历年高考数学圆锥曲线试题汇总

合集下载

高中数学圆锥曲线常考题型(含解析)

高中数学圆锥曲线常考题型(含解析)

(1)当5AC =时,求cos POM ∠(2)求⋅PQ MN 的最大值.7.已知抛物线1C :28x y =的焦点点,1C 与2C 公共弦的长为4(1)求2C 的方程;(2)过F 的直线l 与1C 交于A ,(i )若AC BD =,求直线l 的斜率;(ii )设1C 在点A 处的切线与系.8.已知圆()(2:M x a y b -+-点O 且与C 的准线相切.(1)求抛物线C 的方程;(2)点()0,1Q -,点P (与Q 不重合)在直线切线,切点分别为,A B .求证:9.已知椭圆2212:12x y C b+=的左、右焦点分别为2222:12x y C b -=的左、右焦点分别为于y 轴的直线l 交曲线1C 于点Q 两点.a b (1)求椭圆的方程;(2)P 是椭圆C 上的动点,过点P 作椭圆为坐标原点)的面积为5217,求点12.过坐标原点O 作圆2:(2)C x ++参考答案:)(),0a-,(),0F c,所以AF时,在双曲线方程中令x c=,即2bBFa=,又AF BF= ()所以BFA V 为等腰直角三角形,即易知2BFA BAF ∠=∠;当BF 与AF 不垂直时,如图设()()0000,0,0B x y x y >>00tan(π)y BFA x c -∠=-即tan -又因为00tan y BAF x a∠=+,002tan 2y x aBAF +∠=4.(1)21±2(2)证明见解析.【分析】(1)求出椭圆左焦点F1 1x5.(1)21 2x y =(2)1510,33 P⎛⎫± ⎪ ⎪⎝⎭【分析】(1)根据抛物线的焦半径公式可解;【点睛】方法技巧:圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多样,但主要有两种方法:(1)几何转化代数法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用圆锥曲线的定义、图形、几何性质来解决;(2)函数取值法:若题目的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值(或值域),常用方法:三角换元法;(5)平面向量;(7.(1)2213x y -=(2)(i )36±;(ii )点F 在以【分析】(1)根据弦长和抛物线方程可求得交点坐标,结合同焦点建立方程组求解可得;(2)(i )设()11,A x y ,(2,B x 物线方程和双曲线方程,利用韦达定理,结合以及点M 坐标,利用FA FM ⋅【详解】(1)1C 的焦点为(0,2F 又1C 与2C 公共弦的长为46,且所以公共点的横坐标为26±,代入所以公共点的坐标为(26,3±所以229241a b -=②联立228y kx x y =+⎧⎨=⎩,得28160x kx --=,Δ=联立22213y kx x y =+⎧⎪⎨-=⎪⎩,得()2231129k x kx -++则3421231kx x k +=--,342931x x k =-,9.(1)2212x y +=,2212x y -=(2)12y x =-或12y x=(3)2【分析】(1)用b 表示12,e e ,由12e e ⋅=10.(1)2222114222x y x y +=-=,;(2)1;(3)是,=1x -【分析】(1)根据椭圆和双曲线的关系,结合椭圆和双曲线的性质,求得343+因为AB 既是过1C 焦点的弦,又是过所以2212||1()AB k x x =+⋅+-且121||()()22p p AB x x x =+++=所以212(1)k +=2240123(34)k k +,【点睛】因为//l OT ,所以可设直线l 的方程为由22x y =,得212y x =,得y '所以曲线E 在T 处的切线方程为联立22y x m y x =+⎧⎨=-⎩,得2x m y m =+⎧⎨=⎩()2,22N m m ++NT。

(完整)历年高考数学圆锥曲线试题汇总,推荐文档

(完整)历年高考数学圆锥曲线试题汇总,推荐文档

2 3 5 35 23 2 高考数学试题分类详解——圆锥曲线一、选择题x 2y 2 1. 设双曲线- = 1(a >0,b >0)的渐近线与抛物线 y=x 2 +1 相切,则该双曲线的离心率等于( a 2 b 2C )(A ) (B )2(C ) (D )2. 已知椭圆C : x2+ 2 = 1 的右焦点为 F ,右准线为l ,点 A ∈ l ,线段 AF 交C 于点 B ,若 2FA = 3FB ,则| AF |=(A). (B). 2 (C). (D). 33. 过双曲线 x 2 - y 2= 2 1 (a > 0, b > 0) 的右顶点 A 作斜率为- 1的直线,该直线与双曲线的两条渐近线 a b 21的交点分别为 B , C .若 AB = BC ,则双曲线的离心率是 () 2A. B . C . D . 4. 已知椭圆 x 2 + y 2= 1 (a > b > 0) 的左焦点为 F ,右顶点为 A ,点 B 在椭圆上,且 BF ⊥ x 轴,a2b 2直线 AB 交 y 轴于点 P .若 AP = 2PB ,则椭圆的离心率是()A.3 C. 3B.2D. 1 2 5. 点 P 在直线l : y = x -1 上,若存在过 P 的直线交抛物线 y = x 2 于 A , B 两点,且| PA =| AB | ,则称点 P 为“点”,那么下列结论中正确的是 ( )A. 直线l 上的所有点都是“点”B. 直线l 上仅有有限个点是“点”C. 直线l 上的所有点都不是“点”D. 直线l 上有无穷多个点(点不是所有的点)是“点”6. 设双曲线 x 2a 2 - y 2b 2 = 1的一条渐近线与抛物线 y=x2 +1 只有一个公共点,则双曲线的离心率为().1 610y5 36 A.5 B. 5 C.D. 427. 设斜率为 2 的直线l 过抛物线 y 2 = ax (a ≠ 0) 的焦点 F,且和 y 轴交于点 A,若△OAF(O 为坐标原点)的面积为 4,则抛物线方程为( ).A. y 2 = ± 4xB. y 2 = ± 8xC. y 2 = 4xD. y 2 = 8xx 2 - y 2 8. 双曲线63= 1 的渐近线与圆(x - 3)2 + y 2 = r 2 (r > 0) 相切,则 r=(A ) (B )2(C )3(D )69. 已知直线 y = k (x + 2)(k > 0) 与抛物线 C: y 2 = 8x 相交 A 、B 两点,F 为 C 的焦点。

(完整版)历年高考数学圆锥曲线试题汇总,推荐文档

(完整版)历年高考数学圆锥曲线试题汇总,推荐文档

A. ( 15 , 8) 33
B. ( 15 , 7) 3
C. ( 4 , 8) 33
D. ( 4 , 7) 3
37.圆心在 y 轴上,半径为 1,且过点(1,2)的圆的方程为( )
A. x2 ( y 2)2 1
B. x2 ( y 2)2 1
我C去. (人x 1也)2 就(y 有3)2 人1 !为UDR.扼x2 腕(y入 3)2站1内信不存在向你偶同意调剖沙
Dy 1 x 2
16.已知双曲线
x2 2
y2 2
1的准线过椭圆
x2 4
y2 b2
1的焦点,则直线
y
kx 2 与椭圆至多有一个
交点的充要条件是
A.
K
1 2
,
1 2
B.
K
,
1 2
1 2
,
C.
K
2 ,
2
2
2
D.
K ,
2 2
2 2
,
x2
17.已知双曲线
2
y2 b2
只有一个公共点,则双曲线的离心率为(
).
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙
Word 完美格式
5
A.
4
.
5
B. 5
C.
2
.
D. 5
7.设斜率为 2 的直线 l 过抛物线 y2 ax (a 0) 的焦点 F,且和 y 轴交于点 A,若△OAF(O 为坐标原点)
的面积为 4,则抛物线方程为( ).
.
.
(B) (x 1)2 ( y 1)2 2
(C) (x 1)2 ( y 1)2 2
(D) (x 1)2 ( y 1)2 2

历年高考数学《圆锥曲线》真题集锦

历年高考数学《圆锥曲线》真题集锦

以下题目全是经典的高考题目,希望对您有帮助!!圆锥曲线1.如图,设抛物线方程为x 2=2py (p >0),M 为直线p y 2-=上任意一点,过M 引抛物线的切线,切点分别为A ,B .(1)求证:A ,M ,B 三点的横坐标成等差数列; (2)已知当M 点的坐标为(2,p 2-)时,AB = (3)是否存在点M ,使得点C 关于直线AB 的对称点D 在抛物线22(0)x py p =>上,其中,点C 满足OC OA OB =+(O 为坐标原点).若存在,求出所有适合题意的点M 的坐标;若不存在,请说明理由. 解:(1)证明:由题意设221212120(,),(,),,(,2).22x x A x B x x x M x p p p-<由22x py =得22x y p =,则,x y p'= 所以12,.MA MB x x k k p p ==因此直线MA :102(),x y p x x p +=- 直线MB :202().xy p x x p+=-所以211102(),2x x p x x p p +=- ① 222202().2x x p x x p p+=- ② 由①、②得: 0122.x x x =+所以A 、M 、B 三点的横坐标成等差数列. (2)解:由(1)知,当x 0=2时, 将其代入①、②并整理得:2211440,x x p --= 2222440,x x p --=所以x 1、x 2是方程22440x x p --=的两根,因此212124,4,x x x x p +==-又22210122122,2ABx x x x x p p k x x p p-+===-所以2.AB k p =由弦长公式AB==又AB=p=1或p=2,因此所求抛物线方程为22x y=或24.x y=(3)解:设D(x3,y3),由题意得C(x1+ x2, y1+ y2),则CD的中点坐标为123123(,),22x x x y y yQ++++设直线AB的方程为011(),xy y x xp-=-由点Q在直线AB上,并注意到点1212(,)22x x y y++也在直线AB上,代入得033.xy xp=若D(x3,y3)在抛物线上,则2330322,x py x x==因此x3=0或x3=2x0. 即D(0,0)或22(2,).xD xp(1’ 当x0=0时,则12020x x x+==,此时,点M(0,-2p)适合题意.(2’ 当x≠,对于D(0,0),此时221222221212002(2,),,224CDx xx x x xpC x kp x px+++==又0,ABxkp=AB⊥CD,所以22220121221,44AB CDx x x x xk kp px p++===-即222124,x x p+=-矛盾.对于22(2,),xD xp因为2212(2,),2x xC xp+此时直线CD平行于y轴,又00,ABxkp=≠所以直线AB与直线CD不垂直,与题设矛盾,所以x≠时,不存在符合题意的M点. 综上所述,仅存在一点M(0,-2p)适合题意.2.已知曲线11(0)xyC a ba b+=>>:所围成的封闭图形的面积为1C的内切圆半径为3.记2C为以曲线1C与坐标轴的交点为顶点的椭圆.(O为坐标原点)(Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线.M 是l 上异于椭圆中心的点.(1)若MO OA λ=,当点A 在椭圆2C 上运动时,求点M 的轨迹方程; (2)若M 是l 与椭圆2C 的交点,求AMB △的面积的最小值.解:(Ⅰ)由题意得23ab ⎧=⎪⎨= 又0a b >>,解得25a =,24b =.因此所求椭圆的标准方程为22154x y +=. (Ⅱ)(1)假设AB 所在的直线斜率存在且不为零,设AB 所在直线方程为(0)y kx k =≠,()A A A x y ,.解方程组22154x y y kx ⎧+=⎪⎨⎪=⎩,,得222045A x k =+,2222045A k y k =+, 所以22222222202020(1)454545AAk k OA x y k k k +=+=+=+++.设()M x y ,由(0)MO OA λλ=≠,所以222MO OA λ=,即2222220(1)45k x y kλ++=+, 因为l 是AB 的垂直平分线,所以直线l 的方程为1y x k=-,即x k y =-,因此22222222222220120()4545x y x y x y x y x y λλ⎛⎫+ ⎪+⎝⎭+==++, 又220x y +≠,所以2225420x y λ+=,故22245x y λ+=. 又当0k =或不存在时,上式仍然成立.综上所述,M 轨迹222(0)45x y λλ+=≠. (2)当k 存在且0k ≠时,由(1)得222045Ax k =+,2222045A k y k =+,由221541x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2222054M k x k =+,222054M y k =+, 所以2222220(1)45AAk OA x y k +=+=+,222280(1)445k AB OA k +==+,22220(1)54k OM k+=+. 解法一:由于22214AMBSAB OM =△2222180(1)20(1)44554k k k k ++=⨯⨯++ 2222400(1)(45)(54)k k k +=++22222400(1)45542k k k +⎛⎫+++ ⎪⎝⎭≥222221600(1)4081(1)9k k +⎛⎫== ⎪+⎝⎭, 当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时最小409AMB S =△.当0k =,140229AMB S =⨯=>△. 当k不存在时,140429AMB S ==>△.综上,AMB △的面积的最小值为409.解法二:因为222222111120(1)20(1)4554k k OAOMk k +=+++++2224554920(1)20k k k +++==+,又22112OA OMOAOM+≥,409OA OM ≥,当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时AMB △面积的最小值是409AMB S =△.下同解法一. 3.已知m ∈R ,直线l :2(1)4mx m y m -+=和圆C :2284160x y x y +-++=.(1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么?解: (1)直线l 的方程可化为22411m m y x m m =-++,此时斜率21mk m =+ 因为()2112m m ≤+,所以2112m k m =≤+,当且仅当1m =时等号成立 所以,斜率k 的取值范围是11,22⎡⎤-⎢⎥⎣⎦;(2)不能.由(1)知l 的方程为()4y k x =-,其中12k ≤; 圆C的圆心为()4,2C -,半径2r =;圆心C到直线l的距离d =由12k ≤,得1d ≥>,即2rd >,从而,若l 与圆C相交,则圆C截直线l 所得 的弦所对的圆心角小于23π,所以l 不能将圆C分割成弧长的比值为12的两段弧; 4.双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.解:(Ⅰ)设OA m d =-,AB m =,OB m d =+则由题有:222()()m d m m d -+=+ 得:14d m =,tan b AOF a ∠=,4tan tan 23AB AOB AOF OA ∠=∠== 由倍角公式∴22431ba b a =⎛⎫- ⎪⎝⎭,解得12b a =,则离心率e = (Ⅱ)过F 直线方程为()ay x c b=--,与双曲线方程22221x y a b -=联立将2a b =,c =代入,化简有22152104x x b b-+=124x =-=将数值代入,有4=解得3b = 故所求的双曲线方程为221369x y -=。

圆锥曲线(椭圆、双曲线、抛物线)大题综合(学生卷)- 十年(2015-2024)高考真题数学分项汇编

圆锥曲线(椭圆、双曲线、抛物线)大题综合(学生卷)- 十年(2015-2024)高考真题数学分项汇编

专题24圆锥曲线(椭圆、双曲线、抛物线)大题综合考点十年考情(2015-2024)命题趋势考点1第二问求曲线方程(10年6考)2022·天津卷、2020·全国卷、2019·全国卷、2019·天津卷2018·全国卷、2017·全国卷、2017·天津卷、2015·天津卷2015·安徽卷1.熟练掌握椭圆、双曲线、抛物线的定义及方程的求解,通常大题第一问考查方程求解2.掌握轨迹方程的求解,近年该考点多次考查3.熟练掌握直线方程的求解,会求斜率值或范围4.会弦长等距离的求解,会定值定点定直线的求解及证明,该内容也是高考命题热点考点2求轨迹方程(10年5考)2023·全国新Ⅰ卷、2021·全国新Ⅰ卷、2019·全国卷2017·全国卷、2015·湖北卷考点3求直线方程(10年8考)2024·全国新Ⅰ卷、2023·天津卷、2022·全国甲卷、2021·天津卷2020·天津卷、2018·江苏卷、2017·全国卷、2017·天津卷2015·江苏卷考点4求斜率值或范围(10年6考)2021·全国新Ⅰ卷、2021·北京卷、2021·全国乙卷、2019·天津卷2018·天津卷、2018·天津卷、2017·天津卷、2017·山东卷2016·山东卷、2016·上海卷、2016·天津卷、2016·全国卷2016·上海卷、2016·天津卷、2015·天津卷、2015·北京卷考点5离心率求值或范围综合(10年7考)2024·北京卷、2023·天津卷、2022·天津卷、2020·全国卷2019·天津卷、2019·全国卷、2016·四川卷、2016·浙江卷2015·重庆卷、2015·重庆卷考点6弦长类求值或范围综合(10年6考)2022·浙江卷、2020·北京卷、2019·全国卷、2017·浙江卷2016·北京卷、2016·全国卷、2015·四川卷、2015·山东卷考点7其他综合类求值或范围综合(10年5考)2024·上海卷、2024·北京卷、2020·北京卷、2020·浙江卷2019·全国卷、2016·四川卷、2015·四川卷考点8定值定点定直线问题2023·全国新Ⅱ卷、2023·全国乙卷、2022·全国乙卷2020·全国新Ⅰ卷、2020·全国卷、2019·北京卷、2019·北京卷(10年7考)2017·全国卷、2017·北京卷、2017·全国卷、2016·北京卷2016·北京卷、2015·陕西卷、2015·全国卷考点9其他证明综合(10年9考)2024·全国甲卷、2023·全国新Ⅰ卷、2023·北京卷、2022·全国新Ⅱ卷、2021·全国新Ⅱ卷、2019·全国卷2018·北京卷、2018·全国卷、2018·全国卷、2018·全国卷2017·北京卷、2017·全国卷、2016·四川卷、2016·四川卷2016·江苏卷、2016·全国卷、2016·四川卷、2015·湖南卷2015·全国卷、2015·福建卷考点10圆锥曲线与其他知识点杂糅问题(10年3考)2024·全国新Ⅱ卷、2018·全国卷、2016·四川卷考点01第二问求曲线方程1.(2022·天津·高考真题)椭圆()222210x y a b a b+=>>的右焦点为F 、右顶点为A ,上顶点为B ,且满足BF AB =.(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于N (N 异于M ).记O 为坐标原点,若=OM ON ,且OMN 2.(2020·全国·高考真题)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.3.(2019·全国·高考真题)已知曲线2:,2x C y D =,为直线12y =-上的动点,过D 作C 的两条切线,切点分别为,A B .(1)证明:直线AB 过定点:(2)若以50,2E ⎛⎫⎪⎝⎭为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.4.(2019·天津·高考真题)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .已知|2||OA OB =(O 为原点).(Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线4x =上,且OC AP ∥,求椭圆的方程.5.(2018·全国·高考真题)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.6.(2017·全国·高考真题)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点()4,2P -,求直线l 与圆M 的方程.7.(2017·天津·高考真题)已知椭圆22221(0)x y a b a b +=>>的左焦点为(,0)F c -,右顶点为A ,点E 的坐标为(0,)c ,EFA △的面积为22b .(I )求椭圆的离心率;(II )设点Q 在线段AE 上,32FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(i )求直线FP 的斜率;(ii )求椭圆的方程.8.(2015·天津·高考真题)已知椭圆22221(0)x y a b a b+=>>的上顶点为B ,左焦点为F ,离心率为(Ⅰ)求直线BF 的斜率;(Ⅱ)设直线BF 与椭圆交于点P (P 异于点B ),过点B 且垂直于BP 的直线与椭圆交于点Q (Q 异于点B )直线PQ 与y 轴交于点M ,||=||PM MQ l .(ⅰ)求λ的值;(ⅱ)若||sin PM BQP ∠=求椭圆的方程.9.(2015·安徽·高考真题)设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM (Ⅰ)求E 的离心率e ;(Ⅱ)设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.考点02求轨迹方程1.(2023·全国新Ⅰ卷·高考真题)在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点10,2⎛⎫⎪⎝⎭的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD 的周长大于2.(2021·全国新Ⅰ卷·高考真题)在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.3.(2019·全国·高考真题)已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG 是直角三角形;(ii )求PQG 面积的最大值.4.(2017·全国·高考真题)设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足NP =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .5.(2015·湖北·高考真题)一种作图工具如图1所示.O 是滑槽AB 的中点,短杆可绕转动,长杆通过处铰链与连接,上的栓子可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子在滑槽AB 内做往复运动时,带动绕O 转动一周(不动时,也不动),处的笔尖画出的曲线记为.以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(Ⅰ)求曲线C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.考点03求直线方程1.(2024·全国新Ⅰ卷·高考真题)已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x y C a b a b +=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.2.(2023·天津·高考真题)已知椭圆22221(0)x y a b a b+=>>的左右顶点分别为12,A A ,右焦点为F ,已知123,1A F A F ==.(1)求椭圆的方程和离心率;(2)点P 在椭圆上(异于椭圆的顶点),直线2A P 交y 轴于点Q ,若三角形1A PQ 的面积是三角形2A PF 面积的二倍,求直线2A P 的方程.3.(2022·全国甲卷·高考真题)设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =.(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.4.(2021·天津·高考真题)已知椭圆()222210x y a b a b +=>>的右焦点为F ,上顶点为B 255,且5BF =(1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若//MP BF ,求直线l 的方程.5.(2020·天津·高考真题)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.6.(2018·江苏·高考真题)在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB ,求直线l 的方程.7.(2017·全国·高考真题)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点()4,2P -,求直线l 与圆M 的方程.8.(2017·天津·高考真题)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12.(I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为2,求直线AP 的方程.9.(2015·江苏·高考真题)如图,在平面直角坐标系xOy 中,已知椭圆()222210x y a b a b +=>>的离心率为2,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC=2AB ,求直线AB 的方程.考点04求斜率值或范围1.(2021·全国新Ⅰ卷·高考真题)在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.2.(2021·北京·高考真题)已知椭圆2222:1(0)x y E a b a b+=>>一个顶点(0,2)A -,以椭圆E 的四个顶点为顶点的四边形面积为(1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交3y =-交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围.3.(2021·全国乙卷·高考真题)已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.4.(2019·天津·高考真题)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,(Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.5.(2018·天津·高考真题)设椭圆22221x y a b +=(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的离心率为3,点A 的坐标为(),0b ,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若sin 4AQ AOQ PQ =∠(O 为原点),求k 的值.6.(2018·天津·高考真题)设椭圆22221(0)x y a b a b +=>>的右顶点为A ,上顶点为B .AB =.(1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM△的面积是BPQ V 面积的2倍,求k 的值.7.(2017·天津·高考真题)已知椭圆22221(0)x y a b a b +=>>的左焦点为(,0)F c -,右顶点为A ,点E 的坐标为(0,)c ,EFA △的面积为22b .(I )求椭圆的离心率;(II )设点Q 在线段AE 上,32FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(i )求直线FP 的斜率;(ii )求椭圆的方程.8.(2017·山东·高考真题)在平面直角坐标系xOy 中,椭圆E :22221x y a b +=()0a b >>的离心率为2,焦距为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l :12y k x =-交椭圆E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且124k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,M 的半径为MC ,,OS OT 是M 的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.9.(2016·山东·高考真题)已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为4,焦距为(Ⅰ)求椭圆C 的方程;(Ⅱ)过动点(0,)(0)M m m >的直线交x 轴与点N ,交C 于点,A P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B .(ⅰ)设直线,PM QM 的斜率分别为12,k k ,证明21k k 为定值;(ⅱ)求直线AB 的斜率的最小值.10.(2016·上海·高考真题)双曲线2221(0)y x b b-=>的左、右焦点分别为12F F 、,直线l 过2F 且与双曲线交于A B 、两点.(1)若l 的倾斜角为π2,1F AB 是等边三角形,求双曲线的渐近线方程;(2)设b =,若l 的斜率存在,且11()0F A F B AB +⋅=,求l 的斜率.11.(2016·天津·高考真题)设椭圆2221(3x y a a +=的右焦点为F ,右顶点为A ,已知113||||||e OF OA FA +=,其中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若BF HF ⊥,且MOA MAO ∠≤∠,求直线的l 斜率的取值范围.12.(2016·全国·高考真题)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(Ⅰ)当t=4,AM AN =时,求△AMN 的面积;(Ⅱ)当2AM AN =时,求k 的取值范围.13.(2016·上海·高考真题)双曲线2221(0)y x b b-=>的左、右焦点分别为12,F F ,直线l 过2F 且与双曲线交于,A B 两点.(1)若l 的倾斜角为2π,1F AB ∆是等边三角形,求双曲线的渐近线方程;(2)设b =,若l 的斜率存在,且AB 4=,求l 的斜率.14.(2016·天津·高考真题)设椭圆()的右焦点为,右顶点为,已知,其中为原点,为椭圆的离心率.(Ⅰ)求椭圆的方程;(Ⅱ)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且MOA MAO ∠≤∠,求直线的斜率的取值范围.15.(2015·天津·高考真题)已知椭圆2222+=1(0)x y a b a b >>的左焦点为(,0)F c -,离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆222+4b x y =截得的线段的长为c ,433(Ⅰ)求直线FM 的斜率;(Ⅱ)求椭圆的方程;(Ⅲ)设动点P 在椭圆上,若直线FP 2OP (O 为原点)的斜率的取值范围.16.(2015·北京·高考真题)已知椭圆C :2233x y +=,过点()D 1,0且不过点()2,1E 的直线与椭圆C 交于A ,B 两点,直线AE 与直线3x =交于点M .(Ⅰ)求椭圆C 的离心率;(Ⅱ)若AB 垂直于x 轴,求直线BM 的斜率;(Ⅲ)试判断直线BM 与直线D E 的位置关系,并说明理由.考点05离心率求值或范围综合1.(2024·北京·高考真题)已知椭圆E :()222210x y a b a b+=>>,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点()(0,2t t >且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和()0,1C 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.2.(2023·天津·高考真题)已知椭圆22221(0)x y a b a b +=>>的左右顶点分别为12,A A ,右焦点为F ,已知123,1A F A F ==.(1)求椭圆的方程和离心率;(2)点P 在椭圆上(异于椭圆的顶点),直线2A P 交y 轴于点Q ,若三角形1A PQ 的面积是三角形2A PF 面积的二倍,求直线2A P 的方程.3.(2022·天津·高考真题)椭圆()222210x y a b a b+=>>的右焦点为F 、右顶点为A ,上顶点为B ,且满足32BF AB =.(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于N (N 异于M ).记O 为坐标原点,若=OM ON ,且OMN4.(2020·全国·高考真题)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.5.(2019·天津·高考真题)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .已知|2||OA OB =(O 为原点).(Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线4x =上,且OC AP ∥,求椭圆的方程.6.(2019·全国·高考真题)已知12,F F 是椭圆2222:1(0)x yC a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2 POF 为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.7.(2016·四川·高考真题)已知数列{n a }的首项为1,n S 为数列{n a }的前n 项和,11n n S qS +=+,其中q>0,*n ∈N .(Ⅰ)若2322,,2a a a +成等差数列,求数列{a n }的通项公式;(Ⅱ)设双曲线2221n y x a -=的离心率为n e ,且253e =,证明:121433n nn n e e e --++⋅⋅⋅+>.8.(2016·浙江·高考真题)如图,设椭圆2221x y a+=(a >1).(Ⅰ)求直线y=kx +1被椭圆截得的线段长(用a 、k 表示);(Ⅱ)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.9.(2015·重庆·高考真题)如图,椭圆()222210x y a b a b+=>>的左右焦点分别为12,F F ,且过2F 的直线交椭圆于,P Q 两点,且1PQ PF ⊥.(1)若122PF =+,222PF =-,求椭圆的标准方程.(2)若1PQ PF λ=,且3443λ≤≤,试确定椭圆离心率的取值范围.10.(2015·重庆·高考真题)如图,椭圆()222210x y a b a b+=>>的左、右焦点分别为12,,F F 过2F 的直线交椭圆于,P Q 两点,且1PQ PF ⊥(1)若1222,22PF PF ==,求椭圆的标准方程(2)若1,PF PQ =求椭圆的离心率.e 考点06弦长类求值或范围综合1.(2022·浙江·高考真题)如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫ ⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求||CD 的最小值.2.(2020·北京·高考真题)已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.3.(2019·全国·高考真题)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程;(2)若3AP PB =,求|AB |.4.(2017·浙江·高考真题)如图,已知抛物线2x y =.点A 1139-2424B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,抛物线上的点P (x,y )13-x 22⎛⎫ ⎪⎝⎭<<,过点B 作直线AP 的垂线,垂足为Q.(I )求直线AP 斜率的取值范围;(II )求·PA PQ 的最大值5.(2016·北京·高考真题)已知椭圆C :22221x y a b +=(0a b >>)32(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:||||AN BM ⋅为定值.6.(2016·全国·高考真题)(2016新课标全国卷Ⅰ文科)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(Ⅰ)求OHON;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.7.(2015·四川·高考真题)如图,椭圆E :2222+1(0)x y a b a b =>>的离心率是2,过点P (0,1)的动直线l 与椭圆相交于A ,B 两点,当直线l 平行于x 轴时,直线l 被椭圆E 截得的线段长为(1)求椭圆E 的方程;(2)在平面直角坐标系xOy 中,是否存在与点P 不同的定点Q ,使得QA PAQB PB=恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.8.(2015·山东·高考真题)平面直角坐标系xoy 中,已知椭圆()2222:10x y C a b a b +=>>右焦点分别是12,F F ,以1F 为圆心以3为半径的圆与以2F 为圆心以1为半径的圆相交,且交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222:144+=x y E a b,P 为椭圆C 上任意一点,过点P 的直线y kx m =+交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .(i )求OQ OP的值;(ⅱ)求ABQ ∆面积的最大值.考点07其他综合类求值或范围综合1.(2024·上海·高考真题)已知双曲线222Γ:1,(0),y x b b-=>左右顶点分别为12,A A ,过点()2,0M -的直线l 交双曲线Γ于,P Q 两点.(1)若离心率2e =时,求b 的值.(2)若2b MA P =△为等腰三角形时,且点P 在第一象限,求点P 的坐标.(3)连接OQ 并延长,交双曲线Γ于点R ,若121A R A P ⋅=,求b 的取值范围.2.(2024·北京·高考真题)已知椭圆E :()222210x y a b a b+=>>,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点()(0,t t >且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和()0,1C 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.3.(2020·北京·高考真题)已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.4.(2020·浙江·高考真题)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标;(Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.5.(2019·全国·高考真题)已知12,F F 是椭圆2222:1(0)x yC a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2 POF 为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.6.(2016·四川·高考真题)已知椭圆E :22221(0)x y a b a b+=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :3y x =-+与椭圆E 有且只有一个公共点T .(Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l '平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P ,证明:存在常数λ,使得2||||||PT PA PB λ=⋅,并求λ的值.7.(2015·四川·高考真题)椭圆2222:1x y E a b +=(0a b >>)的离心率是2,点(0,1)P 在短轴CD 上,且1PC PD ⋅=-.(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于,A B 两点,是否存在常数λ,使得OA OB PA PB λ⋅+⋅为定值?若存在,求λ的值;若不存在,请说明理由考点08定值定点定直线问题1.(2023·全国新Ⅱ卷·高考真题)已知双曲线C 的中心为坐标原点,左焦点为()-(1)求C 的方程;(2)记C 的左、右顶点分别为1A ,2A ,过点()4,0-的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于点P .证明:点P 在定直线上.2.(2023·全国乙卷·高考真题)已知椭圆2222:1(0)C b b x a a y +>>=,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.3.(2022·全国乙卷·高考真题)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.4.(2020·全国新Ⅰ卷·高考真题)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点()2,1A .(1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.5.(2020·全国·高考真题)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅= ,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.6.(2019·北京·高考真题)已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.7.(2019·北京·高考真题)已知抛物线C :x 2=−2py 经过点(2,−1).(Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.8.(2017·全国·高考真题)已知椭圆C :2222=1x y a b +(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1,2),P 4(1,2)中恰有三点在椭圆C 上.(Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.9.(2017·北京·高考真题)已知抛物线C :y 2=2px 过点P (1,1).过点10,2⎛⎫⎪⎝⎭作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程;(2)求证:A 为线段BM 的中点.10.(2017·全国·高考真题)设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足NP =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .11.(2016·北京·高考真题)已知椭圆C :22221x y a b +=(0a b >>)的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:||||AN BM ⋅为定值.12.(2016·北京·高考真题)已知椭圆2222:1x y C a b+=过点()()2,0,0,1A B 两点.(Ⅰ)求椭圆C 的方程及离心率;(Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.13.(2015·陕西·高考真题)如图,椭圆2222:1(0)x y E a b a b +=>>经过点(0,1)A -,且离心率为2.(I)求椭圆E 的方程;(II)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同两点,P Q (均异于点A ),问:直线AP 与AQ 的斜率之和是否为定值?若是,求出此定值;若否,说明理由.14.(2015·全国·高考真题)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,点在C 上(1)求C 的方程(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.考点09其他证明综合1.(2024·全国甲卷·高考真题)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线交C 于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.2.(2023·全国新Ⅰ卷·高考真题)在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点10,2⎛⎫⎪⎝⎭的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD 的周长大于3.(2023·北京·高考真题)已知椭圆2222:1(0)x y E a b a b +=>>的离心率为3,A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,||4AC =.(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线2y =-交于点N .求证://MN CD .4.(2022·全国新Ⅱ卷·高考真题)已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为QM .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.5.(2021·全国新Ⅱ卷·高考真题)已知椭圆C 的方程为22221(0)x y a b a b+=>>,右焦点为F ,且离心率.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =6.(2019·全国·高考真题)已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG 是直角三角形;(ii )求PQG 面积的最大值.7.(2018·北京·高考真题)已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ= ,QN QO μ= ,求证:11λμ+为定值.8.(2018·全国·高考真题)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.9.(2018·全国·高考真题)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:ABM ABN ∠=∠.10.(2018·全国·高考真题)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:OMA OMB ∠=∠.11.(2017·北京·高考真题)已知椭圆C 的两个顶点分别为A (−2,0),B(2,0),焦点在x 轴上,离心率为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4:5.12.(2017·全国·高考真题)设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足NP =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .13.(2016·四川·高考真题)已知椭圆E :22221(0)x y a b a b+=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :3y x =-+与椭圆E 有且只有一个公共点T .(Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l '平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P ,证明:存在常数λ,使得2||||||PT PA PB λ=⋅,并求λ的值.14.(2016·四川·高考真题)已知数列{n a }的首项为1,n S 为数列{n a }的前n 项和,11n n S qS +=+,其中q>0,*n ∈N .(Ⅰ)若2322,,2a a a +成等差数列,求数列{a n }的通项公式;。

(完整版)圆锥曲线经典题目(含答案)

(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。

圆锥曲线历年高考题(整理)附答案

圆锥曲线历年高考题(整理)附答案
圆锥曲线测试题
一、选择题:(60分)
1.椭圆 的离心率是()
A. B. C. D.
2.已知椭圆中心在坐标原点,焦点在 轴上,并且长轴长为12,离心率为 ,则该椭圆的方程为()
A. B. C. D.
3.方程 所表示的曲线是()
A.双曲线B.椭圆C.线段D.圆
4.已知双曲线的一条渐近线方程为y=x,则双曲线的离心率曲线的实轴长和虚轴长。
(2)若 ,点 是双曲线上的任意一点,求 的最小值。
20.已知双曲线 。
(1)求与双曲线 有相同的焦点,且过点 的双曲线 的标准方程。
(2)直线 分别交双曲线的两条渐近线与A,B两点,当 时,求实数 的值。
(A)(B)(C)(D)
5.已知△ABC的顶点B、C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则三角形ABC的周长是()
(A)2(B)6(C)4(D)12
6.已知双曲线虚轴的一个端点为M,两个焦点为 , ,则双曲线的离心率为()
A. B. C. D.
7.曲线 与曲线 的()
A. B. C. D.
二、填空题:(30分)
11.双曲线 的虚轴长是实轴长的2倍,则 。
12.已知椭圆的中心在原点,一个焦点为 ,且长轴长是短轴长的2倍,则求该椭圆的标准方程为。
13.已知椭圆 的焦点为 ,点P在椭圆上。若 ,则 的大小为
14.已知点 ,椭圆 与直线 交于点A,B,则 的周长为()
15.已知双曲线 与双曲线 有相同的渐近线,且 的右焦点为 ,则 ( ), ()。
(A)焦距相等(B)离心率相等(C)焦点相同(D)准线相同
8.已知F是双曲线 的右焦点,O为坐标原点,设P是双曲线上一点,则 的大小不可能是()

历年高考数学圆锥曲线试题汇总

历年高考数学圆锥曲线试题汇总
2
-2-
两点,自 M、N 向直线 l : x a 作垂线,垂足分别为 M 1 、 N1 。 (Ⅰ)当 a (Ⅱ)记
p 时,求证: AM 1 ⊥ AN1 ; 2
AMM1 、 AM 1 N1 、 ANN1 的面积分别为 S1 、 S 2 、 S 3 ,是否存在 ,
2 使得对任意的 a 0 ,都有 S2 S1S2 成立。若存在,求出 的值;若不存在,说明理由。
2
y 2 x2 1 (a b 0) 的右顶点为 A(1, 0) , a 2 b2
的切线与 C1 交于点 M , N .当线段 AP 的中点与 MN 的中 点的横坐标相等时,求 h 的最小值. 6.(2009 北京理) (本小题共 14 分) 已知双曲线 C :
x2 y 2 3 2 1(a 0, b 0) 的离心率为 3 ,右准线方程为 x 2 a b 3
P
y
点 , F2 为双曲线的右焦点 , 过 P 1 作右准线的垂线 , 垂足为 A , 连接
P2
A
F2 A 并延长交 y 轴于 P2 .
(1) 求线段 P 1 P 2 的中点 P 的轨迹 E 的方程; (2) 设 轨 迹 E 与 x 轴 交 于 B、D 两 点 , 在 E 上 任 取 一 点
P1
F1
2 1、 、 2、 , 3 2
S
S ,试
-3-
35.(2009 天津卷理) (本小题满分 14 分) 以知椭圆
x2 y 2 1(a b 0) 的两个焦点分别为 F1 (c, 0)和F2 (c, 0)(c 0) ,过点 a 2 b2
E(
a2 , 0) 的直线与椭圆相交与 A, B 两点,且 F1 A / / F2 B, F1 A 2 F2 B 。 c

高中数学 圆锥曲线试题汇编

高中数学 圆锥曲线试题汇编

高考数学《圆锥曲线》试题汇编1.(湖北文)(19)(本小题共14分)已知椭圆2222:1(0)x y G a b a b+=>>的离心率为63,右焦点为(22,0)。

斜率为1的直线l 与椭圆G交于,A B 两点,以AB 为底边作等腰三角形,顶点为(3,2)P -。

(Ⅰ)求椭圆G 的方程;(Ⅱ)求PAB 的面积。

2.福建文11.设圆锥曲线I 的两个焦点分别为F 1,F 2,若曲线I 上存在点P 满足1PF :12F F :2PF =4:3:2,则曲线I 的离心率等于A.1322或 B.223或 C.122或 D.2332或 3.福建文18.(本小题满分12分)如图,直线l :y=x+b 与抛物线C :x2=4y 相切于点A 。

(1) 求实数b 的值;(11)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.4.上海文22.(本题满分16分,第1小题4分,第2小题6分,第3小题6分)已知椭圆222:1x C y m+=(常数1m >),P 是曲线C 上的动点,M 是曲线C 上的右顶点,定点A 的坐标为(2,0)(1)若M 与A 重合,求曲线C 的焦点坐标; (2)若3m =,求PA 的最大值与最小值;(3)若PA 的最小值为MA ,求实数m 的取值范围. 5.天津文(18) 设椭圆)0(12222>>=+b a by ax 的左右焦点分别为21,F F ,点),(b a P 满足212F F PF =。

(1)求椭圆的离心率e ;(2)设直线2PF 与椭圆相交于B A ,两点。

若直线2PF 与圆16)3()1(22=-++y x 相交于N M ,两点,且AB MN 85=,求椭圆的方程。

6.全国新课标文(20)(本小题满分12分)在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上(Ⅰ)求圆C 的方程;(Ⅱ)若圆C 与直线0x y a -+=交与A ,B 两点,且OA OB ⊥,求a 的值。

高考经典圆锥曲线习题(含答案)

高考经典圆锥曲线习题(含答案)

高考圆锥曲线试题精选一、选择题:(每小题5分,计50分)1、(2008海南、宁夏文)双曲线22110x y -=的焦距为( )2.(2004全国卷Ⅰ文、理)椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的 直线与椭圆相交,一个交点为P ,则||2PF = ( )A .23 B .3 C .27D .4 3.(2006辽宁文)方程22520x x -+=的两个根可分别作为( )A.一椭圆和一双曲线的离心率B.两抛物线的离心率 C.一椭圆和一抛物线的离心率D.两椭圆的离心率4.(2006四川文、理)直线y=x-3与抛物线x y 42=交于A 、B 两点,过A 、B 两点向 抛物线的准线作垂线,垂足分别为P 、Q ,则梯形APQB 的面积为( ) (A )48. (B )56 (C )64 (D )72.5.(2007福建理)以双曲线116922=-y x 的右焦点为圆心,且与其渐近线相切的圆的方程是( )A .B.C .D.6.(2004全国卷Ⅳ理)已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线 x y 42-=的焦点重合,则此椭圆方程为( )A .13422=+y xB .16822=+y xC .1222=+y x D .1422=+y x 7.(2005湖北文、理)双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A .163B .83C .316D .388. (2008重庆文)若双曲线2221613x y p-=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( )(A)2(B)3(C)4(D)429.(2002北京文)已知椭圆1532222=+n y m x 和双曲线1322222=-n y m x 有公共的焦点,那么 双曲线的渐近线方程是( ) A .y x 215±= B .x y 215±= C .y x 43±= D .x y 43±= 二、填空题:(每小题5分,计20分)11. (2005上海文)若椭圆长轴长与短轴长之比为2,它的一个焦点是()0,152,则椭圆的标准方程是_________________________12.(2008江西文)已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线方程为y x =, 若顶点到渐近线的距离为1,则双曲线方程为 .13.(2007上海文)以双曲线15422=-y x 的中心为顶点,且以该双曲线的右焦点为焦点的 抛物线方程是 .三、解答题:(15—18题各13分,19、20题各14分)15.(2006北京文)椭圆C:22221(0)x y a b a b +=>>的两个焦点为F 1,F 2,点P 在椭圆C 上,且11212414,||,||.33PF F F PF PF ⊥== (Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l 过圆x 2+y 2+4x-2y=0的圆心M , 交椭圆C 于,A B 两点, 且A 、B 关于点M 对称,求直线l 的方程..16.(2005重庆文)已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.17.(2007安徽文)设F 是抛物线G :x 2=4y 的焦点.(Ⅰ)过点P (0,-4)作抛物线G 的切线,求切线方程:(Ⅱ)设A 、B 为抛物线G 上异于原点的两点,且满足0·=FB FA ,延长AF 、BF 分别交抛物线G 于点C ,D ,求四边形ABCD 面积的最小值.18.(2008辽宁文) 在平面直角坐标系xOy 中,点P 到两点(0-,,(0的距离之和等于4,设点P 的轨迹为C . (Ⅰ)写出C 的方程;(Ⅱ)设直线1y kx =+与C 交于A ,B 两点.k 为何值时OA ⊥OB ?此时AB 的值是多少?19. (2002广东、河南、江苏)A 、B 是双曲线x 2-y22=1上的两点,点N(1,2)是线段AB 的中点(1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆?为什么?20.(2007福建理)如图,已知点F (1,0),直线l :x =-1,P 为平面上的动点,过P 作直线l 的垂线,垂足为点Q ,且=。

历年高考圆锥曲线真题汇总以及解析

历年高考圆锥曲线真题汇总以及解析
(1)求证: .
(2)若点P在 轴的上方,当 的面积最小时,求直线 的斜率 .
附:多项式因式分解公式:
24.
已知椭圆C: 过点 ,且离心率为 .
(1)求椭圆C的方程;
(2)若斜率为 的直线 与椭圆C交于不同的两点M,N,且线段MN的垂直平分线过点 ,求 的取值范围.
25.
已知直线x=﹣2上有一动点Q,过点Q作直线l,垂直于y轴,动点P在l1上,且满足 (O为坐标原点),记点P的轨迹为C.
(1)求曲线C的方程;
(2)已知定点M( ,0),N( ,0),点A为曲线C上一点,直线AM交曲线C于另一点B,且点A在线段MB上,直线AN交曲线C于另一点D,求△MBD的内切圆半径r的取值范围.
试卷答案
1.A
【分析】
根据x=-1是抛物线 的准线,则点P到x=-1的距离等于PF,根据垂直线段最短,利用数形结合法,得到点F到直线2x-y+3=0的距离,即为P到直线 和直线 的距离之和的最小值求解.
(2)证明:直线OM的斜率与l的斜率的乘积为定值;
(3)若l过点 ,射线OM与椭圆E交于点P,四边形OAPB能否为平行四边形?若能,求此时直线l斜率;若不能,说明理由.
12.
已知两动圆 和 ( ),把它们的公共点的轨迹记为曲线C,若曲线C与 轴的正半轴的交点为M,且曲线C上的相异两点A、B满足: .
9.
已知椭圆 的左,右焦点分别为 , ,点 ,椭圆C短轴的一个端点恰为准线方程是_____.
11.
已知椭圆E: ,直线l不过原点O且不平行于坐标轴,l与E有两个交点A,B,线段AB的中点为M.
(1)若 ,点K在椭圆E上, 、 分别为椭圆的两个焦点,求 的范围;
(1)求抛物线的方程;

历年高考圆锥曲线大题精选

历年高考圆锥曲线大题精选

1.(2018全国I理19)
设椭圆C: +y²=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).
(1)当l与x轴垂直时,求直线AM的方程;
(2)设O为坐标原点,证明:∠OMA=∠OMB.
2.(2018全国II理)
3.(2018全国III理)
4.(2018全国I文)
5.(2018浙江)
6.(2017全国I理20)
7.
8.
9.(2017全国III理)
10.(2017全国I文20)
11.(2016全国I理20)
12.(2016全国III理20)
13.(2016山东理)平面直角坐标系中,椭圆C:的离心率是
,抛物线E:的焦点F是C的一个顶点.
(1)求椭圆C的方程;
(2)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.
①求证:点M在定直线上;
②直线与y轴交于点G,记△PFG的面积为,△PDM的面积为,求的最大值及取得最大值时点P的坐标.
14.(2015全国I理)
15.(2015全国II理)
16.
17.
18.。

圆锥曲线高考真题总汇编(2013--2019新课标卷)(2019)

圆锥曲线高考真题总汇编(2013--2019新课标卷)(2019)

解析几何高考真题1、【2019年新2文理】若抛物线22y px =(p>0)的焦点是椭圆2213x y p p+=的一个焦点,则p=( ) A.2 B.3 C.4 D.82、【2019年新2文理】设F 为双曲线C:22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P,Q 两点,若PQ OF =,则C 的离心率为( )B.C. 2 3、【2019新1文理】已知双曲线C:22221(0,0)x y a b a b-=>>D 的左、右焦点分别为12,F F ,过1F 的直线与C 的两条渐近线分别交于A,B 两点,若112,0F A AB FB F B =⋅=,则C 的离心率为________4、【2019新1文理】已知椭圆C 的焦点为12(1,0),(1,0)F F -,过2F 的直线与C 交于A,B 两点2212,AF F B AB BF ==,则C 的方程为( )A.2212x y += B.22132x y += C.22143x y += D.22154x y += 5、【2019新3文理】10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O为坐标原点,若=PO PF ,则△PFO 的面积为( )A .4B .2C .D .6、【2019新3文理】15.设12F F ,为椭圆C :22+13620x y=的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.7、【2018新2文理】5.双曲线22221(0,0)x y a b a b-=>>则其渐近线方程为( )A .y =B .y =C .2y x = D .y =8、【2018新2理】12.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A 的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12C .13D .149、【2018新2文】11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A .1B .2CD 110、【2018新1理】8.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5B .6C .7D .811、【2018新1理】11.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN △为直角三角形,则|MN |=( )A .32B .3C .D .412、【2018新1文】4.已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12C D 13、【2018新1文】15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________ 14、【2018新3文理】6.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值围是( )A .[]26,B .[]48,C .D .⎡⎣ 15、【2018新3理】11.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1PF =,则C 的离心率为( )AB .2CD16、【2018新3理】16.已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________.17、【2018新3文】10.已知双曲线22221(00)x y C a b a b-=>>:,,则点(4,0)到C 的渐近线的距离为( )AB .2C .2D .18、【2017新2理】9. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2BCD .319、【2017新2理】16. 已知F 是抛物线C :28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则FN = .20、【2017新1理】10.已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线12,l l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16B .14C .12D .1021、【2017新1理】15.已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,以A 为圆心,b为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点。

圆锥曲线--2023高考真题分类汇编完整版

圆锥曲线--2023高考真题分类汇编完整版

圆锥曲线--高考真题汇编第一节椭圆1.(2023全国甲卷理科12)已知椭圆22196x y +=,12,F F 为两个焦点,O 为原点,P 为椭圆上一点,123cos 5F PF ∠=,则OP =()A.25 C.35【解析】解法一(利用焦点三角形面积公式):设122F PF θ∠=,π02θ<<.22212222cos sin 1tan 3cos cos 2cos sin 1tan 5F PF θθθθθθθ--∠====++,解得1tan 2θ=.由椭圆焦点三角形面积公式得1222121tantan 6322F PF F PF S b b θ∠===⨯=△.121211322F PF P P S F F y ===△,解得23P y =.则代入椭圆方程得292P x =,因此302OP ==.故选B.解法二(几何性质+定义):因为1226PF PF a +==①,22212121122cos PF PF PF PF F PF F F +-⋅∠=,即2212126125PF PF PF PF +-⋅=②,联立①②,解得12152PF PF ⋅=,221221PF PF +=.由中线定理可知,()()222212122242OP F F PF PF +=+=,而12F F =,解得302OP =.故选B.解法三(向量法):由解法二知12152PF PF ⋅=,221221PF PF +=.而()1212PO PF PF =+,所以1213022PO PF PF =+===.故选B.2.(2023全国甲卷文科7)设12,F F 为椭圆22:15x C y +=的两个焦点,点P 在C 上,若120PF PF ⋅= ,则12PF PF ⋅=()A.1B.2C.4D.5【分析】解法一:根据焦点三角形面积公式求出12PF F △的面积,即可解出;解法二:根据椭圆的定义以及勾股定理即可解出.【解析】解法一:因为120PF PF ⋅=,所以1290F PF ∠= ,从而122121tan 4512F PF S b PF PF ===⨯⋅ △,所以122PF PF ⋅=.故选B.解法二:因为120PF PF ⋅=,所以1290F PF ∠= ,由椭圆方程可知,25142c c =-=⇒=,所以22221212416PF PF F F +===,又122PF PF a +==22121212216220PF PF PF PF PF PF ++=+=,所以122PF PF ⋅=.故选B.3.(2023新高考I 卷5)设椭圆()2212:11x C y a a +=>,222:14x C y +=的离心率分别为1e ,2e .若21e =,则a =()A.233B.【解析】11a e a =,232e =,由21e =可得32=,解得233a =.故选A.4.(2023新高考II 卷5)已知椭圆22:13x C y +=的左、右焦点分别为12,F F ,直线y x m =+与C 交于,A B 两点,若1F AB △的面积是2F AB △面积的2倍,则m =()A.23B.3C.3-D.23-【解析】设AB 与x 轴相交于点(),0D m -,由122F AB F AB S S =△△,得122F DF D=.又12F F =23F D =,则有()3m --=,解得3m =.故选C.第二节双曲线1.(2023新高考I 卷16)已知双曲线()2222:10,0x y C a b a b -=>>的左、右焦点分别为12,F F ,点A 在C 上,点B 在y 轴上,11F A F B ⊥ ,2223F A F B =- ,则C 的离心率为.【解析】解法一:建立如图所示的平面直角坐标系,设()()()12,0,,0,0,F c F c B n -,由2223F A F B =- 可得52,33A c n ⎛⎫- ⎪⎝⎭,又11F A F B ⊥ 且182,33F A c n ⎛⎫=- ⎪⎝⎭ ,()1,F B c n = ,则()22118282,,03333F A F B c n c n c n ⎛⎫⋅=-⋅=-= ⎪⎝⎭ ,所以224n c =,又点A 在C 上,则2222254991c n a b -=,整理可得2222254199c n a b-=,代入224n c =,可得222225169c c a b -=,即222162591e e e -=-,解得295e =或()215e =舍.故355e =.解法二:由2223F A F B =-可得2223F A F B =,设222,3F A x F B x ==,由对称性可得,13F B x =,由定义可得,122AF x a =+,5AB x =,设12F AF θ∠=,则33sin 55x x θ==,所以422cos 55x a xθ+==,解得x a =,所以1224AF x a a =+=,222F A x a ==,在12AF F △中,由余弦定理可得222216444cos 165a a c a θ+-==,2295a c =,所以355e =.2.(2023全国甲卷理科8)已知双曲线()222210,0x y a b a b-=>>的离心率为5,其中一条渐近线与圆()()22231x y -+-=交于,A B 两点,则AB =()A.15B.55C.255 D.455【解析】由5e =,则222222215c a b b a a a +==+=,解得2b a =.所以双曲线的一条渐近线为2y x =,则圆心()2,3到渐近线的距离22235521d ⨯-==+,所以弦长221452155AB r d =--.故选D.3.(2023全国甲卷文科9)已知双曲线()222210,0x y a b a b-=>>的离心率为5,其中一条渐近线与圆()()22231x y -+-=交于,A B 两点,则AB =()A.15B.55C.255D.455【解析】由e =,则222222215c a b b a a a+==+=,解得2b a =.所以双曲线的一条渐近线为2y x =,则圆心()2,3到渐近线的距离55d ==,所以弦长5AB =.故选D.4.(2023北京卷12)已知双曲线C 的焦点为()2,0-和()2,0,离心率为,则C 的方程为.【分析】根据给定条件,求出双曲线C 的实半轴、虚半轴长,再写出C 的方程作答.【解析】令双曲线C 的实半轴、虚半轴长分别为,a b ,显然双曲线C 的中心为原点,焦点在x 轴上,其半焦距2c =,由双曲线C ,得ca,解得a =,则b =所以双曲线C 的方程为22122x y -=.故答案为:22122x y -=.因为()2,0F c ,不妨设渐近线方程为所以222bc bcPF c a b ==+设2POF θ∠=,则tan θ=第三节抛物线2.(2023全国乙卷理科13,文科13)已知点A 在抛物线2:2C y px =上,则A 到C 的准线的距离为.【分析】由题意首先求得抛物线的标准方程,然后由抛物线方程可得抛物线的准线方程为54x =-,最后利用点的坐标和准线方程计算点A 到C 的准线的距离即可.【解析】由题意可得:221p =⨯,则25p =,抛物线的方程为25y x =,准线方程为54x =-,点A 到C 的准线的距离为59144⎛⎫--= ⎪⎝⎭.故答案为:94.3.(2023新高考II 卷10)设O 为坐标原点,直线)1y x =-过抛物线()2:20C y px p =>的焦点,且与C 交于,M N 两点,l 为C 的准线,则()A .2p =B .83MN =C .以MN 为直径的圆与l 相切D .OMN △为等腰三角形【解析】由题意可得焦点为()1,0F ,所以12p=,2p =,A 正确;联立)214y x y x⎧=-⎪⎨=⎪⎩,消y 得231030x x -+=.设()()1122,,,M x y N x y ,由韦达定理得12103x x +=,所以12163MN MF NF x x p =+=++=,B 错误;设MN 的中点为Q ,分别过,,M N Q 向l 作垂线,垂足分别为111,,M N Q ,由梯形中位线性质及抛物线定义可得,()()111111222QQ MM NN MF NF MN r =+=+==,所以以MN 为直径的圆与准线l 相切,C 正确;由上述解题过程知,231030x x -+=,解得121,33x x ==,从而(1,3,3M N ⎛- ⎝⎭,易得OM ON MN ≠≠,OMN △不是等腰三角形,D 错误.综上,故选AC.第四节直线与圆锥曲线的位置关系1.(2023全国乙卷理科11,文科12)已知,A B 是双曲线2219y x -=上两点,下列四个点中,可为线段AB 中点的是()A.()1,1 B.()1,2- C.()1,3 D.()1,4--【分析】设直线AB 的斜率为AB k ,OM 的斜率为k ,根据点差法分析可得9AB k k ⋅=,对于A ,B ,D 通过联立方程判断交点个数,逐项分析判断;对于C :结合双曲线的渐近线分析判断.【解析】设()11,A x y ,()22,B x y ,则AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭,设直线AB 的斜率为AB k ,OM 的斜率为k ,可得1212121212122,2ABy y y y y y k k x x x x x x +-+===+-+,因为,A B 在双曲线上,则221122221919y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得()2222121209y y x x ---=,所以221222129AB y y k k x x -⋅==-.对于选项A :可得1k =,9AB k =,则:98AB y x =-,联立方程229819y x y x =-⎧⎪⎨-=⎪⎩,消去y 得272272730x x -⨯+=,此时()2272472732880∆=-⨯-⨯⨯=-<,所以直线AB 与双曲线没有交点,故A 错误;对于选项B :可得2k =-,92AB k =-,则95:22AB y x =--,联立方程22952219y x y x ⎧=--⎪⎪⎨⎪-=⎪⎩,消去y 得245245610x x +⨯+=,此时()()22454456144545610∆=⨯-⨯⨯=⨯⨯-<,所以直线AB 与双曲线没有交点,故B 错误;对于选项C :可得3k =,3AB k =,则:3AB y x =.由双曲线方程可得1a =,3b =,则:3AB y x =为双曲线的渐近线,所以直线AB 与双曲线没有交点,故C 错误;对于选项D :4k =,94AB k =,则97:44AB y x =-,联立方程22974419y x y x ⎧=-⎪⎪⎨⎪-=⎪⎩,消去y 得2631261930x x +-=,此时21264631930∆=+⨯⨯>,故直线AB 与双曲线有交两个交点,故D 正确.故选D.2.(2023新高考I 卷22)在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点10,2⎛⎫⎪⎝⎭的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD的周长大于【解析】(1)设(,)P x y ,则22212x y y ⎛⎫+-= ⎪⎝⎭,故21:4W y x =+.(2)解法一:不妨设三个顶点,,A B C 在抛物线214y x =+上,且AB BC ⊥,显然,AB BC 的斜率存在且不为0,令222111,,,,,444A a a B b b C c c ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则,AB BC k a b k b c =+=+,1AB BC k k =-,即()()1a b b c ++=-,即1a b b c-+=+,本题等价于证明332AB BC +>,令||||AB BC b c m +=--=,则m b c =-+-,(未知数有,,a b c ,通过转化(放缩),将变量归一)由221ABBC kk =⋅,即()()22221AB BC k k a b b c =++=⋅,不妨设()221AB k a b =+≤,则m b c=-+-b =-+b c ≥--c ≥-()b b c =+-+1b a b=+++()3221a b a b⎡⎤⎣⎦++=+.令a b t +=,则()()1232323323222211223411332t t a b ta b tt t⎡⎤⎢⎥⎛⎫⎢⎥++⎡⎤ ⎪⎢⎥⎣⎦⎝⎭⎛⎫⨯ ⎪⎝⎭+++==≥=+⎣⎦,当212t =时取等号,又()2321t m t+≥取等时必有21t =,因此取不到等号,所以332m >.解法二:如图所示,先将第一问中的曲线下移14个单位,其表达式为2x y =.不妨设,,A B D 三点在抛物线上,再设()2,A t t 及AB 的斜率为k .由题意知AD 的斜率为1k -,因为11k k ⎛⎫⋅-= ⎪⎝⎭,故而可再使01k <≤,直线AB 的方程()2y t k x t -=-,即2y kx kt t =-+,与曲线联立可得220x kx kt t -+-=,由此可知()222222221211414412AB k x x k k kt t k k kt t k k t=+-=+--=+-+=+-同理,21112AD t k k=++,由此可知矩形ABCD 的周长ρ满足2211122122k k t t k kρ+-++=+2211122212k k t k t k k=+-+++22t t≥-+①12+2k t tk⎫-+⎪⎭1+k≥②()323222112122=2kkk k⎛⎫++⎪+⎝⎭=322k⎛⎫⎝⎭≥⨯③22⨯==.当1k=时①处取等号,当12,2k t tk-+同号时②处取等号,当212k=时③处取等号,显然三处不能同时取等号,所以矩形ABCD的周长大于.由题意得31a c a c +=⎧⎨-=⎩,解得所以椭圆的方程为24x y +(2)由题意得,直线2A A P 的方程为y =第五节圆锥曲线综合探究型问题1.(2023全国甲卷理科20)设抛物线()2:20C y px p =>,直线210x y -+=与C 交于,A B 两点,且AB =.(1)求p ;(2)设C 的焦点为F ,,M N 为抛物线C 上的两点,0MF NF ⋅=,求MNF △面积的最小值.【解析】(1)设()11,A x y ,()22,B x y ,联立直线与抛物线的方程22102x y y px -+=⎧⎨=⎩,消x 得()2221y p y =-,即2420y py p -+=,()21212168821042p p p p y y p y y p ∆⎧=-=->⎪+=⎨⎪=⎩,12AB y y ==-=,解得2p =,32p =-(舍).所以2p =.(2)解法一(向量法):由(1)知,抛物线的方程为24y x =,()1,0F ,设()33,M x y ,()44,N x y ,()233331,1,4y FM x y y ⎛⎫=-=- ⎪⎝⎭,()244441,1,4y FN x y y ⎛⎫=-=- ⎪⎝⎭ ,又FM FN ⊥ 得22343411044y y y y ⎛⎫⎛⎫--+= ⎪⎪⎝⎭⎝⎭,即22223434341164y y y y y y +++=,又()()22222233434434111111111222442164MNFy y y y y y S FM FN x x ⎛⎫⎛⎫⎛⎫+=⋅=++=++=++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ △()2223434344122816y y y y y y +⎛⎫=++= ⎪⎝⎭,又22223434341164y y y y y y +++=,得()()22343444y y y y +=-,因此343442y y y y +=-,即()343442y y y y +=-或()3434420y y y y ++-=,得()434222y y y +=-或()343222y y y +=-(这一步至关重要),()24442214162MNFy S y y ⎡+⎤=⋅+⎢⎥-⎣⎦△或()23332214162y y y ⎡+⎤⋅+⎢⎥-⎣⎦.设()22214,162MNFt S t t t ⎡+⎤=⋅+∈⎢⎥-⎣⎦R△()()22222214148181822442424242t t t t t t t t ⎛⎫⎛⎫+-+⎡⎤⎡⎤===-++=-+- ⎪ ⎪⎢⎥⎢⎥----⎣⎦⎣⎦⎝⎭⎝⎭.又()822t t -+-()822t t-+--则()(214434MNF S =-△(当且仅当2t -=时,即32t y =-=时取最小值).解法二(极坐标法):如图所示,设MF 与x 轴正半轴的夹角为θ,则有21cos MF θ=-,21sin NF θ=+,从而有()()()221cos 1sin 1sin cos sin cos MNF S θθθθθθ==-++--△()()()(22224443111112t t t ===-++++-.其中sin cos 4t θθθπ⎛⎫=-=- ⎪⎝⎭,显然当且仅当4θ3π=,即4MFO π∠=时取等号.2.(2023全国甲卷文科21)设抛物线()2:20C y px p =>,直线210x y -+=与C 交于,A B两点,且AB =.(1)求p ;(2)设C 的焦点为F ,,M N 为抛物线C 上的两点,0MF NF ⋅=,求MNF △面积的最小值.【解析】设()11,A x y ,()22,B x y ,联立直线与抛物线的方程22102x y y px-+=⎧⎨=⎩,消x 得()2221y p y =-,即2420y py p -+=,()21212168821042p p p p y y p y y p ∆⎧=-=->⎪+=⎨⎪=⎩,12AB y ==-==,解得2p =,32p =-(舍).所以2p =.(2)解法一:由(1)知,抛物线的方程为24y x =,()1,0F ,设()33,M x y ,()44,N x y ,()233331,1,4y FM x y y ⎛⎫=-=- ⎪⎝⎭ ,()244441,1,4y FN x y y ⎛⎫=-=- ⎪⎝⎭ ,又FM FN ⊥ 得22343411044y y y y ⎛⎫⎛⎫--+= ⎪⎪⎝⎭⎝⎭,即22223434341164y y y y y y +++=.又()()22222233434434111111111222442164MNFy y y y y y S FM FN x x ⎛⎫⎛⎫⎛⎫+=⋅==++=++=++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ △()2223434344122816y y y y y y +⎛⎫=++= ⎪⎝⎭,又22223434341164y y y y y y +++=,得()()22343444y y y y +=-,因此343442y y y y +=-,即()343442y y y y +=-或()3434420y y y y ++-=,得()434222y y y +=-或()343222y y y +=-(这一步至关重要),()24442214162MNFy S y y ⎡+⎤=⋅+⎢⎥-⎣⎦△或()23332214162y y y ⎡+⎤⋅+⎢⎥-⎣⎦.设()22214,162MNFt S t t t ⎡+⎤=⋅+∈⎢⎥-⎣⎦R △()()22222214148181822442424242t t t t t t t t ⎛⎫⎛⎫+-+⎡⎤⎡⎤===-++=-+- ⎪ ⎪⎢⎥⎢⎥----⎣⎦⎣⎦⎝⎭⎝⎭.又()822t t -+-()822t t-+--则()(214434MNFS-=-△2t -=时,即32t y =-=时取最小值).解法二(极坐标):如图所示,设MF 与x 轴正半轴的夹角为θ,则有22,1cos 1sin MF NF θθ==-+,从而有()()()221cos 1sin 1sin cos sin cos MNF S θθθθθθ==-++--△()()()(22224443111112t t t ===-++++-.其中sin cos 4t θθθπ⎛⎫=-=- ⎪⎝⎭,显然当且仅当4MFO π∠=时取等号.3.(2023全国乙卷理科20,文科21)已知椭圆()2222:10y x C a b a b+=>>的离心率为3,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,求证:线段MN 中点为定点.【解析】(1)依题意,2b =,3c e a ==,则2224b a c =-=,得3a =,c =,曲线C 的方程为22194y x +=.(2)设()11,P x y ,()22,Q x y ,直线():32PQ y k x -=+,()11:22y AP y x x =++,令0x =,得1122M yy x =+,()22:22y AQ y x x =++,令0x =,得2222N yy x =+.MN 的中点坐标为12120,22y y x x ⎛⎫+ ⎪++⎝⎭,联立直线PQ 的方程和椭圆方程得()22239436y k x x y ⎧=++⎪⎨+=⎪⎩,消y 建立关于x 的一元二次方程,()229423360x k x +⎡++⎤-=⎣⎦,即()()222249162416480k x k k x k k +++++=,21222122162449164849k kx x k k k x x k ⎧++=-⎪⎪+⎨+⎪=⎪+⎩,又()()121212121223231123222222k x k x y y k x x x x x x ++++⎛⎫+=+=++ ⎪++++++⎝⎭()2221222121222162416364492323164832482444949k k k x x k k k k k k k x x x x k k --+++++=+⋅=+⋅+++++-+++3=.所以线段MN 过定点()0,3.【评注】本题为2022全国乙卷的变式题,难度有所降低,考查仍为极点、极线的性质,定点()0,3为()2,3P -关于椭圆22194y x +=的极线123x y +=-与y 轴的交点.本题以椭圆中极点极线理论的射影不变性为命题背景,考查椭圆中对称式的计算方法,要求考生具有较强的计算能力.除此之外,如果考生具有先猜再证的解题意识,本题中的定点可以通过极限思想进行猜想.4.(2023新高考II 卷21)已知双曲线C的中心为坐标原点,左焦点为()-.(1)求C 的方程;(2)记C 的左、右顶点分别为1A ,2A ,过点()4,0-的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于点P ,求证:点P 在定直线上.【解析】(1)设双曲线方程为()22221,0x y a b a b-=>,且22220c a b =+=.又c e a a===,得2a =,因为c =,所以4b =,因此双曲线的方程为221416x y -=.(2)(设点设线).设()()1122,,,M x y N x y ,:4MN x ty =-.由(1)可得,()()122,0,2,0A A -,则()111:22y MA y x x =++,()222:22yNA y x x =--.联立12,MA NA 的方程,消y 得()()12122222y yx x x x +=-+-,即2121122212112122222266y x y ty ty y y x x x y ty y ty y y +--+=⋅=⋅=----.联立MN 的方程与双曲线221416x y -=,得224416x ty x y =-⎧⎨-=⎩,消x 得()224416ty y --=,即()224132480t y ty --+=.由韦达定理()()221221223244148032414841t t t y y t y y t ∆⎧=---⨯>⎪⎪⎪+=⎨-⎪⎪=⎪-⎩(非对称结构处理).()12122483412t ty y y y t ==+-,则()()1221212112331221222393236222y y y y y x x y y yy y +--+===--+--+,得1x =-.因此点P 在定直线1x =-上.5.(2023北京卷19)已知椭圆()2222:10x y E a b a b +=>>的离心率为53,,A C 分别是E 的上、下顶点,,B D分别是E 的左、右顶点,4AC =.(1)求椭圆E 的方程;(2)点P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线AP 与直线2y =-交于点N .求证://MN CD .【分析】(1)结合题意得到c a =24b =,再结合222a c b -=,解之即可;(2)依题意求得直线BC 、PD 与PA 的方程,从而求得点,M N 的坐标,进而求得MN k ,再根据题意求得CD k ,得到MN CD k k =,由此得解.【解析】(1)依题意,得53c e a ==,则53c a =,又,A C 分别为椭圆上下顶点,4AC =,所以24b =,即2b =,所以2224a c b -==,即22254499a a a -==,则29a =,所以椭圆E 的方程为22194x y +=.(2)因为椭圆E 的方程为22194x y +=,所以()()()()0,2,0,2,3,0,3,0A C B D --,因为P 为第一象限E 上的动点,设()(),03,02P m n m n <<<<,则22194m n +=,易得022303BC k +==---,则直线BC 的方程为223y x =--,033PD n n k m m -==--,则直线PD 的方程为()33n y x m =--,联立()22333y x n y x m ⎧=--⎪⎪⎨⎪=-⎪-⎩,解得()332632612326n m x n m n y n m ⎧-+=⎪⎪+-⎨-⎪=⎪+-⎩,即()332612,326326n m n M n m n m ⎛-+⎫- ⎪+-+-⎝⎭,而220PA n n k m m --==-,则直线PA 的方程为22n y x m-=+,令=2y -,则222n x m --=+,解得42m x n -=-,即4,22m N n -⎛⎫- ⎪-⎝⎭,又22194m n +=,则22994n m =-,2287218m n =-,所以()()()()()()12264122326332696182432643262MN n n m n n m k n m n m n m n m m n m n -+-+--+-==-+-+-++---+--222222648246482498612369612367218n mn m n mn m n m mn m n m n n m -+-+-+-+==++---++--()()22222324126482429612363332412n mn m n mn m n mn m n mn m -+-+-+-+===-+-+-+-+,又022303CD k +==-,即MN CD k k =,显然,MN 与CD 不重合,所以//MN CD .第六节平面几何性质在圆锥曲线中的应用1.(2023全国甲卷理科12)已知椭圆22196x y +=,12,F F 为两个焦点,O 为原点,P 为椭圆上一点,123cos 5F PF ∠=,则OP =()A.25C.35【解析】因为1226PF PF a +==①,22212121122cos PF PF PF PF F PF F F +-⋅∠=,即2212126125PF PF PF PF +-⋅=②,联立①②,解得12152PF PF ⋅=,221221PF PF +=.由中线定理可知,()()222212122242OP F F PF PF +=+=,而12F F =,解得302OP =.故选B.2.(2023新高考II 卷10)设O为坐标原点,直线)1y x =-过抛物线()2:20C y px p =>的焦点,且与C 交于,M N 两点,l 为C 的准线,则()A .2p =B .83MN =C .以MN 为直径的圆与l 相切D .OMN △为等腰三角形【解析】由题意可得焦点为()1,0F ,所以12p =,2p =,A 正确;联立)214y x y x⎧=-⎪⎨=⎪⎩,消y 得231030x x -+=.设()()1122,,,M x y N x y ,由韦达定理得12103x x +=,所以12163MN MF NF x x p =+=++=,B 错误;设MN 的中点为Q ,分别过,,M N Q 向l 作垂线,垂足分别为111,,M N Q ,由梯形中位线性质及抛物线定义可得,()()111111222QQ MM NN MF NF MN r =+=+==,所以以MN 为直径的圆与准线l 相切,C 正确;由上述解题过程知,231030x x -+=,解得121,33x x ==,从而(1,3,3M N ⎛- ⎝⎭,易得OM ON MN ≠≠,OMN △不是等腰三角形,D 错误.综上,故选AC.。

历年高考数学圆锥曲线试题汇总

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线一、选择题1.设双曲线22221x y ab(a >0,b >0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率等于( C )(A )3(B )2 (C )5(D )62.已知椭圆22:12xC y的右焦点为F ,右准线为l ,点A l ,线段AF 交C 于点B ,若3FAFB ,则||AF =(A).2(B). 2 (C).3(D). 33.过双曲线22221(0,0)x y abab的右顶点A 作斜率为1的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12ABBC ,则双曲线的离心率是()A .2B .3C .5D .104.已知椭圆22221(0)x y abab的左焦点为F ,右顶点为A ,点B 在椭圆上,且BFx 轴,直线AB 交y 轴于点P .若2APPB ,则椭圆的离心率是()A .32B .22C .13D .125.点P 在直线:1l y x 上,若存在过P 的直线交抛物线2yx 于,A B 两点,且|||PA AB ,则称点P 为“点”,那么下列结论中正确的是()A .直线l 上的所有点都是“点”B .直线l 上仅有有限个点是“点”C .直线l 上的所有点都不是“点”D .直线l 上有无穷多个点(点不是所有的点)是“点”6.设双曲线12222by ax 的一条渐近线与抛物线y=x2+1 只有一个公共点,则双曲线的离心率为( ).A.45 B. 5 C.25 D.57.设斜率为2的直线l 过抛物线2(0)yax a 的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为().A.24yx B.28yx C. 24yx D. 28yx8.双曲线13622yx的渐近线与圆)0()3(222rr yx相切,则r=(A )3(B )2 (C )3 (D )69.已知直线)0)(2(kx k y 与抛物线C:x y82相交A 、B 两点,F 为C 的焦点。

(完整版)历年圆锥曲线高考题(带答案)

(完整版)历年圆锥曲线高考题(带答案)

历年高考圆锥曲线2000年:(10)过原点的直线与圆相切,若切点在第三象限,则该直03422=+++x y x 线的方程是( )(A ) (B ) (C )(D )x y 3=x y 3-=x 33x 33-(11)过抛物线的焦点F 作一条直线交抛物线于P 、Q 两点,若线()02>=a ax y段PF 与FQ 的长分别是、,则等于( )p q qp 11+(A )(B )(C ) (D )a 2a21a 4a4(14)椭圆的焦点为、,点P 为其上的动点,当为钝角14922=+y x 1F 2F 21PF F ∠ 时,点P 横坐标的取值范围是________。

(22)(本小题满分14分)如图,已知梯形ABCD 中,点E 分有向线段所成的比为,CD AB 2=AC λ双曲线过C 、D 、E 三点,且以A 、B 为焦点。

当时,求双曲线离心率4332≤≤λ的取值范围。

e 2004年3.过点(-1,3)且垂直于直线的直线方程为( )032=+-y x A .B .C .D .12=-+y x 052=-+y x 052=-+y x 072=+-y x 8.已知圆C 的半径为2,圆心在轴的正半轴上,直线与圆C 相切,则圆x 0443=++y x C 的方程为( )A .B .03222=--+x y x 0422=++x y x C .D .3222=-++x y x 0422=-+x y x 8.(理工类)已知椭圆的中心在原点,离心率,且它的一个焦点与抛物线21=e 的焦点重合,x y 42-= 则此椭圆方程为( )A .B .13422=+y x 16822=+y x C .D .1222=+y x 1422=+y x 22.(本小题满分14分)双曲线的焦距为2c ,直线过点(a ,0)和(0,b ),且点)0,1(12222>>=-b a by a x l (1,0)到直线的距离与点(-1,0)到直线的距离之和求双曲线的离心率e l l .54c s ≥的取值范围.2005年:9.已知双曲线的焦点为,点在双曲线上且则点1222=-y x 12,F F M 120,MF MF ⋅= 到M 轴的距离为(x )A .B .CD435310.设椭圆的两个焦点分别为过作椭圆长轴的垂线交椭圆于点P ,若△为12,,F F 2F 12F PF等腰直角三角形,则椭圆的离心率是()A B C .D 2121、(理工类)(本小题满分12分)设,两点在抛物线上,是的垂直平分线。

历年高考圆锥曲线试题归纳.doc

历年高考圆锥曲线试题归纳.doc

全国历年髙考圆锥曲线试题2010 文(5)中心在原点,焦点在X 轴上的双曲线的-•条渐近线经过点(4,2),则它的离心率为(A) V6⑹厉(c)¥(D)T(20)(本小题满分12分)设F| ,佗分别是椭圆E :F+gj (0<b< 1)的左、右焦点,过倂的直线/与E 相交于A 、B 两点,且\AF 2\f \AB\f \BF 2\成等差数列。

(I )求|AB|(II)若直线I 的斜率为1,求b 的值。

2010 理(12)已知双曲线E 的屮心为原点,P(3,0)是E 的焦点,过F 的直线/与E 相交于A, B 两点,且AB 的中点为/V(-12,-15),则E 的方程式为(20)(本小题满分12分)设件巧分别是椭圆E:〔 + — = l(d>b>0)的左、右焦点,过斥斜率为1的直线i cr Zr 与E 相交于A,B 两点,且\AF 2\]AB\]BF 2\成等差数列。

(1)求E 的离心率;(2)设点卩(0,-1)满足|PA| = |PB|,求E 的方程 2011 文 X 2 y 24.椭圆 -- F -— = 1的离心率为16 8 ,1 1 , V3 yf232327y4 522X y5 4⑻1(D) 19•己知直线/过抛物线C 的焦点,且与C 的对称轴垂直./与C 交于A,B 两点,AB =12, P为C的准线上一点,则4ABP的面积为A.18B. 24C. 36D. 4820.(本小题满分12分)在平面直角坐标系兀oy中,曲线y = X2-6%+1与坐标轴的交点都在圆C上(I )求圆C的方程;(II)若圆C与直线x-y^a = 0交与A, B两点,且0A丄0B,求a的值.2011理(7)设直线力过双曲线C的一个焦点,且与C的一条对称轴垂直,厶与C交于A ,Z?两点,AB\为Q的实轴长的2倍,则Q的离心率为(A)近(B) >/3 (C) 2 (D) 3注:基本量之间的关系,方程的列出,离心率的求法(14)在平面直角坐标系中,椭圆C的中心为原点,焦点斥,鬥在兀轴上,离心率为V3。

(完整版)全国卷高考数学圆锥曲线大题集大全,推荐文档

(完整版)全国卷高考数学圆锥曲线大题集大全,推荐文档

高考二轮复习专项:圆锥曲线大题集1.如图,直线 l1与l2是同一平面内两条互相垂直的直线,交点是 A,点 B、D 在直线 l1上(B、D 位于点 A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是 N,且|BN|=2|DM|.(Ⅰ) 建立适当的坐标系,求动点 M 的轨迹 C 的方程.(Ⅱ)过点 D 且不与 l1、l2垂直的直线 l 交(Ⅰ)中的轨迹 C 于E、F 两点;另外平面上的点G、H 满足:①AG =AD(∈ R); ②GE +GF ③求点 G 的横坐标的取值范围.e =2.设椭圆的中心是坐标原点,焦点在x 轴上,离心率上的点的最远距离是 4,求这个椭圆的方程. ,已知点P(0,3) 到这个椭圆x 2 y 2 253.已知椭圆C1 :2+2= 1(a >b > 0) x =的一条准线方程是,4 其左、右顶点分别3l2MA D NB l1a b是A、B;双曲线x 2 y 2C2 :a 2-b 2= 1的一条渐近线方程为 3x-5y=0.(Ⅰ)求椭圆 C1的方程及双曲线 C2的离心率;(Ⅱ)在第一象限内取双曲线C2上一点P,连结AP 交椭圆C1于点M,连结PB 并延长交椭圆C1于点 N,若 AM =MP . 求证: MN •AB = 0.4.椭圆的中心在坐标原点 O,右焦点 F(c,0)到相应准线的距离为 1,倾斜角为45°的直线交椭圆于 A,B 两点.设 AB 中点为 M,直线 AB 与OM 的夹角为 a.(1)用半焦距 c 表示椭圆的方程及 tan;(2)若2<tan<3,求椭圆率心率 e 的取值范围.x2 +y2 e =65.已知椭圆a2b2 (a>b>0)的离心率 3 ,过点 A(0,-b)和 B(a,0)的直3线与原点的距离为2(1)求椭圆的方程(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C D 两点问:是否存在k 的值,使以CD 为直径的圆过E 点?请说明理由6. 在直角坐标平面中, ∆ABC 的两个顶点 A , B 的坐标分别为 A (-1,0) , B (1,0) ,平面内两点G , M 同时满足下列条件:① GA + GB + GC = 0 ;② == ;③ GM ∥ AB (1) 求∆ABC 的顶点C 的轨迹方程; (2) 过点P (3,0) 的直线l 与(1)中轨迹交于 E , F 两点,求 PE ⋅ PF 的取值范围x , y ∈ Ri , j7.设,为直角坐标平面内 x 轴.y 轴正方向上的单位向量,若= a = xi + ( y + 2) j , bxi + ( y - 2) j | a ,且 | +| b |= 8 (Ⅰ)求动点 M(x,y)的轨迹 C 的方程;(Ⅱ)设曲线 C 上两点 A .B ,满足(1)直线 AB 过点(0,3),(2)若OP = OA + OB ,则 OAPB为矩形,试求 AB 方程.yD CEAO A 1 xD 1C 1y 2= m (x + n ),(m ≠ 0, n > 0) 8. 已知抛物线 C :的焦点为原点,C 的准线与直线l : kx - y + 2k = 0(k ≠ 0) 的交点 M 在x 轴上, l 与 C 交于不同的两点 A 、B ,线段 AB 的垂直平分线交 x 轴于点 N (p ,0).(Ⅰ)求抛物线 C 的方程; (Ⅱ)求实数 p 的取值范围;(Ⅲ)若 C 的焦点和准线为椭圆 Q 的一个焦点和一条准线,试求 Q 的短轴的端点的轨迹方程.9. 如图,椭圆的中心在原点,长轴 AA 1 在x 轴上.以 A 、A 1 为焦点的双曲线交椭圆于1 AE =C 、D 、D 1、C 1 四点,且|CD|= 2 |AA 1|.椭圆的一条弦 AC 交双曲线于E ,设 EC ,当 2 ≤ ≤ 334 时,求双曲线的离心率 e 的取值范围.4x 2+ 5 y =2 80 10. 已知三角形 ABC 的三个顶点均在椭圆点(点 A 在 y 轴正半轴上).上,且点 A 是椭圆短轴的一个端 若三角形 ABC 的重心是椭圆的右焦点,试求直线 BC 的方程; 若角 A 为900,AD 垂直 BC 于 D ,试求点 D 的轨迹方程.x 2 = 4 yP (0, m ) (m > 0)11.如图,过抛物线的对称轴上任一点作直线与抛物线交于A ,B 两点,点Q 是点 P 关于原点的对称点.(1) 设点 P 分有向线段 AB 所成的比为,证明:QP ⊥ (QA -QB ) ;(2) 设直线 AB 的方程是 x - 2 y +12 = 0 ,过 A , B 两点的圆C 与抛物线在点 A 处有共同的切线,求圆C 的方程.1 +p 2 p12. 已知动点 P (p ,-1),Q (p , 2 ),过 Q 作斜率为 2 的直线 l ,P Q 中点 M 的轨迹为曲线 C.(1) 证明:l 经过一个定点而且与曲线 C 一定有两个公共点; (2) 若(1)中的其中一个公共点为 A ,证明:AP 是曲线 C 的切线; (3) 设直线 AP 的倾斜角为,AP 与l 的夹角为,证明:+ 或- 是定值.7 3 113.在平面直角坐标系内有两个定点F 1、F 2 和动点 P , F 1、F 2 坐标分别为 F 1 (-1,0) 、| PF 1 | =F 2 (1,0) ,动点 P 满足| PF 2 | 2 ,动点 P 的轨迹为曲线C ,曲线C 关于直线 y = x 的对称曲线为曲线C ' ,直线 y = x + m - 3 与曲线C' 交于 A 、B 两点,O 是坐标原点,△ABO 的 面积为 ,(1)求曲线 C 的方程;(2)求m 的值。

圆锥曲线历年高考题(整理)附答案

圆锥曲线历年高考题(整理)附答案

圆锥曲线历年高考题(整理)附答案数学圆锥曲线测试高考题一、选择题:1.(2006全国II)已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一条渐近线方程为$y=x$,则双曲线的离心率为()。

A。

$\frac{\sqrt{2}}{2}$ B。

$\frac{\sqrt{3}}{2}$ C。

$\frac{\sqrt{5}}{2}$ D。

$\frac{\sqrt{7}}{2}$2.(2006全国II)已知$\triangle ABC$的顶点B、C在椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则$\triangle ABC$的周长是()。

A。

2.B。

3.C。

4.D。

63.(2006全国卷I)抛物线$y=-x^2$上的点到直线$4x+3y-8=0$的距离的最小值是()。

A。

2.B。

$\frac{4}{3}$。

C。

$\sqrt{2}$。

D。

$\sqrt{3}$4.(2006广东高考卷)已知双曲线$3x^2-y^2=9$,则双曲线右支上的点P到右焦点的距离与点P到右准线的距离之比等于()。

A。

2.B。

$\frac{1}{2}$。

C。

$\sqrt{2}$。

D。

45.(2006辽宁卷)方程$2x^2-5x+2=0$的两个根可分别作为()。

A。

一椭圆和一双曲线的离心率B。

两抛物线的离心率C。

一椭圆和一抛物线的离心率 D。

两椭圆的离心率6.(2006辽宁卷)曲线$\frac{x^2}{m}+\frac{y^2}{6-m}=1(m<6)$与曲线$\frac{x^2}{5}+\frac{y^2}{m-4}=1(5<m<9)$的()。

A。

焦距相等。

B。

离心率相等。

C。

焦点相同。

D。

准线相同7.(2006安徽高考卷)若抛物线$y=2px$的焦点与椭圆$\frac{x^2}{4}+\frac{y^2}{9}=1$的右焦点重合,则p的值为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学试题分类详解——圆锥曲线一、选择题1.设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C )(A )3 (B )2 (C )5 (D )62.已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF =(A).2 (B). 2 (C).3 (D). 33.过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 ( )A .2B .3C .5D .104.已知椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( )A .32 B .22 C .13 D .125.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2y x =于,A B 两点,且|||PA AB =,则称点P 为“点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“点”D .直线l 上有无穷多个点(点不是所有的点)是“点”6.设双曲线12222=-by a x 的一条渐近线与抛物线y=x 2+1 只有一个公共点,则双曲线的离心率为( ).A.45B. 5C. 25D.57.设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)A.24y x =±B.28y x =±C. 24y x = D. 28y x =8.双曲线13622=-y x 的渐近线与圆)0()3(222>=+-r r y x 相切,则r= (A )3 (B )2 (C )3 (D )69.已知直线)0)(2(>+=k x k y 与抛物线C:x y 82=相交A 、B 两点,F 为C 的焦点。

若FB FA 2=,则k=(A)31 (B)32 (C)32 (D)32210.下列曲线中离心率为62的是(A )22124x y -= (B )22142x y -= (C )22146x y -= (D )221410x y -=11.下列曲线中离心率为62的是 A. B . C . D.12.直线过点(-1,2)且与直线垂直,则的方程是 A . B. C.D.13.设1F 和2F 为双曲线22221x y a b-=(0,0a b >>)的两个焦点, 若12F F ,,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为A .32 B .2 C .52D .3 14.过椭圆22221x y a b +=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为A .22 B 3 C .12 D .1315.设双曲线)0,0(12222>>=-b a by a x 的虚轴长为2,焦距为32,则双曲线的渐近线方程为( )A x y 2±=B x y 2±=C x y 22±= D x y 21±= 16.已知双曲线22122x y -=的准线过椭圆22214x y b+=的焦点,则直线2y kx =+与椭圆至多有一个交点的充要条件是A. 11,22K ⎡⎤∈-⎢⎥⎣⎦ B. 11,,22K ⎛⎤⎡⎫∈-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭C. ,22K ⎡∈-⎢⎣⎦D. 2,,22K ⎛⎡⎫∈-∞-+∞ ⎪⎢ ⎪⎝⎦⎣⎭17.已知双曲线)0(12222>=-b b y x 的左、右焦点分别是1F 、2F ,其一条渐近线方程为x y =,点),3(0y P 在双曲线上.则1PF ·2PF =A. -12B. -2C. 0D. 418.已知直线()()20y k x k =+>与抛物线2:8C y x =相交于A B 、两点,F 为C 的焦点,若||2||FA FB =,则k =A.13 C. 23D.19.已知双曲线()222210,0x y C a b a b-=>>:的右焦点为F ,过F 的直线交C 于A B 、两点,若4AF FB =,则C 的离心率为A .65 B. 75 C. 58 D. 9520.抛物线28y x =-的焦点坐标是【 】A .(2,0)B .(- 2,0)C .(4,0)D .(- 4,0)21.已知圆C 与直线x -y =0 及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为 (A )22(1)(1)2x y ++-= (B) 22(1)(1)2x y -++= (C) 22(1)(1)2x y -+-= (D) 22(1)(1)2x y +++=22.双曲线24x -212y =1的焦点到渐近线的距离为(A ) (B )2 (C (D )124.过原点且倾斜角为60︒的直线被圆学2240x y y +-=所截得的弦长为 (A )3 (B )2 (C )6(D )2325.“0m n >>”是“方程221mx ny +=”表示焦点在y 轴上的椭圆”的(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D) 既不充分也不必要条件26.已知双曲线)0(12222>=-b b y x 的左、右焦点分别是1F 、2F ,其一条渐近线方程为x y =,点),3(0y P 在双曲线上.则1PF ·2PF =A. -12B. -2C. 0D. 427.设双曲线()222200x y a b a b-=1>,>的渐近线与抛物线21y =x +相切,则该双曲线的离心率等于 (A 3 (B )2 (C 5 (D 628.已知椭圆22:12x C y +=的右焦点为F,右准线l ,点A l ∈,线段AF 交C 于点B 。

若3FA FB =,则AF =(A)2 (B) 2 (C)3 (D) 329.已知双曲线1412222222=+=-b y x y x 的准线经过椭圆(b >0)的焦点,则b=A.3B.5C.3D.230.设抛物线2y =2x 的焦点为F ,过点M 3,0)的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于C ,BF =2,则∆BCF 与∆ACF 的面积之比BCFACFS S ∆∆= (A )45 (B )23 (C )47 (D )1231.已知双曲线2221(0)2x y b b-=>的左右焦点分别为12,F F ,其一条渐近线方程为y x =,点0(3,)P y 在该双曲线上,则12PF PF •=A. 12-B. 2- C .0 D. 432.已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是33.已知圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为 (A )2(2)x ++2(2)y -=1 (B )2(2)x -+2(2)y +=1 (C )2(2)x ++2(2)y +=1 (D )2(2)x -+2(2)y -=134.若双曲线()222213x y a o a -=>的离心率为2,则a 等于A. 2B.3 C.32D. 1 35.直线1y x =+与圆221x y +=的位置关系为( ) A .相切 B .相交但直线不过圆心 C .直线过圆心D .相离36.已知以4T =为周期的函数21,(1,1]()12,(1,3]m x x f x x x ⎧-∈-⎪=⎨--∈⎪⎩,其中0m >。

若方程3()f x x =恰有5个实数解,则m 的取值范围为( )A .158(,)33B .15(,7)3C .48(,)33D .4(,7)337.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .22(2)1x y +-= B .22(2)1x y ++= C .22(1)(3)1x y -+-=D .22(3)1x y +-=38.过圆22(1)(1)1C x y -+-=:的圆心,作直线分别交x 、y 正半轴于点A 、B ,AOB∆被圆分成四部分(如图),若这四部分图形面积满足|||,S S S S I ∏+=+则直线AB 有( ) (A ) 0条 (B ) 1条 (C ) 2条 (D ) 3条二、填空题1.若⊙221:5O x y +=与⊙222:()20()O x m y m R -+=∈相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是 w2.若直线m 被两平行线12:10:30l x y l x y -+=-+=与所截得的线段的长为22,则m 的倾斜角可以是 ①15 ②30 ③45 ④60 ⑤75其中正确答案的序号是 .(写出所有正确答案的序号)3.若圆224x y +=与圆22260x y ay ++-=(a>0)的公共弦的长为3,则=a ___________ 。

4.过原点O 作圆x 2+y 2--6x -8y +20=0的两条切线,设切点分别为P 、Q ,则线段PQ 的长为 。

5.已知椭圆22221(0)x y a b a b +=>>的左、右焦点分别为12(,0),(,0)F c F c -,若椭圆上存在一点P 使1221sin sin a c PF F PF F =,则该椭圆的离心率的取值范围为 .6.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12(,0),(,0)F c F c -,若双曲线上存在一点P 使1221sin sin PF F aPF F c=,则该双曲线的离心率的取值范围是 .7.椭圆22192x y +=的焦点为12,F F ,点P 在椭圆上,若1||4PF =,则2||PF = ;12F PF ∠的大小为 .8.设()f x 是偶函数,若曲线()y f x =在点(1,(1))f 处的切线的斜率为1,则该曲线在(1,(1))f --处的切线的斜率为_________.9.椭圆22192x y +=的焦点为12,F F ,点P 在椭圆上,若1||4PF =,则2||PF =_________;12F PF ∠的小大为__________.10.如图,在平面直角坐标系xoy 中,1212,,,A A B B 为椭圆22221(0)x y a b a b+=>>的四个顶点,F 为其右焦点,直线12A B 与直线1B F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为 .11.已知圆O :522=+y x 和点A (1,2),则过A 且与圆O 相切的直线与两坐标轴围成的三角形的面积等于12.巳知椭圆G 的中心在坐标原点,长轴在x轴上,离心率为2,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为 .13.以点(2,1-)为圆心且与直线6x y +=相切的圆的方程是 .14.若圆422=+y x 与圆)0(06222>=-++a ay y x 的公共弦长为32,则a=________.15.抛物线24y x =的焦点到准线的距离是 .16.过双曲线C :22221x y a b-=(0,0)a b >>的一个焦点作圆222x y a +=的两条切线,切点分别为A ,B ,若120AOB ∠=(O 是坐标原点),则双曲线线C 的离心率为2点,若线段AB 的长为8,则p =________________18.以知F 是双曲线221412x y -=的左焦点,(1,4),A P 是双曲线右支上的动点,则PF PA +的最小值为 。

相关文档
最新文档