞)时,m (x)<0,m(x)单调递减,所以m(x)max=m(1)=1-12=12,所以a≥1 2 .故选:D.6.已知f x 是定义在R上的函数f x 的导函数,且f x +xf x <0,则a=2f2 ,b=ef e ,c=3f3 的大小关系为()A.a>b>cB.c>a>bC.c>b>aD.b>a>c【答案】A【分析】构建g x =xf x ,求导,利用导数判断g x 的单调性,进而利用单调性比较大小.【详解】构建g x =xf x ,则g x =f x +xf x ,因为f x +xf x <0对于x∈R恒成立,所以g x <0,故g x 在R上单调递减,由于a=2f2 =g2 ,b=ef e =g e ,c=3f3 =g3 ,且2<e<3,所以g2 >g e >g3 ,即a>b>c.故选:A.【点睛】结论点睛:1.f x +xf x 的形式,常构建xf x ;f x -xf x 的形式,常构建f x x;2.f x +f x 的形式,常构建e x⋅f x ;f x -f x 的形式,常构建f x e x.7.若函数f x =e x2-2ln x-2a ln x+ax2有两个不同的零点,则实数a的取值范围是()A.-∞,-eB.-∞,-eC.-e,0D.-e,0【答案】A【分析】将问题转化为函数y=-a与y=e x2-2ln xx2-2ln x图象有两个不同的交点,根据换元法将函数y=e x2-2ln x x2-2ln x 转化为g t =e tt,利用导数讨论函数的单调性求出函数的值域,进而得出参数的取值范围.【详解】函数f(x)的定义域为(0,+∞),f x =e x2-2ln x-2a ln x+ax2=e x2-2ln x+a x2-2ln x,设h(x)=x2-2ln x(x>0),则h (x)=2x-2x=2(x+1)(x-1)x,令h (x)>0⇒x>1,令h (x)<0⇒0<x<1,所以函数h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,且h (1)=1,所以h (x )min =h (1)=1,所以h (x )≥1,函数f (x )有两个不同的零点等价于方程f (x )=0有两个不同的解,则e x 2-2ln x+a x 2-2ln x =0⇒-a =e x 2-2ln x x 2-2ln x,等价于函数y =-a 与y =e x 2-2ln xx 2-2ln x 图象有两个不同的交点.令x 2-2ln x =t ,g t =e t t ,t >1,则函数y =-a 与g t =e tt ,t >1图象有一个交点,则g t =te t -et t 2=e t t -1 t2>0,所以函数g (t )在(1,+∞)上单调递增,所以g t >g 1 =e ,且t 趋向于正无穷时,g t =e tt趋向于正无穷,所以-a >e ,解得a <-e.故选:A .【点睛】方法点睛:与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与x 轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.对于不适合分离参数的等式,常常将参数看作常数直接构造函数,常用分类讨论法,利用导数研究单调性、最值,从而得出参数范围.8.函数f x 是定义在0,+∞ 上的可导函数,其导函数为f x ,且满足f x +2xf x >0,若不等式ax ⋅f ax ln x ≥f ln x ⋅ln xax在x ∈1,+∞ 上恒成立,则实数a 的取值范围是()A.0,1eB.1e ,+∞C.0,eD.1e,+∞【答案】B【分析】根据题目条件可构造函数g x =x 2f x ,利用导函数判断出函数单调性,将不等式转化成g ax≥g ln x ,即a ≥ln x x 在x ∈1,+∞ 上恒成立,求出函数ln xx在1,+∞ 上的最大值即可得a 的取值范围.【详解】设g x =x 2f x ,x >0,g x =x 2f x +2xf x =x 2fx +2x f x >0所以函数g x 在0,+∞ 上为增函数.由f x 的定义域为0,+∞ 可知ax >0,得a >0,将不等式ax ⋅f ax ln x ≥f ln x ⋅ln xax整理得a 2x 2⋅f ax ≥f ln x ⋅ln 2x ,即g ax ≥g ln x ,可得ax ≥ln x 在x ∈1,+∞ 上恒成立,即a ≥ln xx在x ∈1,+∞ 上恒成立;令φx =ln xx ,其中x >1,所以a ≥φx maxφ x =1-ln xx2,令φ x =0,得x =e .当x ∈1,e 时,φ x >0,所以φx 在1,e 上单调递增;当x ∈e ,+∞ 时,φ x <0,所以φx 在e ,+∞ 上单调递减;所以φx max =φe =1e ,即a ≥1e故选:B .9.已知函数f (x )=xe x -a ln x +x -x a +1,若f (x )>0在定义域上恒成立,则实数a 的取值范围是()A.(-∞,e )B.0,eC.(-∞,1)D.0,1【答案】B【分析】构造函数g x =x +e x ,从而原不等式可转化为g x +ln x >g a ln x +ln x ,根据g x 的单调性可得x -a ln x >0,根据a 不同取值分类讨论求解即可.【详解】由f x >0得xe x +x >a ln x +x a +1,所以xe x +x +ln x >a ln x +ln x +x a +1,即e x +ln x +x +ln x >a ln x +ln x +x a +1,构造函数g x =x +e x ,则不等式转化为g x +ln x >g a ln x +ln x ,又易知g x 在R 上单调递增,故不等式等价于x +ln x >a ln x +ln x ,即x -a ln x >0.设h x =x -a ln x ,若a <0,h e1a=e1a-a lne 1a =e 1a-1<0,不符合题意;若a =0,则当x >0时,h x =x >0,符合题意;若a >0,则h x =1-ax,h x 在0,a 上单调递减,在a ,+∞ 上单调递增,所以h (x )min =h a ,要使h x >0恒成立,只需h a =a 1-ln a >0,所以0<a <e.综上可知a 的取值范围是0,e .故选:B .10.已知函数f (x )=xe x +e x ,g (x )=x ln x +x ,若f x 1 =g x 2 >0,则x 2x 1可取()A.-1 B.-1eC.1D.e【答案】A【分析】探讨函数g x 在1e 2,+∞上单调性,由已知可得x 2=e x 1(x 1>-1),再构造函数并求出其最小值即可判断作答.【详解】依题意,由g x 2 =x 2(ln x 2+1)>0得x 2>1e,令g x =2+ln x >0,函数g x 在1e 2,+∞上单调递增,由f x 1 =e x 1x 1+1 >0得x 1>-1,则f x =e x ln e x +1 =g (e x ),由f x 1 =g x 2 >0得:g (e x 1)=g (x 2),又e x 1>1e ,x 2>1e,于是得x 2=e x 1(x 1>-1),x 2x 1=ex1x 1,令h (x )=e x x (x >-1),求导得h(x )=e x (x -1)x 2,当-1<x <0,0<x <1时,h (x )<0,当x >1时,h (x )>0,即函数h (x )在(-1,0),(0,1)上单调递减,在(1,+∞)上单调递增,当x >0时,h (x )min =h (1)=e ,且x →+∞,h (x )→+∞,h (-1)=-1e ,且x →0-,h (x )→-∞,故h (x )∈-∞,-1e∪[e ,+∞)即x 2x 1∈-∞,-1e ∪[e ,+∞),显然选项A 符合要求,选项B ,C ,D 都不符合要求.故选:A 一、填空题11.设实数m >0,若对∀x ∈0,+∞ ,不等式e mx -ln xm≥0恒成立,则m 的取值范围为.【答案】m ≥1e【分析】构造函数f x =xe x 判定其单调性得mx ≥ln x ,分离参数根据恒成立求y =ln xx max即可.【详解】由e mx -ln xm≥0⇔mxe mx ≥x ln x =ln x ⋅e ln x ,构造函数f x =xe x x >0 ⇒f x =x +1 e x >0,∴f x 在0,+∞ 为增函数,则mx ⋅e mx ≥ln x ⋅e ln x ⇔mx ≥ln x 即对∀x ∈0,+∞ ,不等式mx ≥ln x 恒成立,则∀x ∈0,+∞ ,m ≥ln xx max,构造函数g x =ln x x ⇒g x =1-ln xx 2,令g x >0,得0<x <e ;令g x <0,得x >e ;∴g x =ln xx在0,e 上单调递增,在e ,+∞ 上单调递减,∴g x max =g e =1e ,即m ≥1e .故答案为:m ≥1e .12.已知函数f (x )=e x +1-a ln x ,若f (x )≥a (ln a -1)对x >0恒成立,则实数a 的取值范围是.【答案】0,e 2【分析】对不等式进行合理变形同构得e x +1-ln a +x +1-ln a ≥x +ln x ,构造函数利用函数的单调性计算即可.【详解】易知a >0,由e x +1-a ln x ≥a (ln a -1)可得e x +1a+1-ln a ≥ln x ,即e x +1-ln a +1-ln a ≥ln x ,则有e x +1-ln a +x +1-ln a ≥x +ln x ,设h (x )=e x +x ,易知h x 在R 上单调递增,故h (x +1-ln a )≥h (ln x ),所以x +1-ln a ≥ln x ,即x -ln x ≥ln a -1,设g (x )=x -ln x ⇒g x =x -1x,令g x >0⇒x >1,g x <0⇒0<x <1,故g x 在0,1 上单调递减,在1,+∞ 上单调递增,所以g x ≥g 1 =1,则有1≥ln a -1,解之得a ∈0,e 2 .故答案为:0,e 2 .13.已知a >1,若对于任意的x ∈13,+∞,不等式13x -2x +ln3x ≤1ae2x +ln a 恒成立,则a 的最小值为.【答案】32e【分析】根据题意可得13x +ln3x ≤1ae2x +ln ae 2x ,再构造f (x )=1x +ln x (x ≥1),利用导数研究该函数的单调性,从而利用函数的单调性,可得3x ≤ae 2x ,然后再参变量分离,将恒成立问题转为变量的最值,最后利用导数求出变量式的最值,从而得解.【详解】因为ln a +2x =ln a +ln e 2x =ln ae 2x ,所以13x -2x +ln3x ≤1ae 2x +ln a 可化为13x +ln3x ≤1ae2x +ln ae 2x ,设f (x )=1x +ln x (x ≥1),则f (x )=-1x 2+1x =x -1x 2≥0,∴f (x )在1,+∞ 上单调递增,因为a >1,x ∈13,+∞,所以3x ≥1,e 2x ≥e 23>1,ae 2x >1,所以13x +ln3x ≤1ae 2x +ln ae 2x 可化为f (3x )≤f (ae 2x ),所以3x ≤ae 2x ,∴a ≥3x e2x 在x ∈13,+∞ 上恒成立,∴a ≥3x e2xmax ,x ∈13,+∞ ,设g (x )=3x e 2x ,x ∈13,+∞ ,则g(x )=3(1-2x )e 2x,令g (x )>0,得13≤x <12;g (x )<0,得x >12,所以g (x )在13,12上单调递增,在12,+∞ 上单调递减,所以g x max =g 12 =32e ,所以a ≥32e ,即a 的最小值为32e .故答案为:32e.【点睛】关键点睛:本题的关键是将式子同构成13x +ln3x ≤1ae 2x +ln ae 2x ,再构造函数.14.若不等式ae 3x +2x +ln a ≥ln x 对任意x ∈0,+∞ 成立,则实数a 的最小值为.【答案】13e【分析】将不等式变形为e 3x +ln a +3x +ln a ≥e ln x +ln x 对任意x ∈0,+∞ 成立,构造函数g x =e x +x ,求导得单调性,进而问题进一步转化为ln a ≥ln x -3x 成立,构造h x =ln x -3x ,即可由导数求最值求解.【详解】因为ae 3x +2x +ln a ≥ln x 对任意x ∈0,+∞ 成立,不等式可变形为:ae 3x +3x +ln a ≥ln x +x ,即e ln a e 3x +3x +ln a ≥ln x +e ln x ,即e 3x +ln a +3x +ln a ≥e ln x +ln x 对任意x ∈0,+∞ 成立,记g x =e x +x ,则g x =e x +1>0,所以g x 在R 上单调递增,则e 3x +ln a +3x +ln a ≥e ln x +ln x 可写为g 3x +ln a ≥g ln x ,根据g x 单调性可知,只需3x +ln a ≥ln x 对任意x ∈0,+∞ 成立即可,即ln a ≥ln x -3x 成立,记h x =ln x -3x ,即只需ln a ≥h x max ,因为h x =1x -3=1-3x x ,故在x ∈0,13 上,h x >0,h x 单调递增,在x ∈13,+∞ 上,h x <0,h x 单调递减,所以h x max =h 13 =ln 13-1=ln 13e,所以只需ln a ≥ln 13e 即可,解得a ≥13e.故答案为:13e【点睛】方法点睛:利用导数求解不等式恒成立或者存在类问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.15.已知函数f x =ln x +ax 2,若对任意两个不相等的正实数x 1,x 2,都有f x 1 -f x 2x 1-x 2>2,则实数a 的取值范围是【答案】12,+∞ 【分析】设x 2>x 1>0,令g x =f x -2x ,将问题转化为g x 在0,+∞ 上单调递增,即g x ≥0在0,+∞ 上恒成立,采用分离变量的方式可得2a ≥-1x 2+2x ,结合二次函数性质可确定2a ≥1,由此可得结果.【详解】不妨设x 2>x 1>0,由f x 1 -f x 2x 1-x 2>2得:f x 1 -2x 1<f x 2 -2x 2,令g x =f x -2x ,则g x 在0,+∞ 上单调递增,∴g x =1x +2ax -2≥0在0,+∞ 上恒成立,∴2a ≥-1x 2+2x ,当1x =1,即x =1时,y =-1x2+2x 取得最大值1,∴2a ≥1,解得:a ≥12,∴实数a 的取值范围为12,+∞ .故答案为:12,+∞ .16.已知函数f x =12x 2-a ln x +1,当-2≤a <0,对任意x 1,x 2∈1,2 ,不等式f x 1 -f x 2 ≤m1x 1-1x 2恒成立,则m 的取值范围为.【答案】12,+∞【分析】构造新函数,利用导数研究函数的单调性与最值,求m 的取值范围即可.【详解】因为-2≤a <0,函数f x 在1,2 上单调递增,不妨设1≤x 1≤x 2≤2,则f x 1 -f x 2 ≤m1x 1-1x 2,可化为f x 2 +m x 2≤f x 1 +mx 1,设h x =f x +mx=12x2-a ln x+1+mx,则h x1≥h x2,所以h x 为1,2上的减函数,即h x =x-ax-mx2≤0在1,2上恒成立,等价于m≥x3-ax在1,2上恒成立,设g x =x3-ax,所以m≥g(x)max,因-2≤a<0,所以g x =3x2-a>0,所以函数g x 在1,2上是增函数,所以g(x)max=g2 =8-2a≤12(当且仅当a=-2时等号成立).所以m≥12.故答案为:12,+∞.17.已知实数x,y满足e x=xy2ln x+ln y,则xy的取值范围为.【答案】[e,+∞)【分析】把e x=xy2ln x+ln y化为xe x=x2y⋅ln(x2y),构造函数f(x)=xe x(x>0),可得xy=e xx,再求出函数g(x)=e xx(x>0)的值域即可得答案.【详解】依题意有x>0,y>0,设f(x)=xe x(x>0),则f (x)=(x+1)e x>0,所以f(x)在(0,+∞)上单调递增,由e x=xy2ln x+ln y,得xe x=x2y⋅ln(x2y),即有f(x)=f(ln(x2y)),因为f(x)在(0,+∞)上单调递增,所以有x=ln(x2y),即x2y=e x,所以xy=e x x,设g(x)=e xx(x>0),则g (x)=(x-1)e xx2,令g (x)=0,得x=1,x∈(0,1)时,g (x)<0,g(x)单调递减,x∈(1,+∞)时,g (x)>0,g(x)单调递增,所以g(x)min=g(1)=e,所以x∈(0,+∞)时,g(x)∈[e,+∞),所以xy的取值范围为[e,+∞).故答案为:[e,+∞)18.已知x0是方程e3x-ln x+2x=0的一个根,则ln x0x0=.【答案】3【分析】依题意得e3x0+3x0=x0+ln x0,构造函数f(x)=e x+x,则有f(3x0)=f(ln x0),得出f(x)的单调性即可求解.【详解】因为x0是方程e3x-ln x+2x=0的一个根,则x0>0,所以e3x0-ln x0+2x0=0,即e3x0+3x0=x0+ln x0,令f(x)=e x+x,则f (x)=e x+1>0,所以f(x)在R单调递增,又e3x0+3x0=x0+ln x0,即f(3x0)=f(ln x0),所以3x0=ln x0,所以ln x0x0=3.故答案为:319.已知函数f x =e ax-2ln x-x2+ax,若f x >0恒成立,则实数a的取值范围为.【答案】2e,+∞ 【分析】根据f x >0恒成立,可得到含有x ,a 的不等式,再进行分离变量,将“恒成立”转化为求函数的最大值或最小值,最后得出a 的范围.【详解】已知函数f x =e ax -2ln x -x 2+ax ,若f x >0恒成立,则实数a 的取值范围为令g x =e x +x ,g x =e x +1>0,所以g x 单调递增,因为f x =e ax -2ln x -x 2+ax >0x >0 ,所以e ax +ax >ln x 2+e ln x 2,可得g ax >g ln x 2 ,所以ax >ln x 2,所以a >ln x 2xx >0 恒成立,即求ln x 2x max x >0 ,令F x =ln x 2x x >0 ,F x =ln x 2 x -x ln x 2x 2=21-ln x x 2,当x ∈0,e 时,F x >0,F x 单调递增,当x ∈e ,+∞ 时,F x <0,F x 单调递减,所以F x ≤F e =2e ,可得a <2e .故答案为:2e ,+∞ .【点睛】对于“恒成立问题”,关键点为:对于任意的x ,使得f x >a 恒成立,可得出f x min >a ;对于任意的x ,使得f x <a 恒成立,可得出f x max <a .20.若ln x +ln2a -1-2a x -e x ≤0,则实数a 的取值范围为.【答案】0<a ≤e 2【分析】利用同构法,构造函数f (x )=ln x +x ,将问题转化为f (2ax )≤f (e x),从而得到2a ≤e x x恒成立问题,再构造g (x )=e x x,利用导数求得其最小值,由此得解.【详解】因为ln x +ln2a -1-2a x -e x ≤0,a >0,x >0⇔ln (2ax )-x +2ax -e x ≤0,⇔ln (2ax )+2ax ≤x +e x =ln e x +e x ,令f (x )=ln x +x ,x >0,则原式等价于f (2ax )≤f (e x ),f (x )=1x +1=1+x x>0恒成立,所以f (x )在定义域内单调递增,所以2ax ≤e x ⇒2a ≤e x x,令g (x )=e x x (x >0),g (x )=e x (x -1)x 2,则x >1时,g (x )>0,g (x )在(1,+∞)单调递增,0<x <1时,g (x )<0,g (x )在(0,1)单调递减,所以g (x )min =g (1)=e ,则2a ≤e ,a ≤e 2.又a 为正数,故答案为:0<a ≤e 2.【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.21.已知a <0,不等式xe x +a ln x x a ≥0对∀x ∈1,+∞ 恒成立,则实数a 的最小值为.【答案】-e 【分析】将不等式等价变形为xe x ≥-a ln x ⋅e -a ln x ,构造函数f x =xe x ,进而问题转化成x ≥-a ln x ,构造g (x )=x ln x ,利用导数求解单调性进而得最值.【详解】xe x ≥-a ln x x a =-a ln x ⋅e -a ln x ,构造函数f x =xe x ,f x =x +1 e x >0x >0 ,故f x 在0,+∞ 上单调递增,故f x ≥f -a ln x 等价于x ≥-a ln x ,即a ≥-x ln x 任意的实数x >1恒成立.令g (x )=x ln x ,x >1则g (x )=ln x -1ln 2x ,故g (x )在(1,e )上单调递减,在(e ,+∞)上单调递增,g (x )min =e ,得a ≥-x ln x max=-e .故答案为:-e【点睛】对于利用导数研究函数的综合问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别22.关于x 的不等式a 2e 2x +1-ln x +x +1+2ln a ≥0在0,+∞ 上恒成立,则a 的最小值是.【答案】22e【分析】不等式转化为e 2x +1+2ln a +2x +1+2ln a ≥ln x +x =e ln x +ln x ,构造函数f x =e x +x ,判断函数单调递增得到2x +1+ln a ≥ln x ,转化为2x +1-ln x +ln a ≥0,构造函数g x =2x +1-ln x +ln a ,根据函数的单调性计算最小值即得到答案.【详解】a 2e 2x +1-ln x +x +1+2ln a ≥0,即e 2x +1+2ln a +2x +1+2ln a ≥ln x +x =e ln x +ln x ,设f x =e x +x ,f x =e x +1>0恒成立,故f x 单调递增.原不等式转化为f 2x +1+2ln a ≥f ln x ,即2x +1+2ln a ≥ln x ,即2x +1-ln x +2ln a ≥0在(0,+∞)上恒成立.设g x =2x +1-ln x +2ln a ,g x =2x -1x ,当x ∈12,+∞ 时,g x >0,函数单调递增;当x ∈0,12 时,g x <0,函数单调递减;故g x min =g 12=2+ln2+2ln a ≥0,即2ln a ≥-2-ln2=-ln2e 2,解得a ≥22e.所以a 的最小值是22e.故答案为:22e.【点睛】方法点睛:将不等式a 2e 2x +1-ln x +x +1+2ln a ≥0化为e 2x +1+2ln a +2x +1+2ln a ≥e ln x +ln x ,这种方法就是同构法,同构即结构形式相同,对于一个不等式,对其移项后通过各种手段将其变形,使其左右两边呈现结构形式完全一样的状态,接着就可以构造函数,结合函数单调性等来对式子进行处理了.。

导数选择压轴题之【构造函数】

导数选择压轴题之【构造函数】

导数小题——构造函数解不等式当有题目有下列表格左栏中的条件时,那么构造相应的右侧的函数,利用新函数的单调性、奇偶性来解决题目中的问题。

例1 已知定义在实数集R 上的函数f(x)满足f (1)=2,且f(x)的导数f′(x)在R 上恒有f ′(x )<1 (x ∈R),则不等式f (x )<x +1的解集为( )A.(1,+∞)B.(−∞,−1)C.(−1,1)D.(−∞,−1)∪(1,+∞)例2 已知定义在(−∞,0)∪(0,+∞)上的偶函数f(x)的导函数为f′(x),且f (1)=0,当x <0时,f ′(x )+f (x )x>0,则使得f (x )>0成立的x 的取值范围是例3 ()f x 是定义在R 上的偶函数,当0x <时,()()0f x xf x '+<,且()40f −=,则不等式()0xf x >的解集为 .例4 已知()f x 是定义在(),−∞+∞上的函数,导函数()f x '满足()()f x f x '<对于R x ∈恒成立,则( )A .()()220f e f >,()()201420140f e f >B .()()220f e f <,()()201420140f e f >C .()()220f e f >,()()201420140f e f <D .()()220f e f <,()()201420140f e f <例5 已知函数()y f x =对于任意,22x ππ⎛⎫∈− ⎪⎝⎭满足()()cos sin 0f x x f x x '+>(其中()f x '是函数()f x 的导函数),则下列不等式不成立的是( )A .34f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B 34f ππ⎛⎫⎛⎫−<− ⎪ ⎪⎝⎭⎝⎭C .()04f π⎛⎫< ⎪⎝⎭D .()023f fπ⎛⎫< ⎪⎝⎭例6 α,,22ππβ⎡⎤∈−⎢⎥⎣⎦,且sin sin 0ααββ−>,则下列结论正确的是( )A .αβ>B .22αβ>C .αβ<D .0αβ+>例7 设()f x 是定义在R 上的偶函数,且()10f =,当0x <时,有()()0xf x f x '−>恒成立,则不等式()0f x >的解集为 .例8 已知偶函数()f x (0x ≠)的导函数为()f x ',且满足()10f −=,当0x >时,()()2f x xf x '>,则使得()0f x >成立的x 的取值范围是 .例9 设()f x 是定义在R 上的奇函数,在(),0−∞上有()()2220xf x f x '+<,且()20f −=,则不等式()20xf x <的解集为例10若定义在R 上的函数()f x 满足()()20f x f x '−>,()01f =,则不等式()2x f x e >的解集为 .例11已知函数()f x 在R 上可导,其导函数()f x ',若()f x 满足:()()()10x f x f x '−−>⎡⎤⎣⎦,()()222xf x f x e−−=,则下列判断一定正确的是( )A .()()10f f <B .()()220f e f >C .()()330f e f >D .()()440f e f < 答案: 例1:A例2:(−1,0)∪(0,1)例3:(−∞,−4)∪(0,4) 例4:D 例5:A例6:A例7:(−∞,−1)∪(1,+∞) 例8:(−1,1) 例9:(−2,2)例10:(0,+∞)例11:C。

专题01 函数与导数之构造函数(解析版)

专题01 函数与导数之构造函数(解析版)

专题01 构造函数一、考情分析函数与导数是高考必考的知识点,考试形式有选择题也有填空题,并且都以压轴题为主。

题目难度都偏大,对学生的思维能力考查都要求比较高。

构造函数,是我们高中数学处理和研究函数与导数的一种有效方法,通过分离变量和参数,构造新的函数去研究其新函数的单调性,极值点,从而使问题得到解决。

二、经验分享(常见函数构造类型)(1).常见函数的变形1. 对于不等式()k x f >'()0≠k ,构造函数()()b kx x f x g +-=.2. 对于不等式()()0'>+x f x xf ,构造函数()()x xf x g =3. 对于不等式()()0'>-x f x xf ,构造函数()()xx f x g =()0≠x 4. 对于不等式()()0'>+x nf x xf ,构造函数())(x f x x g n=5. 对于不等式()()0'>-x nf x xf ,构造函数()n x x f x g )(=6. 对于不等式()()0'>-x f x f ,构造函数()x e)(x f x g =7. 对于不等式()()0'>+x f x f ,构造函数())(x f e x g x=8. 对于不等式()()0'>+x kf x f ,构造函数())(x f e x g kx = (2).双变量函数的变形1.形如()b a f f ab ⎛⎫⎪⎝⎭或的函数,构造函数,令b a t t a b ==或者,求(t)f ; 2.对于(x)f ,形如1212(x )(x )f f x x --的函数,要结合图像构造函数的切线方程,求斜率;3.形如(x)g(x)f >或(x)g(x)f <的函数不等式,(1).可以构造函数)(-)(x g x f x F =)(,然后求)(x F 的最大值和最小值;(2).如果(x)0g >,我们也可以构造函数()(x)(x)f G xg =,求()G x 的最值 .三、题型分析(一) 与圆锥曲线(双参数)有关的构造函数例1.【四川省成都市2019届高三第一次诊断性考试,理科,12】设椭圆()012222>>=+b a by a x C :的左右顶点为A,B.P 是椭圆上不同于A,B 的一点,设直线AP,BP 的斜率分别为m,n ,则当()||ln ||ln 32323n m mnmn b a +++⎪⎭⎫ ⎝⎛-取得最小值时,椭圆C 的离心率为( ) A.51 B.22 C.54D.23【答案】D【解析】设()()(),,,0,,0,00y x P a B a A -,点P 在双曲线上,得()01220220>>=+b a bya x C :,220222)(a x a b y -=,所以a x y m +=00,a x y m -=00,化简,22a b mn -= 原式⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+-+⎪⎪⎪⎪⎭⎫⎝⎛--=b a b a b a b a a b a b a b b a ln 63232ln 62323232222 所以设1>=b a t ,构造函数t t t t t f ln 63232)(23++-=,求导可以得到: 2t = 时,函数取得最小值=)2(f ,2=ba,23=e 。

高考数学导数中构造函数比大小问题题型总结(解析版)

高考数学导数中构造函数比大小问题题型总结(解析版)

导数中构造函数比大小问题题型总结【典型例题】题型一:构造f x =ln xx比较大小此函数定义域为0,+∞,求导f x =1−ln xx2,当x∈0,e时,f x >0,故f x 为增函数,当x∈e,+∞时,f x <0,故f x 为减函数,当x=e时,f x 取得极大值为f e =1e,且f4 =ln44=2ln2 4=ln22=f2 ,此结论经常用来把函数转化到同一边进行比较【例1】(2022·广东·佛山市南海区九江中学高二阶段练习)若a=1e,b=ln22,c=ln33,则a,b,c的大小关系为( )A.a>c>bB.b>c>aC.c>b>aD.a>b>c 【答案】A【解析】通过对三个数的变形及观察,可以构造出函数f x =ln xx,通过求导分析其单调性即可得到答案【详解】解:a=1e=ln ee,b=ln22=ln44,c=ln33,设f x =ln xx,f x =1-ln xx2,则x>e时,fx <0,故f x 在e,+∞上单调递减,则f e >f3 >f4 ,即ln ee>ln33>ln44,所以a>c>b.故选:A.【例2】(2023·全国·高三专题练习)设a=4-ln4e2,b=ln22,c=1e,则( )A.a<c<bB.a<b<cC.b<a<cD.b<c<a 【答案】C【解析】结合已知要比较函数值的结构特点,可考虑构造函数f x =ln xx,然后结合导数与单调性关系分析出x=e时,函数取得最大值f e =1e,可得c最大,然后结合函数单调性即可比较大小.【详解】设f x =ln xx,则f x =1-ln xx2,当x>e时,f x <0,函数单调递减,当0<x<e时,f x >0,函数单调递增,故当x=e时,函数取得最大值f e =1 e,因为a=22-ln2e2=ln e22e22=f e22,b=ln22=ln44=f4 ,c=1e=f e ,∵e<e22<4,当x>e时,f x <0,函数单调递减,可得f4 <fe22<f e ,即b<a<c.故选:C【例3】(2022·吉林·高二期末)下列命题为真命题的个数是( )①ln3<3ln2;②lnπ<πe;③215<15;④3e ln2>42.A.1B.2C.3D.4【答案】B【解析】本题首先可以构造函数f x =ln xx,然后通过导数计算出函数f x =ln xx的单调性以及最值,然后通过对①②③④四组数字进行适当的变形,通过函数f x =ln xx的单调性即可比较出大小.【详解】解:构造函数f x =ln xx,则f x =1-ln xx2,当0<x<e时,f x >0,x>e时,f x <0,所以函数f x =ln xx在0,e上递增,在e,+∞上递减,所以当x=e时f x 取得最大值1 e,ln3<3ln2⇔2ln3<3ln2⇔ln33<ln22,由3<2<e可得f3<f2 ,故①正确;lnπ<πe⇔lnππ<ln ee,由e<π<e,可得f e<fπ,故②错误;215<15⇔15ln2<ln15⇔ln22<ln1515⇔ln44<ln1515,因为函数f x =ln xx在e,+∞上递减,所以f4 <f15,故③正确;因为22>e,所以f22<f e ,即ln2222<ln e e,即3ln222<1e,则3e ln2<22,即3e ln2<42,故④错误,综上所述,有2个正确.故选:B.【点睛】本题考查如何比较数的大小,当两个数无法直接通过运算进行大小比较时,如果两个数都可以转化为某个函数上的两个函数值,那么可以构造函数,然后通过函数的单调性来判断两个数的大小,考查函数思想,是难题.【例4】(2021·陕西汉中·高二期末(理))已知a,b,c均为区间0,e内的实数,且a ln5=5ln a,b ln6= 6ln b,c ln7=7ln c,则a,b,c的大小关系为( )A.a>c>bB.a>b>cC.c>a>bD.c>b>a【答案】B【解析】构造函数f x =ln xx,由导数判断函数单调性,进而利用单调性即可求解.【详解】解:令f x =ln xx,则f x =1-ln xx2,当0<x<e时,f x >0,函数F(x)在0,e上单调递增,当x>e时,f x <0,函数f x 在e,+∞上单调递减,因为7>6>5>e,所以f7 <f6 <f5 ,因为a,b,c均为区间0,e内的实数,且ln55=ln aa,ln66=ln bb,ln77=ln cc,所以f a >f b >f c ,所以a>b>c,故选:B.【例5】(2022·江西·高三阶段练习(理))设a=ln28,b=1e2,c=ln612,则( )A.a<c<bB.a<b<cC.b<a<cD.c<a<b 【答案】B【解析】根据a、b、c算式特征构建函数f x =ln xx2,通过求导确定函数单调性即可比较a、b、c的大小关系.【详解】令f x =ln xx2,则fx =x-2x ln xx4=0⇒x=e,因此f x =ln xx2在[e,+∞)上单调递减,又因为a=ln28=ln416=f(4),b=1e2=ln ee2=f(e),c=ln612=ln66=f(6),因为4>e>6>e,所以a<b<c.故选:B.【题型专练】1.(2022·四川省资阳中学高二期末(理))若a=ln22,b=1e,c=2ln39,则( )A.b>a>cB.b>c>aC.a>b>cD.a>c>b【答案】A【解析】令f x =ln xx,利用导数说明函数的单调性,即可得到函数的最大值,再利用作差法判断a、c,即可得解;【详解】解:令f x =ln xx,则f x =1-ln xx2,所以当0<x<e时fx >0,当x>e时f x <0,所以f x 在0,e上单调递增,在e,+∞上单调递减,所以f x max=f e =ln ee=1e,所以1e>ln22又ln22-2ln39=9ln2-4ln318=ln29-ln3418=ln512-ln9118>0所以ln22>2ln39,即b>a>c.故选:A2.(2022·浙江台州·高二期末)设a=4-ln4e2,b=ln22,c=ln33,则( )A.a<b<cB.b<a<cC.a<c<bD.b<c<a 【答案】B【解析】由题设a=ln e22e22,b=ln44,c=ln33,构造f(x)=ln xx并利用导数研究单调性,进而比较它们的大小.由题设,a =4-ln4e 2=ln e22e22,b =ln22=ln44,c =ln 33=ln33,令f (x )=ln x x 且x >0,可得f (x )=1-ln xx 2,所以f (x )>0有0<x <e ,则(0,e )上f (x )递增;f (x )<0有x >e ,则(e ,+∞)上f (x )递减;又4>e 22>3>e ,故c >a >b .故选:B3.(2022·四川广安·模拟预测(理))在给出的(1)e ⋅ln3>3(2)e 43ln3<4(3)e π>πe .三个不等式中,正确的个数为( )A.0个 B.1个C.2个D.3个【答案】C 【解析】根据题目特点,构造函数f x =ln x x ,则可根据函数f x =ln xx的单调性解决问题.【详解】首先,我们来考察一下函数f x =ln xx,则f x =1-ln xx 2,令f x >0,解得0<x <e ,令f x <0,解得x >e ,故f x =ln xx在区间0,e 上单调递增,在区间e ,+∞ 单调递减,所以,(1)f e <f 3 ,即ln e e <ln 33,即e ⋅ln3>3,则正确;(2)f e 43<f 3 ,即ln e43e 43<ln33,即e 43⋅ln3>4,则错误;(3)f e >f π ,即ln e e >lnππ⇒πln e >e lnπ⇒ln e π>lnπe ,所以,e π>πe ,则正确故选:C .4.(2022·四川资阳·高二期末(文))若a =ln33,b =1e ,c =3ln28,则( )A.b >a >cB.b >c >aC.c >b >aD.c >a >b【解析】设函数f(x)=ln xx,(x>0),求出其导数,判断函数的单调性,由此可判断出答案.【详解】设f(x)=ln xx,(x>0),则f (x)=1-ln xx2,当0<x<e时,f (x)>0,f(x)递增,当x>e时,f (x)<0,f(x)递减,当x=e时,函数取得最小值,由于e<3<8 ,故ln ee>ln33>ln88,即b>a>c,故选:A5.(2022·山东日照·高二期末)π是圆周率,e是自然对数的底数,在3e,e3,33,e e,eπ,π3,3π,πe八个数中,最小的数是___________,最大的数是___________.【答案】 e e 3π【解析】分别利用指数函数的单调性,判断出底数同为3,e以及π的数的大小关系,再由幂函数的单调性,找出最小的数,最后利用函数f x =ln xx的单调性,判断出最大的数.【详解】显然八个数中最小的数是e e.∵函数y=3x是增函数,且e<3<π,∴3e<33<3π;函数y=e x是增函数,且e<3<π,e e<e3<eπ;函数y=πx是增函数,且e<3<π,πe<π3;函数y=x e在0,+∞是增函数,且e<3<π,e e<3e<πe,则八个数中最小的数是e e 函数y=xπ在0,+∞是增函数,且e<3,eπ<3π,八个数中最大的数为π3或3π,构造函数f x =ln x x,求导得f x =1-ln xx2,当x∈e,+∞时f x <0,函数f x 在e,+∞是减函数,f3 >fπ ,即ln33>lnππ,即πln3>3lnπ,即ln3π>lnπ3,∴3π>π3,则八个数中最大的数是3π.故答案为:e e;3π.6.(2022·安徽省宣城中学高二期末)设a=4-ln4e2,b=1e,c=ln2,则a,b,c的大小关系为( )A.a<b<cB.b<a<cC.a<c<bD.c<a<b【答案】D设f(x)=ln xx(x>0),利用导数求得f(x)的单调性和最值,化简可得a=fe22,b=f(e),c=f(2),根据函数解析式,可得f(4)=ln44=f(2)且e<e22<4,根据函数的单调性,分析比较,即可得答案.【详解】设f(x)=ln xx(x>0),则f (x)=1x⋅x-ln xx2=1-ln xx2,当x∈(0,e)时,f (x)>0,则f(x)为单调递增函数,当x∈(e,+∞)时,f (x)<0,则f(x)为单调递减函数,所以f(x)max=f(e)=1 e,又a=4-ln4e2=2(ln e2-ln2)e2=ln e22e22=f e22,b=1e=f(e),c=ln2=12ln2=f(2),又f(4)=ln44=ln224=ln22=f(2),e<e22<4,且f(x)在(e,+∞)上单调递减,所以f(2)=f(4)<fe22 ,所以b>a>c.故选:D7.(2022·黑龙江·大庆实验中学高二期末)已知实数a,b,c满足ln ae a=ln b b=-ln c c<0,则a,b,c的大小关系为( )A.b<c<aB.c<b<aC.a<b<cD.b<a<c【答案】C【解析】判断出0<a<1,0<b<1,c>1,构造函数f(x)=ln xx,(x>0),判断0<x<1时的单调性,利用其单调性即可比较出a,b的大小,即可得答案.【详解】由ln ae a=ln b b=-ln c c<0,得0<a<1,0<b<1,c>1 ,设f(x)=ln xx,(x>0) ,则f (x)=1-ln xx2,当0<x<1时,f (x)>0,f(x)单调递增,因为0<a<1,所以e a>1>a,所以ln a e a >ln a a ,故ln a ea =lnb b >ln aa ,∴fb >f a ,则b >a ,即有0<a <b <1<c ,故a <b <c .故选:C .题型二:利用常见不等式关系比较大小1.常见的指数放缩:e x ≥x +1(x =0);e x ≥ex (x =1)证明:设f x =e x −x −1,所以f x =e x −1,所以当x ∈−∞,0 时,f x <0,所以f x 为减函数,当当x ∈0,+∞ 时,f x >0,所以f x 为增函数,所以当x =0时,f x 取得最小值为f 0 =0,所以f x ≥0,即e x ≥x +1 2.常见的对数放缩:1−1x ≤ln x ≤x −1(x =1);ln x ≤xe(x =e )3.常见三角函数的放缩:x ∈0,π2,sin x <x <tan x 【例1】(2022·湖北武汉·高二期末)设a =4104,b =ln1.04,c =e 0.04-1,则下列关系正确的是( )A.a >b >c B.b >a >cC.c >a >bD.c >b >a【答案】D 【解析】分别令f x =e x -1-x x >0 、g x =ln 1+x -x x >0 、h x =ln 1+x -x1+xx >0 ,利用导数可求得f x >0,g x <0,h x >0,由此可得大小关系.【详解】令f x =e x -1-x x >0 ,则f x =e x -1>0,∴f x 在0,+∞ 上单调递增,∴f x >f 0 =0,即e x -1>x ,则e 0.04-1>0.04;令g x =ln 1+x -x x >0 ,则g x =11+x -1=-x1+x<0,∴g x 在0,+∞ 上单调递减,∴g x <g 0 =0,即ln 1+x <x ,则ln1.04<0.04;∴e 0.04-1>ln1.04,即c >b ;令h x =ln 1+x -x 1+x x >0 ,则h x =11+x -11+x 2=x 1+x2>0,∴h x 在0,+∞ 上的单调递增,∴h x >h 0 =0,即ln 1+x >x1+x,则ln1.04>0.041.04=4104,即b >a ;综上所述:c >b >a .故选:D .【点睛】关键点点睛:本题解题关键是能够通过构造函数的方式,将问题转化为函数值的大小关系的比较问题,通过导数求得函数的单调性后,即可得到函数值的大小.【例2】(2022·山东菏泽·高二期末)已知a=910,b=e-19,c=1+ln1011,则a,b,c的大小关系为( )A.a<b<cB.b<a<cC.c<b<aD.c<a<b 【答案】B【解析】首先设f x =e x-x-1,利用导数得到e x>x+1x≠0,从而得到1b>1a,设g x =ln x-x+1,利用导数得到ln x<x-1x≠1,从而得到ln 1110<110和c>a,即可得到答案.【详解】解:设f x =e x-x-1,f x =e x-1,令f x =0,解得x=0. x∈-∞,0,f x <0,f x 单调递减,x∈0,+∞,f x >0,f x 单调递增.所以f x ≥f0 =0,即e x-x-1≥0,当且仅当x=0时取等号.所以e x>x+1x≠0.又1b=e19>19+1=109=1a,a>0,b>0,故1b>1a,所以b<a;设g x =ln x-x+1,g x =1x-1=1-xx,令g x =0,解得x=1.x∈0,1,g x >0,g x 单调递增,x∈1,+∞,g x <0,g x 单调递减.所以g x ≤g1 =0,即ln x-x+1≤0,当且仅当x=1时取等号.所以ln x<x-1x≠1,故ln 1110<1110-1=110,又c-a=ln 1011+110>ln1011+ln1110=ln1=0,所以c>a,故b<a<c.故选:B.【例3】(2022·四川凉山·高二期末(文))已知a=e0.01,b=1.01,c=1-ln 100101,则( ).A.c>a>bB.a>c>bC.a>b>cD.b>a>c 【答案】C【解析】构造函数f(x)=e x-1-x,由导数确定单调性,进而即得.【详解】设f(x)=e x-1-x,则f (x)=e x-1>0,在x>0时恒成立,所以f(x)在(0,+∞)上是增函数,所以e x-1-x>f(0)=0,即e x>1+x,x>0,∴e0.01>1.01,又ln1.01>0,∴e ln1.01>1+ln1.01,即1.01>1-ln100101,所以a>b>c.故选:C.【例4】(2022·四川绵阳·高二期末(理))若a=ln 87,b=18,c=ln76,则( )A.a<c<bB.c<a<bC.c<b<aD.b<a<c 【答案】D【解析】构造函数f x =ln x+1x-1,其中x>1,利用导数分析函数f x 的单调性,可比较得出a、b的大小关系,利用对数函数的单调性可得出c、a的大小关系,即可得出结论.【详解】构造函数f x =ln x+1x-1,其中x>1,则f x =1x-1x2=x-1x2>0,所以,函数f x 在1,+∞上为增函数,故f x >f1 =0,则f 87 =ln87+78-1=ln87-18>0,即a>b,∵ln76>ln87,因此,b<a<c.故选:D.【例5】(2022·全国·高考真题(理))已知a=3132,b=cos14,c=4sin14,则( )A.c>b>aB.b>a>cC.a>b>cD.a>c>b 【答案】A【解析】由cb=4tan14结合三角函数的性质可得c>b;构造函数f(x)=cos x+12x2-1,x∈(0,+∞),利用导数可得b>a,即可得解.【详解】因为cb=4tan14,因为当x∈0,π2,sin x<x<tan x所以tan 14>14,即cb>1,所以c>b;设f(x)=cos x+12x2-1,x∈(0,+∞),f (x)=-sin x+x>0,所以f(x)在(0,+∞)单调递增,则f 14 >f(0)=0,所以cos14-3132>0,所以b>a,所以c>b>a,故选:A【题型专练】1.(2022·福建·莆田一中高二期末)设a=ln1.01,b=1.0130e,c=1101,则( )A.a<b<cB.a<c<bC.c<b<aD.c<a<b【答案】D【解析】构造函数f x =ln x-x+1(x>0),证明ln x≤x-1,令x=1.01,排除选项A,B,再比较a,b大小,即得解.【详解】解:构造函数f x =ln x-x+1(x>0),f1 =0,f x =1x-1=1-xx,所以f x 在0,1上f x >0,f x 单调递增,f x 在1,+∞上f x <0,f x 单调递减,所以f (x)max=f(1)=0,∴ln x-x+1≤0,∴ln x≤x-1,令x=1.01,则 a=ln x,b=x30e,c=1-1x,考虑到ln x≤x-1,可得ln1x≤1x-1,-ln x≥1-1x等号当且仅当 x=1时取到,故x=1.01时a>c,排除选项A,B.下面比较a,b大小,由ln x≤x-1得ln1.01<1.01<1.0130e,故b>a,所以c<a<b.故选:D.2.(2022·吉林·长春市第二中学高二期末)已知a=cos15,b=4950,c=5sin15,则( )A.b>a>cB.c>b>aC.b>c>aD.c>a>b 【答案】D【解析】构造函数f(x)=cos x+12x2-1,利用导数求解函数f(x)的单调性,利用单调性进行求解.【详解】解:设f(x)=cos x+12x2-1,(0<x<1),则f (x)=x-sin x,设g(x)=x-sin x,(0<x<1),则g (x)=1-cos x>0,故g(x)在区间(0,1)上单调递增,即g(x)>g(0)=0,即f (x)>0,故f(x)在区间(0,1)上单调递增,所以f 15 >f(0)=0,可得cos15>4950,故a>b,利用三角函数线可得x∈0,π2时,tan x>x,所以tan 15>15,即sin15cos15>15,所以5sin 15>cos15,故c>a综上,c>a>b故选:D.3.(2022·湖北武汉·高二期末)设a=4104,b=ln1.04,c=e0.04-1,则下列关系正确的是( )A.a>b>cB.b>a>cC.c>a>bD.c>b>a【答案】D【解析】分别令f x =e x-1-x x>0、g x =ln1+x-x x>0、h x =ln1+x-x1+x x>0,利用导数可求得f x >0,g x <0,h x >0,由此可得大小关系.【详解】令f x =e x-1-x x>0,则f x =e x-1>0,∴f x 在0,+∞上单调递增,∴f x >f0 =0,即e x-1>x,则e0.04-1>0.04;令g x =ln1+x-x x>0,则g x =11+x-1=-x1+x<0,∴g x 在0,+∞上单调递减,∴g x <g0 =0,即ln1+x<x,则ln1.04<0.04;∴e0.04-1>ln1.04,即c>b;令h x =ln1+x-x1+x x>0,则h x =11+x-11+x2=x1+x2>0,∴h x 在0,+∞上的单调递增,∴h x >h0 =0,即ln1+x>x1+x,则ln1.04>0.041.04=4104,即b>a;综上所述:c>b>a.故选:D.题型三:构造其它函数比大小(研究给出数据结构,合理构造函数)【例1】(2022·河南河南·高二期末(理))已知a-12=ln2a,b-13=ln3b,c-e=lnce,其中a≠12,b≠13,c≠e,则a,b,c的大小关系为( ).A.c<a<bB.c<b<aC.a<b<cD.a<c<b【答案】A 【解析】构造函数f x =x -ln x x >0 ,并求f x ,利用函数f x 的图象去比较a 、b 、c 三者之间的大小顺序即可解决.【详解】将题目中等式整理,得a -ln a =12-ln 12,b -ln b =13-ln 13,c -ln c =e -ln e ,构造函数f x =x -ln x x >0 ,f x =1-1x =x -1x,令f x =0,得x =1,所以f x 在0,1 上单调递减,在1,+∞ 上单调递增,函数f x 的大致图象如图所示.因为f a =f 12,f b =f 13 ,f c =f e ,且a ≠12,b ≠13,c ≠e ,则由图可知b >a >1,0<c <1,所以c <a <b .故选:A .【例2】(2022·重庆市万州第二高级中学高二阶段练习)设a =e 1.01,b =3e,c =ln3,其中e 为自然对数的底数,则a ,b ,c 的大小关系是( )A.b >a >c B.c >a >bC.a >c >bD.a >b >c【答案】D 【解析】可判断a =e 1.01>2,b =3e <2,c =ln3<2,再令f (x )=ln x -x e ,x ∈[e ,+∞),求导判断函数的单调性,从而比较大小.【详解】解:a =e 1.01>2,b =3e<2,c =ln3<2,令f (x )=ln x -x e,x ∈[e ,+∞),f (x )=1x -1e =e -xex <0,故f (x )在[e ,+∞)上是减函数,故f 3 <f e ,即ln3-3e <0,故ln3<3e <e 1.01,即c <b <a ,故选:D .【例3】(2022·全国·高三专题练习)已知a=ln32,b=1e-1,c=ln43,则a,b,c的大小关系是( )A.b>a>cB.b>c>aC.c>a>bD.c>b>a 【答案】A【解析】根据给定条件构造函数f(x)=ln xx-1(x≥e),再探讨其单调性并借助单调性判断作答.【详解】令函数f(x)=ln xx-1(x≥e),求导得f (x)=1-ln x-1xx-12,令g x =1-ln x-1x,则g x =1-xx2<0,(x≥e),故g x =1-ln x-1x,(x≥e)单调递减,又g1 =1-ln1-11=0,故g x <0,(x≥e),即f (x)<0,(x≥e),而e<3<4,则f(e)>f(3)>f(4),即1e-1>ln32>ln43,所以b>a>c,故选:A【例4】(山东省淄博市2021-2022学年高二下学期期末数学试题)设a=110,b=ln1.1,c=e-910,则( )A.a<b<cB.c<a<bC.b<c<aD.b<a<c【答案】D【解析】利用指数函数的性质可比较a,c的大小,再构造函数f(x)=x-ln(1+x),利用导数判断函数的单调性,再利用其单调性可比较出a,b,从而可比较出三个数的大小【详解】因为y=e x在R上为增函数,且-1<-9 10,所以e-1<e-910,因为110<e-1,所以110<e-910,即a<c,令f(x)=x-ln(1+x)(x>0),得f (x)=1-11+x=x1+x>0,所以f(x)在(0,+∞)上递增,所以f(x)>f(0)=0,所以x>ln(1+x),令x=0.1,则0.1>ln1.1,即110>ln1.1,即a>b,所以b<a<c,故选:D【例5】(2022·四川南充·高二期末(理))设a=0.01e0.01,b=199,c=-ln0.99,则( )A.c<a<bB.c<b<aC.a<b<cD.a<c<b 【答案】A【解析】根据给定数的特征,构造对应的函数,借助导数探讨单调性比较函数值大小作答.【详解】令函数y=xe x,t=x1-x,u=-ln(1-x),x∈(0,2-1),显然y>0,t>0,则ln y-ln t=ln x+x-[ln x-ln(1-x)]=x+ln(1-x),令f(x)=x+ln(1-x),x∈(0,2-1),求导得f (x)=1+1x-1=xx-1<0,即f(x)在(0,2-1)上单调递减,∀x∈(0,2-1),f(x)<f(0)=0,即ln y<ln t⇔y<t,因此当x∈(0,2-1)时,xe x<x1-x,取x=0.01,则有a=0.01e0.01<0.011-0.01=199=b,令g(x)=y-u=xe x+ln(1-x),x∈(0,2-1),g (x)=(x+1)e x+1x-1=(x2-1)e x+1x-1,令h(x)=(x2-1)e x+1,x∈(0,2-1),h (x)=(x2+2x-1)e x<0,h(x)在(0,2-1)上单调递减,∀x∈(0,2-1),h(x)<h(0)=0,有g (x)>0,则g(x)在(0,2-1)上单调递增,∀x∈(0,2-1),g(x)>g(0)=0,因此当x∈(0,2-1)时,xe x>-ln(1-x),取x=0.01,则有a=0.01e0.01>-ln(1-0.01)=-ln0.99=c,所以c<a<b.故选:A【点睛】思路点睛:涉及某些数或式大小比较,探求它们的共同特性,构造符合条件的函数,利用函数的单调性求解即可.【例6】(2022·全国·高三专题练习)已知a=0.3π,b=0.9π2,c=sin0.1,则a,b,c的大小关系正确的是( )A.a>b>cB.c>a>bC.a>c>bD.b>a>c 【答案】B【解析】作差法比较出a>b,构造函数,利用函数单调性比较出c>a,从而得出c>a>b.【详解】a-b=0.3π-0.9π2=0.3π-0.9π2>0.3×3-0.9π2=0,所以a-b>0,故a>b,又f x =πsin x-3x,则f x =πcos x-3在x∈0,π6上单调递减,又f 0 =π-3>0,f π6 =3π2-3<0,所以存在x0∈0,π6,使得f x0 =0,且在x∈0,x0时,f x >0,在x∈x0,π6时,f x <0,即f x =πsin x-3x在x∈0,x0上单调递增,在x∈x0,π6单调递减,且f π12 =6+24π-3>0,所以x0>π12,又因为f0 =0,所以当x∈0,x0时,f x =πsin x-3x>0,其中因为110<π12,所以110∈0,x0,所以f110=πsin0.1-0.3>0,故sin0.1>0.3π,即c>a>b.故选:B【例7】(2022·河南洛阳·三模(理))已知a=810,b=99,c=108,则a,b,c的大小关系为( )A.b>c>aB.b>a>cC.a>c>bD.a>b>c【答案】D【解析】构造函数f x =18-xln x,x≥8,求其单调性,从而判断a,b,c的大小关系.【详解】构造f x =18-xln x,x≥8,f x =-ln x+18x-1,f x =-ln x+18x-1在8,+∞时为减函数,且f 8 =-ln8+94-1=54-ln8<54-ln e2=54-2<0,所以f x =-ln x+18x-1<0在8,+∞恒成立,故f x =18-xln x在8,+∞上单调递减,所以f8 >f9 >f10,即10ln8>9ln9>8ln10,所以810>99>108,即a>b>c.故选:D【点睛】对于指数式,对数式比较大小问题,通常方法是结合函数单调性及中间值比较大小,稍复杂的可能需要构造函数进行比较大小,要结合题目特征,构造合适的函数,通过导函数研究其单调性,比较出大小.【例8】(2022·河南·模拟预测(理))若a=e0.2,b= 1.2,c=ln3.2,则a,b,c的大小关系为( )A.a>b>cB.a>c>bC.b>a>cD.c>b>a【答案】B【解析】构造函数f x =e x-x-1x>0,利用导数可得a=e0.2>1.2>b,进而可得e1.2>3.2,可得a>c,再利用函数g x =ln x-2x-1x+1,可得ln3.2>1.1,即得.【详解】令f x =e x-x-1x>0,则f x =e x-1>0,∴f x 在0,+∞上单调递增,∴a=e0.2>0.2+1=1.2> 1.2=b,a=e0.2>1.2=ln e1.2,c=ln3.2,∵e1.25=e6> 2.76≈387.4,3.25≈335.5,∴e1.2>3.2,故a>c,设g x =ln x-2x-1x+1,则g x =1x-2x+1-2xx+12=x-12x x+12≥0,所以函数在0,+∞上单调递增,由g1 =0,所以x>1时,g x >0,即ln x>2x-1x+1,∴ln3.2=ln2+ln1.6>22-12+1+21.6-11.6+1=1539>1550=1.1,又1<1.2<1.21,1<b= 1.2<1.1,∴c>1.1>b,故a>c>b.故选:B.【点睛】本题解题关键是构造了两个不等式e x>x+1x>0与ln x>2x-1x+1(x>1)进行放缩,需要学生对一些重要不等式的积累.【题型专练】1.(2022·山东烟台·高二期末)设a=0.9,b=0.9,c=ln910e,则a,b,c的大小关系为( )A.b>c>aB.b>a>cC.c>b>aD.c>a>b【答案】B【解析】构造函数f(x)=x-ln x-1,g(x)=x-x,利用导数研究其单调性,再由单调性可比较大小.【详解】令f(x)=x-ln x-1,因为f (x)=1-1x=x-1x所以,当0<x<1时,f (x)<0,f(x)单调递减,所以f (0.9)=0.9-ln0.9-1>f (1)=0,即0.9>ln0.9+1=ln 910e,a >c ;令g (x )=x -x ,因为g (x )=1-12x=2x -12x所以,当14<x <1时,g (x )>0,g (x )单调递增,所以g (0.9)<g (1),即0.9-0.9<0,0.9<0.9,即a <b .综上,c <a <b .故选:B2.(2022·山东青岛·高二期末)已知a =ln π3,b =2π3-2,c =sin0.04-12π3-1,则a ,b ,c 的大小关系是( )A.c >b >a B.a >b >cC.b >a >cD.a >c >b【答案】C 【解析】构造函数得出a ,b 大小,又c <0即得出结论.【详解】构造函数f x =2ln x -2x -1 =2ln x -x +1 ,则a -b =f π3,f x =21x-1<0在1,+∞ 上恒成立,则y =f x 在1,+∞ 上单调递减,故a -b =f π3<f 1 =0,则b >a >0,π3=1+x x >0 ,则1+x -1=π-33>0.123=0.04,由对于函数g x =sin x -x 0<x <π2 ,g x =cos x -1<0,0<x <π2恒成立,所以, g x =sin x -x <g 0 =0即sin x <x 在0,π2上恒成立.所以,sin0.04-121+x -1<sin x -121+x -1=sin x -12x <x -12x =x x -12 <0(注:0.04<x <0.09,0.2<x <0.3<0.5)所以,b >a >c 故选:C3.(2022·湖北襄阳·高二期末)设a =34e 25,b =25e 34,c =35,则( )A.b <c <a B.a <b <cC.c <b <aD.c <a <b【答案】C 【解析】根据式子结构,构造函数f x =e x x ,0<x <1 ,利用导数判断单调性,得到f 25 >f 34,即可判断出a>b.记g x =e x-2x,0<x<1,推理判断出b>c.【详解】a b=34e2525e34=e2525e3434.记f x =e xx,0<x<1,则f x =e x x-1x2<0,所以f x =e x x在0,1上单调递减.所以f 25 >f34 ,所以a>b.b-c=25e34-35=25e34-2×34.记g x =e x-2x,0<x<1,则g x =e x-2.所以在x∈0,ln2上,g x <0,则g x 单调递减;在x∈ln2,1上,g x >0,则g x 单调递增;所以g x min=g ln2=e ln2-2×ln2=21-ln2>0,所以g 34 >g x min>0,即b-c=25e34-2×34>0.所以b>c.综上所述:c<b<a.故选:C4.(2022·福建宁德·高二期末)已知a,b∈R,且2a>2b>1,则( )A.e a-e b<ln a-ln bB.b ln a<a ln bC.b a>e a-bD.sin a-sin ba-b<1【答案】D【解析】由题设有a>b>0,分别构造y=e x-ln x、y=ln xx、y=xe x、y=x-sin x,利用导数研究在x∈(0,+∞)上的单调性,进而判断各项的正误.【详解】由2a>2b>1,即a>b>0,A:若y=e x-ln x且x∈(0,+∞),则y =e x-1x,故yx=12=e-2<0,yx=1=e-1>0,即y 在12,1上存在零点且y 在(0,+∞)上递增,所以y在(0,+∞)上不单调,则e a-ln a<e b-ln b不一定成立,排除;B:若y=ln x x且x∈(0,+∞),则y =1-ln xx2,所以(0,e)上y >0,y递增;(e,+∞)上y <0,y递减;故y在(0,+∞)上不单调,则ln aa<ln bb不一定成立,排除;C:若y=xe x且x∈(0,+∞),则y =e x(x+1)>0,即y在(0,+∞)上递增,所以ae a>be b,即ba<e a-b,排除;D:若y=x-sin x且x∈(0,+∞),则y =1-cos x≥0,即y在(0,+∞)上递增,所以a-sin a>b-sin b,即sin a-sin ba-b<1,正确.故选:D5.(2022·贵州贵阳·高二期末(理))设a=e1.01,b=3e,c=ln3,则a,b,c的大小关系是( )A.b>a>cB.c>a>bC.a>c>bD.a>b>c【答案】D【解析】分析可得a>2,b∈(1,2),c∈(1,2),令f(x)=ln x-xe,x∈[e,+∞),利用导数可得f(x)的单调性,根据函数单调性,可比较ln3和3e的大小,即可得答案.【详解】由题意得a=e1.01>e1>2,b=3e∈(1,2),c=ln3∈(1,2),令f(x)=ln x-xe,x∈[e,+∞),则f (x)=1x-1e=e-xxe≤0,所以f(x)在[e,+∞)为减函数,所以f(3)<f(e),即ln3-3e<ln e-ee=0,所以ln3<3e,则e1.01>3e>ln3,即a>b>c.故选:D6.(2022·重庆南开中学高二期末)已知a=65ln1.2,b=0.2e0.2,c=13,则( )A.a<b<cB.c<b<aC.c<a<bD.a<c<b【答案】A【解析】b=0.2e0.2=e0.2ln e0.2,令f x =x ln x,利用导数求出函数f x 的单调区间,令g x =e x-x-1,利用导数求出函数g x 的单调区间,从而可得出e0.2和1.2的大小,从而可得出a,b的大小关系,将b,c两边同时取对数,然后作差,从而可得出b,c的大小关系,即可得出结论.【详解】解:b=0.2e0.2=e0.2ln e0.2,a=65ln1.2=1.2ln1.2,令f x =x ln x,则f x =ln x+1,当0<x<1e时,f x <0,当x>1e时,f x >0,所以函数f x 在0,1 e上递减,在1e,+∞上递增,令g x =e x-x-1,则g x =e x-1,当x<0时,g x <0,当x>0时,g x >0,所以函数g x 在-∞,0上递减,在0,+∞上递增,所以g0.2>g0 =0,即e0.2>1+0.2=1.2>1 e,所以f e0.2>f1.2,即e0.2ln e0.2>1.2ln1.2,所以b>a,由b=0.2e0.2,得ln b=ln0.2e0.2=15+ln15,由c=13,得ln c=ln13,ln c-ln b=ln13-ln15-15=ln53-15,因为535=625×5243>10>e,所以53>e15,所以ln53>15,所以ln c-ln b>0,即ln c>ln b,所以c>b,综上所述a<b<c.故选:A.【点睛】本题考查了比较大小的问题,考查了同构的思想,考查了利用导数求函数的单调区间,解决本题的关键在于构造函数,有一定的难度.7.(2022·湖北恩施·高二期末多选)已知a2-14=2ln2a>0,b2-1e2-2=2ln b>0,c2-13=ln3c2> 0,则( )A.c<bB.b<aC.c<aD.b<c【答案】AC【解析】根据题意可将式子变形为a2-ln a2=14-ln14,b2-ln b2=1e2-ln1e2,c2-ln c2=13-ln13,构造函数f x =x-ln x,利用导数求解函数f x 的单调性,即可求解.【详解】解:由题意知,a>12,b>1,c2>13,对三个式子变形可得a2-ln a2=14-ln14,b2-ln b2=1e2-ln1e2,c2-ln c2=13-ln13,设函数f x =x-ln x,则f x =1-1x=x-1x.由f x >0,得x>1;由f x <0,得0<x<1,则f x 在0,1上单调递减,在1,+∞上单调递增,因为0<1e2<14<13<1,所以b2>a2>c2,所以c<a<b.故选:AC.8.(2022·安徽·歙县教研室高二期末)已知x、y、z∈(0,1),且满足e2x=2e x,e3y=3e y,e4z=4e z,则( )A.x<y<zB.x<z<yC.z<y<xD.z<x<y【答案】C【解析】先对已知条件取对数后得到ln x-x=ln2-2,ln y-y=ln3-3,ln z-z=ln4-4.根据式子结构,构造函数m x =ln x-x,利用导数判断单调性,比较大小.【详解】由e2x=2e x得2+ln x=ln2+x,即ln x-x=ln2-2.同理得:ln y-y=ln3-3,ln z-z=ln4-4.令m x =ln x-x,则m x =1x-1=1-xx.故m x 在0,1上单调递增,(1,+∞)上单调递减.所以z<y<x.故选:C.。

2021高考数学押题专练导数(解析版)

2021高考数学押题专练导数(解析版)


f 2k
sin 2k
e
2
2
k
e2
2k
0.
由零点存在定理及 f x 的单调性,知存在唯一的 x1 x0, 2k ,使得 f x1 0 .
从而,当
x
2k
2
,
x1
时,
f x
f x1 0 ,
f
x 单调递减;
当 x x1, 2kπ π 时, f x f x1 0 , f x 单调递增.
x
2k
2
,
x0
时,
f
x
f x0
0,
f
x 单调递减;
当 x x0, 2k 时, f x f x0 0 , f x 单调递增.
f
2k
2
sin
2k
2
e2
2k
2
e2k
1
e0
1
0,
f
x

2k
2
,2k
上的最小值
f
x
min
f x0
f
2k
2
0
f
2k
2
cos
2k
2
1
e2
2k
2
1 e2k
1 e0
0,
f
2k
cos 2k
1
e2
2
k
e 2
2
k
0,
f
x 在 2k
2
, 2k
上的最小值
f
x
min
f
x1
f
2k
0.
由零点存在定理及
f
x
的单调性,知
f

导数中的构造函数-玩转压轴题(解析版)

导数中的构造函数-玩转压轴题(解析版)

近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,一下问题为例,对在处理导数问题时构造函数的方法进行归类和总结.【方法综述】以抽象函数为背景、题设条件或所求结论中具有“()()f x g x ±、()()f x g x 、()()f xg x ”等特征式、解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.方法总结: 和与积联系:()()f x xf x '+,构造()xf x ; 22()()xf x x f x '+,构造2()x f x ;3()()f x xf x '+,构造3()x f x ;…………………()()nf x xf x '+,构造()n x f x ;()()f x f x '+,构造e ()x f x .等等.减法与商联系:如()()0xf x f x ->',构造()()f x F x x=; ()2()0xf x f x ->',构造2()()f x F x x =;………………… ()()0xf x nf x ->',构造()()nf x F x x =. ()()f x f x '-,构造()()e x f x F x =,()2()f x f x '-,构造2()()e x f x F x =,……………… ()()f x nf x '-,构造()()e nxf x F x =, 奇偶性结论:奇乘除奇为偶;奇乘偶为奇。

(可通过定义得到)构造函数有时候不唯一,合理构造函数是关键。

给出导函数,构造原函数,本质上离不开积分知识。

【解答策略】类型一、巧设“()()y f x g x =±”型可导函数【例1】已知不相等的两个正实数x ,y 满足()2244log log x y y x -=-,则下列不等式中不可能成立的是专题6.1 导数中的构造函数( ) A .1x y <<B .1y x <<C .1x y <<D .1y x <<【来源】广东省佛山市2021届高三下学期二模数学试题 【答案】B【解析】由已知()2244log log x y y x -=-,因为2log 4x =log 2x ,所以原式可变形222log 4g 2lo x x y y =++令()222log f x x x =+,()24log g x x x =+,函数()f x 与()g x 均为()0,∞+上的增函数,且()()f x g y =,且()()11f g =, 当1x >时,由()1f x >,则()1g y >,可得1y >, 当1x <时,由()1f x <,则()1g y <,可得1y <,要比较x 与y 的大小,只需比较()g x 与()g y 的大小,()()()()222224log 2log 2log g x g y g x f x x x x x x x x -=-=+--=-+设()()222log 0h x x x x x =-+>,则()212ln 2h x x x '=-+()2220ln 2h x x ''=--<,故()h x '在()0+∞,上单调递减, 又()2110ln 2h '=-+>,()1230ln 2h '=-+<, 则存在()01,2x ∈使得()0h x '=,所以当()00,x x ∈时,()0h x '>,当()0,x x ∈+∞时,()0h x '<, 又因为()()()()010,10,412480h h x h h =>==-+=-<, 所以当1x <时,()0h x <,当1x >时,()h x 正负不确定,故当1,1x y <<时,()0h x <,所以()()()1g x g y g <<,故1x y <<, 当1,1x y >>时,()h x 正负不定,所以()g x 与()g y 的正负不定,所以,,111x y x y y x ><<>>>均有可能,即选项A ,C ,D 均有可能,选项B 不可能. 故选:B .【点睛】本题考查了不等关系的判断,主要考查了对数的运算性质以及对数函数性质的运用,解答本题的关键是要比较x 与y 的大小,只需比较()g x 与()g y 的大小,()()()()222log g x g y g x f x x x x -=-=-+,设()()222log 0h x x x x x =-+>,求导得出其单调性,从而得出,x y 的大小可能性. 【举一反三】1.若实数a ,b 满足()221ln 2ln 1a b a b-+-≥,则a b +=( )A .2B C .2D .【来源】浙江省宁波市镇海中学2021届高三下学期5月模拟数学试题 【答案】C 【解析】()ln 1g x x x =--,1()1g x x'=-, ()0g x '>(1,)x ⇒∈+∞,()0g x '<⇒(0,1)x ∈, ∴()g x 在(0,1)x ∈单调递减,在(1,)x ∈+∞单调递增,∴()(1)1ln110g x g =--=,∴1ln 0x x x -≥>,恒成立,1x =时取等号,2211a b +-2221a b -21a b =-, 221ln ln(2)ln a a a bb b-=-, ()221ln 2ln 1a b a b-+-≥,∴2211ln(2)ln a a b b+-=-,又21ab =(不等式取等条件),解得:a b ==,2a b ∴+=, 故选:C.2.(2020·河北高考模拟(理))设奇函数()f x 在R 上存在导函数'()f x ,且在(0,)+∞上2'()f x x <,若(1)()f m f m --331[(1)]3m m ≥--,则实数m 的取值范围为( )A .11[,]22-B .11(,][,)22-∞-⋃+∞C .1(,]2-∞- D .1[,)2+∞【答案】D【解析】由()()1f m f m -- ()33113m m ⎡⎤≥--⎣⎦得:3311(1)(1)()33f m m f m m ---≥-,构造函数31()()3g x f x x =-,2()()0g x f x x '=-<'故g (x )在()0,+∞单调递减,由函数()f x 为奇函数可得g(x)为奇函数,故g(x)在R 上单调递减,故112m m m -≤⇒≥选D点睛:本题解题关键为函数的构造,由()2'f x x <要想到此条件给我们的作用,通常情况下是提示我们需要构造函数得到新函数的单调性,从而得不等式求解;3.(2020·山西高考模拟(理))定义在()0,∞+上的函数()f x 满足()()251,22x f x f ='>,则关于x 的不等式()13xxf e e <-的解集为( )A .()20,eB .()2,e +∞C .()0,ln 2D .(),2ln -∞【答案】D 【解析】【分析】构造函数()()1F x f x x=+,利用已知条件求得()'0F x >,即函数()F x 为增函数,而()23F =,由此求得e 2x <,进而求得不等式的解集.【详解】构造函数()()1F x f x x =+,依题意可知()()()222110x f x F x f x x x-=-=''>',即函数在()0,∞+上单调递增.所求不等式可化为()()1e e 3e x x x F f =+<,而()()12232F f =+=,所以e 2x <,解得ln 2x <,故不等式的解集为(),ln 2-∞.【点睛】本小题主要考查利用导数解不等式,考查构造函数法,考查导数的运算以及指数不等式的解法,属于中档题.题目的关键突破口在于条件()21x f x '>的应用.通过观察分析所求不等式,转化为()1e 3e x x f +<,可发现对于()()1F x f x x=+,它的导数恰好可以应用上已知条件()21x f x '>.从而可以得到解题的思路.4.(2020·河北衡水中学高考模拟(理))定义在R 上的可导函数()f x 满足()11f =,且()2'1f x >,当3,22x ππ⎡⎤∈-⎢⎥⎣⎦时,不等式23(2cos )2sin 22x f x +>的解集为( )A .4,33ππ⎛⎫⎪⎝⎭B .4,33ππ⎛⎫-⎪⎝⎭C .0,3π⎛⎫⎪⎝⎭D .,33ππ⎛⎫-⎪⎝⎭ 【答案】D【解析】令11()()22g x f x x =--,则1()'()0'2g x f x =->, ()g x ∴在定义域R 上是增函数,且11(1)(1)022g f =--=,1(2cos )(2cos )cos 2g x f x x ∴=--23=(2cos )2sin 22x f x +-,∴23(2cos )2sin 022x f x +->可转化成()(2cos )1g x g >,得到2cos 1x >,又3,22x ππ⎡⎤∈-⎢⎥⎣⎦,可以得到,33x ππ⎛⎫∴∈- ⎪⎝⎭,故选D5.定义在()0+,∞上的函数()f x 满足()10xf x '-<,且(1)1f =,则不等式()()21ln 211f x x ->-+的解集是__________. 【答案】()112,【解析】()()ln F x f x x =-,则()11()()xf x F x f x xx-=-=''',而()10xf x '-<,且0x >,∴()0F x '<,即()F x 在()0+,∞上单调递减,不等式()()21ln 211f x x ->-+可化为()()21ln 2111ln1f x x --->=-,即()()211F x F ->,故210211x x ->-<⎧⎨⎩,解得:112x <<,故解集为:()112,. 类型二 巧设“()()f x g x ”型可导函数【例】已知定义在R 上的图象连续的函数()f x 的导数是fx ,()()20f x f x +--=,当1x <-时,()()()()110x f x x f x '+++<⎡⎤⎣⎦,则不等式()()10xf x f ->的解集为( )A .(1,1)-B .(),1-∞-C .1,D .()(),11,-∞-⋃+∞【来源】2021年浙江省高考最后一卷数学(第七模拟) 【答案】A【解析】当1x <-时,()()()()110x f x x f x '+++<⎡⎤⎣⎦,即有()()()10f x x f x '++>.令()()()1F x x f x =+,则当1x <-时,()()()()10F x f x x f x ''=++>,故()F x 在(),1-∞-上单调递增.∵()()()()()()22121F x x f x x f x F x --=--+--=---=⎡⎤⎣⎦, ∴()F x 关于直线1x =-对称,故()F x 在()1,-+∞上单调递减,由()()10xf x f ->等价于()()()102F x F F ->=-,则210x -<-<,得11x -<<. ∴()()10xf x f ->的解集为(1,1)-. 故选:A. 【举一反三】1.(2020锦州模拟)已知函数()f x 是定义在R 上的偶函数,当0x <时,()()0f x xf x '+<,若(2)0f =,则不等式()0xf x >的解集为()A .{20 x x -<<或}02x <<B .{ 2 x x <-或}2x >C .{20 x x -<<或}2x >D .{ 2 x x <-或}02x <<【答案】D .【解析】令()()F x xf x =,则()F x 为奇函数,且当0x <时,()()()0F x f x xf x '+'=<恒成立,即函数()F x 在()0-,∞,()0+,∞上单调递减,又(2)0f =,则(2)(2)0F F -==,则()0xf x >可化为()(2)F x F >-或()(2)F x F >,则2x <-或02x <<.故选D .2.(2020·陕西高考模拟)已知定义在R 上的函数()f x 的导函数为'()f x ,对任意x ∈R 满足'()()0f x f x +<,则下列结论正确的是( )A .23(2)(3)e f e f >B .23(2)(3)e f e f <C .23(2)(3)e f e f ≥D .23(2)(3)e f e f ≤【答案】A【解析】令()()xg x e f x = ,则()(()())0xg x e f x f x '+'=<, 所以(2)(3),g g > 即()()2323e f e f >,选A.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x <'构造()()xf xg x e=,()()0f x f x '+<构造()()xg x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等 3.(2020·海南高考模拟)已知函数()f x 的导函数'()f x 满足()(1)'()0f x x f x ++>对x ∈R 恒成立,则下列判断一定正确的是( ) A .(0)02(1)f f << B .0(0)2(1)f f << C .02(1)(0)f f << D .2(1)0(0)f f <<【答案】B【解析】由题意设()()()1g x x f x =+,则()()()()'1'0g x f x x f x =++>,所以函数()g x 在R 上单调递增,所以()()()101g g g -<<,即()()0021f f <<.故选B . 4.(2020·青海高考模拟(理))已知定义在上的函数满足函数的图象关于直线对称,且当 成立(是函数的导数),若,则的大小关系是( )A .B .C .D .【答案】A 【解析】令,则当,因为函数的图象关于直线对称,所以函数的图象关于直线对称,即为偶函数,为奇函数,因此当,即为上单调递减函数,因为,而,所以,选A.5.(2020南充质检)()f x 是定义在R 上的奇函数,当0x >时,()21()2()0x f x xf x '++<,且(2)0f =,则不等式()0f x <的解集是()A .()()22--+,,∞∞ B .()()2002-,,C .()()202-+,,∞D .()()202--,,∞【答案】C .【解析】构造函数()2()1()g x x f x =+,则()2()1()g x x f x ''=+.又()f x 是定义在R 上的奇函数,所以()2()1()g x x f x =+为奇函数,且当0x >时,()2()1()2()0g x x f x xf x ''=++<,()g x 在()0+,∞上函数单减, ()0()0f x g x <⇒<.又(2)0g =,所以有()0f x <的解集()()202-+,,∞.故选C . 点睛:本题主要考察抽象函数的单调性以及函数的求导法则及构造函数解不等式,属于难题.求解这类问题一定要耐心读题、读懂题,通过对问题的条件和结论进行类比、联想、抽象、概括,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”以构造恰当的函数;②若是选择题,可根据选项的共性归纳构造合适的函数.6.(2020荆州模拟)设函数()f x '是奇函数()f x (x ∈R )的导函数,当0x >时,1ln ()()x f x f x x '<-,则使得()21()0x f x ->成立的x 的取值范围是()A .()()1001-,,B .()()11--+,,∞∞C .()()101-+,,∞D .()()101--,,∞ 【答案】D.【解析】设()ln ()g x x f x =,当0x >时,1()()ln ()0g x f x xf x x'=+<',()g x 在()0+,∞上为减函数,且(1)0g =,当()01x ∈,时,()0g x >,ln 0x <∵,()0f x <∴,2(1)()0x f x ->; 当()1x ∈+,∞时,()0g x <,ln 0x >∵,()0f x <∴,()21()0x f x -<, ∵()f x 为奇函数,∴当()10x ∈-,时,()0f x >,()21()0x f x -<;当()1x ∈--,∞时,()0f x >,()21()0x f x ->. 综上所述:使得()21()0x f x -<成立的x 的取值范围是()()101--,,∞ 【点睛】构造函数,借助导数研究函数单调性,利用函数图像解不等式问题,是近年高考热点,怎样构造函数,主要看题目所提供的导数关系,常见的有x 与()f x 的积或商,2x 与()f x 的积或商,e x 与()f x 的积或商,ln x 与()f x 的积或商等,主要看题目给的已知条件,借助导数关系说明导数的正负,进而判断函数的单调性,再借助函数的奇偶性和特殊点,模拟函数图象,解不等式.7.(2020·河北高考模拟)已知()f x 是定义在R 上的可导函数,且满足(1)()'()0x f x xf x ++>,则( ) A .()0f x > B .()0f x < C .()f x 为减函数 D .()f x 为增函数【答案】A【解析】令()e [()]x g x xf x =,则由题意,得()e [(1)()()]0xg x x f x xf x '+'=+>,所以函数()g x 在(,)-∞+∞上单调递增,又因为(0)0g =,所以当0x >时,()0>g x ,则()0f x >,当0x <时,()0<g x ,则()0f x >,而()()()1'0x f x xf x ++>恒成立,则(0)0f >;所以()0f x >;故选A.点睛:本题的难点在于如何利用()()()1'0x f x xf x ++>构造函数()e [()]xg x xf x =。

2021届新高三数学精品专项测试题 6 导数中的构造函数问题 教师版

2021届新高三数学精品专项测试题   6 导数中的构造函数问题  教师版


例 3:已知函数
的导函数为
,若

的解集为( )
A.
B.
C.
D.
【答案】A
,则不等式
【解析】因为 因为
,所以构造函数

,所以
在 上单调递增,
,所以
,即
,所以
. .
3.复 杂 构 造 ,是 对 题 意 条 件 所 给 函 数 关 系 进 行 深 入 分 析 ,研 究 其 结 构 特 征 关 系 ,构 造 出 新 函 数,从而达到解决问题的目的.
【答案】(1)
;(2)证明见解析.
处的切线方程为
【解析】(1)∵
,∴

∴ 将点


代入切线方程得
,可得


,解得

(2)证明:由(1)得


时,要证不等式
即证


时,先证
构造函数
, ,





构造函数

时,

,则
,∴函数

, 上单调递增,
∴当
时,
,则


,∴函数

上单调递增,

,即当
时,

则当

时,
,“ ”对应的原函数是
. 例 2:已知定义域为 的奇函数
的导函数为
,当
时,
,若

A.
B.
【答案】D

,则 , , 的大小关系正确的是( )
C.
D.
【解析】设


因为当
时,

2021高考数学 优拔尖必刷压轴题逆用导数的四则运算法则构造函数(选择题、填空题)(含答案)

2021高考数学 优拔尖必刷压轴题逆用导数的四则运算法则构造函数(选择题、填空题)(含答案)

专题17 逆用导数的四则运算法则构造函数【方法点拨】1.已知中同时出现关于()f x 、()f x '的不等关系,而所求是抽象形式的不等式,应考虑“逆用导数的四则运算法则”构造函数的单调性,然后再逆用单调性;2. 常见的构造函数:①对于()()0(0)xf x f x '+><,构造()()h x xf x '=;一般的,对于()()0(0)xf x nf x '+><,构造()()n h x x f x =.②对于()()0(0)xf x f x '-><,构造()()xx f x h =;一般的,对于()()0(0)xf x nf x '-><,构造()()n f x h x x=. ③对于()()0(0)f x f x '-><,构造()()x ex f x h =;一般的,对于()()0(0)f x nf x '-><,构造()()nxf x h x e=. ④对于()()0(0)f x f x '+><,构造()()x f e x h x=;一般的,对于()()0(0)f x nf x '+><,构造()()nx h x e f x =.⑤对于()()tan (()()tan )f x f x x f x f x x ''><或,即()cos ()sin 0(0)f x x f x x '-><,构造()()cos h x f x x =.⑥对于()cos ()sin 0(0)f x x f x x '+><,构造()()cos f x h x x=. ⑦对于()0()f x f x '>,构造()ln ()h x f x =. ⑧对于()ln ()0(0)f x af x '+><,构造()()xh x a f x =. ⑨对于()()ln 0(0)f x f x x x'+><,构造()()ln h x f x x =. 【典型题示例】例 1 (2021·江苏省南通市通州区一诊·15)已知偶函数()f x (x ≠0)的导函数为()f x ',(e)e f =,当x >0时,()2()0xf x f x '->,则使21(1)(1)ef x x ->-成立的x 的取值范围是 .(其中e 为自然对数的底数)【答案】()(),11,e e -∞-⋃++∞【解析】设2()()f x F x x=,则243()2()()2()()f x x xf x f x x f x F x x x ''--'== ∵x >0时,()2()0xf x f x '->∴当x >0时,()0F x '>,故()F x 在(0,+∞)单增又(e)e f =,所以1()F e e=∵()f x 是偶函数 ∴()F x 也是偶函数,且()F x 在(-∞,0)单减21(1)(1)ef x x ->-等价于2(1)1(1)e f x x ->-,即(1)()F x F e -> 由()F x 是偶函数且()F x 在(0,+∞)单增 得1x e ->,解之得11x e x e >+<-或.例 2 (多选题)已知定义在[0,)2π上的函数()f x 的导函数为()f x ',且(0)0f =,()cos ()sin 0f x x f x x '+<,则下列判断中正确的是( )A .()()64f f ππB .()03f ln π>C .()2()63f f ππ> D .()()43f ππ>【分析】结合已知可构造()()cos f x g x x =,1[0,)2x π∈,结合已知可判断()g x 的单调性,结合单调性及不等式的性质即可判断. 【解答】解:令()()cos f x g x x =,1[0,)2x π∈, 因为()cos ()sin 0f x x f x x '+<, 则2()cos ()sin ()0f x x f x xg x cos x'+'=<,故()g x 在[0,1)2π上单调递减,因为(0)0f =,则()0f x ,结合选项可知,()()64g g ππ>()()f f ππ>,即()()64f f ππ,故A 错误,因为103ln π>,结合()g x 在在[0,1)2π上单调递减可知1()03g ln π<,从而有1()301cos 3f ln ln ππ<, 由1cos 03ln π>可得1()03f ln π<,故B 错误;1()()63g g ππ>,1()()312f f ππ>,且1()03f π<,即11()()2()633f f πππ>>.故C正确;1()()43g g ππ>1()()312f f ππ>即1()()43f ππ.故D 正确.故选:CD .例3 函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为 . 【答案】(1-,+∞)【分析】题目应归结为“解抽象函数型不等式”问题,解决方法是“逆用函数的单调性”.题目中哪个条件能让你联想到“函数的单调性”呢?注意到已知中2)(>'x f ,只需构造函数()g x ,使得()()2g x f x ''=-,不难得到()()2g x f x x c =-+(这里c 为常数,本题中取0c =),进而利用()g x 的单调性,即可找到解题的突破口.【解析】构造函数()()2g x f x x =-,则()g x '=()20f x '->,故()g x 单调递增,且(1)(1)214g f -=--⨯-=().另一方面所求不等式42)(+>x x f , 就转化为()()(1)g x f x x g =->-,逆用单调性定义易知1x >,则不等式的解集为(1,)-+∞.例 4 设f (x )是定义在R 上的可导函数,且满足f (x )+xf ′(x )>0,则不等式f (x +1)>x -1·f (x 2-1)的解集为________. 【答案】 [1,2)【解析】设F (x )=xf (x ),则由F ′(x )=f (x )+xf ′(x )>0,可得函数F (x )是R上的增函数.又x +1>0,∴由f (x +1)>x -1f (x 2-1)可变形得x +1f (x +1)>x 2-1f (x 2-1),即F (x +1)>F (x 2-1),∴⎩⎨⎧x +1>x 2-1,x ≥1,解得1≤x <2. 【巩固训练】1.函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为______.2.已知定义在R 上的奇函数()f x ,设其导函数为()'f x ,当(],0x ∈-∞时,恒有()()'xf x f x <-,则满足()()()1212133x f x f --<的实数x 的取值范围是 . 3.设()f x 是定义在(0,)+∞上的可导函数,且()'()f x xf x <-,则不等式2(1)(1)(1)f x x f x +>--的解集是( )A. (0,1)B. (1,)+∞C. (1,2)D. (2,)+∞ 4.定义在R 上的可导函数()f x ,当()1,x ∈+∞时,()()()10x f x f x '-->恒成立,()())12,3,12a fb fc f===,则,,a b c 的大小关系为( )A .c a b <<B .b c a <<C .a c b <<D .c b a << 5上的函数,是它的导函数,且恒有成立.则( )ABCD6.函数的导函数为,对任意的,都有)()(x f x f >'成立,则( ) A.)3(ln 2)2(ln 3f f > B.)3(ln 2)2(ln 3f f <C.)3(ln 2)2(ln 3f f =D.)2(ln 3f 与)3(ln 2f 的大小不确定7. 设奇函数f (x )定义在(-π,0)∪(0,π)上其导函数为f '(x ),且f (π2)=0,当0<x <π时,f '(x )sin x-f (x )cos x <0,则关于x 的不等式f (x )<2f (π6)sin x 的解集为 .()f x ()'f x ()()'tan f x f x x >⋅()f x ()f x 'x R ∈【答案或提示】1.【答案】 (0,+∞)【解析】构造函数g (x )=e x ·f (x )-e x ,因为g ′(x )=e x ·f (x )+e x ·f ′(x )-e x =e x [f (x )+f ′(x )]-e x >e x -e x =0,所以g (x )=e x ·f (x )-e x 为R 上的增函数.又因为g (0)=e 0·f (0)-e 0=1,所以原不等式转化为g (x )>g (0),解得x >0. 2.【答案】()1,2- 3.【答案】D【解析】构造函数[()]'()'()0xf x f x xf x =+<,于是该函数递减,2(1)(1)(1)f x x f x +>--变形为22(1)(1)(1)(1)x f x x f x ++>--,于是22101011x x x x +>⎧⎪->⎨⎪+<-⎩,得2x >,选D. 4.【答案】A【解析】构造函数()()1f xg x x =-, 当()1,x ∈+∞时,()()()()()2101f x x f x g x x '--'=>-,即函数()g x 单调递增,则()()()22221f a f g ===-,()()()3133231f b fg ===-,)1fc fg===则()()23gg g <<,即c a b <<,选A .5.【答案】A【解析】由()()'tan f x f x x >得()()'cos sin 0f x x f x x ->, 构造函数()()cos F x f x x =,则()'0F x >,故()F x 单调递增, 有cos cos 666333F f f F ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=<=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选A . 6.【答案】B 【解析】令()()xf x h x e =,则()()()()()()()22'()''''x x x xxxxf x e f x e f x e f x e f x f x h x e e e ---===,因为()()()()''0f x f x f x f x >⇒->,所以在R 上()'0h x >恒成立.即函数()h x 在R 单调递增. 因为ln3ln2>, 所以()()ln3ln 2h h > 即()()()()()()ln3ln 2ln3ln 2ln3ln 22ln33ln 232f f f f f f e e >⇒>⇒>.答案选B .7.【答案】(-π6,0)∪(π6,π)【分析】这是一道难度较大的填空题,它主要考查奇函数的单调性在解不等式中的应用,奇函数的图象关于坐标原点中心对称,关于原点对称的区间上具有相同的单调性;在公共定义域上两个奇函数的积与商是偶函数,偶函数的图象关于y 轴轴对称,关于原点对称的区间上具有相反的单调性,导数是研究函数单调性的重要工具,大家知道(fg )'=f 'g -fg 'g 2,(sin x )'=cos x ,于是本题的本质是构造f (x )sin x 来解不等式【解析】设g(x )=f (x )sin x ,则g ' (x )= (f (x )sin x )'=f '(x )sin x -f (x )cos x sin 2x, 所以当0<x <π时,g ' (x )<0,g(x ) 在(0,π)上单调递减又由于在(0,π)上sin x >0,考虑到sin π6=12,所以不等式f (x )<2f (π6)sin x 等价于f (x )sin x <f (π6)sin π6,即g(x )< g (π6),所以此时不等式等价于π6<x <π.又因为f (x ) 、sin x 为奇函数,所以g(x )是偶函数,且在(-π,0)上sin x <0,所以函数g(x )在(-π,0)是单调递增函数,原不等式等价于g(x )>g(-π6)=f (-π6)sin(-π6),所以此时不等式等价于-π6<x <0,综上,原不等式的解集是(-π6,0)∪(π6,π).。

高考数学命题热点名师解密专题:导数有关的构造函数方法(理)

高考数学命题热点名师解密专题:导数有关的构造函数方法(理)

专题07 导数有关的构造函数方法一.知识点基本初等函数的导数公式 (1)常用函数的导数①(C )′=________(C 为常数); ②(x )′=________;③(x 2)′=________; ④⎝ ⎛⎭⎪⎫1x ′=________;⑤(x )′=________. (2)初等函数的导数公式①(x n)′=________; ②(sin x )′=__________; ③(cos x )′=________; ④(e x)′=________; ⑤(a x)′=___________; ⑥(ln x )′=________;⑦(log a x )′=__________. 5.导数的运算法则(1)[f (x )±g (x )]′=________________________; (2)[f (x )·g (x )]′=_________________________; (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=____________________________.6.复合函数的导数(1)对于两个函数y =f (u )和u =g (x ),如果通过变量u ,y 可以表示成x 的函数,那么称这两个函数(函数y =f (u )和u =g (x ))的复合函数为y =f (g (x )).(2)复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为___________________,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 二.题型分析 1.构造多项式函数 2.构造三角函数型3.构造xe 形式的函数 4.构造成积的形式5.与ln x 有关的构造6.构造成商的形式7.对称问题(一)构造多项式函数例1.已知函数()()f x x R ∈满足()1f l =,且()f x 的导函数()1'2f x <,则()122x f x <+的解集为( )A. B.{}|x 1x <- C. D.{}|1x x > 【答案】D考点:函数的单调性与导数的关系.【方法点晴】本题主要考查了函数的单调性与函数的导数之间的关系,其中解答中涉及到利用导数研究函数的单调性,利用导数研究函数的极值与最值等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据题设条件,构造新函数()F x ,利用新函数的性质是解答问题的关键,属于中档试题.练习1.设函数()f x 在R 上存在导函数'()f x ,对于任意的实数x ,都有,当(,0)x ∈-∞时,.若,则实数m 的取值范围是( )A .1[,)2-+∞ B .3[,)2-+∞ C .[1,)-+∞ D .[2,)-+∞ 【答案】A【解析】∵,设,则,∴()g x 为奇函数,又,∴()g x 在(,0)-∞上是减函数,从而在R 上是减函数,又等价于,即, ∴1m m +≥-,解得12m ≥-. 考点:导数在函数单调性中的应用.【思路点睛】因为,设,则,可得()g x 为奇函数,又,得()g x 在(,0)-∞上是减函数,从而在R 上是减函数,在根据函数的奇偶性和单调性可得,由此即可求出结果. 练习2.设奇函数在上存在导数,且在上,若,则实数的取值范围为( )A .B .C .D .【答案】B【方法点晴】本题主要考查了函数的奇偶性及其应用,其中解答中涉及到利用导数求函数的单调性、利用导数研究函数的极值、以及函数的奇偶性的判定等知识点的综合考查,着重考查了转化与化归的思想方法,以及学生的推理与运算能力,属于中档试题,解答中得出函数的奇函数和函数的单调性是解答的关键.练习3.设函数()f x 在R 上存在导函数()f x ',对任意x R ∈,都有,且(0,)x ∈+∞时,()f x x '>,若,则实数a 的取值范围是( )A .[)1,+∞B .(],1-∞C .(],2-∞D .[)2,+∞【答案】B【解析】令,则,则,得()g x 为R 上的奇函数.∵0x >时,,故()g x 在(0,)+∞单调递增,再结合(0)0g =及()g x 为奇函数,知()g x 在(,)-∞+∞为增函数,又则,即(],1a ∈-∞.故选B .考点:函数的单调性及导数的应用.【方法点晴】本题考查了利用导数研究函数的单调性,然后构造函数,通过新函数的性质把已知条件转化为关于a 的不等式来求解.本题解答的关键是由已知条件()f x x '>进行联想,构造出新函数,然后结合来研究函数()g x 的奇偶性和单调性,再通过要解的不等式构造,最终得到关于a 的不等式,解得答案. (二)构造三角函数型例2.已知函数()f x 的定义域为R ,()'fx 为函数()f x 的导函数,当[)0,x ∈+∞时,且x R ∀∈,.则下列说法一定正确的是( )A. B. C. D. 【答案】B【解析】令,则.因为当[)0,x ∈+∞时,,即,所以,所以在[)0,x ∈+∞上单调递增.又x R ∀∈,,所以,所以,故为奇函数,所以在R 上单调递增,所以.即,故选B.练习1.已知函数)(x f y =对任意的满足(其中)('x f 是函数)(x f 的导函数),则下列不等式成立的是( ) A . B . C . D . 【答案】A【解析】构造函数,则,即函数g (x )在单调递增, 则,,即,故A 正确.,即 练习2.定义在)2,0(π上的函数)(x f ,()'f x 是它的导函数,且恒有成立,则( )A.B. C . D. 【答案】D 【解析】在区间0,2π⎛⎫⎪⎝⎭上,有,即令,则,故()F x 在区间0,2π⎛⎫⎪⎝⎭上单调递增. 令,则有,D 选项正确.【思路点晴】本题有两个要点,第一个要点是“切化弦”,在不少题目中,如果遇到tan x ,往往转化为sin cos xx来思考;第二个要点是构造函数法,题目中,可以化简为,这样我们就可以构造一个除法的函数,而选项正好是判断单调性的问题,顺势而为. (三)构造xe 形式的函数例3.已知函数()f x 的导数为()f x ′,且对x R ∈恒成立,则下列函数在实数集内一定是增函数的为( )A.()f xB.()xf xC.()xe f x D.()xxe f x【答案】D 【解析】设,则.对R x ∈恒成立,且0x e >.在R 上递增,故选D.练习1. 设函数)(x f '是函数的导函数,1)0(=f ,且,则的解集为( ) A.),34ln (+∞ B.),32ln (+∞ C.),23(+∞ D.),3(+∞e【答案】B【解析】依题意,构造函数, 由,得,ln 23x >【思路点晴】本题考查导函数的概念,基本初等函数和复合函数的求导,对数的运算及对数函数的单调性.构造函数法是在导数题目中一个常用的解法.方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理. 恒成立问题以及可转化为恒成立问题的问题,往往可利用参变分离的方法,转化为求函数最值处理.学科网 练习2.已知()f x 定义在R 上的函数,()f x '是()f x 的导函数,若,且()02f =, 则不等式(其中e 为自然对数的底数)的解集是( ) A . B .()1,-+∞ C .()0,+∞ D . 【答案】C 【解析】设,则,∵,∴,∴()x g ',∴()x g y =在定义域上单调递增,∵,∴()1>x g ,又∵,∴()()0g x g >,∴0>x ,∴不等式的解集为()0,+∞故选:C. 考点:利用导数研究函数的单调性.【方法点晴】本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键,属于中档题.结合已知条件中的以及所求结论可知应构造函数,利用导数研究()x g y =的单调性,结合原函数的性质和函数值,即可求解.练习3.定义在R 上的函数()f x 的导函数为()f x ',若对任意实数x ,有,且()1f x + 为奇函数,则不等式的解集是( )A .(),0-∞B .()0,+∞C .1,e ⎛⎫-∞ ⎪⎝⎭D .1,e ⎛⎫+∞ ⎪⎝⎭【答案】B【解析】设.由,得,故函数()g x 在R 上单调递减.由()1f x +为奇函数()01f =-,所以.不等式等价于()1xf x e<-,即,结合函数()g x 的单调性可得0x >,从而不等式的解集为()0,+∞,故答案为B.【方法点晴】本题考查了导数的综合应用及函数的性质的应用,构造函数的思想,阅读分析问题的能力,属于中档题.常见的构造思想是使含有导数的不等式一边变为0,即得,当是形如时构造;当是时构造,在本题中令,(R x ∈),从而求导()0<'x g ,从而可判断()x g y =单调递减,从而可得到不等式的解集.练习4.已知定义在R 上的可导函数()f x 的导函数()'f x ,满足,且()2+f x 为偶函数,()41=f ,则不等式()<x f x e 的解集为( )A .()2,-+∞B .()4,+∞C .()1,+∞D .()0,+∞ 【答案】D 【解析】设,则∴函数g x ()是R 上的减函数, ∵函数()2+f x 是偶函数, ∴函数∴函数关于2x =对称, ∴原不等式等价为1g x ()<,∴不等式()<x f x e 等价1g x ()<,即 ∵g x ()是R 上的减函数, ∴0x >.∴不等式()<x f x e 式的解集为()0,+∞.选D练习5.设函数()f x '是函数的导函数,1)0(=f ,且,则的解集是( )A.ln 4,3⎛⎫+∞ ⎪⎝⎭B.ln 2,3⎛⎫+∞ ⎪⎝⎭C.⎫+∞⎪⎪⎝⎭D.⎫+∞⎪⎪⎝⎭ 【答案】B【解析】设,则,所以(c 为常数),则,由,2c =,所以,又由,所以即()3f x >,即3213x e ->,解得ln 23x >.故选B . (四)构造成积的形式例4.已知定义在R 上的函数()y f x =满足:函数()1y f x =+的图象关于直线1x =-对称,且当(),0x ∈-∞时,(()f x '是函数()f x 的导函数)成立.若,,,则a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .c a b >>D .a c b >> 【答案】A【解析】易知()x f 关于y 轴对称,设,当()0,∞-∈x 时, ,()x F ∴在()0,∞-上为递减函数,且()x F 为奇函数,()x F ∴在R 上是递减函数.,即c b a >>,故选A.【方法点睛】本题考查学生的是函数的性质,属于中档题目.从选项可以看出,要想比较c b a ,,的大小关系,需要构造新函数,通过已知函数()x f 的奇偶性,对称性和单调性,判断()x F 的各种性质,可得()x F 在R 上是递减函数.因此只需比较自变量的大小关系,通过分别对各个自变量与临界值1,0作比较,判断出三者的关系,即可得到函数值得大小关系. 练习1.设函数()f x 是定义在(,0)-∞上的可导函数,其导函数为'()f x ,且有,则不等式的解集为( )A .B .C .(2018,0)-D .(2016,0)-【答案】B考点:函数导数与不等式,构造函数.【思路点晴】本题考查函数导数与不等式,构造函数法.是一个常见的题型,题目给定一个含有导数的条件,这样我们就可以构造函数,它的导数恰好包含这个已知条件,由此可以求出()F x 的单调性,即函数()F x 为减函数.注意到原不等式可以看成,利用函数的单调性就可以解出来.练习2.设函数()f x 是定义在()0,+∞上的可导函数,其导函数为()f x ',且有,则不等式的解集为( )A .()2012,+∞B .()0,2012C .()0,2016D .()2016,+∞ 【答案】D【解析】试题分析:∵函数()f x 是定义在()0,+∞上的可导函数, , ∴函数2y x f x =()在()0,+∞上是增函数,∴不等式的解集为()2016,+∞.【名师点睛】本题考查函数的单调性,解不等式,以及导数的应用,属中档题.解题时正确确定函数2y x f x =()在()0,+∞上是增函数是解题的关键 练习3.函数()f x 是定义在区间()0,+∞上可导函数,其导函数为()'f x ,且满足,则不等式的解集为( ) A . B . C . D . 【答案】C(五)与ln x 有关的构造例5.已知定义在实数集R 的函数()f x 满足f (1)=4,且()f x 导函数()3f x '<,则不等式的解集为( )A.(1,)+∞B.(,)e +∞C.(0,1)D.(0,)e【答案】D【解析】设t=lnx,则不等式化为13)(+>t t f ,设g(x)=f(x)-3x-1,则。

专题6.1 导数中的构造函数-2020届高考数学压轴题讲义(选填题)(解析版)

专题6.1 导数中的构造函数-2020届高考数学压轴题讲义(选填题)(解析版)

【方法综述】函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想,而构造函数的解题思路恰好是这两种思想的良好体现,尤其是在导数题型中.在导数小题中构造函数的常见结论:出现()()nf x xf x '+形式,构造函数()()F nx x f x =;出现()()xf x nf x '-形式,构造函数()()F n f x x x =;出现()()f x nf x '+形式,构造函数()()F nxx e f x =;出现()()f x nf x '-形式,构造函数()()F nxf x x e =. 【解答策略】类型一、利用()f x 进行抽象函数构造 1.利用()f x 与x (n x )构造 常用构造形式有()xf x ,()f x x ;这类形式是对u v ⋅,uv型函数导数计算的推广及应用,我们对u v ⋅,u v 的导函数观察可得知,u v ⋅型导函数中体现的是“+”法,uv型导函数中体现的是“-”法,由此,我们可以猜测,当导函数形式出现的是“+”法形式时,优先考虑构造u v ⋅型,当导函数形式出现的是“-”法形式时,优先考虑构造uv. 例1.【2019届高三第二次全国大联考】设是定义在上的可导偶函数,若当时,,则函数的零点个数为 A .0 B .1 C .2 D .0或2【答案】A 【解析】 设,因为函数为偶函数,所以也是上的偶函数,所以.由已知,时,,可得当时,,故函数在上单调递减,由偶函数的性质可得函数在上单调递增.所以,所以方程,即无解,所以函数没有零点.故选A.【指点迷津】设,当时,,可得当时,,故函数在上单调递减,从而求出函数的零点的个数.【举一反三】【新疆乌鲁木齐2019届高三第二次质量检测】的定义域是,其导函数为,若,且(其中是自然对数的底数),则A.B.C.当时,取得极大值D.当时,【答案】C【解析】设,则则又得即,所以即,由得,得,此时函数为增函数由得,得,此时函数为减函数则,即,则,故错误,即,则,故错误当时,取得极小值即当,,即,即,故错误当时,取得极小值此时,则取得极大值本题正确选项:2.利用()f x 与x e 构造()f x 与x e 构造,一方面是对u v ⋅,uv函数形式的考察,另外一方面是对()x x e e '=的考察.所以对于()()f x f x '±类型,我们可以等同()xf x ,()f x x的类型处理, “+”法优先考虑构造()()F xx f x e =⋅, “-”法优先考虑构造()()F xf x x e=. 例2、【湖南省长郡中学2019届高三下学期第六次月考】已知是函数的导函数,且对任意的实数都有是自然对数的底数),,若不等式的解集中恰有两个整数,则实数的取值范围是( )A .B .C .D .【答案】C 【解析】令,则,可设, ∵,∴.∴, ∴.可得:时,函数取得极大值,时,函数取得极小值. ,,,.∴时,不等式的解集中恰有两个整数,.故的取值范围是,故选C . 【指点迷津】令,可得,可设,,解得,,利用导数研究其单调性极值与最值并且画出图象即可得出.【举一反三】【安徽省黄山市2019届高三第二次检测】已知函数是定义在上的可导函数,对于任意的实数x ,都有,当时,若,则实数a 的取值范围是( )A .B .C .D .【答案】B 【解析】 令,则当时,,又,所以为偶函数,从而等价于,因此选B.3.利用()f x 与sin x ,cos x 构造sin x ,cos x 因为导函数存在一定的特殊性,所以也是重点考察的范畴,我们一起看看常考的几种形式. ()()F sin x f x x =,()()()F sin cos x f x x f x x ''=+;()()F sin f x x x =,()()()2sin cos F sin f x x f x xx x'-'=; ()()F cos x f x x =,()()()F cos sin x f x x f x x ''=-;()()F cos f x x x =,()()()2cos sin F cos f x x f x xx x'+'=.例3、已知函数()y f x =对于任意,22x ππ⎛⎫∈-⎪⎝⎭满足()()cos sin 0f x x f x x '+>(其中()f x '是函数()f x 的导函数),则下列不等式不成立的是( ) A .234f f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭B .234f f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭C .()024f f π⎛⎫< ⎪⎝⎭D .()023f f π⎛⎫< ⎪⎝⎭【答案】B【指点迷津】满足“()()cos sin 0f x x f x x '+>”形式,优先构造()()F cos f x x x=,然后利用函数的单调性和数形结合求解即可.注意选项的转化. 类型二 构造具体函数关系式这类题型需要根据题意构造具体的函数关系式,通过具体的关系式去解决不等式及求值问题. 1.直接法:直接根据题设条件构造函数 例4、α,,22ππβ⎡⎤∈-⎢⎥⎣⎦,且sin sin 0ααββ->,则下列结论正确的是( ) A .αβ> B .22αβ> C .αβ< D .0αβ+> 【答案】B【解析】构造()sin f x x x =形式,则()sin cos f x x x x '=+,0,2x π⎡⎤∈⎢⎥⎣⎦时导函数()0f x '≥,()f x 单调递增;,02x π⎡⎫∈-⎪⎢⎣⎭时导函数()0f x '<,()f x 单调递减.又()f x 为偶函数,根据单调性和图象可知选B .【指点迷津】根据题目中不等式的构成,构造函数()sin f x x x =,然后利用函数的单调性和数形结合求解即可.【举一反三】【福建省2019届备考关键问题指导适应性练习(四)】已知函数,,若关于的方程在区间内有两个实数解,则实数的取值范围是( )A.B.C.D.【答案】A【解析】易知当≤0时,方程只有一个解,所以>0.令,,令得,为函数的极小值点,又关于的方程=在区间内有两个实数解,所以,解得,故选A.【指点迷津】根据题目中方程的构成,构造函数,然后利用函数的单调性和数形结合求解即可.2. 参变分离,构造函数例5.【云南省玉溪市第一中学2019届高三下学期第五次调研】设为函数的导函数,且满足,若恒成立,则实数的取值范围是()A.B.C.D.【答案】A【解析】,由,可得的对称轴为,所以,所以,所以,由可得,变形可得,即,设,,易得函数在区间上单调递增,在区间上单调递减,所以,故实数b的取值范围为,故选A【指点迷津】根据,变形可得,通过构造函数,进一步确定的最大值,利用导数,结合的单调性,即可求解.【举一反三】【河北省唐山市2019届高三下学期第一次模拟】设函数,有且仅有一个零点,则实数的值为()A.B.C.D.【答案】B【解析】∵函数,有且只有一个零点,∴方程,,有且只有一个实数根,令g(x)=,则g′(x)=,当时,g′(x)0,当时,g′(x)0,∴g(x)在上单调递增,在上单调递减,当x=时,g(x)取得极大值g()=,又g(0)= g()=0,∴若方程,,有且只有一个实数根,则a=故选B.【强化训练】一、选择题1.【山西省2019届高三百日冲刺】已知函数,若对任意的,恒成立,则的取值范围为()A.B.C.D.【答案】D【解析】令,,.当时,,则在上单调递增,又,所以恒成立;当时,因为在上单调递增,故存在,使得,所以在上单调递减,在上单调递增,又,则,这与恒成立矛盾,综上.故选D.2.【海南省海口市2019届高三高考调研】已知函数的导函数满足对恒成立,则下列判断一定正确的是()A.B.C.D.【答案】B【解析】由题意设,则,所以函数在上单调递增,所以,即.故选B.3.【辽宁省抚顺市2019届高三一模】若函数有三个零点,则实数的取值范围是() A.B.C.D.【答案】D【解析】由得,设,则,由得得或,此时函数为增函数,由得得,此时函数为减函数,即当时,取得极小值,当时,取得极大值,当,且,函数图象如下图所示:要使有三个零点,则,即实数a的取值范围是,故本题选D.4.【辽宁省师范大学附属中学2019届高三上学期期中】已知函数,若是函数的唯一极值点,则实数k的取值范围是()A.B.C.D.【答案】A【解析】解:∵函数的定义域是∴,∵是函数的唯一一个极值点∴是导函数的唯一根,∴在无变号零点,即在上无变号零点,令,因为,所以在上单调递减,在上单调递增所以的最小值为,所以必须,故选:A.5.【2019届山西省太原市第五中学高三4月检测】已知函数,若函数在上无零点,则()A.B.C.D.【答案】A【解析】解:因为f(x)<0在区间(0,)上恒成立不可能,故要使函数f(x)在(0,)上无零点,只要对任意的x∈(0,),f(x)>0恒成立,即对x∈(0,),a>2恒成立.令l(x)=2,x∈(0,),则l′(x),再令m(x)=2lnx2,x∈(0,),则m′(x)0,故m(x)在(0,)上为减函数,于是m(x)>m()=2﹣2ln2>0,从而l′(x)>0,于是l(x)在(0,)上为增函数,所以l(x)<l()=2﹣4ln2,故要使a>2恒成立,只要a∈[2﹣4ln2,+∞).6.【安徽省毛坦厂中学2019届高三校区4月联考】已知,若关于的不等式恒成立,则实数的取值范围是()A.B.C.D.【答案】D【解析】由恒成立得,恒成立,设,则.设,则恒成立,在上单调递减,又,当时,,即;当时,,即,在上单调递增,在上单调递减,,,故选:D7.【2019届湘赣十四校高三第二次联考】已知函数为上的偶函数,且当时函数满足,,则的解集是()A.B.C.D.【答案】A【解析】设,则,∴,化简可得.设,∴,∴时,,因此为减函数,∴时,,因此为增函数,∴,∴,∴在上为增函数.∵函数是偶函数,∴函数,∴函数关于对称,又∵,即,又在上为增函数,∴,由函数关于对称可得,,故选A.8.【河南省八市重点高中联盟“领军考试”2019届高三第三次测评】若函数在区间上单调递增,则的最小值是()A.-3 B.-4 C.-5 D.【答案】B【解析】函数在上单调递增,所以在上恒成立,即在上恒成立,令,其对称轴为,当即时,在上恒成立等价于,由线性规划知识可知,此时;当即时,在上恒成立等价于,,即;当即时,在上恒成立等价于,此时;综上可知,,故选.9.【宁夏六盘山高级中学2019届高三二模】定义域为的奇函数,当时,恒成立,若,,则()A.B.C.D.【答案】D【解析】构造函数因为是奇函数,所以为偶函数当时,恒成立,即,所以在时为单调递减函数在时为单调递增函数根据偶函数的对称性可知,所以所以选D10.【四川省教考联盟2019届高三第三次诊断】已知定义在上的函数关于轴对称,其导函数为,当时,不等式.若对,不等式恒成立,则正整数的最大值为()A.B.C.D.【答案】B【解析】因为,所以,令,则,又因为是在上的偶函数,所以是在上的奇函数,所以是在上的单调递增函数,又因为,可化为,即,又因为是在上的单调递增函数,所以恒成立,令,则,因为,所以在单调递减,在上单调递增,所以,则,所以.所以正整数的最大值为2.故选:B11.【2019届高三第二次全国大联考】已知定义在上的可导函数的导函数为,若当时,,则函数的零点个数为A.0 B.1 C.2 D.0或2【答案】A【解析】由题意,设,则.由已知,所以当时,,当时,,又因为在上可导,故函数在上单调递增,在上单调递减,所以,所以无解,即方程无解,即方程无解,所以函数无零点.故选A.二、填空题12.【江苏省海安高级中学2019届高三上学期第二次月考】若关于x的不等式对任意的实数及任意的实数恒成立,则实数a的取值范围是______.【答案】【解析】关于x的不等式对任意的实数及任意的实数恒成立,先看成b的一次函数,可得即为,可得恒成立,设,,,可得时,,递增;时,,递减,又,,可得在的最小值为,可得.即有a的范围是.故答案为:.13.【山东省济南市山东师范大学附属中学2019届高三四模】定义在R上的奇函数的导函数满足,且,若,则不等式的解集为______.【答案】【解析】的周期为定义在上的奇函数①时,令,则,即单调递减又不等式的解集为②时,时,不等式成立综上所述:本题正确结果:14.【广东省佛山市第一中学2019届高三上学期期中】已知定义在R上的奇函数满足f(1)=0,当x >0时,,则不等式的解集是______.【答案】【解析】设,则,结合可得为减函数.因为为奇函数,所以为偶函数,作出简图如下:结合简图,所以的解集是.15.【重庆市第一中学校2019届高三3月月考】设是定义在上的函数,其导函数为,若,,则不等式(其中为自然对数的底数)的解集为______. 【答案】【解析】令g(x)=e x f(x)﹣e x,则g′(x)=e x f(x)+e x f′(x)﹣e x=e x(f(x)+f′(x)﹣1),∵f(x)+f′(x)<1,∴f(x)+f′(x)﹣1<0,∴g′(x)<0,g(x)在R上为单调递减函数,∵g(0)=f(0)﹣1=2018﹣1=2017∴原不等式可化为g(x)>g(0),根据g(x)的单调性得x<0, ∴不等式(其中为自然对数的底数)的解集为,故答案为.16.【湖南师大附中2019届高三月考(七)】设为整数,若对任意的,不等式恒成立,则的最大值是__________.【答案】1【解析】由题意对任意的,不等式恒成立,则x=1时,不等式也成立,代入x=1得e+3,又为整数,则a,这是满足题意的一个必要条件,又为整数,只需验证a=1时,对任意的,不等式恒成立,即证,变形为对任意的恒成立,令g(x),x∈,则g′(x),在(0,1)上小于0,在(1,)上大于0,故g(x)在(0,1)递减,在(1,)递增,∴g(x)g(1)=3>0,∴对任意的恒成立,故a=1满足题意.故答案为1.。

2021届高考数学专题突破利用导数运算法则构造函数求解不等式问题【解析版】

2021届高考数学专题突破利用导数运算法则构造函数求解不等式问题【解析版】

导数与不等式都是高考中的重点与难点,以导数为背景的抽象函数与不等式交汇问题是高考中的热点,求解此类问题的关键是根据导数的运算法则构造合适的函数,再利用导数的运算法则确定所构造函数的单调性,最后由单调性研究不等式问题.1.【2015全国Ⅱ】设函数'()f x 是奇函数()f x (x ∈R )的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( ) A .(,1)(0,1)-∞- B .(1,0)(1,)-?? C .(,1)(1,0)-∞-- D .(0,1)(1,)⋃+∞【答案】A【解析】构造新函数()()f x g x x =,()()()2'xf x f x g x x '-=,当0x >时()'0g x <. 所以在()0,∞+上()()f xg x x=单减,又()10f =,即()10g =. 所以()()0f x g x x=>可得01x <<,此时()0f x >, 又()f x 为奇函数,所以()0f x >在()(),00,-∞⋃+∞上的解集为:()(),10,1-∞-⋃. 故选A.一、根据()()f x g x ''±构造函数()()f x g x c ±+【例1】【山东省威海市2019届高三二模】已知函数()f x 的定义域为R ,1122f ⎛⎫=-⎪⎝⎭,对任意的x R ∈满足()4f x x '>.当[0,2]απ∈时,不等式(sin )cos 20f αα+>的解集为( )A .711,66ππ⎛⎫⎪⎝⎭B .45,33ππ⎛⎫⎪⎝⎭C .2,33ππ⎛⎫⎪⎝⎭D .5,66ππ⎛⎫⎪⎝⎭【答案】D【分析】根据题意构造函数2()()21g x f x x =-+,则()()40g x f x x ''=->,所以得到()g x 在R 上为增函数,又2111()()2()10222g f =-⨯+=.然后根据(sin )cos20f αα+>可得21(sin )(sin )2sin 1(sin )cos20()2g f f g ααααα=-+=+>=,于是1sin 2α>,解三角不等式可得解集.【解析】由题意构造函数2()()21g x f x x =-+,则()()40g x f x x ''=->,∴函数()g x 在R 上为增函数.∵1122f ⎛⎫=- ⎪⎝⎭,∴2111()()2()10222g f =-⨯+=. 又(sin )cos20f αα+>,∴21(sin )(sin )2sin 1(sin )cos20()2g f f g ααααα=-+=+>=, ∴1sin 2α>,∵02απ≤≤,∴566ππα<<, ∴不等式(sin )cos20f αα+>的解集为5,66ππ⎛⎫ ⎪⎝⎭.故选D .【点评】解答此类问题时一般要根据题意构造辅助函数求解,构造时要结合所求的结论进行分析、选择,然后根据所构造的函数的单调性求解.一般地,若给出条件()f x k '>,可构造函数()()y f x kx b =-+ 若给出条件()f x kx '>,可构造函数()212y f x kx b =-+ 【对点训练】【2019年山西省忻州市静乐县高三下学期6月月考】定义在R 上的可导函数()f x 满足()11f =,且()2'1f x >,当3,22x ππ⎡⎤∈-⎢⎥⎣⎦时,不等式23(2cos )2sin 22x f x +>的解集为( )A .4,33ππ⎛⎫⎪⎝⎭B .4,33ππ⎛⎫-⎪⎝⎭C .0,3π⎛⎫⎪⎝⎭D .,33ππ⎛⎫-⎪⎝⎭ 【答案】D【解析】令11()()22g x f x x =--,则1'()'()02g x f x =->, ()g x ∴在定义域R 上是增函数,且11(1)(1)022g f =--=,1(2cos )(2cos )cos 2g x f x x ∴=--23=(2cos )2sin 22x f x +-,∴23(2cos )2sin 022x f x +->可转化成()(2cos )1g x g >,得到 2cos 1x >,又3,22x ππ⎡⎤∈-⎢⎥⎣⎦,可以得到,33x ππ⎛⎫∴∈- ⎪⎝⎭,故选D二、根据()()xf x nf x '+(或()()xf x nf x '-)构造函数【例2】【黑龙江大庆市2019届高三第四次模拟】已知奇函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x >时,有()()22f x xf x x '>+,则不等式()()()22018+2018420x f x f +-<+的解集为( )A .(),2016-∞-B .()2016,2012--C .(),2018-∞-D .()2016,0-【答案】A【分析】构造新函数()()2g x x f x =,根据条件可得()g x 是奇函数,且单调增,将所求不等式化为()()()()222018+20184222x f x f f +<--=,即()()20182g x g +<,解得20182x +<,即2016x <-【解析】设()()2g x x f x =,因为()f x 为R 上奇函数,所以()()()()22g x x f x x f x -=--=-,即()g x 为R 上奇函数对()g x 求导,得()()()2g x x f x xf x '=+'⎡⎤⎣⎦,而当0x >时,有()()220f x xf x x +'>≥故0x >时,()0g x '>,即()g x 单调递增,所以()g x 在R 上单调递增不等式()()()22018+2018420x f x f +-<+,()()()22018+201842x f x f +<--,()()()22018+201842x f x f +<,即()()20182g x g +<所以20182x +<,解得2016x <-,故选A.【点评】一般地,若给出条件()()2xf x nf x kx '+>,可构造函数()33nk y x f x x b =-+. 【对点训练】【海南省海口市2019届高三高考调研测试】已知函数()f x 的导函数'()f x 满足()(1)'()0f x x f x ++>对x ∈R 恒成立,则下列判断一定正确的是( )A .(0)02(1)f f <<B .0(0)2(1)f f <<C .02(1)(0)f f <<D .2(1)0(0)f f <<【答案】B【解析】由题意设()()()1g x x f x =+,则()()()()'1'0g x f x x f x =++>, 所以函数()g x 在R 上单调递增,所以()()()101g g g -<<,即()()0021f f <<. 故选B .三、根据()()f x nf x '+(或()()f x nf x '-)构造函数【例3】【四川省名校联盟2019届高考模拟信息卷】设定义在R 上的函数()f x 的导函数为()'f x ,若()()'2f x f x +>,()02020f =,则不等式()22018x x e f x e >+(其中e 为自然对数的底数)的解集为( ) A .()0,∞+ B .()2018,+∞ C .()2020,+∞ D .()(),02018,-∞+∞【答案】A【分析】构造函数()()2xxg x e f x e =-,则可判断()'0g x >,故()g x 是R 上的增函数,结合()02018g =即可得出答案.【解析】设()()2xxg x e f x e =-,则()()()''2xxxg x e f x e f x e =+-()()'2xe f x f x =+-⎡⎤⎣⎦,∵()()'2f x f x +>,0x e >,∴()()()''20xg x e f x f x =+->⎡⎤⎣⎦,∴()g x 是R 上的增函数,又()()0022018g f =-=,∴()2018g x >的解集为()0,∞+,即不等式()22018xxe f x e >+的解集为()0,∞+.故选A.【点评】若()()f x f x k '+>,可构造()xy f x e kx ⎡⎤=-⎣⎦.【对点训练】【山东师范大学附属中学2019届高三第四次模拟】定义在R 上的奇函数()f x 的导函数满足()()f x f x '<,且()()4f x f x =+,若()2019f e =-,则不等式()x f x e <的解集为______.【答案】{}()01,⋃+∞ 【解析】()()4f x f x =+,()f x ∴的周期为4,()2019f e =-,()()()2019505411f f f e ∴=⨯-=-=-,定义在R 上的奇函数()f x ,()()11f f e ∴=--=,① ()0f x ≠时,令()()xf xg x e=,则()()()xf x f xg x e'-'=,()()f x f x '<,()0g x '∴<,即()g x 单调递减,又()()111f g e==,()()11g x g <=,1x ∴>,∴不等式()x f x e <的解集为()1,+∞,② 0x =时,()0100f e =<=,0x ∴=时,不等式成立,综上所述,{}()01,x ∈⋃+∞.四、根据()()tan f x f x x '+(或()()tan f x f x x '-)构造函数【例4】【云南省玉溪市2019届第二次调研】已知定义在(0,)2π上的函数f(x),f’(x)是它的导函数,且对任意的(0,)2x π∈,都有()'()tan f x f x x <恒成立,则( )A ()()43ππ>B ()()64f ππ>C ()()63f ππ>D .(1)2()sin16f f π>【答案】D【分析】构造函数()()sin f x g x x=,求函数导数,利用函数单调性即可得大小关系. 【解析】由题得()cos '()sin f x x f x x <,即()cos '()sin 0f x x f x x -<,令()()sin f x g x x =(0,)2x π∈,导函数2'()sin ()cos '()0sin f x x f x x g x x -=>,因此g(x)在定义域上为增函数.则有()()(1)()643g g g g πππ<<<,代入函数得(1)2()()()64sin13f f f πππ<<<,由该不等式可得(1)2()sin16f f π>,故选D.【点评】若给出条件()()tan 0f x f x x '+>,可构造函数()s i n y f x x =,若给出条件()()tan 0f x f x x '->,可构造函数()sin f x y x=. 【对点训练】【福建省三明市2019届高三质量检查测试】已知函数()f x 的定义域为,22ππ⎛⎫-⎪⎝⎭,其导函数为()f x '.若()tan [()]f x x f x x '=⋅+,且(0)0f =,则下列结论正确的是( )A .()f x 是增函数B .()f x 是减函数C .()f x 有极大值D .()f x 有极小值【答案】A【解析】设函数g x f x x =∙()()cos因为()()tan f x x f x x '⎡⎤=⋅+⎣⎦化简可得xf x f x x x'=+sin ()[()]cos , 即为f x x xf x x x '-=∙()cos sin ()sin , 故g x x x '=∙()sin , 因为x 22ππ∈--(,)所以g x x x 0'=∙≥()sin 恒成立, 所以()y g x =在x 22ππ∈--(,)上单调递增,又因为(0)0f =,所以g 0f 000=∙=()()cos , 所以当(,0)2x π∈-时,()0g x <,当(0,)2x π∈时,()0g x >,2g x g x x g x xf x x x '∙+''==()()cos ()sin ()[]cos cos , 当(,0)2x π∈-时,()0g x <,()0g x '>,cos 0x >,sin 0x <,故2g x g x x g x xf x 0x x'∙+''==>()()cos ()sin ()[]cos cos 恒成立; 当(0,)2x π∈时,()0g x >,()0g x '>,cos 0x >,sin 0x >,故2g x g x x g x xf x 0x x'∙+''==>()()cos ()sin ()[]cos cos 恒成立;所以y f x 0''=≥()在x 22ππ∈--(,)上恒成立,故()y f x =在x 22ππ∈--(,)上单调递增,故函数没有极值,不可能单调递减,故选A.五、根据()()()f x f x g x ±-=构造函数【例5】【河南省郑州市2019届高三第三次质量检测】设函数()f x 在R 上存在导函数'()f x ,x R ∀∈,有3()()f x f x x --=,在(0,)+∞上有22'()30f x x ->,若2(2)()364f m f m m m --≥-+-,则实数m 的取值范围为( ) A .[1,1]- B .(,1]-∞C .[1,)+∞D .(,1][1,)-∞-+∞【答案】B【分析】由题,构造新函数3()()2x g x f x =-,再由题判断出新函数()g x 的奇偶性和单调性,再利用()()22364f m f m m m --≥-+-可得出(2)()g m g m -≥,即可求得m 的取值.【解析】因为()()3f x f x x --=,所以33()()()22x x f x f x --=--令3()()()()2x g x f x g x g x =-∴=-即函数()g x 为偶函数,因为()0,∞+上有()22'30f x x ->,所以23()()02x g x f x ''=->即函数()g x 在(0,)+∞单调递增;又因为()()22364f m f m m m --≥-+-所以33(2)(2)()(2)()22m m g m g m f m f m ---=---+2(2)()3640f m f m m m =--+-+≥即(2)()g m g m -≥,所以2m m -≥,解得1m ≤ ,故选B.【点评】求解本题的关键是根据()()3f x f x x --=,构造偶函数()()32x g x f x =-,一般地,若给出()()()f x f x g x ±-=可构造偶函数或奇函数.【对点训练】.已知定义在R 上的函数()f x 的导数为()f x ',且满足()()2sin f x f x x +-=,当0x ≥时()sin cos f x x x x '>-- ,则不等式()π22f x f x ⎛⎫-- ⎪⎝⎭sin 2cos x x <+的解集为A.π,2⎛⎫-∞-⎪⎝⎭ B. π,6⎛⎫+∞ ⎪⎝⎭ C. ππ,26⎛⎫-⎪⎝⎭ D. ππ,,26⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】C【解析】设()()sin g x f x x =-,则()()sin g x f x x -=-+,所以()()g x g x --=()()f x f x --2sin 0x -=,所以()g x 是偶函数,设()()sin 0h x x x x =-≥,则()1cos 0h x x '=-≥,所以()()0h x h '≥,即sin 0x x -≥,所以0x ≥时()sin cos cos f x x x x x '>--≥- , 所以0x ≥时()()cos 0g x f x x ''=+>,()g x 在[)0,+∞上是增函数,所以()π22f xf x ⎛⎫--⎪⎝⎭s i n 2x x <+()2s in 2f xx ⇔- ππsin 22f x x ⎛⎫⎛⎫<--- ⎪ ⎪⎝⎭⎝⎭()π22g x g x ⎛⎫⇔<- ⎪⎝⎭()π22g x g x ⎛⎫⇔<- ⎪⎝⎭π22x x ⇔<-⇔()22π22x x ⎛⎫<- ⎪⎝⎭ππ3022x x ⎛⎫⎛⎫⇔+-< ⎪⎪⎝⎭⎝⎭ππ26x ⇔-<<,故选C.1.【甘肃省兰州市2019届高三6月高考冲刺模拟】定义在∞(0,+)上的函数f x ()满足21()0f x x '+>,522f =(),则关于x 的不等式12ln f lnx x >+() 的解集为( )A .2(1,)eB .2(0,)eC .2(,)e eD .2(,)e +∞【答案】D【解析】根据题意,令1()()g x f x x=-,(0)x >,则其导数21()()0g x f x x '='+>,函数()g x 在(0,)+∞为增函数, 又由f (2)52=,则g (2)51222=-=,11()2()2()(2)f lnx f lnx g lnx g lnx lnx>+⇒->⇒>, 则有2lnx >,解可得2x e >;即不等式1()2f lnx lnx>+的解集为2(+)e ∞,. 故选D .2.【安徽省1号卷A10联盟2019年高考最后一卷】已知函数()f x 的导函数为()'f x ,e 为自然对数的底数,对x R ∀∈均有()()()'f x xf x xf x +>成立,且()22f e =,则不等式()2xxf x e >的解集是( )A .(),e -∞B .(),e +∞C .(),2-∞D .()2,+∞【答案】D【解析】原不等式等价于()2x xf x e >,令()()xxf x g x e =, 则()()()()0xf x xf x xf xg x e'+-'=>恒成立,()g x \在R 上是增函数, 又()22f e =,()22g ∴=,∴原不等式为()()2g x g >,解得2x >,故选D .3.【云南省昆明市2019届高三第四次统测】己知奇函数()f x 的导函数为'()f x ,x R ∈.当(0,)x ∈+∞时,'()()0xf x f x +>.若()2(2)(2)af a f a af a ≥-+-,则实数a 的取值范围是( ) A .(,1)-∞- B .[1,1]- C .(,1][1,)-∞-+∞ D .[1,)+∞【答案】D【解析】设()()g x xf x =''()()()0g x f x xf x ⇒=+>所以当(0,)x ∈+∞时,()g x 是增函数,因为()f x 是奇函数,所以有()()f x f x -=-,因此有()()()()()g x x f x xf x g x -=--==,所以()g x 是偶函数, 而2(2)(2)2(2)(2)(2)(2)f a af a f a af a a f a -+-=---=--,()2(2)(2)af a f a af a ≥-+-可以化为()(2)(2)()(2)af a a f a g a g a ≥--⇒≥-,()g x 是偶函数,所以有()(2)()(2)g a g a g a g a ≥-⇒≥-,当(0,)x ∈+∞时,()g x 是增函数,所以有21a a a ≥-⇒≥,故选D.4.【山东省枣庄市2019届高三月考】已知定义在R 上的可导函数()f x 的导函数为()f x ',满足()()f x f x '<,且(2)f x +为偶函数,(4)1f =,则不等式()x f x e <的解集为( ) A .(),0-∞ B .()0,∞+C .()4,e-∞D .()4,e +∞【答案】B 【解析】设()()x f x h x e=则()()()()()2x x e f x f x h x e '-'=∵()()f x f x '<,∴()'0h x <. 所以函数()h x 是R 上的减函数, ∵函数()2f x +是偶函数, ∴函数()()22f x f x -+=+, ∴函数关于2x =对称, ∴()()041f f ==, 原不等式等价为()1h x <,∴不等式()xf x e <等价()()()10h x h x h <⇔<,()()01x f x f e e<=.∵()h x 在R 上单调递减, ∴0x >.故选B .5.【山西省太原市2019届高三模拟试题】已知定义在()0,+∞上的函数()f x 满足()()0xf x f x -<',且()22f =,则()0x x f e e ->的解集是( )A .(),ln2-∞B .()ln2,+∞C .()20,eD .()2,e +∞【答案】A 【解析】令()g x =()()()()()2,0,g x f x xf x f x g x x x '-'=<∴ 在()0,+∞上单调递减,且()()221,2f g ==故()0xxf ee->等价为()()2,2x xf e f e >即()()2x g e g >,故2xe <,解x<ln2,故解集为(),ln2-∞,故选A 6.已知定义在R 上的函数()f x 满足2()()0f x f x '-<,且(ln 2)2f =,则(ln )0f x >的解集是( ) A .(0,2) B.C .(0,)eD.【答案】A【解析】令ln ,x t t R =∈,构造函数'22''22()()()2()()(2()())24t t tt tf t e e f x f tg t g t e f t f t e e --=⇒==-, 由已知可知:'2()()0f t f t -<,所以'()0()g t g t <⇒是R 上的减函数, 当ln 2t <时,ln 21ln 222(ln 2)2()(ln 2)1)f g t g ee >===,22()()1()t t f t g t f t e e=>⇒>,所以当ln ln 2x <时,ln 2(ln )(ln )0x f x ef x >=⇒>成立,也就是当02x <<时,ln 2(ln )(ln )0x f x ef x >=⇒->成立,故本题选A.7.【新疆乌鲁木齐2019届高三第二次质量检测】()f x 的定义域是()0,+∞,其导函数为()f x ',若()()1ln f x f x x x'-=-,且()2f e e =(其中e 是自然对数的底数),则( ) A .()()221f f <B .()()4334f f <C .当x e =时,()f x 取得极大值2eD .当0x >时,()0f x ex -≤【答案】C【解析】设()()f x h x x =,则()()()()()211ln f x x f x f x x h x f x x x x x x '-⎛⎫''==-=- ⎪⎝⎭则()21ln (ln )2h x x x c =-+ 又()2f e e =得()()21ln (ln )2f e e e e c e e h ==-+= 即112c e -+=,所以12c e =- 即()211ln (ln )22h x x x e =-+-()1ln 1ln x xh x x x x-'=-=,0x >∴由()0h x '>得1ln 0x ->,得0x e <<,此时函数()h x 为增函数由()0h x '<得1ln 0x -<,得x e >,此时函数()h x 为减函数 则()()21h h >,即()()2121f f >,则()()221f f >,故A 错误 ()()34h h >,即()()3434f f >,则()()4334f f >,故B 错误 当0x =时,()h x 取得极小值()h e e = 即当0x >,()()h x h e e ≥=,即()f x e x≥,即()0f x ex -≥,故D 错误 当0x =时,()h x 取得极小值()h e e =∴此时()()f e h e e e==,则()f x 取得极大值()2f e e = 本题正确选项:C8.【安徽省黄山市2019届高三毕业班第二次质量检测】已知函数()f x 在R 上都存在导函数()f x ',对于任意的实数都有2()e ()x f x f x -=,当0x <时,()()0f x f x '+>,若e (21)(1)a f a f a +≥+,则实数a 的取值范围是( ) A .20,3⎡⎤⎢⎥⎣⎦B .2,03⎡⎤-⎢⎥⎣⎦C .[0,)+∞D .(,0]-∞【答案】B【解析】令()()xg x e f x =,则当0x <时,()[()()]0xg x e f x f x ''=+>, 又()()()()xx g x ef x e f xg x --=-==,所以()g x 为偶函数,从而()()211ae f a f a +≥+等价于211(21)(1),(21)(1)a a f a e f a g a g a e+++≥++≥+, 因此22(|21|)(|1|),|21||1|,3200.3g a g a a a a a a -+≥-+-+≥-++≤∴-≤≤选B. 9.【宁夏六盘山2019届高三下学期第二次模拟】定义域为R 的奇函数()f x ,当(),0x ∈-∞时,()()0f x xf x '+<恒成立,若()()33,1a f b f ==,()22c f =--,则( ) A .a b c >> B .c b a >> C .c a b >> D .a c b >>【答案】D【解析】构造函数()()g x xf x =,因为()f x 是奇函数,所以()()g x xf x =为偶函数 当(),0x ∈-∞时,()()0f x xf x '+<恒成立,即()'0g x <,所以()()g x xf x =在(),0x ∈-∞时为单调递减函数 ()()g x xf x =在()0,x ∈+∞时为单调递增函数根据偶函数的对称性可知()()33,1a f b f ==,()22c f =--所以a c b >>,所以选D10.【2019届湘赣十四校高三联考第二次考试】已知函数(2)f x +为R 上的偶函数,且当2x ≥时函数()f x 满足32'()3()x e x f x x f x x+=,3(3)81e f =,则381()f x e <的解集是( ) A .(1,3) B .(,1)(2,3)-∞ C .(1,2)(3,)+∞ D .(,1)(3,)-∞+∞【答案】A【解析】设()()3h x x f x =,则()()()32''3xe h x xf x x f x x=+=,∴()()32'3x e x f x x f x x =-,化简可得()()()4433'xx f x e h x e f x x x x-=-=. 设()()3xg x e h x =-,∴()()33'xx xe x e g x e x x-=-=, ∴[)2,3x ∈时,()'0g x <,因此()g x 为减函数, ∴()3,x ∈+∞时,()'0g x >,因此()g x 为增函数, ∴()()()()334333330g x g e h e f ≥=-=-=,∴()'0f x ≥,∴()f x 在[)2,+∞上为增函数. ∵函数()2f x +是偶函数, ∴函数()()22f x f x -+=+, ∴函数关于2x =对称,又∵()381f x e <,即()()3f x f <,又()f x 在[)2,+∞上为增函数,∴23x ≤<,由函数关于2x =对称可得,13x <<,故选A.11.【河南省六市2019届高三第一次联考】函数()f x 是定义在()1,∞+上的可导函数,()f'x 为其导函数,若()()()()2f x x 1f'x x x 2+-=-,且()2f e 0=,则不等式()x f e 0<的解集为( )A .()0,1B .()0,2C .()1,2D .()2,∞+【答案】C【解析】函数()f x 是定义在()1,∞+上的可导函数,()'f x 为其导函数, 令()()()1x x f x ϕ=-,则()()()()()2'1'2x x f x f x x x ϕ=-+=-,可知当()1,2x ∈时,()x ϕ是单调减函数,并且()()()0'111210f x f ⋅+=-=-<,即()10f <,则()10ϕ=,()2,x ∞∈+时,函数()x ϕ是单调增函数,()20f e =,则()()()22210eef e ϕ=-=,则不等式()0x f e <的解集就是()()10xx ef e -<的解集,即()()2xee ϕϕ<2102xee x ∴<<∴<< 又x>1,所以12x <<,故不等式的解集为:{|12}x x <<.故选C .12.【晋冀鲁豫中原名校2019届高三第三次联考】已知定义在R 上的函数()f x 的导函数为'()f x ,满足'()()f x f x <,且(2)f x +为偶函数,(4)2f =,则不等式()2x f x e <的解集为______.【答案】(0,)+∞ 【解析】∵(2)y f x =+为偶函数,∴(2)y f x =+的图象关于0x =对称,∴()y f x =的图像关于2x =对称,∴(4)(0)f f =.又(4)2f =,∴(0)2f =.设()()()x f x g x x R e =∈,则()2'()()'()()'()x x x x f x e f x e f x f x g x e e --==. 又∵'()()f x f x <,∴'()()0f x f x -<,∴'()0g x <,∴()y g x =在R 上单调递减.∵()2xf x e <,∴()2xf x e<,即()2g x <.又∵0(0)(0)2f g e ==,∴()(0)g x g <,∴0x >. 13.【山东省烟台市2019届高三3月诊断】若定义域为R 的函数()f x 满足'()()f x f x >,则不等式(ln )(1)0ef x xf -<的解集为______(结果用区间表示).【答案】(0,)e【解析】令()()x f g x x e =,则2(()())()x x e f x f x g x e'-'=, 因为()()f x f x '>,所以()0g x '>,所以,函数()g x 为(,)-∞+∞上的增函数, 由(ln )(1)ef x xf <,得:ln 1(ln )(1)x f x f e e<,即(ln )(1)g x g <, 因为函数()g x 为(,)-∞+∞上的增函数,所以ln 1x <.所以不等式的解集是(0,)e .故答案为(0,)e .14.【黑龙江省大庆市2019届高三下学期二模】已知定义在()(),00,-∞⋃+∞上的偶函数()f x 的导函数为()f x ',对定义域内的任意x ,都有()()22f x xf x '+<成立,则使得()()22424x f x f x -<-成立的x 的取值范围为_____.【答案】()(),22,-∞-⋃+∞【解析】由()f x 是偶函数,所以当0x >时,由()()22f x xf x '+<得()()220f x xf x '+-<, 设()()22g x x f x x =-,则()()()()()222220g x xf x x f x x x f x xf x '''=+-=+-<⎡⎤⎣⎦,即当0x >时,函数()g x 为减函数,由()()22424f x f x x -<-得()()22424x f x x f -<-,即()()2g x g <,因为()f x 是偶函数, 所以()g x 也是偶函数,则()()2g x g <,等价为()()2g x g <, 即2x >,得2x >或2x <-,即x 的取值范围是()(),22,-∞-⋃+∞, 故答案为:()(),22,-∞-⋃+∞.15.【四川省攀枝花市2019届高三下学期第三次统考】已知函数2()()()x b lnx f x b R x--=∈.若存在[1,2]x ∈,使得()'()0f x xf x +>,则实数b 的取值范围是_________.【答案】7(,)4-∞【解析】∵2()ln (),0x b x f x x x --=>,∴222()1()ln '()x x b x b xf x x ----+=, ∴()'()f x xf x +=22()ln 2()1()1x b x x x b x b nxx x------++2()1x x b x --=,∵存在[1,2]x ∈,使得()'()0f x xf x +>即2()10x x b -->,∴12b x x <-在[1,2]上有解,设1()2g x x x =-,∴max ()b g x <,1()2g x x x=-在[1,2]上为增函数, ∴max 7()(2)4g x g ==.∴74b <.实数b 的取值范围是7(,)4-∞.。

2021年高考数学函数与导数解析版

2021年高考数学函数与导数解析版

函数与导数【命题趋势】在目前高考全国卷的考点中,导数板块常常作为压轴题的形式出现,这块部分的试题难度呈现非减的态势,因此若想高考中数学拿高分的同学,都必须拿下导数这块的内容.函数单调性的讨论、零点问题和不等式恒成立的相关问题(包含不等式证明和由不等式恒成立求参数取值范围)是出题频率最高的.对于导数内容,其关键在于把握好导数,其关键在于把握好导数的几何意义即切线的斜率,这一基本概念和关系,在此基础上,引申出函数的单调性与导函数的关系,以及函数极值的概念求解和极值与最值的关系以及最值的求解.本专题选取了有代表性的选择,填空题与解答题,通过本专题的学习熟悉常规导数题目的思路解析与解题套路,从而在以后的导数题目中能够快速得到导数问题的得分技巧.【满分技巧】对于导数的各类题型都是万变不离其宗,要掌握住导数的集中核心题型,即函数的极值问题,函数的单调性的判定.因为函数零点问题可转化为极值点问题,函数恒成立与存在性问题可以转化为函数的最值问题,函数不等式证明一般转化为函数单调性和最值求解,而函数的极值和最值是由函数的单调性来确定的.所以函数导数部分的重点核心就是函数的单调性.对于函数零点问题贴别是分段函数零点问题是常考题型,数形结合是最快捷的方法,在此方法中应学会用导数的大小去判断原函数的单调区间,进而去求出对应的极值点与最值.恒成立与存在性问题也是伴随着导数经典题型,对于选择题来说,恒成立选择小题可以采用排除法与特殊值法相结合的验证方法能够比较快捷准确得到答案,对于填空以及大题则采用对函数进行求导,从而判定出函数的最值.函数的极值类问题是解答题中的一个重难点,对于非常规函数,超出一般解方程的范畴类题目则采用特殊值验证法,特殊值一般情况下是0,1等特殊数字进行验证求解.对于理科类导数类题目,对于比较复杂的导数题目.一般需要二次求导,但是要注意导数大小与原函数之间的关系,搞清楚导数与原函数的关系是解决此类题目的关键所在.含参不等式证明问题也是一种重难点题型,对于此类题型应采取的方法是:一 双变量常见解题思路:1双变量化为单变量→寻找两变量的等量关系;2转化为构造新函数;二含参不等式常见解题思路:1参数分离;2通过运算化简消参(化简或不等关系);3将参数看成未知数,通过它的单调关系来进行消参.那么两种结构的解题思路理顺了,那么我们来看这道题.这是含参的双变量问题,一般来说,含参双变量问题我们一般是不采用转化为构造新函数,我们最好就双变量化为单变量,这就是我们解这道题的一个非常重要的思路:① 寻找双变量之间的关系并确定范围,并且确定参数的取值范围;②化简和尝试消参;③双变量化为单变量.④证明函数恒成立(求导、求极值……)(经典题型2018年全国一卷理21题)【考查题型】选择题,填空,解答题21题【限时检测】一、单选题1.(2021·北京高三期末)已知定义在R 上的奇函数()f x 满足(2)()f x f x +=,且(1)0f =,当(0,1)x ∈时,()2x f x x =+.设(5)a f =,1()3b f =,5()2c f =-,则,,a b c的大小关系为( ) A .b a c >>B .a c b >>C .c a b >>D .b c a >>【答案】A 解:因为定义在R 上的奇函数()f x 满足(2)()f x f x +=,所以()f x 是以2为周期的周期函数,且()00f =,又(0,1)x ∈,()2x f x x =+,因为2xy =与y x =在(0,1)x ∈上单调递增,所以()2x f x x =+在(0,1)x ∈上单调递增,根据奇函数的对称性可得()f x 在()1,1-上单调递增,所以()()(5)100a f f f ====,2152c f f ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,1()3b f =因为11032>>-,所以()11032f f f ⎛⎫⎛⎫>>- ⎪ ⎪⎝⎭⎝⎭,即b a c >> 故选:A2.(2021·海南高三二模)设2364log 3log 6log log (28)m m ⋅⋅=+,则m =( ) A .2 B .4C .8D .-2或4【答案】B【分析】条件中的等式左边224ln3ln 6ln log log ln 2ln3ln 6mm m =⨯⨯==, 所以228m m =+, 解得4m =或2m =- (舍去). 故选:B3.(2021·全国高三专题练习(理))将函数()()sin 2f x x ϕ=+的图象向左平移π4个单位后得到函数()g x 的图象,()g x 的图象在π6x =处切线垂直于y 轴,且()ππ04g g ⎛⎫+> ⎪⎝⎭,则当ϕ取最小正数时,不等式()12g x ≥的解集是( )A .()πππ,π36k k k ⎡⎤-+∈⎢⎥⎣⎦Z B .()ππ,π3k k k ⎡⎤+∈⎢⎥⎣⎦Z C .()2ππ,ππ3k k k ⎡⎤--∈⎢⎥⎣⎦Z D .()ππ,π2k k k ⎡⎤-∈⎢⎥⎣⎦Z 【答案】C【分析】将函数()()sin 2f x x ϕ=+的图象向左平移π4个单位后,得到函数()()πsin 2cos 22g x x x ϕϕ⎛⎫=++=+ ⎪⎝⎭的图象, ()g x 的图象在π6x =处切线垂直于y 轴,即()g x 的图象在π6x =处切线斜率为零, 由()()'2cos 2g x x ϕ=-+ 得ππ2sin 2066g ϕ⎛⎫⎛⎫'=-⨯+=⎪⎪⎝⎭⎝⎭,则,,3k k Z πϕπ+=∈ 若取ϕ=2π3,此时,()2πsin 23f x x ⎛⎫=+ ⎪⎝⎭,()2πcos 23g x x ⎛⎫=+ ⎪⎝⎭.此时,()π1π0422g g ⎛⎫+=--<⎪⎝⎭,不满足条件.若取π3ϕ=-,()πcos 23g x x ⎛⎫=- ⎪⎝⎭,()π1π0422g g ⎛⎫+=+> ⎪⎝⎭, 满足条件.则当ϕ取最小正数5π3时,不等式()5π1cos 232g x x ⎛⎫=+ ⎪⎝⎭≥,即5π1cos 232x ⎛⎫+⎪⎝⎭≥,故5π5π7π2π22π333k x k +≤+≤+,求得πππ3k x k ≤≤+. 由于函数()f x 的周期为π,故πππ3k x k ≤≤+,即2ππππ3k x k -≤≤-. 故不等式的解集为2ππππ,3x k x k k ⎧⎫-≤≤-∈⎨⎬⎩⎭Z , 故选:C .4.(2021·浙江台州市·高三期末)已知函数()2sin 262x f x x mx π⎛⎫=+-- ⎪⎝⎭在06,π⎡⎤⎢⎥⎣⎦上单调递减,则实数m 的最小值是( )A.B. CD【答案】D【分析】由()2sin 262x f x x mx π⎛⎫=+-- ⎪⎝⎭在06,π⎡⎤⎢⎥⎣⎦上单调递减, 得()2cos 206f x x x m π⎛⎫'=+--≤ ⎪⎝⎭06x ,⎛π⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭, 即2cos 26x x m π⎛⎫+-≤ ⎪⎝⎭, 令()2cos 26g x x x π⎛⎫=+- ⎪⎝⎭06x ,⎛π⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,则()4sin 216g x x π⎛⎫'=-+- ⎪⎝⎭, 当0,6x π⎡⎤∈⎢⎥⎣⎦时,2662x πππ≤+≤ ,则24sin 246x π⎛⎫≤+≤ ⎪⎝⎭, 所以54sin 2136x π⎛⎫-≤+-≤- ⎪⎝⎭,即()0g x '<, 所以()g x 在0,6x π⎡⎤∈⎢⎥⎣⎦是单调递减函数,max ()(0)g x g ≤得m ≥,m故选:D.5.(2021·江苏常州市·高三期末)函数()x x f x -=的图象大致为( )A .B .C .D .【答案】A 【分析】 设())lng x x =,对任意的x ∈Rx x >≥-0x >,则函数()g x 的定义域为R ,())ln xxg x x-==)()lnx g x ==-=-,所以,函数())ln g xx =为奇函数,令())lng x x ==1x =1x =-,所以,10x -≥,可得1x ≤1x =-可得()2211x x +=-,解得0x=.所以,函数()x x f x -=的定义域为{}0x x ≠,()()()()2222x x x xf x f xg x g x --++-==-=--,所以,函数()f x 为奇函数,排除BD 选项,当0x >时,)ln ln10x >=,220x x -+>,所以,()0f x >,排除C 选项.故选:A.6.(2021·北京高三期末)对于定义在R 上的函数()y f x =,若存在非零实数0x ,使函数()y f x =在0(,)x -∞和0,)x +∞(上均有零点,则称0x 为函数()y f x =的一个“折点”.下列四个函数存在“折点”的是( ) A .1()32x f x -=+B .()lg(2021)x f x =+C .3()13x f x x =--D .2()21f x x mx =--【答案】D【分析】因为1()322x f x -=+>恒成立,所以函数()f x 不存在零点,所以函数()f x 不存在折点,故A 错误;因为20212021x +≥,所以函数()lg(2021)x f x =+不存在零点,即不存在折点,故B 错误;对函数3()13x f x x =--,2()1(1)(1)f x x x x '=-=+-,()0f x '>时,1x <-或1x >;()0f x '<时,11x -<<,所以函数3()13x f x x =--在(),1-∞-和()1,+∞上单调递增,在()1,1-上单调递减,又1(1)03f -=-<,所以函数3()13x f x x =--只有一个零点,所以函数不存在折点,故C 错误;对于函数()222()211f x x mx x m m =--=+--,由于2()11f m m -=--≤-,结合图像可知该函数一定有折点,故D 正确;故选:D.7.(2021·云南昆明市·昆明一中高三月考(理))若函数31()ln 3f x x a x =-在(2,)+∞上单调递增,则实数a 的取值范围是( ) A .(,4)-∞ B .(,4]-∞C .(,8)-∞D .(8],-∞【答案】D【分析】因为31()ln 3f x x a x =-,所以2()a f x x x'=-; 又因为31()ln 3f x x a x =-在(2,)+∞上单调递增, 所以20ax x-≥在(2,)+∞上恒成立, 即3a x ≤在(2,)+∞上恒成立,只需要()min3a x≤,(2,)x ∈+∞因为3y x =在(2,)+∞单调递增,所以3328y x =>=,所以8a ≤. 故选:D .8.(2021·宁夏固原市·高三期末(理))已知定义在0,上的函数()f x ,fx 是()f x 的导函数,满足()()0xf x f x '-<,且()2f =2,则()0x x f e e ->的解集是( ) A .()20,eB .()ln2+∞,C .()ln2-∞,D .()2e +∞,【答案】C【分析】因为2()()()0f x xf x f x x x ''-⎡⎤=<⎢⎥⎣⎦,所以函数()f x x 在区间0,上单调递减不等式()0xxf ee->可化为()(2)2x xf e f e >,即2xe <,解得ln 2x <故选:C9.(2021·北京顺义区·高三期末)已知函数()13xaxf x x+=-.若存在()0,1x ∈-∞-,使得()00f x =,则实数a 的取值范围是( )A .4,3⎛⎫-∞ ⎪⎝⎭B .40,3⎛⎫ ⎪⎝⎭C .(),0-∞D .4,3⎛⎫+∞⎪⎝⎭【答案】B【分析】由()130xax f x x +=-=,可得13x a x =-,令()13x g x x=-,其中(),1x ∈-∞-,由于存在()0,1x ∈-∞-,使得()00f x =,则实数a 的取值范围即为函数()g x 在(),1-∞-上的值域.由于函数3xy =、1y x=-在区间(),1-∞-上为增函数,所以函数()g x 在(),1-∞-上为增函数.当(),1x ∈-∞-时,()1143313xg x x -=-<+=,又()130x g x x=->, 所以,函数()g x 在(),1-∞-上的值域为40,3⎛⎫ ⎪⎝⎭.因此,实数a 的取值范围是40,3⎛⎫ ⎪⎝⎭.故选:B.10.(2020·烟台市福山区教育局高三期中)已知函数()3ln ,393x f x x x <≤=⎨<≤⎪⎩,若函数()()g x f x ax =-有两个不同的零点,则实数a 的取值范围是( )A.1,32⎫⎪⎪⎣⎭B .ln 311,932e ⎡⎤⎧⎫⋃⎨⎬⎢⎥⎣⎦⎩⎭C.1ln 31,,3923e ⎡⎫⎡⎫⋃⎪⎢⎪⎢⎪⎣⎭⎣⎭D.ln 3110,9332e ⎫⎛⎫⎧⎫⋃⋃⎪⎨⎬ ⎪⎪⎝⎭⎩⎭⎣⎭【答案】D【分析】函数()()g x f x ax =-有两个不同的零点等价于方程()f x a x=有两个不同的根,3,()ln3,39,x x f x x x x x<≤⎪⎪=⎨⎪<≤⎪⎩,令()u x =,∴''()u x == ''()012,()023,u x x u x x >⇒<<<⇒<< ∴()u x 在(1,2)递增,在(2,3)递减,∴1(1)0,(2),(3)23u u u ===∴()(0,]3u x ∈,且 令lnln33()33x xv x x x ==⨯,39x <≤,令3xt =,则1ln ()3t y v x t ==,13t <≤,'211ln 3t y t-=⋅,当'0y t e =⇒=,'01y t e >⇒<<,'03y e t <⇒<<,∴y 在(1,)e 递增,在(,3)e 递减,且1ln 3(1)0,(),(3)39y y e y e === ∴1()(0,]3v x e∈, 所以直线y a =与3,()ln3,39,x f x x x x x<≤⎪=⎨⎪<≤⎪⎩有两个交点, 可得a的取值范围为:ln 3110,9332e ⎫⎛⎫⎧⎫⋃⋃⎪⎨⎬ ⎪⎪⎝⎭⎩⎭⎣⎭. 故选:D.11.(2020·吉林长春市实验中学高三期中(理))已知函数()()ln 1xf x ex =-,1,2x ⎡⎤∈+∞⎢⎥⎣⎦若存在[]2,1a ∈-,使得21223f a a e m ⎛⎫-≤+-- ⎪⎝⎭成立,则实数m 的取值范围为( )A .31,2⎡⎤⎢⎥⎣⎦B .[]1,+∞C .2,3⎡⎤+∞⎢⎥⎣⎦D .2,13⎡⎤⎢⎥⎣⎦【答案】D【分析】'1()ln 1xf x e x x ⎛⎫=+- ⎪⎝⎭,令1()ln 1g x x x=+-,则'22111()x g x x x x -=-=,故当112x <<时,)'(0g x <,()g x 单调递减,当1x >时,'()0,()g x g x >单调递增,()(1)0g x g ∴≥=,从而当1,2x ⎡⎫∈+∞⎪⎢⎣⎭时,'()0f x ≥,()f x 在区间1,2⎡⎫+∞⎪⎢⎣⎭上单调递增.设()()222314h a a a e a e =+--=+--,则()h a 在[]2,1--上单调递减,在[]1,1-上单调递增,()max ()1h a h e ==-,存在[]2,1a ∈-,使21223f a a e m ⎛⎫-≤+-- ⎪⎝⎭成立,等价于()121f e f m ⎛⎫-≤-= ⎪⎝⎭.1211122m m ⎧-≤⎪⎪∴⎨⎪-≥⎪⎩,解得213m ≤≤.故选:D.12.(2020·甘肃兰州市·西北师大附中高三期中)已知函数()f x 的导函数为()f x ',且对任意的实数x 都有()()()23x f x e x f x -'=+-(e 是自然对数的底数),且()01f =,若关于x 的不等式()0f x m -<的解集中恰有两个整数,则实数m 的取值范围是( ) A .[),0e - B .)2,0e ⎡-⎣C .(],0e -D .(2,0e ⎤-⎦【答案】C【分析】()()23xx f x f x e+'=-即()()23xe f x f x x '+=+⎡⎤⎣⎦, 所以()23xe f x x '⎡⎤=+⎣⎦,则()23x e f x x x c =++,所以()23xx x c f x e ++=,因为()01f =,所以()001cf c e===,所以()231xx x f x e ++=,()()()()()()2222331221x x xxx x e e x x x x x x f x e e e+-++-+--+-'===,由()0f x '>得21x -<<,此时()f x 单调递增, 由()0f x '<得2x <-或1x >,此时()f x 单调递减, 所以1x =时,()f x 取得极大值为()51f e=, 当2x =-时,()f x 取得极小值()220f e -=-<,又因为()10f e -=-<,()010f =>,()330f e -=>,且1x >时,()0f x >,()0f x m -<的解集中恰有两个整数等价于()231xx x f x e++=在y m=下方的图象只有2个横坐标为整数的点,结合函数图象可得: 则()10f m -<≤,解得0e m -<≤,所以0e m -<≤时,()0f x m -<的解集中恰有两个整数1,2--, 故实数m 的取值范围是(],0e - 故选:C13.(2020·全国高三专题练习(理))定义在R 上的函数()f x 的导函数为()f x ',当[)0,x ∈+∞时,()2sin cos 0x x f x '⋅->且x R ∀∈,()()cos21f x f x x -++=.则下列说法一定正确的是( )A .15324643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭B .15344643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭C .3134324f f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭D .1332443f f ππ⎛⎫⎛⎫-->- ⎪ ⎪⎝⎭⎝⎭【答案】B【分析】令()()2sin F x x f x =-,x R ∀∈,()()cos21f x f x x -++=,所以,()()()()()()()222sinsin 2sin F x F x x f x x f x x f x f x -+=---+-=--+⎡⎤⎣⎦()1cos21cos20x x =---=,()()F x F x ∴-=-,所以,函数()F x 为R 上的奇函数, ()()sin 2F x x f x =-'',当[)0,x ∈+∞时,()2sin cos 0x x f x '⋅->,即()sin 2x f x >',()0F x '∴>, 所以,()()2sin F x x f x =-在[)0,+∞上单调递增,由奇函数的性质可知,函数()F x 在(],0-∞上单调递增, 所以,函数()F x 在R 上单调递增.对于A 选项,5263ππ-<-,则5263F F ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,即15324643f f ππ⎛⎫⎛⎫--<-- ⎪ ⎪⎝⎭⎝⎭,A 选项错误;对于B 选项,5463ππ->-,5463F F ππ⎛⎫⎛⎫∴->- ⎪ ⎪⎝⎭⎝⎭,即15344643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭,B 选项正确; 对于C 选项,334ππ<,334F F ππ⎛⎫⎛⎫∴< ⎪ ⎪⎝⎭⎝⎭,即3134324f f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,C 选项错误;对于D 选项,343ππ-<,343F F ππ⎛⎫⎛⎫∴-< ⎪ ⎪⎝⎭⎝⎭,即1332443f f ππ⎛⎫⎛⎫--<- ⎪ ⎪⎝⎭⎝⎭,D 选项错误. 故选:B.14.(2021·江苏省新海高级中学高三期末)已知函数2()31f x x x =---,()e g 2x exx ex+=,实数m ,n 满足0m n <<,若[]1,x m n ∀∈,()20,x ∃∈+∞,使得()()12f x g x =成立,则n m -的最大值为( )A.1 BC .D【答案】A 【分析】()()()()'22222222214222xx x x x x x e e ex e ex eex e e e x e e x g x e e x ex exex +⋅-+⋅⋅-⋅⋅--====⋅, 所以当01x <<时,()()'0,g x g x <递减;当1x >时,()()'0,g x g x >递增. 所以在区间()0,∞+上,()g x 的最小值为()112e eg e+==. ()23524f x x ⎛⎫=-++ ⎪⎝⎭,故()f x 在32x =-时取得最大值54.画出()()0f x x <和()()0g x x >图象如下图所示, 令()1f x =,解得2x =-或1x =-.依题意,实数m ,n 满足0m n <<,若[]1,x m n ∀∈,()20,x ∃∈+∞,使得()()12f x g x =成立,由图可知,n m -的最大值为()121---=. 故选:A二、填空题15.(2020·罗山县楠杆高级中学高三月考(文))已知()f x 为偶函数,当0x <时,()()ln 2f x x x =-+,则曲线()y f x =在点()()1,1f 处的切线方程是__________.【答案】10x y ++=【分析】令0x >,则0x -<,因为当0x <时,()()ln 2f x x x =-+,所以()ln 2-=-f x x x ,又()f x 为偶函数,所以()()ln 2=-=-f x f x x x , 所以当0x >时,()ln 2f x x x =-,所以12f ,又()12f x x'=-,所以()11f '=-, 所以曲线()y f x =在点()()1,1f 处的切线方程是()21y x +=--,即10x y ++=. 故答案为:10x y ++=16.(2020·海口市第四中学高三期中)已知k 为常数,函数2,0()1ln ,0x x f x x x x +⎧≤⎪=-⎨⎪>⎩,若关于x 的函数()()2g x f x kx =--有4个零点,则实数k 的取值范围为________. 【答案】310,e ⎛⎫⎪⎝⎭【分析】因为函数()()2g x f x kx =--有4个零点, 所以()y f x =与2y kx =+有4个不同的交点,在同一坐标系中作出()y f x =与2y kx =+的图象,如图所示:当0x ≤时,311y x =+-单调递减, 与2y kx =+有一个交点,则0k >; 所以当0x >时,有3个交点,求出2y kx =+与|ln |y x =相切时的k 值, 当1x >时,设切点为()00,ln x x ,所以1y x'=,则01k x =,所以切线方程为()0001ln y x x x x -=-, 又因为点()0,2在切线上,所以则()00012ln 0x x x -=-, 解得30x e =,所以31k e =, 由图像知()()2g x f x kx =--有4个零点,则310k e <<, 故答案为: 310,e ⎛⎫⎪⎝⎭17.(2021·北京高三期末)已知函数()4,0,0x x e x f x e x x+≤⎧⎪=⎨>⎪⎩,若存在10x ≤,20x >,使得()()12f x f x =,则()12x f x 的取值范围是______. 【答案】24,0e ⎡⎤-⎣⎦【分析】因为()()12f x f x =,所以2124x e x e x +=,所以2124x e x e x =-, 因为10x ≤,所以224x e e x ≤, 当0x >时,()x e f x x =,22(1)()x x x e x e e x f x x x'--==, 由()0f x '>得1x >,由()0f x '<得01x <<,所以()f x 在(0,1)上递减,在(1,)+∞上递增,所以()f x 在1x =处取得最小值e ,所以224x e e e x ≤≤, 所以()12x f x 22224x x e e e x x ⎛⎫=- ⎪⎝⎭222224x x e e e x x ⎛⎫=-⋅ ⎪⎝⎭, 令22x e t x =,则4e t e ≤≤,所以()12x f x 24t et =-()2224t e e =--,所以当2t e =时,12()x f x 取得最小值24e -,当4t e =时,12()x f x 取得最大值0, 所以12()x f x 的取值范围是24,0e ⎡⎤-⎣⎦. 故答案为:24,0e ⎡⎤-⎣⎦18.(2021·江西新余市·高三期末(理))已知函数()(ln )xe f x k x x x=+-,若1x =是函数()f x 的唯一极值点,则实数k 的取值范围是_______.【答案】(,]e -∞∵()(ln )xe f x k x x x =+-,∴22(1)1(1)()()(1)x x x e x e kx f x k x x x'---=+-= ∴x =1是函数f (x )的唯一极值点,0x x e k ∴-=在(0,)x ∈+∞上无解,或有唯一解x =1,①当x =1为其唯一解时,k =e ,令()(0)xh x e ex x =->,()xh x e e '=-,当(0,1)x ∈时,()0h x '<,即h (x )的单调递减区间为(0,1),当(1,)x ∈+∞时,()0h x '>,即()h x 的单调递增区间为(1,)+∞,∴()h x 在x =1处,取得极小值,∴k =e 时,x =1是f (x )的唯一极值点;②当xe k x =在(0,)x ∈+∞上无解,设()x e g x x=则2(1)()x e x g x x '-=, 当(0,1)x ∈时,()0g x '<,即g (x )的单调递减区间为(0,1),当(1,)x ∈+∞时,()0g x '>,即()g x 的单调递增区间为(1,)+∞,∴()g x 在x =1处,取得极小值,也是其最小值,min ()(1)g x g e ==,又k xe x=在(0,)x ∈+∞上无解,e k ∴<,综上k e ≤故答案为:(,]e -∞.19.(2020·湖北高三月考)若10,x e ⎛⎫∈ ⎪⎝⎭时,关于x 不等式32ln 0ax ax e x +≤恒成立,则实数a 的最大值是______. 【答案】2e【分析】当0a ≤,10,x e ⎛⎫∈ ⎪⎝⎭时,x 不等式32ln 0ax ax e x +≤显然恒成立. 当0a ≥时,32ln 0ax ax e x +≤ 32ln ax ax e x ∴≤-.由于10,x e ⎛⎫∈ ⎪⎝⎭22ln ax x axe x --∴≤,即22l ln n ax ax x e e x --∴≤.所以原不等式32ln 0ax ax e x +≤恒成立,等价于22ln ln ax ax e x x e --≤恒成立. 构造函数()ln f x x x =,()'1ln f x x =+.易知()f x 在1(0,)e上单调递减,在1(,)e+∞上单调递增.则原不等式等价于要证2(())ax f f x e -≤.因为22(,)x e -∈+∞,要使实数a 的最大,则应2ax e x -≤.即2ln x a x -≤. 记函数2ln 1()(0)x g x x x e -=<<,则22(1ln )'()x g x x --=.易知10x e <<,22(1ln )'()0x g x x--=<.故函数()g x 在1(0,)e 上单调递减,所以1()()2g x g e e<=. 因此只需2a e ≤.综上所述,实数a 的最大值是2e . 故答案为:2e三、解答题20.(2021·浙江台州市·高三期末)已知a ,b R ∈,函数()2f x axe b =+,曲线()y f x =在点()()0,0f 处的切线方程为1y x =-.(Ⅰ)求a ,b 的值及()f x 的最小值;(Ⅱ)设函数()ln g x x x =,若对于任意的()0,x ∈+∞,()()21f x g mx +≥恒成立,求实数m 的取值范围.【答案】(Ⅰ)1a =,1b =-;()min 11f x e=--;(Ⅱ)(]0,2e . 【分析】(Ⅰ)()e xf x a x b =⋅+,()0f b =,()()1xf x a x e '=+,()0f a '=, 故切线方程为1y ax b x =+=-,得1a =,1b =-;()1x f x xe ∴=-,()()1x f x x e '∴=+,当(),1x ∈-∞-时,()0f x '<,()f x 单调递减, 当()1,x ∈-+∞时,()0f x '>,()f x 单调递增, 所以,()()min 111f x f e=-=--; (Ⅱ)()()21f x g mx +≥即()22ln xx emx mx ⋅≥⋅,因为0,0x m >>,即22ln ln 0x e x m m--≥对于任意的()0,x ∈+∞恒成立,设()22ln ln xh x e x m m=--,0x >,0m >, ()241x h x e m x'=-, 因为2xy e =和1y x=-在()0,x ∈+∞时为单调增函数 则函数()h x '在()0,∞+上单调递增,当0x →时,()0h x '<,当x →+∞时,()0h x '>,则存在()00x ∈+∞,,使得()0200410x h x e m x -'==, 当()00,x x ∈时,()0h x '<,()0,x x ∈+∞时,()0h x '>, 故()h x 在()00,x 上单调递减,在()0,x +∞上单调递增,()()02000min 021ln ln ln ln 02x h x h x e x m x m m x ∴==--=--≥; 由020410x e m x -=,得0204x m x e =, ()0000122ln 2ln 202h x x x x ∴=---≥, 因为122y x x=-和2ln y x =-在()0,x ∈+∞上单调递减, 所以函数()0000122ln 2ln 22h x x x x =---,在()00x ∈+∞,上单调递减,且102h ⎛⎫=⎪⎝⎭,故010,2x ⎛⎤∈ ⎥⎝⎦, 因为4y x =和2xy e =在()0,x ∈+∞上单调递增.所以函数0204x m x e=在010,2x ⎛⎤∈ ⎥⎝⎦上单调递增,02m e ∴<≤,因此,实数m 的取值范围是(]0,2e .21.(2020·北京高考真题)已知函数2()12f x x =-.(Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值.【答案】(Ⅰ)2130x y +-=,(Ⅱ)32.【分析】(Ⅰ)因为()212f x x =-,所以()2f x x '=-,设切点为()00,12x x -,则022x -=-,即01x =,所以切点为()1,11, 由点斜式可得切线方程为:()1121y x -=--,即2130x y +-=. (Ⅱ)显然0t ≠, 因为()y f x =在点()2,12t t-处的切线方程为:()()2122y t t x t --=--,令0x =,得212y t =+,令0y =,得2122t x t+=,所以()S t =()221121222||t t t +⨯+⋅,不妨设0t >(0t <时,结果一样),则()423241441144(24)44t t S t t t t t++==++,所以()S t '=4222211443(848)(324)44t t t t t +-+-=222223(4)(12)3(2)(2)(12)44t t t t t t t-+-++==, 由()0S t '>,得2t >,由()0S t '<,得02t <<, 所以()S t 在()0,2上递减,在()2,+∞上递增, 所以2t =时,()S t 取得极小值, 也是最小值为()16162328S ⨯==. 22.(2021·北京顺义区·高三期末)已知函数2()ln (0)f x x a x a =->.(1)若2a =,求曲线()y f x =的斜率等于3的切线方程;(2)若()y f x =在区间1,e e⎡⎤⎢⎥⎣⎦上恰有两个零点,求a 的取值范围.【答案】(1)322ln 20x y ---=;(2)2(2,)e e .【分析】由已知函数()f x 定义域是(0,)+∞,(1)2()2ln f x x x =-,22(1)(1)()2x x f x x x x'+-=-=,由2()23f x x x'=-=解得2x =(12x =-舍去),又()422ln 2f =-,所以切线方程为(42ln 2)3(2)y x --=-,即322ln 20x y ---=;(2)222()2x x a x a f x x x x x⎛-+ -⎝⎭⎝⎭'=-==,易知()f x()f x有两个零点,则1e e<<,即2222a e e<<,此时在1e ⎛ ⎝上()0f x '<,()f x递减,在e ⎫⎪⎪⎭上()0f x '>,()f x 递增, ()f x在x =2a f a =-所以22111ln 0()ln 002f a e ee f e e a e a f a ⎧⎛⎫⎪=-> ⎪⎪⎝⎭⎪=->⎨⎪⎪=-<⎪⎩,解得22e a e <<.综上a 的范围是2(2,)e e .23.(2020·天津高考真题)已知函数3()ln ()f x x k x k R =+∈,()'f x 为()f x 的导函数.(Ⅰ)当6k =时,(i )求曲线()y f x =在点(1,(1))f 处的切线方程;(ii )求函数9()()()g x f x f x x'=-+的单调区间和极值; (Ⅱ)当3k -时,求证:对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.【答案】(Ⅰ)(i )98y x =-;(ii )()g x 的极小值为(1)1g =,无极大值;(Ⅱ)证明见解析.【分析】(Ⅰ) (i) 当k =6时,()36ln f x x x =+,()26'3f x x x=+.可得()11f =,()'19f =,所以曲线()y f x =在点()()1,1f 处的切线方程为()191y x -=-,即98y x =-. (ii) 依题意,()()32336ln ,0,g x x x x x x=-++∈+∞. 从而可得()2263'36g x x x x x=-+-, 整理可得:323(1)(1)()x x g x x '-+=,令()'0g x =,解得1x =.当x 变化时,()()',g x g x 的变化情况如下表:所以,函数g (x )的单调递减区间为(0,1),单调递增区间为(1,+∞); g (x )的极小值为g (1)=1,无极大值.(Ⅱ)证明:由3()ln f x x k x =+,得2()3k f x x x'=+. 对任意的12,[1,)x x ∈+∞,且12x x >,令12(1)x t t x =>,则 ()()()()()()()1212122x x f x f x f x f x ''-+--()22331121212122332ln x k k x x x x x x k x x x ⎛⎫⎛⎫=-+++--+ ⎪ ⎪⎝⎭⎝⎭3322121121212212332ln x x x x x x x x x k k x x x ⎛⎫=--++-- ⎪⎝⎭()332213312ln x t t t k t t t ⎛⎫=-+-+-- ⎪⎝⎭. ①令1()2ln ,[1,)h x x x x x=--∈+∞. 当x >1时,22121()110h x x x x '⎛⎫=+-=-> ⎪⎝⎭,由此可得()h x 在[)1,+∞单调递增,所以当t >1时,()()1h t h >,即12ln 0t t t-->.因为21x ≥,323331(1)0t t t t -+-=->,3k ≥-,所以()()332322113312ln 33132ln x t t t k t t tt t t t tt ⎛⎫⎛⎫-+-+------- ⎪+ ⎪⎝⎭⎝⎭32336ln 1t t t t=-++-. ②由(Ⅰ)(ii)可知,当1t >时,()()1g t g >,即32336ln 1t t t t-++>, 故32336ln 10t t t t-++-> ③ 由①②③可得()()()()()()()12121220x x fx f x f x f x ''-+-->.所以,当3k ≥-时,任意的[)12,1,x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-. 24.(2020·全国高考真题(理))设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直. (1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1. 【答案】(1)34b =-;(2)证明见解析 【分析】(1)因为'2()3f x x b =+,由题意,'1()02f =,即21302b ⎛⎫⨯+= ⎪⎝⎭则34b =-; (2)由(1)可得33()4f x x x c =-+, '2311()33()()422f x x x x =-=+-,令'()0f x >,得12x >或12x <-;令'()0f x <,得1122x -<<, 所以()f x 在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c -=--=+=-=+, 若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f ->或(1)0f <,即14c >或14c <-. 当14c >时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=->-=+>=->=+>,又32(4)6434(116)0f c c c c c c -=-++=-<,由零点存在性定理知()f x 在(4,1)c --上存在唯一一个零点0x ,即()f x 在(,1)-∞-上存在唯一一个零点,在(1,)-+∞上不存在零点, 此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 当14c <-时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=-<-=+<=-<=+<,又32(4)6434(116)0f c c c c c c -=++=->,由零点存在性定理知()f x 在(1,4)c -上存在唯一一个零点0'x , 即()f x 在(1,)+∞上存在唯一一个零点,在(,1)-∞上不存在零点, 此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 综上,()f x 所有零点的绝对值都不大于1.25.(2020·全国高考真题(理))已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围. 【答案】(1)当(),0x ∈-∞时,()()'0,f x f x <单调递减,当()0,x ∈+∞时,()()'0,f x f x >单调递增.(2)27,4e ⎡⎫-+∞⎪⎢⎣⎭【分析】(1)当1a =时,()2x x x e f x =+-,()21x f x e x '=+-,由于()20x f x e ''=+>,故()'f x 单调递增,注意到()00f '=,故:当(),0x ∈-∞时,()()0,f x f x '<单调递减,当()0,x ∈+∞时,()()0,f x f x '>单调递增.(2)由()3112f x x ≥+得,23112x e ax x x +-+,其中0x ≥,①.当x =0时,不等式为:11≥,显然成立,符合题意;②.当0x >时,分离参数a 得,32112x e x x a x ----,记()32112x e x x g x x ---=-,()()231212xx e x x g x x ⎛⎫---- ⎪⎝⎭'=-,令()()21102x e x x h x x ---≥=,则()1x h x e x '=--,()10x h x e ''=-≥,故()'h x 单调递增,()()00h x h ''≥=,故函数()h x 单调递增,()()00h x h ≥=, 由()0h x ≥可得:21102x e x x ---恒成立, 故当()0,2x ∈时,0g x,()g x 单调递增; 当()2,x ∈+∞时,0g x ,()g x 单调递减; 因此,()()2max 724e g x g -⎡⎤==⎣⎦, 综上可得,实数a 的取值范围是27,4e ⎡⎫-+∞⎪⎢⎣⎭.。

专题6.1 导数中的构造函数-2121届高考数学压轴题讲义(选填题)(原卷版)

专题6.1 导数中的构造函数-2121届高考数学压轴题讲义(选填题)(原卷版)

恒成立,则实数 a 的取值范围是______.
13.【山东省济南市山东师范大学附属中学 2019 届高三四模】定义在 R 上的奇函数 的导函数满足
,且
,若
,则不等式
的解集为______.
14.【广东省佛山市第一中学 2019 届高三上学期期中】已知定义在 R 上的奇函数 满足 f(1)=0,当 x
>0 时,
恒成立,
精品公众号:学起而飞
C.
D.
恒成立,则正
11.【2019 届高三第二次全国大联考】已知定义在 上的可导函数
的导函数为
时, A.0
,则函数 B.1
的零点个数为 C.2
D.0 或 2
,若当
精品公众号:学起而飞
二、填空题
12.【江苏省海安高级中学 2019 届高三上学期第二次月考】若关于 x 的不等式
对任意
的实数
及任意的实数
精品公众号:学起而飞
A.
B.
C.当 时, 取得极大值
D.当 时,
2.利用 f x 与 ex 构造
f x 与 ex 构造,一方面是对 u v , u 函数形式的考察,另外一方面是对 ex ex 的考察.所以对于 v
f
x
f x 类型,我们可以等同 xf
x ,
f
x
的类型处理,
“ ”法优先考虑构造 F x
1.【山西省 2019 届高三百日冲刺】已知函数
则 的取值范围为( )
A.
B.
C.
,若对任意的 D.

恒成立,
2.【海南省海口市 2019 届高三高考调研】已知函数 的导函数 满足

恒成立,则下列判断一定正确的是( )

专题6.2 导数中的参数问题-2121届高考数学压轴题讲义(选填题)(解析版)

专题6.2 导数中的参数问题-2121届高考数学压轴题讲义(选填题)(解析版)

∴f(x)min=f(x0)


﹣4=0,∴


∈(5,6).
∴a 所在的区间是(5,6). 故选:C 二.分类讨论法 分类讨论法是指通过分析参数对函数相应性质的影响,然后划分情况进行相应分析,解决问题的方法,该 类方法的关键是找到讨论的依据或分类的情况,该方法一般在分离参数法无法解决问题的情况下,才考虑 采用,常见的有二次型和指对数型讨论. 1.二次型根的分布或不等式解集讨论 该类题型在进行求解过程,关键步骤出现求解含参数二次不等式或二次方程, 可以依次考虑依次根据对应 定性(若二次项系数含参),开口,判别式 ,两根的大小(或跟固定区间的端点比较)为讨论的依据,进行 分类讨论,然后做出简图即可解决.
即当 时,函数 取得极大值,极大值为
要使
,有两个根,则 即可,
故实数 的取值范围是

故选:D.
或, ,
7.【广东省 2019 届广州市高中毕业班综合测试(一)】已知函数
都有
,则实数 a 的取值范围是
,对任意


A.
B.
C.
D.
【答案】A 【解析】 由题意可知函数 是
上的单调递减函数,
且当 时,

据此可得:
所以
,解得

故选 A.
【强化训练】
1.已知函数 f x lnx a ,若 f x x2 在 1, 上恒成立,则 a 的取值范围是(

x
A. 1, B. 1,1 C. 1, D. 1,1
【答案】A
【解析】由题意得 a xlnx x3 ,令 y xlnx x3(x 1) y lnx 1 2x2 , y 1 4x 0, y lnx 1 2x2 ln11 2 0,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


故选 A.
8.【河南省八市重点高中联盟“领军考试”2019 届高三第三次测评】若函数
上单调递增,则
的最小值是( )
A.-3
B.-4
C.-5
D.
【答案】B 【解析】
函数
在 上单调递增,
精品公众号:学起而飞
在区间
所以
在 上恒成立,

在 上恒成立,

,其对称轴为



时,
在 上恒成立等价于
由线性规划知识可知,此时
B.
C.
D.
【答案】A 【解析】 解:∵函数
的定义域是


∵ 是函数
的唯一一个极值点
,若 是函数
精品公众号:学起而飞
∴ 是导函数


的唯一根, 无变号零点,

在 上无变号零点,令

因为 所以 所以


上单调递减,在 上单调递增
的最小值为

所以必须

故选:A. 5. 【2019 届山西省太原市第五中学高三 4 月检测】已知函数

恒成立,则下列判断一定正确的是( )
A.
B.
C.
D.
【答案】B
【解析】
由题意设



所以函数 在 上单调递增,
所以
,即

故选 B.
3.【辽宁省抚顺市 2019 届高三一模】若函数
有三个零点,则实数 的取值范围是
()
A.
B.
C. 【答案】D 【解析】 由
D.


精品公众号:学起而飞
设 由 由 即当 当 当
,则



, ,此时函数 为增函数,


,此时函数 为减函数,
时, 取得极小值

时,
取得极大值 ,且
, ,函数图象如下图所示:
要使 有三个零点,


即实数 a 的取值范围是
,故本题选 D.
4.【辽宁省师范大学附属中学 2019 届高三上学期期中】已知函数
的唯一极值点,则实数 k 的取值范围是( )
A.
又因为 是在 上的偶函数,所以 是在 上的奇函数,
所以 是在 上的单调递增函数,
又因为
,可化为


,又因为 是在 上的单调递增函数,
所以
恒成立,

,则

因为 ,所以 在
单调递减,在
上单调递增,
所以
,则

所以
.
所以正整数 的最大值为 2.
故选:B
11.【2019 届高三第二次全国大联考】已知定义在 上的可导函数
,解得 ,
【举一反三】【安徽省黄山市 2019 届高三第二次检测】已知函数 是定义在 上的可导函数,对于任意的
实数 x,都有
,当 时
,若
,则实数 a 的取值范围是
()
A.
B.
C.
D.
【答案】B 【解析】

,则当 时,


,所以 为偶函数,
从而
等价于

因此
选 B.
3.利用 f x 与 sin x , cos x 构造




,所以






,得 ,得
,此时函数 为增函数 ,此时函数 为减函数

,即
,则
,故 错误
,即
,则
当 时, 取得极小值
即当 ,
,即
当 时, 取得极小值
,故 错误
,即
,故 错误
精品公众号:学起而飞
此时
,则 取得极大值
本题正确选项:
2.利用 f x 与 ex 构造
f x 与 ex 构造,一方面是对 u v , u 函数形式的考察,另外一方面是对 ex ex 的考察.所以对于 v
f
x 单调递减.又
f
x 为偶函数,根据单调性和图象可
知选 B.
【指点迷津】根据题目中不等式的构成,构造函数 f x x sin x ,然后利用函数的单调性和数形结合求解
精品公众号:学起而飞
即可.
【举一反三】【福建省 2019 届备考关键问题指导适应性练习(四)】已知函数

于 的方程
在区间 内有两个实数解,则实数 的取值范围是( )
则 g′(x)=
,当
时,g′(x) 0,当
时,g′(x) 0,
∴g(x)在 上单调递增,在 上单调递减,当 x= 时,g(x)取得极大值 g( )=

又 g(0)= g( )=0,则 a=
故选 B.
【强化训练】
一、选择题
1.【山西省 2019 届高三百日冲刺】已知函数
,故选 A ,通过构造函数,进一步确定
的最大值,利用导数,结合 的单调性,即可求解.
【举一反三】【河北省唐山市 2019 届高三下学期第一次模拟】设函数

一个零点,则实数 的值为( )
有且仅有
A. 【答案】B 【解析】 ∵函数
B.
C.
D.
,有且只有一个零点,
∴方程

,有且只有一个实数根,
令 g(x)= ,
sin x , cos x 因为导函数存在一定的特殊性,所以也是重点考察的范畴,我们一起看看常考的几种形式.
F x f xsin x , F x f xsin x f xcos x ;
Fx
f x , F x
sin x
f xsin x f x cos x
sin2 x

F x f xcos x , F x f xcos x f xsin x ;
x
v
u 的导函数观察可得知, u v 型导函数中体现的是“ ”法, u 型导函数中体现的是“ ”法,由此,我们可
v
v
以猜测,当导函数形式出现的是“ ”法形式时,优先考虑构造 u v 型,当导函数形式出现的是“ ” 法形式时,
优先考虑构造 u . v
例 1.【2019 届高三第二次全国大联考】设



时,
在 上恒成立等价于
,即



时,
在 上恒成立等价于
此时 综上可知,
; ,故选 .
9.【宁夏六盘山高级中学 2019 届高三二模】定义域为 的奇函数 ,当
恒成立,若

,则( )
A.
B.
C.
D.
【答案】D
【解析】
构造函数
因为 是奇函数,所以
为偶函数

时,
恒成立,即
,所以
, ,

时,

时为单调递减函数
,若对任意的

则 的取值范围为( )
A.
B.
C.
D.
恒成立,
精品公众号:学起而飞
【答案】D 【解析】 令

时,


.
,则 在
上单调递增,又
,所以
恒成立;

时,因为

上单调递增,故存在
所以 又 综上
,使得


上单调递减,在
,则
,这与
.故选 D.
上单调递增, 恒成立矛盾,
2.【海南省海口市 2019 届高三高考调研】已知函数 的导函数 满足
为 上的偶函数,且当 时函数 满足

A.
C.
【答案】A
【解析】


,则
的解集是( )
B. D.
精品公众号:学起而飞




化简可得
.





时,
,因此 为减函数,

时,
,因此 为增函数,




∴在 ∵函数
上为增函数. 是偶函数,
∴函数

∴函数关于 对称,
又∵



又在
上为增函数,


由函数关于 对称可得,
为函数 的导函数,且满足
,若
恒成立,则实数 的取值范围是( )
A.
B.
C.
D.
【答案】A
【解析】
,由
,可得 的对称轴为 ,所以
,所以 ,
精品公众号:学起而飞
所以
,由 ,即
可得 ,设
,变形可得 ,
,易得函数 在区间 上单调递增, 在区间

单调递减,所以 【指点迷津】根据
,故实数 b 的取值范围为 ,变形可得

再令 m(x)=2lnx 2,x∈(0, ),
则 m′(x)
0,
故 m(x)在(0, )上为减函数,于是 m(x)>m( )=2﹣2ln2>0,
精品公众号:学起而飞
从而 l′(x)>0,于是 l(x)在(0, )上为增函数,
所以 l(x)<l( )=2﹣4ln2, 故要使 a>2 恒成立,只要 a∈[2﹣4ln2,+∞).
f
x
f x 类型,我们可以等同 xf
x ,
f
x
的类型处理,
“ ”法优先考虑构造 F x
f
xex ,
x
“ ”法优先考虑构造 F x
f x

ex
例 2、【湖南省长郡中学 2019 届高三下学期第六次月考】已知 是函数 的导函数,且对任意的实数 都
相关文档
最新文档