等积变换经典例题
等积变形专项练习
等积变形专项练习
1。
在一个底面积是31.4平方厘米的长方体玻璃容器中,有一个底面半径是1厘米的圆锥形铝块完全浸在水中,当从水中取出铝块时,容器的水面下降了0。
2厘米。
这个圆锥形铝块高多少厘米?
2。
用半径10cm高7cm的圆柱形泥巴揉成半径一样大的圆锥形,圆锥的高是多少厘米呢?
3.一个圆柱形的水桶,内部的底面半径是20厘米,高是45厘米,里面盛有30厘米深的水。
将一个底面半径是15厘米的圆锥形铁块完全沉进水里,水不溢出,水面上升了3厘米,圆锥形铁块的高是多少?
4.有一段钢可做一个底面直径8厘米,高9厘米的圆柱形零件.如果把它改制成高是12厘米的圆锥形零件,零件的底面积是多少平方厘米?
5。
一个圆柱形容器的底面半径是4分米,高6分米,里面盛满水,把水倒在棱长是8分米的正方体容器中,水深多少分米?
6.将一个底面直径是20厘米、高是9厘米的金属圆锥,全部浸没在直径是40厘米的圆柱形水槽中且水未溢出。
水槽中的水面会升高多少厘米?
7。
把一个长2米的圆柱截去4分米后,原来的表面积就减少了25.12平方分米,原来圆柱的体积是多少立方分米?
8。
在一个底面是边长为2分米的正方形的长方形水槽中,放入一块青铜(完全浸没在水中),水面上升1分米且水未溢出.(水槽厚度忽略不计)
(1)求这块青铜的体积.
(2)如果把这块青铜铸成一个底面直径是2分米的圆柱,它的高是多少?(得数保留一位小数)
9.(拓展)在一个圆柱形储水桶里,把一段半径是5cm的圆钢全部放入水中,水面就上升9cm;把圆钢竖着拉出水面8cm长后,水面就下降4cm。
求圆钢的体积。
等积变形练习题
等积变形练习题等积变形是一种在数学中常见的概念,它涉及到图形或物体形态的变化,同时保持其面积或体积不变。
通过等积变形,我们可以研究图形之间的关系以及解决一些复杂的数学问题。
本文将介绍一些常见的等积变形练习题,帮助读者加深对等积变形的理解与应用。
1. 矩形的等积变形假设有一片固定面积的矩形,在等积变形的过程中,我们可以改变矩形的长和宽,但保持面积不变。
那么问题来了:在固定面积条件下,矩形的长和宽的关系是怎样的?解答:设矩形的长为x,宽为y,由题意可知xy=常数。
我们可以通过解方程的方法来找出x和y的关系。
将这个方程改写为y=常数/x的形式,其中常数为C。
这意味着y和x成反比例关系,当x增大时,y会减小;当x减小时,y会增大。
这样我们就找到了矩形的等积变形规律。
2. 圆的等积变形与矩形不同,圆的等积变形是指在保持圆的面积不变的情况下改变圆的半径。
现在考虑一个具体的例子:题目:一个圆的半径为r,它的面积为S。
将该圆按照一定的方式等面积地变形成一个新的圆,新的圆的半径为r'。
请问,r'与r之间的关系是怎样的?解答:圆的面积公式为S=πr²,保持面积不变意味着S=πr²=π(r')²。
将这个方程进行变形,可以得到r' = √(S/π)。
也就是说,在等积变形的过程中,圆的半径与原来的半径r之间的关系是r' = √(r²S/S'),其中S'是新圆的面积。
3. 立方体的等积变形对于一个正立方体,它的体积可以通过边长的立方来计算。
在等积变形中,我们可以改变立方体的边长,但保持体积不变。
接下来让我们看一个例子:题目:一个正立方体的边长为a,它的体积为V。
将该立方体等面积地变形成一个新的立方体,新的立方体的边长为b。
请问,b与a之间的关系是怎样的?解答:立方体的体积公式为V=a³,保持体积不变意味着a³=b³。
【小升初专项训练】04 等积变形
第5讲等积变形第一关三角形的等积变形【例1】如图,在等腰直角三角形ABC中,已知AB的长是7厘米,那么这个直角三角形的面积为 平方厘米。
【答案】12.25【例2】如图,E、F分别是梯形ABCD两腰上的中点,已知阴影部分的面积是43c㎡,那么梯形ABCD 的面积是多少?【答案】172【例3】如图:三条直线互相平行,l1与l3之间的距离是7厘米,l2上AB=4厘米.求阴影部分三角形的面积是多少平方厘米? 【答案】14【例4】你能看出下面两个阴影部分A与B面积的大小关系吗?(两个长方形面积相等)【答案】A与B的面积相等【例5】如图,在斜边长为20cm的直角三角形ABC中去掉一个正方形EDFB,留下两个阴影部分直角三角形AED和DFC.若AD=8cm,CD=12cm,则阴影部分面积为多少?给出答案并说明你的计算依据.【答案】48【例6】如图,在直角三角形中有一个正方形,已知BD=10厘米,DC=7厘米,阴影部分的面积是多少?【答案】35平方厘米【例7】如图,梯形ABCD的面积是36,下底长是上底长的2倍,阴影三角形的面积是多少?【答案】16【例8】下图中阴影部分甲的面积与阴影部分乙的面积哪个大?【答案】图中甲乙的面积相等【例9】如图,在三角形ABC中,D是BC上靠近C的三等分点,E是AD中点,已知三角形ABC的面积为1,那么图中两个阴影三角形面积之和是多少?【答案】0.4【例10】已知△ABC面积为5,且BD=2DC,AE=ED,求阴影部分面积.要求写出关键的解题推理过程.【答案】2【例11】如图,将一个梯形分成四个三角形,其中两个三角形的面积分别为10与12.已知梯形的上底长度是下底的.请问:阴影部分的总面积是多少?【答案】23【例12】如图,已知梯形ABCD中,CD=10,梯形ABCD的高是4,那么阴影部分的面积是多少。
【答案】20【例13】(1)如图1,阴影部分的面积是多少?(2)如图2,一个长方形长4厘米,宽3厘米.A为长方形内的任意一点,阴影部分的面积是多少?【答案】(1)100;(2)6【例14】如图,在图中△ABE、ADF和四边形AECF面积相等.阴影部分的面积是多少?【答案】15【例15】如图,两个正方形(单位:厘米)中阴影部分的面积是多少平方厘米?【答案】8【例16】由面积为1,2,3,4的矩形拼成如图的长方形,图中阴影部分的面积为多少?【答案】【例17】如图所示,正方形ABCD的对角线BD长20厘米,BDFE是长方形.那么,五边形ABEFD的面积是多少平方厘米。
小学五年级数学思维专题训练—等积变形(含答案解析)
小学五年级数学思维专题训练—等积变形例1.长方形ABCD的面积是40平方厘米,E、F、G、H分别为AD、AH、DH、BC的中点,三角形EFG的面积是平方厘米例 2.梯形ABCD中,AE与DC平行,S ABE∆=15,S BCF∆= .例3。
如下图所示,长方形ABCD内的阴影部分的面积之和为70,AB=8,AD= 15.四边EFGO 的面积为。
例4.如下图所示,在平行四边形ABCD中,已知三角形ABP.BPC的面积分别是73、100,求三角形BPD的面积.例5.如下图所示,BD是平行四边形ABCD的对角线,EF平行于BD,如果三角形ABE的面积是12平方厘米,那么三角形AFD的面积是平方厘米。
例6.如下图所示,已知AE=EC,CD=DB,S ABC =60,求四边形FDCE的面积.例7.如右图所示,正方形ABC D和正方形ECGF并排放置,BF与CD相交于点H,已知AB=6厘米,则阴影部分的面积是平方厘米.例8.如下图所示,E、F、G、H分别是四边形ABCD各边的中点,EG与FH交于点O,S1、S2、S3及S4分别表示4个小四边形的面积.试比较S1+S3与S2+S4的大小.例9.将长15厘米、宽9厘米的长方形的长和宽都分成三等份,长方形内任意一点与分点及顶点连结,如右图所示,则阴影部分的面积是 平方厘米.例10.右图所示ABCD 是个直角梯形(∠DAB=∠ABC= 900),以 , AD 为一边向外作长方形ADEF ,其面积为6.36平方厘米,连接BE 交AD 于P ,再连接PC .则图中阴影部分的面积是 平方厘米。
A.6.36B.3.18C.2.12D.1.59例11.如下图所示,平行四边形内有两个大小一样的正六边形,那么阴影部分的面积占平行四边形面积的 。
A .21B .32C .52D .125例12.如下图所示,矩形ABCD 的面积是24平方厘米,三角形ADM 与三角形BCN 的面积之和是7.8平方厘米,则四边形PMON 的面积是 平方厘米.例13.一个矩形分成4个不同的三角形(如下图),绿色三角形面积占矩形面积的15%,黄色三角形的面积是21平方厘米.问:矩形的面积是多少平方厘米?例14.如下图所示,正方形每条边上的三个点(端点除外)都是这条边的四等分点,则阴影部分的面积是正方形面积的。
等积变形例题
解 在直角三角形CDH和直角三角形EKD 中,CD=DE 又∵∠EDK=180°-∠CDH-90° ∠DCH=180°-∠CDH-90° ∴ DCH与 EDK完全相等。 而ABCD是等腰梯形
K A
E
故CH=(BC-AD) ÷2 =(35-23) ÷2
23
D F
=6(厘米) ∴DK=CH=6厘米
B
35
求绿色四边形的面积。 解 连BF,则四边形BCDF为梯形。 4 6 6 ∵S黄÷S红=6÷4=1.5 ∴S白÷S红=1.5×1.5=2.25 ∴S白=S红×2.25=4 ×2.25=9(平方厘米) ∴S绿=S白+S黄-S红 =9+6-4=11(平方厘米) 答:绿色四边形ABEF的面积为11平方厘米。
S KGE=S C D S DGE=S F G P 所以 阴影部分面积= H A B 解:14÷4=3.5(厘米) 正方形BEFG的周长=14厘米, E K
FGE BGE
正方形BEFG的面积
3.5×3.5=12.25(平方厘米) 求阴影部分面积。 答:图中阴影部分面积是 12.25平方厘米。
分析与解: 分析与解:
答:丙、丁两个三角形面 积之和是甲、乙两个三角 形面积之和的1.25倍。
分析与解:
等积变形
例5
G
F
∵∠DAB=∠GAE=90° ∴ ∠GAD+ ∠EAB =360°-90 °×2 =180°
D
A C
E
∴三角形BAE绕A点顺时针旋转, 使AB与AD重合,这时,点E落 在点H,且G,A,H在一条直线上。 ∵AG=AE=AH,三角形DAH与 三角形DAG等底同高, ∴S DAH=S DAG 答:内圈三角形石板的总面积 与外圈石板的总面积一样大。
等积变形的应用——两道赛题的解法
等积变形的应用——两道赛题的解法赛题一:给定一个三角形ABC,给定它的边长a,b,c,要求把它变形成一个等腰直角三角形,且其新的三边为x,x,y。
解题思路:由等积变形定理可知,三角形ABC与新三角形ABC满足:$$\frac{a}{\sin A} = \frac{x}{\sin A'} = \frac{x}{\sin B'} = \frac{y}{\sin C'}$$解出新的三角形边长x,y的差分方程为:$$a\cdot\sin A = x\cdot\sin B = x\cdot\sin C = y\cdot\sinA'$$解得:$$x = \frac{a \cdot \sin A}{\sin B} = \frac{a \cdot \sinA}{\sin C}$$$$y = \frac{a \cdot \sin A}{\sin A'}$$赛题二:给定一个三角形ABC,给定它的边长a,b,c,要求把它变形成一个三角形,且其新的三边为x,y,z。
解题思路:由等积变形定理可知,三角形ABC与新三角形ABC满足:$$\frac{a}{\sin A} = \frac{x}{\sin A'} = \frac{y}{\sin B'} = \frac{z}{\sin C'}$$解出新的三角形边长x,y,z的差分方程为:$$a\cdot\sin A = x\cdot\sin A' = y\cdot\sin B' = z\cdot\sin C'$$解得:$$x = \frac{a \cdot \sin A}{\sin A'}$$$$y = \frac{a \cdot \sin A}{\sin B'}$$$$z = \frac{a \cdot \sin A}{\sin C'}$$。
三角形中的等积变换
【例1】用四种不同的方法,把任意一个三角形分成四个面积相 等的三角形。
A
A
A
B
C
B
C
B
C
【例2】用三种不同的方法将任意一个三角形分成三个小三角形, 使它们的面积比为1:3:4
A
A
A
C
B
C
B
C
【例3】如图,在梯形ABCD中,AC与BD是对角线,其交点O, 求证:△AOB与△COD面积相等。
A
O
D
B
C
【例4】如图,把四边形ABCD改成一个等积的三角形。
D
A
C B
【例5】如图,已知在△ABC中,BE=3AE,CD=2AD.若△ADE 的面积为1平方厘米,求三角形ABC的面积。
A
E
D
B
C
【例6】如图,在△ABC中,BD=2AD,AG=2CG,BE=EF= FC=⅓BC,求四边形EFGD部分面积占三角形ABC面积的几分之 几?。
D
C F
A
E
B
A
D G B E F C
【例7】如图,ABCD为平行四边形,EF平行AC,如果△ADE的 面积为4平方厘米,求三角形CDF的面积。
D
C F
A
E
B
【例8】如图,四边形ABCD面积为1,且AB=AE,BC=BF, DC=CG,AD=DH,求四边形EFGH的面积。
H
C D E s1
G
s2 A
B
F
【练习】如图,三角形ABC的面积是24,D、E和F分别是。
等积变换问题
等积变换问题1、(山东烟台)如图,三个边长均为2的正方形重叠在一起,O 1、O 2是其中两个正方形的中心,则阴影部分的面积是 .2、如图,正方形ABCD 的边长为2,点E 在AB 边上.四边形EFGB 也为正方形,设△AFC 的面积为S ,则 ( )A .S=2B .S=2.4C .S=4D .S 与BE 长度有关3、(广西南宁)正方形ABCD 、正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,正方形BEFG 的边长为4,则△DEK 的面积为( ) A .10 B .12 C .14 D .164.(2011重庆綦江)如图,已知A (4,a ),B (-2,-4)是一次函数y =kx +b 的图象和反比例函数xm y 的图象的交点.(1)求反比例函数和一次函数的解析式; (2)求△AOB 的面积.5、如图,矩形OABC 的两边OA ,OC 在坐标轴上,且OC =2OA ,M ,N 分别为OA ,OC 的中点,BM 与AN 交于点E ,且四边形EMON 的面积为2,6. (2011陕西,8,3分) 如图,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数xy x y 24=-=和的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为 ( )A .3B .4C .5D .67. (2011河北,12,3分)根据图5—1所示的程序,得到了y 与x 的函数图象,过点M 作PQ ∥x 轴交图象于点P ,Q ,连接OP ,OQ.则以下结论 ①x <0时,x2y =,②△OPQ 的面积为定值, ③x >0时,y 随x 的增大而增大 ④MQ=2PM⑤∠POQ 可以等于90°图5—2图5—1PQM其中正确的结论是( )A .①②④B .②④⑤C .③④⑤D .②③⑤图1ABCPDEDC图3图4 CD图2BC E 8、如图1,在直角梯形ABCD 中,AD ∥BC ,∠B =∠A =90°,AD =a ,BC =b ,AB =c ,操作示例我们可以取直角梯形ABCD 的非直角腰CD 的中点P ,过点P 作PE ∥AB ,裁掉△PEC ,并将△PEC 拼接到△PFD 的位置,构成新的图形(如图2).思考发现 小明在操作后发现,该剪拼方法就是先将△PEC 绕点P 逆时针旋转180°到△PFD 的位置,易知PE 与PF 在同一条直线上.又因为在梯形ABCD 中,AD ∥BC ,∠C +∠ADP =180°,则∠FDP +∠ADP =180°,所以AD 和DF 在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的判定方法,可以判断出四边形ABEF 是一个平行四边形,而且还是一个特殊的平行四边形——矩形.实践探究(1)矩形ABEF 的面积是 ;(用含a ,b ,c 的式子表示) (2)类比图2的剪拼方法,请你就图3和图4的两种情形分别画出剪拼成一个平行四边形的示意图.联想拓展 小明通过探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.如图5的多边形中,AE =CD ,AE ∥CD ,能否象上面剪切方法一样沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.9、(本题10分)九年级数学兴趣小组组织了以“等积变形”为的主题的课题研究. 第一学习小组发现:如图(1),点A 、点B 在直线1l 上,点C 、点D 在直线2l 上,若1l ∥2l ,则ABD ABC S S ∆∆=;反之亦成立。
六年级数学等积变形
六年级数学等积变形1,一个盛水的圆柱形水桶,内底面周长为6028分米,当一个长方形的物体投入水中时,水面上升1分米,量得这个长方体的长为3;14分米,宽为1分米,他的高是多少?2,在长为15厘米,宽为12厘米的长方体水箱中,有10厘米深的水,现沉入一个高为10厘米的圆锥形铁块《全部浸入水中》,水面上升了2厘米,求圆锥的底面积?3,甲,乙两个圆柱体容器,底面积比为4:3,甲容器水深7厘米,以容器水深3厘米,再往两容器中各注入同样多的水,直到水深相等,这时水深多少厘米?4,一个棱长为1分米的正方体木块,从这个木块中各出一个最大的圆锥,求这个圆锥的表面积和体积?5,用一张长3米宽1米的长方形铁皮可以做成无底的圆柱形管子,此圆柱形管子的最大面积是多少?6,一个胶水瓶,它的瓶身呈圆柱形《不包括瓶颈》,容积是32;4立方厘米,当瓶子正放时,瓶内胶水深为8厘米,瓶子倒放时,空余部分为2厘米,则瓶内所装水的体积是多少?7;有A;B两个圆柱形容器,最初在容器A里装有2升水,容器B是空的。
现在往两个容器中以每分钟0;4升的流量注入水,4分钟后,两个容器的水面高度相等。
设B的底面半径为5厘米,那么A的底面直径是多少厘米?8;将一个圆柱体木块沿上下底面圆心切成四块,表面积增加48平方厘米;若将这个圆柱体切成三块小圆柱体,表面积增加50;24平方厘米。
现在把这个圆柱体木块削成一个最大的圆锥体,体积减少多少立方厘米?9;圆钢切削成一个最大的圆锥体,切削掉的部分部分重8千克,这段圆钢重多少㎏?10;棱长是4分米的立方体钢坯切削成一个最大的圆柱,这个圆柱的体积是多少立方分米?11;一个体积为60立方厘米的圆柱,削成一个最大的圆锥,这个圆锥的体积是多少立方厘米?12;一车箱是长方体,长4米,宽1;5米,高4分米,装满沙,堆成一个高5分米的圆锥,底面积多少㎡13;一个底面周长15;7m高10m的圆柱铁块,熔成一个底面积是25㎡的圆锥,圆锥的高是多少m?14;把一个体积是18㎝³的圆柱削成一个最大的圆锥,削成的圆锥体积是多少㎝³?15;正方体钢材,棱长6分米,把它削成一个最大的圆锥体零件,零件的体积是多少?。
等积变换经典例题
等积变换1、等面积图形拼接类1、小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB 的中点O 旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG .请你参考小明的做法解决下列问题:(1)现有5个形状、大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成一个平行四边形.要求:在图3中画出并指明拼接成的平行四边形(画出一个..符合条件的平行四边形即可);(2)如图4,在面积为2的平行四边形ABCD 中,点E 、F 、G 、H 分别是边AB 、 BC 、CD 、DA 的中点,分别连结AF 、BG 、CH 、DE 得到一个新的平行四边形MNPQ .请在图4中探究平行四边形MNPQ 面积的大小(画图..并直接写出结果).2、根据所给的图形解答下列问题:(1)如图1,△ABC 中,AB=AC ,∠BAC =90°,AD ⊥BC 于D ,把△ABD 绕点A旋转,图1图2图3图4并拼接成一个与△ABC 面积相等的正方形,请你在图1中完成这个作图;(2)如图2,△ABC 中,AB=AC ,∠BAC =90°,请你设计一种与(1)不同的方法,将这个三角形拆分并拼接成一个与其面积相等的正方形,画出利用这个三角形得到的正方形;(3)设计一种方法把图3中的矩形ABCD 拆分并拼接为一个与其面积相等的正方形, 请你依据此矩形画出正方形,并根据你所画的图形,证明正方形面积等于矩形ABCD 的面积的结论.A BCD图3图2图1CBAAB CD2、等分面积类问题1、请作一条直线通过割补把下面的四边形变成面积相等的三角形2、如图,一块矩形的铁皮ABCD 被割去一个小矩形部分DEFG ,剩下一个五边形ABCGFE ,请作一条直线把剩下的五边形分成面积相等的两部分BCADG E D BCFAABCDAD3、(1)请过△ABC 边BC 中点D 作一条直线平分△ABC 的面积(2)请过△ABC 边BC 中点D 外任一点P 作一条直线平分△ABC 的面积4、如图,梯形纸片ABCD 中,AD ∥BC 且AB DC.设AD=a,BC=b. 过AD 中点和BC 的中点的直线可将梯形纸片ABCD 面积分成面积相等的两部分. 请你再设计一种方法:只须用剪子剪一次将梯形纸片ABCD 分割成面积相等的二部分,画出设计的图形并简要说明你的分割方法.DBCADBCAP5、如图是王大爷的一块四边形菜地,在A处有一口井,王大爷要想从A处引一条笔直的水渠,且这条笔直的水渠将四边形菜地分成面积相等的两部分.请你为王大爷设计一条引水渠的方案,画出图形,并简要写出作图的主要步骤.Welcome To Download !!!欢迎您的下载,资料仅供参考!。
奥数几何专题:等积变形(基础篇)
等积变形(上)
例1
(★★)
⑴图中每个小正方形面积都是1平方厘米,那么下面的三角形面积各是多少?
⑵图中每个小正方形面积都是1平方厘米,那么下面的三角形面积各是多少?
⑶图中每个小正方形面积都是1平方厘米,那么下面的三角形面积各是多少?
例2
(★★★)
如图,在梯形ABCD中,共有八个三角形,其中面积相等的三角形共有哪几对?
例3
(★★★)
正方形ABCD和正方形CEFG,且正方形ABCD边长为10厘米,则图中阴影面积为多少平方厘米?
例4
(★★★)
下图是由大、小两个正方形组成的,小正方形的边长是4厘米,求三角形ABC的面积。
例5
(★★★★)
如图,有三个正方形的顶点D、G、K恰好在同一条直线上,其中正方形GFEB的边长为10厘米,求阴影部分的面积。
例6
(★★★)
在平行四边形ABCD中,直线CF交AB于E,交DA延长线于F,若S△ADE=1,求△BEF的面积。
例7
(★★★★)
如图,ABCD为平行四边形,EF平行AC,如果△ADE的面积为4平方厘米。
求三角形CDF的面积。
⑴夹在一组平行线之间的等积变形,如下图,△ACD和△BCD夹在一组平行线之间,且有公共底边CD,反之,如果S△ACD=S△BCD,且A、B在CD同侧,则可知直线AB平行于CD。
⑵平行线藏在哪里?
——并列正方形的同方向对角线
【先睹为快】
(★★★★)
如图,已知三角形ABC面积为1,延长AB至D,使BD=AB;延长BC至E,使CE=BC;延长CA至F,使AF=2AC,求三角形DEF的面积。
等积变形练习题
• 9、一个长8分米,宽5分米,高6分米 的玻璃缸内有2分米的水,将一个石 块放入水中,水面上升到2.5分米,这 个石块的体积有多大?
• 10、一个长方体玻璃缸,底面是2分 米的正方形,向容器内倒入5.4升水, 再把一个梨子放入水中,量得水深 1.5分米,这个梨子的体积有多大?
• 11、一个长方体玻璃缸,底面积是 200平方厘米,高是8厘米,里面 盛有4厘米深的水,现在将一块石 头放入水中,水面升高2厘米。这 块石头的体积是多少立方厘米?
• 12、一个长方体玻璃容器,从里面 量长和宽都为2分米。向容器中倒 入5.5升水,在把一个苹果浸没在 水中,这时容器内的水深是1.5分 米。这个苹果的体积是多少?
• 13、在一个长25厘米、宽12厘 米、高20厘米的长方体玻璃容 缸中放入一个棱长9厘米的正方 体铁块,然后在玻璃缸中加入 一些水,使铁块完全浸没在水 中。当铁块从水中取出时,玻 璃缸中的水会下降多少厘米?
• 6、两个容器,甲正方体(棱长6分 米),乙长方体(长8分米、宽和 高都是6分米),将甲容器的水装 满倒入乙容器,乙容器水面有多高?
•
• 7、一个货车的车厢是棱长4米,宽 2.5米,高1.5米的长方体,将它装满 石子,铺在一个长20米,宽5米的路 上,能铺多厚?
• 8、一个棱长5分米的玻璃缸 内有水100升,将一个石块投 入缸内,水面上升了1厘米,这 个石块的体积是多少?
一个货车的车厢是棱长4米宽25米高15米的长方体将它装满石子铺在一个长20分米的玻璃缸内有水100升将一个石块投入缸内水面上升了1厘米这个石块的体积是多少
等积变形练习题
1、用一块体积是2000立方厘米的钢块锻造 成一根横截面面积是20平方厘米长方体方
钢,这根长方体方钢长多少?
几何问题-面积和等积变换2(30道,含详细解答)分解
几何问题-面积和等积变换2几何问题-面积和等积变换2一.解答题(共30小题)1.如图,长方形ABCD中,AB=4,BC=2,F、E分别在AB、CD上,连接DF、CF、AE、BE交于Q、P.求四边形PEQF面积的最大值.2.如图,这是一个中国象棋盘,图中小方格都是相同的正方形(“界河”的宽等于小正方形的边长),假设黑方只有一个“象”,它只能在1,2,3,4,5,6,7位置中的一个,红方有两个“相”,它们只能在8,9,10,11,12,13,14中的两个位置,问:这三个棋子(一个“象”和两个“相”)各在什么位置时,以这三个棋子为顶点构成的三角形的面积最大?3.如图(1),某住宅小区有一三角形空地(三角形ABC),周长为2 500m,现规划成休闲广场且周围铺上宽为3m 的草坪,求草坪面积.(精确到1 m2)由题意知,四边形AEFB,BGHC,CMNA是3个矩形,其面积为2 500×3 m2,而3个扇形EAN,FBG,HCM的面积和为π×32 m2,于是可求出草坪的面积为7 500+9π≈7528(m2).(1)若空地呈四边形ABCD,如图(2),其他条件不变,你能求草坪面积吗?若能,请你求出来;若不能,请说明理由;(2)若空地呈五边形ABCDE,如图(3),其他条件不变,还能求出草坪面积吗?若能,请你求出来;若不能,请说明理由;(3)若空地呈n(n≥3)边形,其他条件不变,这时你还能求出草坪面积吗?若能,请你求出来.4.如图1,点P是△ABD中AD边上一点,当P为AD中点时,则有S△ABP=S△BDP,如图2,在四边形ABCD 中,P是AD边上任意一点,探究:(1)当AP=AD时,如图3,△PBC与△ABC和△DBC的面积之间有什么关系?写出求解过程;(2)当AP=AD时,探究S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;(3)一般地,当AP=AD(n表示正整数)时,探究S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;(4)当AP=AD(0≤≤1)时,直接写出S△PBC与S△ABC和S△DBC之间的关系.5.锐角三角形△ABC的外心为O,外接圆半径为R,延长AO,BO,CO,分别与对边BC,CA,AB交于D,E,F;证明:.6.如图,M、N为四边形ABCD的边AD、BC的中点,AN、BM交于P点,CM、DN交于Q点.若四边形ABCD 的面积为150,四边形MPNQ的面积为50,求阴影部分的面积之和.7.设直角三角形的边长均是正整数,且周长数等于面积数,试确定此三角形的边长?8.设直线,(n为自然数)与两坐标轴围成的三角形的面积为S n(n=1,2,3…2008),求S1+S2+S3+…+S2008.9.在直角三角形ABC中,∠A=90°,AD,AE分别是高和角平分线,且△ABE,△AED的面积分别为S1=30,S2=6,求△ADC的面积S.10.如图,在平面直角坐标系xOY中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,求直线l的函数表达式.11.已知▱ABCD中,若△ADE、△BEF、△CDF的面积分别为5、3、4,求△DEF的面积.12.有三条线段A、B、C,A长2.12米,B长2.71米,C长3.53米.以它们作为上底、下底和高,可以作出三个不同的梯形.问:第几个梯形的面积最大?(参看图.思考时间40秒)13.如图,一个大的六角星形(粗实线)的顶点是周围六个全等的小六角星形(细线型)的中心,相邻的两个小六角星形各有一个公共顶点,如果小六角星形的顶点C到中心A的距离为a,求:(1)大六角星形的顶点A到其中心O的距离;(2)大六角星形的面积;(3)大六角星形的面积与六个小六角星形的面积之和的比值.(注:本题中的六角星形有12个相同的等边三角形拼接而成的)14.如图,是一块黑白格子布.白色大正方形的边长是14厘米,白色小正方形的边长是6厘米.问:这块布中白色的面积占总面积的百分之几?(思考时间:50秒)15.如图,中正方形的边长是2米,四个圆的半径都是1米,圆心分别是正方形的四个顶点.问:这个正方形和四个圆盖住的面积是多少平方米?(思考时间48秒)16.(Ⅰ)如图1,在正方形ABCD内,已知两个动圆⊙O1与⊙O2互相外切,且⊙O1与边AB、AD相切,⊙O2与边BC、CD相切.若正方形ABCD的边长为1,⊙O1与⊙O2的半径分别为r1,r2.①求r1与r2的关系式;②求⊙O1与⊙O2面积之和的最小值.(Ⅱ)如图2,若将(Ⅰ)中的正方形ABCD改为一个宽为1,长为的矩形,其他条件不变,则⊙O1与⊙O2面积的和是否存在最小值,若不存在,请说明理由;若存在,请求出这个最小值.17.已知四边形ABCD两条对角线互相垂直,点O是对角线的交点,∠ACD=60°,∠ABD=45°,点A到CD的距离是6,点D到AB的距离是8,求四边形ABCD的面积S.18.探索:在图1至图3中,已知△ABC的面积为a,(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA.若△ACD的面积为S1,则S1=_________(用含a的代数式表示)(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE.若△DEC的面积为S2,则S2=_________(用含a的代数式表示)(3)在图2的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图3).若阴影部分的面积为S3,则S3=_________(用含a的代数式表示),并运用上述(2)的结论写出理由.发现:像上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图3),此时,我们称△ABC 向外扩展了一次.可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的_________倍.应用:要在一块足够大的空地上栽种花卉,工程人员进行了如下的图案设计:首先在△ABC的空地上种红花,然后将△ABC向外扩展三次(图4已给出了前两次扩展的图案).在第一次扩展区域内种谎话,第二次扩展区域内种紫花,第三次扩展区域内种蓝花.如果种红花的区域(即△ABC)的面积是10平方米,请你运用上述结论求出:(1)种紫花的区域的面积;(2)种蓝花的区域的面积.19.某生活小区临街的一面有块如图所示的梯形空地,物业部门打算把这块空地美化一下,以供观赏.初步打算沿对角线AC,BD修两条小路,把梯形ABCD分成四块,种上相同种类的花.四块地的面积分别为S1,S2,S3,S4,一位物业工人很快看出S3,S4两种需要花的棵数大致相等.(1)你知道他是根据什么判断的吗?(说明S3与S4之间关系的理由?)(2)请你用学过的知识探究S1,S2,S3三者之间的关系?20.如图,若长方形APHM,BNHP,CQHN的面积分别为7、4、6,求阴影部分的面积是多少?21.已知正方形ABCD的边长为10厘米,AE长为8厘米,CF长为2厘米.求图中阴影部分面积.22.如图,△ABC被分为四块,其中三块的面积分别为4,6,12平方厘米,求四边形AEDF的面积.23.如图,正方形ABCD的面积是120平方厘米,E是AB的中点,F是BC的中点,四边形BGHF的面积是多少平方厘米?24.如图,正方形ABCD的边长为8厘米,E,F,G,H分别是AD,EC,FB,GA的中点,CE与DH的交点为I,求四边形FGHI的面积.25.长方形EFGH的长,宽分别为6厘米,4厘米,阴影部分的总面积为10平方厘米,求四边形ABCD的面积.26.如图,在四边形ABCD中,M为AB的中点,P为BC的中点,N为CD的中点,Q为DA的中点,若图中中间的小四边形的面积为1,试求四个小三角形(阴影部分)面积之和.27.已知D是BC的中点,E是CD的中点,F是AC的中点,且△ADC的面积比△EFG的面积大6平方厘米.△ABC 的面积是多少平方厘米.28.已知△ABC的面积为1,延长AB至点D,使BD=AB,延长BC至点E,使CE=2BC,延长CA至点F使AF=3AC.求三角形DEF的面积.29.如图,四边形PQRS与边长为10的正方形ABCD的内侧相接,SE⊥BC于E,PF⊥CD于F,且RQ=9,EQ=2,RF=3,请求出四边形PQRS的面积.30.如图,三块大小相同的正方形纸片,放在一个底为正方形的盒子内,它们互相重叠.在露出的部分中,红色面积是20,黄色面积是17,绿色面积是7.求正方形盒子底的面积.几何问题-面积和等积变换2参考答案与试题解析一.解答题(共30小题)1.如图,长方形ABCD中,AB=4,BC=2,F、E分别在AB、CD上,连接DF、CF、AE、BE交于Q、P.求四边形PEQF面积的最大值.c=d=﹣=c+d2.如图,这是一个中国象棋盘,图中小方格都是相同的正方形(“界河”的宽等于小正方形的边长),假设黑方只有一个“象”,它只能在1,2,3,4,5,6,7位置中的一个,红方有两个“相”,它们只能在8,9,10,11,12,13,14中的两个位置,问:这三个棋子(一个“象”和两个“相”)各在什么位置时,以这三个棋子为顶点构成的三角形的面积最大?3.如图(1),某住宅小区有一三角形空地(三角形ABC),周长为2 500m,现规划成休闲广场且周围铺上宽为3m 的草坪,求草坪面积.(精确到1 m2)由题意知,四边形AEFB,BGHC,CMNA是3个矩形,其面积为2 500×3 m2,而3个扇形EAN,FBG,HCM的面积和为π×32 m2,于是可求出草坪的面积为7 500+9π≈7528(m2).(1)若空地呈四边形ABCD,如图(2),其他条件不变,你能求草坪面积吗?若能,请你求出来;若不能,请说明理由;(2)若空地呈五边形ABCDE,如图(3),其他条件不变,还能求出草坪面积吗?若能,请你求出来;若不能,请说明理由;(3)若空地呈n(n≥3)边形,其他条件不变,这时你还能求出草坪面积吗?若能,请你求出来.4.如图1,点P是△ABD中AD边上一点,当P为AD中点时,则有S△ABP=S△BDP,如图2,在四边形ABCD 中,P是AD边上任意一点,探究:(1)当AP=AD时,如图3,△PBC与△ABC和△DBC的面积之间有什么关系?写出求解过程;(2)当AP=AD时,探究S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;(3)一般地,当AP=AD(n表示正整数)时,探究S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;(4)当AP=AD(0≤≤1)时,直接写出S△PBC与S△ABC和S△DBC之间的关系.AP=AD换为;AP=AP=AP=AD﹣S﹣)﹣SAP=AP=﹣S﹣)﹣S=S SAP=AP=﹣S﹣)﹣S=S S5.锐角三角形△ABC的外心为O,外接圆半径为R,延长AO,BO,CO,分别与对边BC,CA,AB交于D,E,F;证明:.可以推知﹣;同理式求得同理有,得,联系在一起,从而通过化简,证得结论6.如图,M、N为四边形ABCD的边AD、BC的中点,AN、BM交于P点,CM、DN交于Q点.若四边形ABCD 的面积为150,四边形MPNQ的面积为50,求阴影部分的面积之和.=S=S7.设直角三角形的边长均是正整数,且周长数等于面积数,试确定此三角形的边长?,abab=2a+2b+2,8.设直线,(n为自然数)与两坐标轴围成的三角形的面积为S n(n=1,2,3…2008),求S1+S2+S3+…+S2008.,•=,)•﹣+﹣﹣,故答案为:(9.在直角三角形ABC中,∠A=90°,AD,AE分别是高和角平分线,且△ABE,△AED的面积分别为S1=30,S2=6,求△ADC的面积S.,所以=====这是个一元二次方程,或.10.如图,在平面直角坐标系xOY中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,求直线l的函数表达式.,,x+.11.已知▱ABCD中,若△ADE、△BEF、△CDF的面积分别为5、3、4,求△DEF的面积.××=5,×=3BE=,×=4CD=AB=AE+BE=++)×=4+=×,×12.有三条线段A、B、C,A长2.12米,B长2.71米,C长3.53米.以它们作为上底、下底和高,可以作出三个不同的梯形.问:第几个梯形的面积最大?(参看图.思考时间40秒)13.如图,一个大的六角星形(粗实线)的顶点是周围六个全等的小六角星形(细线型)的中心,相邻的两个小六角星形各有一个公共顶点,如果小六角星形的顶点C到中心A的距离为a,求:(1)大六角星形的顶点A到其中心O的距离;(2)大六角星形的面积;(3)大六角星形的面积与六个小六角星形的面积之和的比值.(注:本题中的六角星形有12个相同的等边三角形拼接而成的)CM=,然后根据三角形面积公式得到大六角星形的面积AM(,14.如图,是一块黑白格子布.白色大正方形的边长是14厘米,白色小正方形的边长是6厘米.问:这块布中白色的面积占总面积的百分之几?(思考时间:50秒)15.如图,中正方形的边长是2米,四个圆的半径都是1米,圆心分别是正方形的四个顶点.问:这个正方形和四个圆盖住的面积是多少平方米?(思考时间48秒)16.(Ⅰ)如图1,在正方形ABCD内,已知两个动圆⊙O1与⊙O2互相外切,且⊙O1与边AB、AD相切,⊙O2与边BC、CD相切.若正方形ABCD的边长为1,⊙O1与⊙O2的半径分别为r1,r2.①求r1与r2的关系式;②求⊙O1与⊙O2面积之和的最小值.(Ⅱ)如图2,若将(Ⅰ)中的正方形ABCD改为一个宽为1,长为的矩形,其他条件不变,则⊙O1与⊙O2面积的和是否存在最小值,若不存在,请说明理由;若存在,请求出这个最小值.上,解等腰直角三角形得,AC=)及求面积和的最小值.,12,,即1时,⊙是等圆,其面积和的最小值为或.,故不合题意,应舍去..,即17.已知四边形ABCD两条对角线互相垂直,点O是对角线的交点,∠ACD=60°,∠ABD=45°,点A到CD的距离是6,点D到AB的距离是8,求四边形ABCD的面积S.BD BD 1618.探索:在图1至图3中,已知△ABC的面积为a,(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA.若△ACD的面积为S1,则S1=a(用含a的代数式表示)(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE.若△DEC的面积为S2,则S2=2a(用含a的代数式表示)(3)在图2的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图3).若阴影部分的面积为S3,则S3=6a(用含a的代数式表示),并运用上述(2)的结论写出理由.发现:像上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图3),此时,我们称△ABC 向外扩展了一次.可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的7倍.应用:要在一块足够大的空地上栽种花卉,工程人员进行了如下的图案设计:首先在△ABC的空地上种红花,然后将△ABC向外扩展三次(图4已给出了前两次扩展的图案).在第一次扩展区域内种谎话,第二次扩展区域内种紫花,第三次扩展区域内种蓝花.如果种红花的区域(即△ABC)的面积是10平方米,请你运用上述结论求出:(1)种紫花的区域的面积;(2)种蓝花的区域的面积.19.某生活小区临街的一面有块如图所示的梯形空地,物业部门打算把这块空地美化一下,以供观赏.初步打算沿对角线AC,BD修两条小路,把梯形ABCD分成四块,种上相同种类的花.四块地的面积分别为S1,S2,S3,S4,一位物业工人很快看出S3,S4两种需要花的棵数大致相等.(1)你知道他是根据什么判断的吗?(说明S3与S4之间关系的理由?)(2)请你用学过的知识探究S1,S2,S3三者之间的关系?20.如图,若长方形APHM,BNHP,CQHN的面积分别为7、4、6,求阴影部分的面积是多少?(21.已知正方形ABCD的边长为10厘米,AE长为8厘米,CF长为2厘米.求图中阴影部分面积.SS==1=×××××22.如图,△ABC被分为四块,其中三块的面积分别为4,6,12平方厘米,求四边形AEDF的面积.23.如图,正方形ABCD的面积是120平方厘米,E是AB的中点,F是BC的中点,四边形BGHF的面积是多少平方厘米?,根据相似三角形性质得出====,求出BF=CF==,=,=××==,S==,24.如图,正方形ABCD的边长为8厘米,E,F,G,H分别是AD,EC,FB,GA的中点,CE与DH的交点为I,求四边形FGHI的面积.AD=4×××=SS25.长方形EFGH的长,宽分别为6厘米,4厘米,阴影部分的总面积为10平方厘米,求四边形ABCD的面积.,即×26.如图,在四边形ABCD中,M为AB的中点,P为BC的中点,N为CD的中点,Q为DA的中点,若图中中间的小四边形的面积为1,试求四个小三角形(阴影部分)面积之和.即可求出答案.SS27.已知D是BC的中点,E是CD的中点,F是AC的中点,且△ADC的面积比△EFG的面积大6平方厘米.△ABC 的面积是多少平方厘米.EF=))=,.28.已知△ABC的面积为1,延长AB至点D,使BD=AB,延长BC至点E,使CE=2BC,延长CA至点F使AF=3AC.求三角形DEF的面积.29.如图,四边形PQRS与边长为10的正方形ABCD的内侧相接,SE⊥BC于E,PF⊥CD于F,且RQ=9,EQ=2,RF=3,请求出四边形PQRS的面积.BP CQ DR AP(()﹣(30.如图,三块大小相同的正方形纸片,放在一个底为正方形的盒子内,它们互相重叠.在露出的部分中,红色面积是20,黄色面积是17,绿色面积是7.求正方形盒子底的面积.=12 =7。
等积转换法
等积转换法【知识与方法】在平面几何图形中,我们往往可以根据同底等高、等底同高、等底等高等等发现面积相等的图形,这些图形有的形状相同,有的形状不同,但既然面积与面积之间具有相等关系,我们就可以相应地进行一些转化,从而使问题解决起来更加简便。
【例题精讲】例1:如图,ABCD 是边长为4分米的正方形,长方形DEFG 的长是5分米,求长方形DEFG 的宽。
F AEDC B G思维点拨:连接AG ,三角形ADG 的面积等于长方形面积的一半,同时也等于正方形面积的一半。
模仿练习如图,ABCD 是正方形,EDGF 是长方形,CD=6厘米,DG=8厘米,求宽ED=?F AB GCD E86例2: 如图,梯形上底AB 长是18厘米,三角形ABD 的面积是198平方厘米,三角形COD 的面积比三角形AOB 的面积多66平方厘米,求梯形ABCD 的面积。
AD CBO思维点拨:因为三角形ABD 和三角形ABC 同底等高,所以三角形ABD 的面积等于三角形ABC 相等。
模仿练习如图,在四边形ABCD 中,DCFG 为正方形,ABED 为梯形,DE=12厘米,DG=8厘米,AB=24厘米,求梯形ABED 的面积是多少?例3:已知大正方形的边长是5厘米,小正方形的边长是4厘米,求阴影部分的面积。
A B思维点拨:连接AC ,三角形GEA 和三角形GEC 同底等高。
模仿练习如图,ABCD 、CEFG 都是正方形,AB=8厘米,CE=6厘米,求图中阴影部分的面积。
A B例4: 长方形ADEF 的面积是16平方厘米,三角形ADB 的面积是3平方厘米,三角形ACF 的面积是4平方厘米,求三角形ABC 的面积。
A DB E CF思维点拨:连接AE ,求出三角形BCE 的面积是非常关键的一步。
模仿练习如图,在三角形ABC 中,BD=2DC ,AE=BE ,已知三角形ABC 的面积是18平方厘米,求四边形ACDE 的面积。
(提示:连接AC )AB D EC例5: 如图,已知四边形ABCD 被它的两条对角线分成四个三角形,其中甲的面积是1,乙的面积是2,丙的面积是3,求丁的面积。
平面直角坐标系中的等积变换
方法1 方法
C(1,3)
E(6,3)
B(6,2)
7
8
-2
D(6,-2)
A(-1,-2)
x
19
-2
-1 O -1
y
5 4 3 2 1 1 2 3 4 5 6 7
方法2 方法
C(1,3)
E(6,3)
B(6,2)
8
-1 -2 D(6,-2)
A(-1,-2)
x
20
-2
-1 O
y
5 4 F(-1,3) 3 2 1 1 2 3 4 5 6
x
O
S ∆OAB4 = S ∆OAC + S∆ACB4= 1 × 1 × 2 + 1 × 1 × 2 = 2
2 2
10
y
4 3 2 1E
B4 (4,4)
方 法 2
F
A(2,1)
1 2 3 图(8) ) 4
x
O
S ∆ OAB 4 = S ∆ OAD + S ∆ ADB 4
1 1 = ×1×1 + ×1× 3 = 2 2 2
B 5 6 7 8
x
23
7 B(6, ), C (1,3 ) 0 2. 已知△ABC中 A(−1,− ), △ 2 2
点 D( 2 ,0) 在AC上 , 求△ABC的面积. △ 5 y
6 5 4 3 2 1 -2 -1 O -1 -2 A -3
C
D1 2 3 4
B 5 6 7 8
x
24
3. 若△ABC中
8 7 6 5 4 3 2 1
-2 -1 O -1 -2 -3 1
C(6,8)
B(4,0) 2 3 4 5 6 7 8
五年级奥数---等积变换
第二十一讲等积变换一个量可以用它的等量来代替;被减数和减数都增加(或减少)同一个数,它们的差不变.前者是等量公理,后者是减法的差不变性质。
这两个性质在解几何题时有很重要的作用,它能将求一个图形的面积转化为求另一个图形的面积,或将两个图形的面积差转化为另两个图形的面积差,从而使隐蔽的关系明朗化,找到解题思路。
例题1:两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积。
解:因为三角形ABC与三角形DEF完全相同,都减去三角形DOC后,根据差不变性质,差应相等,即阴影部分与直角梯形OEFC面积相等,所以求阴影部分的面积就转化为求直角梯形OEFC的面积.直角梯形OEFC的上底为10—3=7(厘米),面积为(7+10)×2÷2=17(厘米2)。
答:阴影部分的面积是17厘米2。
例题2:在右图中,平行四边形ABCD的边BC长10厘米,直角三角形ECB的直角边EC长8厘米。
已知阴影部分的总面积比三角形EFG的面积大10厘米2,求平行四边形ABCD的面积.解:因为阴影部分比三角形EFG的面积大10厘米2,都加上梯形FGCB后,根据差不变性质,所得的两个新图形的面积差不变,即平行四边行ABCD比直角三角形ECB的面积大10厘米2,所以平行四边形ABCD的面积等于10×8÷2+10=50(厘米2)。
答:平行四边形ABCD的面积是50cm.例题3:在右图中,AB=8厘米,CD=4厘米,BC=6厘米,三角形AFB比三角形EFD的面积大18厘米2。
求ED的长。
解:因为三角形AFB比三角形EFD的面积大18厘米2,这两个三角形都加上四边形FDCB后,其差不变,所以梯形ABCD比三角形ECB的面积大18厘米2.梯形ABCD面积=(8+4)×6÷2=36(厘米2),三角形ECB面积=36—18=18(厘米2),EC=18÷6×2=6(厘米),ED=6-4=2(厘米)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等积变换
1、等面积图形拼接类
1、小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB 的中点O 旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG .
请你参考小明的做法解决下列问题:
(1)现有5个形状、大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成
一个平行四边形.要求:在图3中画出并指明拼接成的平行四边形(画出一个..符合条件的平行四边形即可);
(2)如图4,在面积为2的平行四边形ABCD 中,点E 、F 、G 、H 分别是边AB 、 BC 、
CD 、DA 的中点,分别连结AF 、BG 、CH 、DE 得到一个新的平行四边形MNPQ . 请在图4中探究平行四边形MNPQ 面积的大小(画图..
并直接写出结果).
2、根据所给的图形解答下列问题:
(1)如图1,△ABC 中,AB=AC ,∠BAC =90°,AD ⊥BC 于D ,把△ABD 绕点A 旋转,并拼接成一个与△ABC 面积相等的正方形,请你在图1中完成这个作图;
(2)如图2,△ABC 中,AB=AC ,∠BAC =90°,请你设计一种与(1)不同的方法,将这个三角形拆分并拼接成一个与其面积相等的正方形,画出利用这个三角形得到的正方形;
(3)设计一种方法把图3中的矩形ABCD 拆分并拼接为一个与其面积相等的正方形, 请你依据此矩形画出正方形,并根据你所画的图形,证明正方形面积等于矩形ABCD 的面积的结论
.
图1
图2
图3
图
4 A
B
C
D
图3
图2
图1
C
B
A
A
B C
D
2、等分面积类问题
1、请作一条直线通过割补把下面的四边形变成面积相等的三角形
2、如图,一块矩形的铁皮ABCD 被割去一个小矩形部分DEFG ,剩下一个五边形ABCGFE ,请作一条直线把剩下的五边形分成面积相等的两部分
3、(1)请过△ABC 边BC 中点D 作一条直线平分△ABC 的面积
(2)请过△ABC 边BC 中点D 外任一点P 作一条直线平分△ABC 的面积
4、如图,梯形纸片ABCD 中,AD ∥BC 且AB DC.设AD=a,BC=b.
B
C
A
D
G E D B
C
F
A D
B C
A D
B C
A
P
A
B
C
D
A
D
C
B 过AD 中点和B
C 的中点的直线可将梯形纸片ABC
D 面积分成面积相等的两部分. 请你再设计一种方法:
只须用剪子剪一次将梯形纸片ABCD 分割成面积相等的二部分,画出设计的图形并简要说明你的分割方法.
5、如图是王大爷的一块四边形菜地,在A 处有一口井,王大爷要想从A 处引一条笔直的水渠,且这条笔直的水渠将四边形菜地分成面积相等的两部分.请你为王大爷设计一条引水渠的方案,画出图形,并简要写出作图的主要步骤.。