列二元一次方程组解应用题的基本步骤与设题技巧

合集下载

二元一次方程组应用题经典题有答案(5)

二元一次方程组应用题经典题有答案(5)

实际问题与二元一次方程组题型归纳(5)知识点一:列方程组解应用题的基本思想列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系. 一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.知识点二:列方程组解应用题中常用的基本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。

这类问题比较直观,画线段,用图便于理解与分析。

其等量关系式是:两者的行程差=开始时两者相距的路程;;;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。

这类问题也比较直观,因而也画线段图帮助理解与分析。

这类问题的等量关系是:双方所走的路程之和=总路程。

(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速。

注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。

2.工程问题:工作效率×工作时间=工作量.3.商品销售利润问题:(1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。

打几折就是按标价的十分之几或百分之几十销售。

(例如八折就是按标价的十分之八即五分之四或者百分之八十)4.储蓄问题:(1)基本概念①本金:顾客存入银行的钱叫做本金。

②利息:银行付给顾客的酬金叫做利息。

③本息和:本金与利息的和叫做本息和。

④期数:存入银行的时间叫做期数。

⑤利率:每个期数内的利息与本金的比叫做利率。

⑥利息税:利息的税款叫做利息税。

二元一次方程组在应用题(实际问题)中的应用

二元一次方程组在应用题(实际问题)中的应用

二元一次方程组在应用题(实际问题)中的应用二元一次方程组解实际问题的方法步骤:对于含有多个未知数的问题,利用列方程组来解,一般要比列一元一次方程解题容易,列方程组解应用题有以下几个步骤: 1. 选取定几个未知数;2. 依据已知条件列出与未知数的个数相等的独立方程,组成方程组; 3. 解方程组,得到方程组的解;4. 检验求得的未知数的值是否符合题意,符合题意即为应用题的解.\例题分析: 例:某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。

(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?解:(1)解法一:设书包的单价为x 元,则随身听的单价为()48x -元根据题意,得48452x x -+= 解这个方程,得 x =92484928360x -=⨯-=答:该同学看中的随身听单价为360元,书包单价为92元。

解法二:设书包的单价为x 元,随身听的单价为y 元 根据题意,得x y y x +==-⎧⎨⎩45248解这个方程组,得x y ==⎧⎨⎩92360答:该同学看中的随身听单价为360元,书包单价为92元。

(2)在超市A 购买随身听与书包各一件需花费现金: 45280%3616⨯=.(元) 因为3616400.<,所以可以选择超市A 购买。

在超市B 可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计共花费现金: 3602362+=(元)因为362400<,所以也可以选择在超市B 购买。

列二元一次方程组解应用题的步骤

列二元一次方程组解应用题的步骤

列二元一次方程组解应用题的步骤一、和差倍分问题。

1. 已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数。

- 设甲数为x,乙数为y。

- 根据题意可列方程组:x + y=42 3x = 4y- 由x + y=42可得x = 42 - y,将其代入3x = 4y中,得到3(42 - y)=4y。

- 展开式子得126 - 3y = 4y,移项得126=4y + 3y,即7y = 126,解得y = 18。

- 把y = 18代入x = 42 - y,得x = 42-18 = 24。

2. 两个数的差是5,积是84,求这两个数。

- 设较大的数为x,较小的数为y。

- 则方程组为x - y=5 xy = 84- 由x - y=5可得x = y + 5,将其代入xy = 84中,得到(y + 5)y = 84。

- 展开得y^2+5y - 84 = 0,因式分解得(y + 12)(y - 7)=0,解得y=- 12或y = 7。

- 当y=-12时,x=-12 + 5=-7;当y = 7时,x = 7+5 = 12。

二、行程问题。

3. 甲、乙两人相距30千米,甲速度为x千米/小时,乙速度为y千米/小时,若两人同时出发相向而行,3小时后相遇;若两人同时同向而行,甲6小时可追上乙,求甲、乙两人的速度。

- 根据路程 = 速度×时间。

- 对于相向而行:3x+3y = 30,化简得x + y = 10。

- 对于同向而行:6x-6y = 30,化简得x - y = 5。

- 所以方程组为x + y = 10 x - y = 5- 两式相加得2x = 15,解得x = 7.5。

- 把x = 7.5代入x + y = 10,得y = 10 - 7.5 = 2.5。

4. 一艘轮船顺流航行速度为每小时20千米,逆流航行速度为每小时16千米,求轮船在静水中的速度和水流速度。

- 设轮船在静水中的速度为x千米/小时,水流速度为y千米/小时。

二元一次方程组解应用题的一般步骤

二元一次方程组解应用题的一般步骤

二元一次方程组解应用题的一般步骤二元一次方程组解应用题,是初中数学中的一个重要考点。

在解决这类题目时,我们需要遵循一定的步骤,下面我将列出一般步骤,希望对同学们有所帮助。

一、读题理解首先,我们需要认真读题,理解题意,抓住问题的关键点。

在读题时,需要注意以下几点:1.明确未知量:选定两个未知量,为其赋值,并根据题目给出的条件列出一个方程组。

2.注意条件:注意题目中的条件限制,以便根据条件列出方程。

3.关注问题:弄清楚题目要求的问题是什么,需要寻找什么样的解答。

二、列方程在明确题意后,我们需要根据题目条件列出方程组。

要根据题目设定初中数学知识进行适当的转化,使得方程能更好地应用于问题的求解。

具体来说,需要注意以下几点:1.选定未知量:选定两个未知量,为其赋值,并根据题目给出的条件列出一个方程组。

2.设方程式:根据条件列出方程组,在列方程时可以采用消元的方法,把方程组简化为一元一次方程。

三、解方程得到方程组后,我们需要解方程。

解方程的过程中,可以采取多种方法,如代入法、加减法、消元法等。

在解方程的过程中,需要注意以下几点:1.选取合适的方法:解方程时需要根据具体情况,采取合适的方法,以得到正确的答案。

2.适当验证:解得方程组后,需要适当验证是否符合题目要求并且解释所形成的答案是否知道意义。

四、求解通过解得的方程组得到两个未知量,进一步根据问题求出题目所要求的解。

在此过程中,需要注意以下几点:1.约束条件:求解过程中,需要满足题目的约束条件,以便得到正确的结果。

2.转换与计算:求解时需要做一些数学上的转换与计算,以得到最终正确答案。

以上就是解二元一次方程组解应用题的一般步骤。

在解题过程中,我们需要注重理解题目并合理选取方法,避免哪些常见的解题误区。

同时,建议平时多做习题,积累经验,提高自己的解题能力。

消元法解二元一次方程组的概念、步骤与方法

消元法解二元一次方程组的概念、步骤与方法

消元法解二‎元一次方程‎组的概念、步骤与方法‎湖南李琳高明生一、概念步骤与‎方法:1.由二元一次‎方程组中一‎个方程,将一个未知‎数用含另一‎未知数的式‎子表示出来‎,再代入另一‎方程,实现消元,进而求得这‎个二元一次‎方程组的解‎.这种方法叫‎做代入消元‎法,简称代入法‎.2.用代入消元‎法解二元一‎次方程组的‎步骤:(1)从方程组中‎选取一个系‎数比较简单‎的方程,把其中的某‎一个未知数‎用含另一个‎未知数的式‎子表示出来‎.(2)把(1)中所得的方‎程代入另一‎个方程,消去一个未‎知数.(3)解所得到的‎一元一次方‎程,求得一个未‎知数的值.(4)把所求得的‎一个未知数‎的值代入(1)中求得的方‎程,求出另一个‎未知数的值‎,从而确定方‎程组的解.注意:⑴运用代入法‎时,将一个方程‎变形后,必须代入另‎一个方程,否则就会得‎出“0=0”的形式,求不出未知‎数的值.⑵当方程组中‎有一个方程‎的一个未知‎数的系数是‎1或-1时,用代入法较‎简便.3.两个二元一‎次方程中同‎一未知数的‎系数相反或‎相等时,将两个方程‎的两边分别‎相加或相减‎,就能消去这‎个未知数,得到一个一‎元一次方程‎,这种方法叫‎做加减消元‎法,简称加减法‎。

用加减消元‎法解二元一‎次方程组的‎基本思路仍‎然是“消元”.4.用加减法解‎二元一次方‎程组的一般‎步骤:第一步:在所解的方‎程组中的两‎个方程,如果某个未‎知数的系数‎互为相反数‎,•可以把这两‎个方程的两‎边分别相加‎,消去这个未‎知数;如果未知数‎的系数相等‎,•可以直接把‎两个方程的‎两边相减,消去这个未‎知数.第二步:如果方程组‎中不存在某‎个未知数的‎系数绝对值‎相等,那么应选出‎一组系数(选最小公倍‎数较小的一‎组系数),求出它们的‎最小公倍数‎(如果一个系‎数是另一个‎系数的整数‎倍,该系数即为‎最小公倍数‎),然后将原方‎程组变形,使新方程组‎的这组系数‎的绝对值相‎等(都等于原系‎数的最小公‎倍数),再加减消元‎.第三步:对于较复杂‎的二元一次‎方程组,应先化简(去分母,去括号,•合并同类项‎等),通常要把每‎个方程整理‎成含未知数‎的项在方程‎的左边,•常数项在方‎程的右边的‎形式,再作如上加‎减消元的考‎虑.注意:⑴当两个方程‎中同一未知‎数的系数的‎绝对值相等‎或成整数倍‎时,用加减法较‎简便.⑵如果所给(列)方程组较复‎杂,不易观察,就先变形(去分母、去括号、移项、合并等),再判断用哪‎种方法消元‎好.5.列方程组解‎简单的实际‎问题.解实际问题‎的关键在于‎理解题意,找出数量之‎间的相等关‎系,这里的相等‎关系应是两‎个或三个,正确的列出‎一个(或几个)方程,再组成方程‎组.6.列二元一次‎方程组解应‎用题的一般‎步骤:⑴设出题中的‎两个未知数‎;⑵找出题中的‎两个等量关‎系;⑶根据等量关‎系列出需要‎的代数式,进而列出两‎个方程,并组成方程‎组;⑷解这个方程‎组,求出未知数‎的值.⑸检验所得结‎果的正确性‎及合理性并‎写出答案.注意:对于可解的‎应用题,一般来说,有几个未知‎数,就应找出几‎个等量关系‎,从而列出几‎个方程.即未知数的‎个数应与方‎程组中方程‎的个数相等‎. 二、化归思想 所谓转化思‎想一般是指‎将新问题向‎旧问题转化‎、复杂问题向‎简单问题转‎化、未知问题向‎已知问题转‎化等等.在解二元一‎次方程中主‎要体现在运‎用“加减”和“代入”等消元的方‎法,把新问题“二元”或“三元”通过消去一‎个未知数转‎化为旧问题‎“一元”,化“未知”为“已知”,化“复杂”为“简单”,从而实现问‎题的解决,它也是解二‎元一次方程‎最基本的思‎想.三、典型例题解‎析:类型一:基本概念:例1、(2005年‎盐城大纲)若一个二元‎一次方程的‎一个解为则‎21x y =⎧⎨=-⎩,,这个方程可‎以是___‎_____‎.(只要写出一‎个)分析:本题是一道‎开放型问题‎,考查方程的‎概念,满足题意的‎答案不惟一‎,解此类题目‎时,可以先设出‎系数在代入‎算出另一边‎的值。

二元一次方程组的应用——解应用题

二元一次方程组的应用——解应用题

二元一次方程组的应用——解应用题【学习目标】弄清列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;(2)找:找出能够表示题意两个相等关系;(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案.【重难点】找出能够表示题意两个相等关系【知识要点】各类应用题中三个量之间的关系。

【方法点拨】由各类应用题中三个量之间的关系列出方程组。

【基础过关】例1、打折前,买60件商品和30件商品用了1080元,买50件商品和10件商品用了840元,打折后,买50件商品和50件商品用了960元,比不打折少花多少钱?例2、甲、乙两人各有书若干本,如果甲从乙处拿来10本,那么甲拥有的书是乙所剩书的5倍;如果乙从甲处拿来10本,那么乙所有的书与甲所剩的书相等,问甲、乙两人原来各有几本书?例3、张老师去文具店给美术小组的30名学生买铅笔和橡皮,到了商店后发现,若给全组每人都买2支铅笔和1块橡皮,则要按零售价计算,共需付款30元;若给全组每人都买3支铅笔和2块橡皮,则可按批发价,共需付款40.5元.已知铅笔每支批发价比零售价低0.05元,橡皮每块批发价比零售价低0.1元,求这家文具店每支铅笔和每块橡皮的批发价是多少?例4、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生.⑴求平均每分钟一道正门和一道侧门各可以通过多少名学生?⑵检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由.例5、汽车在相距70km的甲、乙两地之间往返行驶,因为行程中有一坡度均匀的小山,该汽车从甲地到乙地需要2小时30分钟,而从乙地回到甲地需要2小时48分钟,已知汽车在平地每小时行30km,上坡路每小时行20km,下坡路每小时行40km,求从甲地到乙地的行程中,平路、上坡路、下坡路各是多少?【考点突破】1、学校书法兴趣小组准备到文具店购买A、B两种类型的毛笔,文具店的销售方法是:一次性购买型毛笔不超过20支时,按零售价销售;超过20支时,超过部分每支比零售价低0.4元,其余部分仍按零售价销售.一次性购买型毛笔不超过15支时,按零售价销售;超过15支时,超过部分每支比零售价低0.6元,其余部分仍按零售价销售.(1)如果全组共有20名同学,若每人各买1支型毛笔和2支型毛笔,共支付145元;若每人各买2支型毛笔和1支型毛笔,共支付129元.这家文具店的、两种类型毛笔的零售价各是多少?(2)为了促销,该文具店对型毛笔除了原来的销售方法外,同时又推出了一种新的销售方法:无论购买多少支,一律按原零售价(即(1)中所求得的型毛笔的零售价)的出售.现要购买型毛笔支(),在新的销售方法和原来的销售方法中,应选择哪种方法购买花钱较少?并说明理由.2、某市根据信息产业部调整“因特网”的资费要求,规定如下:上“因特网”的费用为电话费0.22元/3分钟。

列二元一次方程组解应用题的技巧

列二元一次方程组解应用题的技巧

列二元一次方程组解应用题的技巧列方程组解应用题的常见题型.(1)和差倍分问题:解这类问题的基本等量关系式是:较大量=较小量+多余量,总量=倍数×1倍量.例1第一个容器有49L 水,第二个容器有56L 水,如果将第二个容器的水倒满第一个容器,那么第二个容器剩下的水是这个容器么第二个容器剩下的水是这个容器容量容量的 ;如果将第一个容器的水倒满第二个容器,如果将第一个容器的水倒满第二个容器,那么第一那么第一个容器剩下的水是这个容器容量的个容器剩下的水是这个容器容量的 ,求这两个容器的容量.,求这两个容器的容量.解 : 设第一个容器的容量为xL xL,第二个容器的容量为,第二个容器的容量为y L y L,那么第二个容器倒给第一个容器,那么第二个容器倒给第一个容器(x -4949))L ,剩下5656-(-(-(x x -4949))L 水,第一个容器倒给第二个容器(水,第一个容器倒给第二个容器(y y -5656))L ,剩下4949-(-(-(y y -5656))L 水,于是根据题意,得水,于是根据题意,得答:第一个容器的容量为63L 63L,第二个容器的容量为,第二个容器的容量为84L 84L..(2)产品配套问题:解这类问题的基本等量关系式是:加工总量成比例.例2某车间有28名工人参加生产某种特制的螺丝和螺母,已知平均每人每天只能生产螺丝12个或螺母18个,个,一个螺丝一个螺丝一个螺丝装配装配两个螺母,两个螺母,问应怎样安排生产螺丝和螺母的工人,问应怎样安排生产螺丝和螺母的工人,问应怎样安排生产螺丝和螺母的工人,才能使每天的才能使每天的产品正好配套?产品正好配套?解 设每天安排x 人生产螺丝,人生产螺丝,y y 人生产螺母,那么每天能生产螺丝12x 个,螺母18y 个,于是根据题意,得根据题意,得答:应安排12人生产螺丝,人生产螺丝,1616人生产螺母.人生产螺母.(3)速度问题: 解这类问题的基本关系式是:路程=速度×时间.一般又分为相遇问题、追及问题及环形道路问题,现列表归纳如下:例3 3 某人从甲地骑车出发,先以某人从甲地骑车出发,先以12km/h 的速度下山坡,后以9km 9km//h 的速度过公路到达乙地,共用55min 55min;返回时,按原路先以;返回时,按原路先以8km 8km//h 的速度过公路,后以4km 4km//h 的速度上山坡回到甲地,共用1h30min 1h30min,问甲地到乙地共多少千米?,问甲地到乙地共多少千米?,问甲地到乙地共多少千米?解 设甲地到乙地山坡路为x km x km,公路为,公路为y km y km.根据题意,得.根据题意,得.根据题意,得答:甲地到乙地共9km 9km..例4 4 一列快车长一列快车长70m 70m,一列慢车长,一列慢车长80m 80m,若两车同向而行,快车从追上慢车开始到离开慢车,,若两车同向而行,快车从追上慢车开始到离开慢车,需要1min 1min;若两车相向而行,快车从与慢车;若两车相向而行,快车从与慢车;若两车相向而行,快车从与慢车相遇相遇到离开慢车,只需要12s 12s,问快车和慢车的,问快车和慢车的,问快车和慢车的速速度各是多少?各是多少?解 设快车的速度是x m x m//s ,慢车的速度是y m y m//s ,根据题意,得,根据题意,得答:快车的速度是7.5m 7.5m//s ,慢车的速度是5m 5m//s .例5 5 甲、乙两人在甲、乙两人在200m 的环形跑道上练习竞走,乙的速度比甲快,当他们都从某地同时背向行走时,每隔30s 种相遇一次;同向行走时,每隔4分钟相遇一次,求甲、乙两人的竞走速度. 解 设甲的速度为xm xm//min min,乙的速度为,乙的速度为ym ym//min min,根据题意,得,根据题意,得,根据题意,得答:甲的速度为175m 175m//min min,乙的速度为,乙的速度为225m/min 225m/min..(4)航速问题:此类问题分水中航行和风中航行两类,基本关系式为:顺流(风):航速=静水(无风)中的速度+水(风)速逆流(风):航速=静水(无风)中的速度-水(风)速例6 6 甲轮从甲轮从A 码头顺流而下,乙轮从B 码头逆流而上,两轮同时相向而行,相遇于码头逆流而上,两轮同时相向而行,相遇于中点中点,而乙轮顺流航行的速度是甲轮逆水航行的速度的2倍,已知水流速度是4km 4km//h ,求两轮在静水中的速度.速度.解 设甲轮在静水中的速度为x km/h x km/h,乙轮在静水中的速度为,乙轮在静水中的速度为y km y km//h ,根据题意,得,根据题意,得答:甲轮在静水中的速度为20km 20km//h ,乙轮在静水中的速度为28km 28km//h .(5)工程问题:解这类问题的基本关系式是:工作量=工作效率×工作时间. 一般分为两类,一类是一般的工程问题,一类是工作总量为1的工程问题.例7 7 一批机器一批机器一批机器零件零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问两人每天各做多少个机器零件? 解 设甲每天做x 个机器零件,乙每天做y 个机器零件,根据题意,得个机器零件,根据题意,得答:甲、乙两人每天做机器答:甲、乙两人每天做机器零件零件分别为50个、个、3030个.个.例8 .一项工程,甲队单独做要12天完成,乙队单独做要15天完成,丙队单独做要20天完成.按原定计划,这项工程要求在7天内完成,现在甲、乙两队先合做若干天,以后为加快天内完成,现在甲、乙两队先合做若干天,以后为加快速度速度,丙队也同时加入这项工作,这样比原定时间提前一天完成任务.问甲、乙两队合做了多少天?丙队加入后又做了多少天?队加入后又做了多少天?解 设甲、乙两队先合做了x 天,丙队加入后又做了y 天,根据题意,得天,根据题意,得答:甲、乙两队先合做了4天,丙队加入后又做了2天.天.(6)增长率问题:解这类问题的基本等量关系式是:原量×(1+增长率)=增长后的量,原量×(1-减少率)=减少后的量.例9 9 某学校办工厂今年总某学校办工厂今年总某学校办工厂今年总收入收入比总支出多30000元,计划明年总收入比总支出多69600元,已知计划明年总收入比今年增加2020%,总支出比今年减少%,总支出比今年减少8%,求今年的总收入和总支出.%,求今年的总收入和总支出. 解 设今年的总收入为x 元,总支出为y 元,根据题意,得元,根据题意,得答:今年的总收入为150000元,总支出为120000元.元.(7)盈亏问题:解这类问题关键是从盈(过剩)、亏(不足)两个角度来把握事物的总量.例10为了迎接新学期开学,为了迎接新学期开学,某服装厂赶制一批校服,某服装厂赶制一批校服,某服装厂赶制一批校服,要求必须在规定时间内完成,要求必须在规定时间内完成,要求必须在规定时间内完成,在生产过程在生产过程中,如果每天生产50套,这将还差100套不能如期完成任务;如果每天生产56套,就可以超额完成80套,问原计划生产校服的套数及原计划规定多少天完成?解 设原计划生产x 套校服,原计划规定生产y 天,根据题意,得天,根据题意,得答:原计划生产1600套校服,原计划规定生产30天.天.(8)数字问题:解这类问题,首先要正确掌握自然数、奇数、偶数等有关数的概念、特征及其表示.如当n 为整数时,奇数可表示为2n +1(或2n -1),偶数可表示为2n 等.有关两位数的基本等量关系式为:两位数=十位数字×10+个位数字.例11 11 一个两位数的个位数字比十位数字大一个两位数的个位数字比十位数字大5,如果把个位数字与十位数字对换,如果把个位数字与十位数字对换,所得的新两位所得的新两位数与原两位数相加的和为143143,求这个两位数.,求这个两位数.,求这个两位数.解 设这个两位数的个位数字为x ,十位数字为y ,根据题意,得,根据题意,得答:这个两位数为4949..(9)几何问题:解这类问题的基本关系是有关几何图形的性质、周长、面积等计算公式.例12 12 有两个有两个有两个长方形长方形,第一个长方形的长与宽之比为5∶4,第二个长方形的长与宽之比为3∶2,第一个长方形的周长比第二个长方形的周长大112cm 112cm,第一个长方形的宽比第二个长方形的长,第一个长方形的宽比第二个长方形的长的2倍还大6cm 6cm,求这两个长方形的面积.,求这两个长方形的面积.,求这两个长方形的面积.解 设第一个长方形的长与宽分别为5xcm 和4xcm 4xcm,,第二个长方形的长与宽分别为3ycm 和2ycm 2ycm,,根据题意,得根据题意,得答:这两个长方形的答:这两个长方形的面积分面积分别为别为 .(10)年龄问题:解这类问题的关键是抓住两人年龄的增长数相等,两人的年龄差是永远不会变的.例13 13 师傅对徒弟说:师傅对徒弟说:“我像你这样大时,你才4岁,将来当你像我这样大时,我已经是52岁的老人了”.问这位师傅与徒弟现在的年龄各是多少岁?解 设现在师傅x 岁,徒弟y 岁,根据题意,得岁,根据题意,得答:现在师傅36岁,徒弟20岁.岁.。

二元一次方程组应用题经典题 (2)

二元一次方程组应用题经典题 (2)

实际问题与二元一次方程组题型归纳知识点一:列方程组解应用题的基本思想列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系. 一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.知识点二:列方程组解应用题中常用的基本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。

这类问题比较直观,画线段,用图便于理解与分析。

其等量关系式是:两者的行程差=开始时两者相距的路程;;;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。

这类问题也比较直观,因而也画线段图帮助理解与分析。

这类问题的等量关系是:双方所走的路程之和=总路程。

(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速。

注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。

2.工程问题:工作效率×工作时间=工作量.3.商品销售利润问题:(1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。

打几折就是按标价的十分之几或百分之几十销售。

(例如八折就是按标价的十分之八即五分之四或者百分之八十)4.储蓄问题:(1)基本概念①本金:顾客存入银行的钱叫做本金。

②利息:银行付给顾客的酬金叫做利息。

③本息和:本金与利息的和叫做本息和。

④期数:存入银行的时间叫做期数。

⑤利率:每个期数内的利息与本金的比叫做利率。

⑥利息税:利息的税款叫做利息税。

(2)基本关系式①利息=本金×利率×期数②本息和=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)③利息税=利息×利息税率=本金×利率×期数×利息税率。

解二元一次方程组及二元一次方程组应用题的方法

解二元一次方程组及二元一次方程组应用题的方法

解二元一次方程组及二元一次方程组应用题的方法一、代入消元法解二元一次方程组:1、基本思路:未知数由多变少。

2、消元法的基本方法:将二元一次方程组转化为一元一次方程。

3、代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这个方法叫做代入消元法,简称代入法。

4、代入法解二元一次方程组的一般步骤:①从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的形式,即“变”。

②将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,即“代”。

③解出这个一元一次方程,求出x的值,即“解”。

④把求得的x值代入y=ax+b中求出y的值,即“回代”。

⑤把x、y的值用,联立起来即“联”。

代入消元法例:解方程组x+y=5①6x+13y=79②解:由①得x=5-y③把③带入②,得6(5-y)+13y=79y=7把y=7带入③,x=5-7即x=-2∴x=-2y=7 为方程组的解我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法,简称代入法。

二、加减消元法解二元一次方程组1、两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。

2、用加减消元法解二元一次方程组的步骤:①方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,那么就用适当的数乘方程两边,使同一个未知数的系数互为相反数或相等,即“乘”。

②把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程,即“加减”。

③解这个一元一次方程,求得一个未知数的值,即“解”。

④将这个求得的未知数的值代入原方程组中任意一个方程中,求出另一个未知数的值即“回代”。

二元一次方程组的应用题有何解题技巧

二元一次方程组的应用题有何解题技巧

二元一次方程组的应用题有何解题技巧在数学的学习中,二元一次方程组的应用题是一个重要且具有一定难度的部分。

掌握好解题技巧,不仅能提高解题的准确率,还能提升我们解决实际问题的能力。

首先,我们要明确什么是二元一次方程组。

它是由两个含有两个未知数的一次方程组成的方程组。

而应用题则是将这些方程与实际生活中的问题相结合,需要我们通过设未知数、列方程、解方程来找到问题的答案。

那么,面对二元一次方程组的应用题,第一步是认真审题。

这听起来简单,但却至关重要。

我们要仔细阅读题目,理解题意,搞清楚题目中描述的数量关系。

比如,常见的有行程问题、工程问题、购物问题、调配问题等等。

以行程问题为例,通常会涉及到速度、时间和路程这三个量。

我们要明确题目中给出的是关于这三个量中的哪些条件。

是已知速度和时间求路程,还是已知路程和时间求速度等等。

在审题的过程中,我们可以边读题边把关键信息标注出来。

比如,某人骑自行车的速度是每小时 15 千米,骑了 3 小时,一共行驶了多少千米?这里,速度是 15 千米/小时,时间是 3 小时,我们要找的就是路程。

接下来,就是设未知数。

设未知数是解题的关键一步,设得恰当与否,会直接影响到后续解题的难易程度。

一般来说,我们可以设两个未知数,通常是根据题目中比较容易表示其他量的两个量来设。

比如,在一个关于买水果的问题中,苹果每斤 5 元,香蕉每斤 3 元,一共买了 10 斤水果,花费 42 元,求买了多少斤苹果和香蕉。

我们可以设买了 x 斤苹果,y 斤香蕉。

设好未知数后,就要根据题目中的数量关系列方程组了。

这就需要我们把题目中的条件转化为数学语言。

比如上面买水果的例子,根据一共买了 10 斤水果,可以列出 x + y = 10;根据花费 42 元,可以列出 5x + 3y = 42。

列好方程组后,就是解方程了。

解二元一次方程组的方法有代入消元法和加减消元法。

代入消元法就是将一个未知数用含另一个未知数的式子表示出来,然后代入另一个方程,消去一个未知数,从而求得另一个未知数的值,再将求得的值代入其中一个方程,求得第一个未知数的值。

二元一次方程组应用题解题方法和技巧

二元一次方程组应用题解题方法和技巧

二元一次方程组应用题解题方法和技巧在数学学习过程中,二元一次方程组是一个常见且重要的概念。

解决二元一次方程组的应用题需要掌握一定的方法和技巧。

本文将介绍二元一次方程组应用题的解题方法和技巧,帮助读者更好地理解和应用这一知识。

什么是二元一次方程组应用题二元一次方程组是指包含两个未知数的方程组,且每个方程中未知数的最高次数为一。

在实际生活中,我们经常会遇到需要利用二元一次方程组来解决问题的情况。

这些问题可以是关于两个未知数的关系、关于两个物品的价格、数量等方面的问答。

解题方法解决二元一次方程组应用题的基本步骤包括:步骤一:设定未知数一般情况下,我们会用两个未知数来表示问题中涉及的两个未知量。

假设这两个未知数分别为x和y。

步骤二:列方程根据应用题中所描述的条件,列出一个二元一次方程组。

通常来说,每个条件都可以转化为一个方程。

注意要保持方程组的一致性,确保方程组包含相同的未知数。

步骤三:解方程通过联立方程组的方法,求解未知数的值。

一般来说,可以采用代入消元、加减消元等方法来求解方程组。

步骤四:检验解求得未知数的值后,要进行解的检验,确保所得的解符合问题的要求。

技巧在解决二元一次方程组应用题时,还可以借助一些技巧来简化解题过程:折线法对于有些题目,可以通过画出关键信息的折线图或几何图形来帮助理解问题,从而更快地列出方程组。

程序求解对于复杂的方程组应用题,可以利用计算机编程来解决。

通过编写简单的程序,可以更快地求解问题,尤其是在有多组题目需要解决时。

逻辑推理在解题过程中,要善于运用逻辑推理的能力。

有时候,通过分析问题的逻辑关系,可以更直观地列出方程组,提高解题效率。

结语二元一次方程组应用题是数学学习中的重要内容,通过掌握解题方法和技巧,可以更好地理解和应用这一知识。

希望本文的介绍能够帮助读者更好地解决二元一次方程组应用题,提高数学解题能力。

七年级下册数学二元一次方程组应用难题汇总

七年级下册数学二元一次方程组应用难题汇总

七年级下册数学二元一次方程组应用难题汇总二元一次方程组的8个类型专治各种不会做的应用题二元一次方程大战应用题一实际问题与二元一次方程组的思路 1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系。

一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数要相等。

2.列二元一次方程组解应用题的一般步骤设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;答:写出答案。

3.要点诠释(1)“设”、“答”两步,都要写清单位名称;(2)一般来说,设几个未知数就应该列出几个方程并组成方程组。

二八大典型例题详解01和差倍数问题知识梳理和差问题是已知两个数的和或这两个数的差,以及这两个数之间的倍数关系求这两个数各是多少。

典型例题思路点拨由甲乙两人2分钟共打了240个字可以得到第一个等量关系式2(x+y)=240,再由甲每分钟比乙多打10个字可以得到第二个等量关系式x-y=10,组成方程组求解即可。

变式拓展思路点拨由甲组学生人数是乙组的3倍可以得到第一个等量关系式x=3y,由乙组的学生人数比甲组的3倍少40人可以得到第二个等量关系式3x-y=40,组成方程组求解即可。

02产品配套问题知识梳理总人数等于生产各个产品的人数之和;各个产品数量之间的比例符合整体要求。

典型例题思路点拨本题的第一个等量关系比较容易得出:生产螺钉和螺母的工人共有22名;第二个等量关系的得出要弄清螺钉与螺母是如何配套的,即螺母的数量是螺钉的数量的2倍(注意:别把2倍的关系写反)。

变式拓展思路点拨根据共有170名学生可得出第一个等量关系x+y=170,根据每个树坑对应一棵树可得第二个等量关系3x=7y,组成方程组求解即可。

二元一次方程组应用问题归纳

二元一次方程组应用问题归纳

二元一次方程组应用问题归纳知识要点分析一:列二元一次方程组解应用题的步骤:( 审设列解答 )(1) 审:审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;(2) 设:找出能够表示题意的两个相等关系并设出方程;(3) 列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4) 解:解方程组,求出两个未知数的值;(5) 答:写出答案(包括单位名称),注意求出的方程组的解要合理符合实际。

二:常见问题中的数量关系(重点、难点)㈠鸡兔同笼问题等量关系:鸡头+兔头=头数鸡脚+兔脚=足数㈡增收节支问题增(减)后的数量=基数×(1±增加(减少)后的百分数);百分率问题:百分率=×100%;折扣问题:打折后的价格=原价×打折数;存(贷)款问题:利息=本金×利率×时间,本息和=本金+利息;盈利问题:销售额=售价×数量;总利润=销售额-总成本=每件的利润×数量=(售价-进价)×数量。

㈢里程碑上的数(1)数字问题1、用字母表示两位或两位以上的数.一个两位数,个位数字是a,十位数字是b,那么这个数可表示为10b+a;如果交换个位和十位上的数字,得到一个新的两位数可表示为10a+b.2、数的位置变换后怎样表示多位数.(1)两位数x 放在两位数y 的左边,组成一个四位数,这时,x 的个位数就变成了百位,十位数就变成了千位,而两位数y 在四位数中数位没有变化.因此用x 、y 表示这个四位数为100x+y .同理,如果将x 放在y 的右边,得到一个新的四位数为100y+x .(2)一个两位数,个位上的数是m ,十位上的数是n ,如果在它们之间添上零,十位上的n 便成了百位上的数.因此这个三位数是由n 个100,0个10,m 个1组成的,用代数式表示这个三位数即为100n+m .3、年龄问题:遇年龄问题时,注意两人年龄同时增长相同岁数.(2)行程问题行驶路程 = 行驶速度•行驶时间①相遇问题:甲乙相向而行,则甲走的路程+乙走的路程 = 总路程;②追及问题:甲乙同向不同地而行,则追者走的路程 = 被追者走的路程 + 两人最初相距的距离;小结:设总路程为S ,甲路程为甲S ,乙路程为乙S ,则相遇问题中的等量关系:甲S +乙S =S. 若甲、乙两人相距S ,甲速度快,在后面追乙,追及问题中的等量关系:甲S =乙S +S.③环形跑道问题:同时同地同向而行,首次相遇,路程差等于一圈;同时同地相背而行,首次相遇,路程和等于一圈;④飞行问题:顺风速度 = 无风速度 + 风速; 逆风速度 = 无风速度 — 风速;⑤航行问题:顺水速度 = 静水速度+水速;逆水速度 = 静水速度—水速;顺水速度—逆水速度 = 2水速.【典型例题】考点一:二元一次方程组与鸡兔同笼问题例 1. 鸡鸭共一栏,鸡为鸭之半.八鸭展翅飞,六鸡在下蛋,再点鸡鸭数,鸭为鸡倍三,请你算一算,鸡鸭各多少 如果设有鸡x 只,鸭有y 只,则由诗意可列二元一次方程组:_________________.例2.(2014辽宁)八年级学生开会,若每条长凳坐5人,则少10条长凳,若每条长凳坐6人,则多两条长凳,问学生多少长凳多少例3.(2013吉林)吉林人参是保健佳品,某特产商店销售甲、乙两种保鲜人参,甲种人参每棵100元,乙种人参每棵70元.王叔叔用1200元在此特产商店购买这两种人参共15棵,求王叔叔购买每种人参的棵树.考点二:二元一次方程组与增收节支问题例1.(2013•乌鲁木齐)在水果店里,小李买了5kg苹果,3kg梨,老板少要2元,收了50元;老王买了11kg苹果,5kg梨,老板按九折收钱,收了90元,该店的苹果和梨的单价各是多少元例2.(2014•泰州)今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.例3.某城市规定:出租车起步价允许行驶的最远路程为3千米,超过3千米的部分按每千米另行收费,甲说:我乘这种出租车走了11千米,付了17元;乙说:我乘这种出租车走了23千米,付了35元.请你算一算这种出租车的起步价是多少元以及超过3千米后,每千米的车费是多少元考点三:用二元一次方程组解决数字问题—里程碑上的数例1.有一个三位数,现将最左边的数字移到最右边,则得到的数比原来的数小45;又已知百位数字的9倍比由十位数字和个位数字组成的两位数小3,试求原来的三位数.例年前父亲的年龄是儿子年龄的4倍,从现在起8年后父亲的年龄成为儿子年龄的2倍,求父亲和儿子现在的年龄.例3.(2014山西)甲、乙两个两位数,若把甲数放在乙数的左边,组成的四位数是乙数的201倍;若把乙数放在甲数的左边,组成的四位数比上面的四位数小1188,求这两个数(列出方程组即可)例4.(2014陕西)有一个两位数和一个一位数,如果在这个一位数后面多写一个0,则它与这个两位数的和是146,如果用这个两位数除以这个一位数,则商6余2,求这个两位数和一位数.考点四:二元一次方程组与行程问题—里程碑上的数例1.(2011恩施州)小明的爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:时刻12:0013:0014:30碑上的数是一个两位数,数字之和为6十位与个位数字与12:00时所看到的正好颠倒了比12:00时看到的两位数中间多了个0则12:00时看到的两位数是:A、24B、 42C、51D、15例2. (2013四川) 甲、乙二人在一环形场地上从A 点同时同向匀速跑步,甲的速度是乙的倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.(列方程组求解)例3.某体育场的一条环形跑道长400米,甲、乙两人从跑道上同一地点出发,分别以不同的速度练习长跑和自行车,如果背向而行,每隔21分钟他们相遇一次,如果同向而行,每隔321分钟甲追上乙一次,问甲、乙每分钟各行多少米。

消元法解二元一次方程组的概念、步骤与方法

消元法解二元一次方程组的概念、步骤与方法

消元法解二元一次方程组的概念、步骤与方法湖南李琳高明生一、概念步骤与方法:1.由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.2.用代入消元法解二元一次方程组的步骤:(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.注意:⑴运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0”的形式,求不出未知数的值.⑵当方程组中有一个方程的一个未知数的系数是1或-1时,用代入法较简便.3.两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。

用加减消元法解二元一次方程组的基本思路仍然是“消元”.4.用加减法解二元一次方程组的一般步骤:第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,•可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,•可以直接把两个方程的两边相减,消去这个未知数.第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,•合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,•常数项在方程的右边的形式,再作如上加减消元的考虑.注意:⑴当两个方程中同一未知数的系数的绝对值相等或成整数倍时,用加减法较简便.⑵如果所给(列)方程组较复杂,不易观察,就先变形(去分母、去括号、移项、合并等),再判断用哪种方法消元好.5.列方程组解简单的实际问题.解实际问题的关键在于理解题意,找出数量之间的相等关系,这里的相等关系应是两个或三个,正确的列出一个(或几个)方程,再组成方程组.6.列二元一次方程组解应用题的一般步骤:⑴设出题中的两个未知数;⑵找出题中的两个等量关系;⑶根据等量关系列出需要的代数式,进而列出两个方程,并组成方程组;⑷解这个方程组,求出未知数的值.⑸检验所得结果的正确性及合理性并写出答案.注意:对于可解的应用题,一般来说,有几个未知数,就应找出几个等量关系,从而列出几个方程.即未知数的个数应与方程组中方程的个数相等.二、化归思想所谓转化思想一般是指将新问题向旧问题转化、复杂问题向简单问题转化、未知问题向已知问题转化等等.在解二元一次方程中主要体现在运用“加减”和“代入”等消元的方法,把新问题“二元”或“三元”通过消去一个未知数转化为旧问题“一元”,化“未知”为“已知”,化“复杂”为“简单”,从而实现问题的解决,它也是解二元一次方程最基本的思想.三、典型例题解析:类型一:基本概念:例1、(2005年盐城大纲)若一个二元一次方程的一个解为21xy=⎧⎨=-⎩,,则这个方程可以是________.(只要写出一个)分析:本题是一道开放型问题,考查方程的概念,满足题意的答案不惟一,解此类题目时,可以先设出系数在代入算出另一边的值。

(完整版)二元一次方程组的应用(几何图形问题)

(完整版)二元一次方程组的应用(几何图形问题)

二元一次方程组的应用(几何图形问题)一、列方程组解应用题的基本思路.列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系,一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.二.列方程(组)解应用题的一般步骤(1)审题,弄清题意及题目中的数量关系.(2)设未知数,可直接设元,也可间接设元.(3)列出方程组,要根据题目中能表示全部意义的相等关系列出方程组.(4)解所列方程组,并检验解的正确性.(5)写出答案.三.注意事项(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去.(2)“设”“答”两步,都要写清单位名称.(3)一般来说,设几个未知数,就应列出几个方程并组成方程组.四、列方程组解应用题的常见题型和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量产品配套问题:加工总量成比例行程问题:速度×时间=路程航速问题:此类问题分为水中航速和风中航速两类顺流(风):航速=静水(无风)中的速度+水(风)速逆流(风):航速=静水(无风)中的速度-水(风)速工程问题:工作量=工作效率×工作时间一般分为两种,一种是一般的工程问题;另一种是工作总量是单位“1”的工程问题增长率问题:原量×(1+增长率)=增长后的量,原量×(1-减少率)=减少后的量浓度问题:溶液×浓度=溶质银行利率问题:免税利息=本金×利率×时间,税后利息=本金×利率×时间—本金×利率×时间×税率利润问题:利润=售价—进价,利润率=(售价—进价)÷进价×100%盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量数字问题:首先要正确掌握自然数、奇数、偶数、数位等有关的概念、特征及其表示年龄问题:抓住人与人的岁数是同时增长的几何问题:必须掌握几何图形的性质、周长、面积等计算公式及对应关系五、应用举例。

二元一次方程组的8大解题方法,应用题的克星

二元一次方程组的8大解题方法,应用题的克星

二元一次方程组的8大解题方法,专治各类应用题!二元一次方程大战应用题一、实际问题与二元一次方程组的思路1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系。

一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数要相等。

2.列二元一次方程组解应用题的一般步骤设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;答:写出答案。

(第一中考网)3.要点诠释(1)“设”、“答”两步,都要写清单位名称;(2)一般来说,设几个未知数就应该列出几个方程并组成方程组。

二、八大典型例题详解01.和差倍数问题知识梳理和差问题是已知两个数的和或这两个数的差,以及这两个数之间的倍数关系,求这两个数各是多少。

典型例题思路点拨:由甲乙两人2分钟共打了240个字可以得到第一个等量关系式2(x+y)=240,再由甲每分钟比乙多打10个字可以得到第二个等量关系式x-y=10,组成方程组求解即可。

变式拓展思路点拨:由甲组学生人数是乙组的3倍可以得到第一个等量关系式x=3y,由乙组的学生人数比甲组的3倍少40人可以得到第二个等量关系式3x-y=40,组成方程组求解即可。

02.产品配套问题知识梳理总人数等于生产各个产品的人数之和;各个产品数量之间的比例符合整体要求。

典型例题思路点拨:本题的第一个等量关系比较容易得出:生产螺钉和螺母的工人共有22名;第二个等量关系的得出要弄清螺钉与螺母是如何配套的,即螺母的数量是螺钉的数量的2倍(注意:别把2倍的关系写反)。

变式拓展思路点拨:根据共有170名学生可得出第一个等量关系x+y=170,根据每个树坑对应一棵树可得第二个等量关系3x=7y,组成方程组求解即可。

二元一次方程组应用题解题技巧

二元一次方程组应用题解题技巧

二元一次方程组应用题解题技巧
一、二元一次方程组的四种解法
1、消元法
用消元法求解二元一次方程组,是最常用的一种方法,它要求给定的二元一次方程组有唯一解,通常通过下列三步可以解出方程组的解:
(1)将方程组化为上三角形;
(2)从最下面开始,用逐步消元法;
(3)求出两个未知数的值。

2、代入法
当计算机不能解如何求解时,可以用代入法近似的求解,原理是:给定的方程组有个解,可以先猜测其中一个未知数的值,然后代入方程组,解出另一个未知数的值,再代入一个不同的初值,解出另一个未知数的值,再代入另一个不同的初值,如此反复,直到与初始初值一致。

3、特殊因式法
特殊因式法是根据一些特殊的性质来求解二元一次方程组的一
种方法,如满足同差定理的方程组的解,可以用同差定理来求解;如果满足等差数列的方程组的解,可以用等差数列的性质来求解,等等。

4、图像法
图像法是指把二元一次方程组的两个变量作图,找出图形上关于变量的判别规律,从而求出变量的确定值的一种方法,主要有三点:
(1)对二元一次方程组的两个变量,取候选值构成一定的点对;
(2)根据给出的方程组,绘制它们的点对;
(3)求出方程组的解。

二、解题技巧
1、先用考题的条件分析出这个问题的特点,然后确定用哪一种解法解决。

2、如果题目中给出条件,需要充分的利用这些条件,根据条件的特殊性选择相应的求解方法
3、对于增加便捷解决方程的繁琐操作和准确率,可采用计算机辅助处理。

4、一般情况,在解题过程中,要把问题抽象成几个简单的步骤。

5、解题的过程中要随时记录计算的步骤,以免出现书写漏洞的现象。

6、在解题过程中,要熟练掌握运用各种技巧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列二元一次方程组解应用题的基本步骤与设题技巧
一.列二元一次方程组解应用题的步骤
1.弄清题意和题目中的数量关系,用字母(如x、y)表示题目中的两个未知数;
2.找出能够表示应用题全部含意的两个相等关系;
3.根据两个相等关系列出代数式,从而列出两个方程并组成方程组;
4.解这个二元一次方程组,求出未知数的值;
5.检查所得结果的正确性及合理性;
6.写出答案.
例1 甲、乙两人的收入之比为4∶3,支出之比为8∶5,一年间两人各储存了500元,求两人的年收入各是多少?
二、设未知数的几种常见方法
(1)设直接未知数:即题目里要求的未知量是什么,就把它设做方程里的未知数,并且求几个设几个.
例2 李红用甲、乙两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税后可得利息43.92元.已知这两种储蓄的年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?公民应交利息所得税=利息金额×20%.
(2)设间接未知数:即设的不是所求量.有些应用题,若设直接未知数,则所列的方程比较复杂;若改设间接未知数,则能列出既简单又易解的方程.
例3 、甲、乙两厂计划在上月共生产机床360台,结果甲厂完成了计划的112%,乙厂完成了计划的110%,两厂共生产了机床400台,问上月两厂各超额生产了机床多少台?
(3)少设未知数:有些应用题,要求两个或更多个未知数,但根据各未知数之间的关系,只需设一个或少数几个未知数就可以求解.
例4 怎样把45分成甲、乙、丙、丁四个数,使甲数加2,乙数减2,丙数加倍,丁数减半的结果相等?
(4)多设未知数:有些应用题,不仅要设直接未知数,而且要增设辅助未知数,但这些辅助未知数本身并不需要求出,它们的作用只是为了帮助列方程,同时为了求出真正的未知数.
例5 甲车和乙车共坐了93人,乙车和丙车共坐了96人,丙车和丁车共坐了98人,问甲车和丁车共坐了多少人?
【巩固练习】
1. 一次篮、排球比赛,共有48个队,520名运动员参加,其中篮球队每队10名,排球队
每队12名,求篮、排球各有多少队参赛?
2. 某厂买进甲、乙两种材料共56吨,用去9860元。

若甲种材料每吨190元,乙种材料每
吨160元,则两种材料各买多少吨?
3.某单位甲、乙两人,去年共分得现金9000元,今年共分得现金12700元 . 已知今年分得
的现金,甲增加50%,乙增加30% . 两人今年分得的现金各是多少元?
4.种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵
4角,大、中、小各买1瓶,需9元6角。

3种包装的饮料每瓶各多少元?
5.甲、乙两人分别从甲、乙两地同时相向出发,在甲超过中点50米处甲、乙两人第一次相遇,甲、乙到达乙、甲两地后立即返身往回走,结果甲、乙两人在距甲地100米处第二次相遇,求甲、乙两地的路程。

【课堂总结】
一).列二元一次方程组解应用题的步骤
1.弄清题意和题目中的数量关系,用字母(如x、y)表示题目中的两个未知
数;
2. 找出能够表示应用题全部含意的两个相等关系;
3.根据两个相等关系列出代数式,从而列出两个方程并组成方程组;
4.解这个二元一次方程组,求出未知数的值;
5.检查所得结果的正确性及合理性;
6.写出答案.
二)、设未知数的几种常见方法
(1)设直接未知数:即题目里要求的未知量是什么,就把它设做方程里的未知数,并且求几个设几个.
(2)设间接未知数:即设的不是所求量.有些应用题,若设直接未知数,则所列的方程比较复杂;若改设间接未知数,则能列出既简单又易解的方程.
(3)少设未知数:有些应用题,要求两个或更多个未知数,但根据各未知数之间的关系,只需设一个或少数几个未知数就可以求解.
(4)多设未知数:有些应用题,不仅要设直接未知数,而且要增设辅助未知数,但这些辅助未知数本身并不需要求出,它们的作用只是为了帮助列方程,同时为了求出真正的未知数.
【作业布置】
1.某人用24000元买进甲、乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,
共获利1350元,试问某人买的甲、乙两股票各是多少元?
2.一级学生去饭堂开会,如果每4人共坐一张长凳,则有28人没有位置坐,如果6人共
坐一张长凳刚好坐满,求初一级学生人数及长凳数.
3.某人装修房屋,原预算25000元。

装修时因材料费下降了20%,工资涨了10%,实际
用去21500元。

求现在材料费及工资各是多少元?
4.配制一种混凝土,水泥、沙、石子、水的质量比是1:3:10:4,要配制这种混凝土36
0千克,各种原料分别需要多少千克?
5.现有1角、5角、1元的硬币各10枚,从中取出15枚,共值7元,三种硬币各取多少枚?
如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档