瞬变电磁原理

合集下载

瞬变电磁法原理

瞬变电磁法原理

瞬变电磁法原理
瞬变电磁法(Transient Electromagnetic Method,简称TEM)是一种地球物理勘探方法,利用地下电阻率差异来探测地下结构的一种有效手段。

瞬变电磁法原理是基于法拉第电磁感应定律和麦克斯韦方程组,通过在地面上设置发射线圈和接收线圈,利用电磁场的感应效应来获取地下介质的电阻率信息。

在瞬变电磁法中,发射线圈产生的瞬时电流会在地下引起瞬时变化的磁场,这个瞬时变化的磁场会感应出地下的涡电流。

这些涡电流会产生自己的磁场,而这个磁场又会感应出接收线圈中的感应电压。

通过测量这个感应电压随时间的变化,就可以得到地下介质的电阻率信息。

瞬变电磁法原理的关键在于瞬时变化的电磁场。

由于地下介质的电阻率不同,对瞬变电磁场的响应也不同,因此可以通过测量感应电压的变化来推断地下的电阻率分布。

一般来说,导电性较好的地层会对瞬变电磁场产生较大的响应,而绝缘性较好的地层则会对瞬变电磁场产生较小的响应。

瞬变电磁法原理的优势在于其对地下较深部分的探测能力。

由于瞬变电磁法所产生的磁场变化非常快,因此可以感应出地下较深部分的涡电流,从而获取较深部分的电阻率信息。

这使得瞬变电磁法在地下水资源、矿产资源、地质构造等方面有着广泛的应用前景。

总的来说,瞬变电磁法原理是基于电磁感应定律和麦克斯韦方程组,利用瞬时变化的电磁场来感应地下介质的电阻率信息。

通过测量感应电压随时间的变化,可以推断地下的电阻率分布,从而实现对地下结构的探测。

瞬变电磁法在地下深部探测方面具有独特的优势,对于地质勘探、矿产资源勘查等具有重要的应用价值。

瞬变电磁详细原理

瞬变电磁详细原理


I 0
AR b
3 2
2
20

5 / 2 5 / 2
t
2007 吉林大学
晚延时的衰减曲线
重叠回线与中心回线曲线对比
中心回线
非磁性均匀半空间电动势响应
0 t /( 0 a )
2

0
3
近区或晚期条件
0.01 τ 0 3 中区或晚期条件
重叠回线
0 0 . 01
2007 吉林大学
TEM探测流程
激发源 发射机 信号检测 (接收机)
探测对象
理论模型 正演计算
反演解释
数据处理
2007 吉林大学
TEM信号向地下扩散示意图
早 期 信 号 反 映 浅 部 结 构
晚 期 信 号 反 映 深 部 结 构
2005 吉林大学
瞬变电磁法 (TEM) 的实际过程示意图
2007 吉林大学
2 2 2 2 1/ 2
H 1 (t ,0 ,0 ) f ( z / a )
磁场随时间的变化率可写为:
H 1 (t , z ,0 ) t 2 (1 z / a )( 2 z / a )
2 2 2 2 1/ 2

H 1 (t ,0 ,0 ) t

H 1 (t ,0 ,0 ) t
a
一次磁场垂直分量随时间的变化率可写为:
H 1 (t ,0 ,0 ) t 2 i (t ) 0 . 45 i ( t ) a t
a
t
2.回线轴上的一次场垂直分量为:
H 1 (t , z ,0 ) H 1 (t ,0 ,0 ) 2 (1 z / a )( 2 z / a )

瞬变电磁法原理介绍

瞬变电磁法原理介绍

瞬变电磁法原理介绍瞬变电磁法俗称TEM (Time domain electromagnetic methods )法,属时间域电磁感应方法。

其探测原理是:在地面布设一回线,并给发送回线上供一个电流脉冲方波,在方波后沿下降的瞬间,产生一个向地下传播的一次磁场,在一次磁场的激励下,地质体将产生涡流,其大小取决于地质体的导电程度,在一次场消失后,该涡流不会立即消失,它将有一个过渡(衰减)过程。

该过渡过程又产生一个衰减的二次磁场向地表传播,由地面的接收回线接收二次磁场,该二次磁场的变化将反映地下地质体的电性分布情况。

如按不同的延迟时间测量二次感生电动势V(t),就得到了二次磁场随时间衰减的特性曲线。

如果地下没有良导体存在时,将观测到快速衰减的过渡过程;当存在良导体时,由于电源切断的一瞬间,在导体内部将产生涡流以维持一次场的切断,所观测到的过渡过程衰变速度将变慢,从而发现地下导体的存在。

瞬变电磁法特图3-1 瞬变电磁法原理示意图(1)对高阻层的穿透能力强,在高阻屏蔽地区用较小的回线可达到较大的探测深度,同时对低阻层有较高的分辨能力,利于在高阻围岩地区开展水文电法工作。

(2)瞬变电磁法一次磁场和被测磁场在时间上是分开的,所以,分辨率较高,并且可以在近区观测。

(3)方法本身受地形影响小。

使用回线源实现了装置的对称性,z x t>0Tx t=t 12t=t t=t 3可以减少断面的不均匀性和地层倾斜的影响。

工作中根据实际情况采用了大回线源装置,用探头接收。

大回线装置的Tx采用边长较大的矩形回线,Rx采用小型线圈(或探头)沿垂直于Tx长边的测线逐点观测磁场分量dB/dt值。

地下感应涡流向下、向外扩散的速度与大地导电率有关,导电性越好,扩散速度越慢,这意味着在导电性较好的大地上,能在更长的延时后观测到大地瞬变电磁场。

从“烟圈效应”的观点看,早期瞬变电磁场是由近地表的感应电流产生的,反映浅部电性分布;晚期瞬变地磁场主要是由深部的感应电流产生的,反映深部的电性分布。

瞬变电磁法的基本原理

瞬变电磁法的基本原理

瞬变电磁法的基本原理
瞬变电磁法是电磁勘察的经典技术,具有无损检测、快速检测、深度较深等优点。

它是基于地球的磁场瞬变信号的原理,通过安装在地面的磁场探测器,利用地球的磁场受到磁性物体的叠加,形成磁场瞬变信号,然后将瞬变信号通过线缆传送到计算机中进行处理,可以精确地探测出地下磁性体的大小、位置和磁性等信息。

瞬变电磁勘探可以进行快速、全面、准确的地下磁性体探测,它在水文、工程、地质等方面具有广泛的应用。

瞬变电磁法的基本原理是:地球自身有一个恒定的磁场,当磁性物体出现在地球表面时,地球的磁场就会受到影响,这些受影响的磁场能够形成一个瞬变信号,这个信号能够通过电线传播到安装在地表的传感器上,然后把这些信号传输到计算机上进行深入分析,以获得磁性物体的具体信息。

瞬变电磁原理

瞬变电磁原理

瞬变电磁原理
瞬变电磁原理是电磁学中一个重要的概念,它描述了当电流发生变化时,产生
的瞬时电磁感应现象。

理解瞬变电磁原理对于电磁学的学习和应用具有重要意义。

本文将从瞬变电磁原理的基本概念、数学表达和实际应用等方面进行介绍。

首先,我们来了解一下瞬变电磁原理的基本概念。

瞬变电磁原理是指当电流发
生变化时,会产生瞬时的电磁感应现象。

这是由法拉第电磁感应定律所描述的,即磁感应强度的变化率正比于电流的变化率。

简单来说,当电流发生变化时,会产生瞬时的电磁感应,这就是瞬变电磁原理的基本概念。

其次,我们需要了解瞬变电磁原理的数学表达。

根据法拉第电磁感应定律,磁
感应强度的变化率可以用数学公式表示为ε=-dΦ/dt,其中ε表示感应电动势,Φ
表示磁通量,t表示时间。

这个公式表达了电流变化引起的感应电动势与磁通量变
化率的关系,是瞬变电磁原理数学表达的核心内容。

除了基本概念和数学表达,瞬变电磁原理还具有重要的实际应用价值。

在电磁
学和电工技术中,瞬变电磁原理被广泛应用于电磁感应传感器、电磁铁、电磁感应加热等领域。

例如,电磁感应传感器利用瞬变电磁原理可以实现对磁场变化的检测,从而实现对物体位置、速度、形状等信息的感知。

而电磁感应加热则利用瞬变电磁原理产生的感应电流来实现对物体的加热,广泛应用于工业生产中。

总之,瞬变电磁原理作为电磁学中的重要概念,对于理解电磁感应现象具有重
要意义。

通过了解其基本概念、数学表达和实际应用,我们可以更好地理解和应用瞬变电磁原理,推动电磁学和电工技术的发展。

希望本文对于读者对瞬变电磁原理有所帮助,谢谢阅读。

瞬变电磁法报告

瞬变电磁法报告

瞬变电磁法报告引言瞬变电磁法(Transient Electromagnetic Method,TEM)是一种非侵入性地下物探方法,广泛应用于矿产勘探、地质调查和水资源评价等领域。

该方法通过测量地下介质对电磁场的响应,可以获取地下的电阻率和电导率等信息,从而推测地下的地质结构和水文特征。

本报告将介绍瞬变电磁法的原理、仪器设备、数据处理方法以及其在勘探领域的应用情况。

原理瞬变电磁法是基于法拉第电磁感应定律和电磁场传播理论的。

其核心原理是在地下埋设主发射线圈和用于接收电磁信号的线圈,通过给主发射线圈施加瞬变电流,产生瞬变电磁场。

这个瞬变电磁场会感应地下的电流,进而产生感应电磁场,其中电磁场的传播过程会导致接收线圈中电磁信号的变化。

通过测量接收线圈中的电磁信号变化情况,可以推测地下介质的电阻率和电导率等物理参数。

仪器设备瞬变电磁法的仪器设备主要包括发射线圈和接收线圈两部分。

发射线圈通常由一对同心圆线圈组成,中间隔离一段距离,并通过一个高电压电流源施加瞬变电流。

接收线圈通常也是一对同心圆线圈,与发射线圈对应放置。

为了减少噪音干扰,接收线圈一般会使用差分模式进行测量。

此外,为了提高测量精度,仪器还包括数据采集设备、控制器和电缆等。

数据处理方法瞬变电磁法的数据处理主要分为两个步骤:预处理和解释处理。

预处理主要包括数据校正和数据滤波。

校正过程主要是对接收线圈信号进行校正,去除仪器和噪音引起的偏移。

滤波过程主要是对数据进行滤波处理,去除高频噪音和低频漂移等。

解释处理是根据已校正并滤波的数据,利用数学模型和反演算法对地下电阻率进行推测。

常用的解释处理方法包括二维反演、三维反演和测深等。

应用情况瞬变电磁法在矿产勘探、地质调查和水资源评价等领域有广泛的应用。

在矿产勘探中,可以利用瞬变电磁法探测地下的矿床和矿体分布情况,帮助寻找矿产资源。

在地质调查中,可以利用瞬变电磁法推测地下构造和地质体分布,辅助地质勘探和地质灾害预测。

瞬变电磁原理

瞬变电磁原理

瞬变电磁原理
瞬变电磁原理是指在电路中出现瞬时电流或电压变化时,所产生的瞬时电磁场现象。

这种瞬变电磁场会对电路中的其他元件产生影响,因此瞬变电磁原理在电磁兼容性和电磁干扰抑制方面具有重要意义。

瞬变电磁原理的产生主要有两种情况,一种是由于电路中突然断开或闭合的开关动作引起的电流瞬变,另一种是由于电路中电压突然升高或下降引起的电压瞬变。

无论是电流瞬变还是电压瞬变,都会产生瞬时的电磁场,从而对周围的电路产生影响。

在电路中,当电流瞬变时,会产生瞬时的磁场,这种瞬时磁场会导致电感元件中产生涡流,从而产生涡流损耗;同时也会对周围的元件产生感应电动势,引起电磁干扰。

而当电压瞬变时,会产生瞬时的电场,这种瞬时电场会导致电容元件中产生充放电过程,从而产生能量损耗;同时也会对周围的元件产生感应电流,引起电磁干扰。

为了减小瞬变电磁场对电路的影响,可以采取一些措施来进行抑制。

例如,在电路设计中可以采用阻抗匹配、屏蔽、滤波等措施
来减小瞬变电磁场的影响;在电路布局中可以采用合理的线路走向、距离和屏蔽措施来减小瞬变电磁场的传播;在电路元件选择中可以
采用抗干扰能力强的元件来减小瞬变电磁场的影响。

总之,瞬变电磁原理是电路中一个重要的物理现象,对电路的
正常工作和电磁兼容性具有重要影响。

了解瞬变电磁原理,采取合
适的抑制措施,可以有效减小电路中瞬变电磁场的影响,保证电路
的正常工作和电磁兼容性。

煤矿瞬变电磁法的基本原理

煤矿瞬变电磁法的基本原理

煤矿瞬变电磁法的基本原理
煤矿瞬变电磁法是一种地球物理勘探技术,其基本原理是利用变化的电磁场在地下物质中引起的感应电流的变化来推断地下结构和地质特征。

瞬变电磁法的原理可以归结为以下几个步骤:
1. 发射电磁场:在地表上放置一个发射线圈,通过电流激发线圈产生变化的电磁场。

2. 感应电流产生:地下物质对电磁场的变化会产生感应电流。

地下物质的电导率和磁导率决定了感应电流的大小和分布。

3. 接收电磁信号:在地表上放置接收线圈,接收感应电流产生的变化信号。

4. 数据采集和处理:将接收到的信号传输到数据采集设备上,然后通过数学模型和计算方法对数据进行处理,将其转化为地下结构和电性特征的信息。

根据瞬变电磁法的原理,可以通过分析感应电流的变化来推断地下的物质性质和特征,如地层的厚度、电导率和磁导率等,进而对煤矿区域进行勘探和评估。

瞬变电磁法原理

瞬变电磁法原理

瞬变电磁法原理瞬变电磁法(Transient Electromagnetic method,简称TEM)是一种地球物理勘探方法,利用瞬变电磁场在地下介质中传播的特性,来获取地下介质的电性信息。

瞬变电磁法原理的核心在于利用瞬变电磁场的感应效应,通过对地下介质中的电导率进行探测,从而揭示地下构造和岩矿成矿体的信息。

瞬变电磁法的原理可以简单概括为,在地面上设置一个发射线圈,通过传输电流产生瞬变电磁场,这个瞬变电磁场会穿透地下介质并感应出地下介质中的电磁响应。

接收线圈则用来接收地下介质中的电磁响应,通过分析接收信号的变化,可以推断地下介质的电导率分布情况,从而得到地下介质的电性信息。

瞬变电磁法原理的核心在于瞬变电磁场的感应效应。

当发射线圈传输电流时,会在地下产生一个瞬变电磁场,这个瞬变电磁场会穿透地下介质,并感应出地下介质中的电磁响应。

地下介质中的电磁响应受到地下介质电导率的影响,不同的地下介质具有不同的电导率,因此它们会对瞬变电磁场产生不同的响应。

通过接收线圈接收地下介质中的电磁响应,并分析接收信号的变化,就可以推断地下介质的电导率分布情况。

瞬变电磁法原理的关键在于对接收信号的分析。

接收线圈接收地下介质中的电磁响应,这个响应信号包含了地下介质电导率的信息。

通过对接收信号的分析,可以得到地下介质的电导率分布情况,从而揭示地下介质的电性信息。

瞬变电磁法通过对地下介质的电性信息进行探测,可以帮助地质勘探人员了解地下构造和岩矿成矿体的情况,为资源勘探和地质灾害预测提供重要的科学依据。

总之,瞬变电磁法原理是利用瞬变电磁场的感应效应,通过对地下介质的电性信息进行探测,来揭示地下构造和岩矿成矿体的信息。

通过对发射线圈传输的瞬变电磁场和接收线圈接收的电磁响应进行分析,可以得到地下介质的电导率分布情况,从而揭示地下介质的电性信息。

瞬变电磁法在资源勘探和地质灾害预测中具有重要的应用价值,是一种非常有效的地球物理勘探方法。

瞬变电磁法

瞬变电磁法

瞬变电磁法
瞬变电磁法是以时变电磁法为基础的一种测量方法,用于测量地下物质的集体性物理参数,如地层密度、水位变化和地下水的渗透率等。

它是地球物理测量方法中最常用的一种,用于探测地下分布状况,有助于人们对地下物质的性质和分布进行详细的了解。

瞬变电磁法的基本原理是利用特殊的装置,在地面上不断发射和接收时变的电磁波,在接收端可以检测到地下物体的信号反射,然后根据信号强度和持续时间,推断地下物体的参数,以及地面上电磁信号传播衰减规律。

瞬变电磁法是一种非接触性的探测方法,在探测深度和范围比较大的情况下,可以获得比较精确的测量结果。

瞬变电磁法主要包括发射、接收和计算三部分,发射部分是运用电子器件将电能变为电磁波,同时将其发射到地下;接收部分是接收来自地下的电磁信号,并将其转换为电信号输出;计算部分是根据接收到的信号,通过计算方法得到电磁属性的信息。

瞬变电磁法用于探测地下物体的几何特性,经常用于探测深层发育环境,用于表征水位变化、渗透率变化,以及地下资源运动态变化,如油气流动、岩溶洞穴生成等。

它可以用于钻探灾害监测,也可以用于地质灾害预测,比如岩溶型地质灾害和水文地质灾害等。

瞬变电磁法拥有广阔的应用前景,它可以用于地下水资源的勘探、评价和管理,可以用于环境监测,用于定位水补给点,可以用于污染源的探测,用于油气勘探、水文勘探,以及地震活动和火山灰等活动的监测等等。

瞬变电磁法是一种新兴的测量技术,只要安装简单,易于操作,测量效果可靠,准确性较高,而且受社会及科技进步的不断推动,其应用技术也会得到持续改善,可以被广泛应用到工程实践中去,为人们对地下物质的性质和分布提供重要的参考。

瞬变电磁法资料

瞬变电磁法资料

第1章概述瞬变电磁法,是利用不接地回线或接地线源向地下发射一次脉冲磁场,在一次脉冲磁场间歇期间利用线圈或接地电极观测地下介质中引起的二次感应涡流场,从而探测介质电阻率的一种方法。

其基本工作方法是:于地面或空中设置通以一定波形电流的发射线圈,从而在其周围空间产生一次电磁场,并在地下导电岩矿体中产生感应电流:断电后,感应电流由于热损耗而随时间衰减。

1、原理瞬变电磁法(Transient Electromagnetic Method)也称时间域电磁法(Time domain electromagnetic methods),简称TEM,它是利用不接地回线或接地线源向地下发射一次脉冲磁场,在一次脉冲磁场间歇期间,利用线圈或接地电极观测二次涡流场的方法。

它是建立在电磁感应原理基础上的时间域人工源电磁探测方法。

它利用不接地回线或接地线源向地下发送一次脉冲磁场,在其激发下,地下地质体中产生的感应涡流将产生随时间变化的感应电磁场。

该信号和地下地质结构的电性特征有着直接的关系。

通过研究瞬变场随时间的变化规律,从而达到解决地质问题的目的。

其工作原理见图1。

其衰减过程一般分为早、中和晚期。

早期的电磁场相当于频率域中的高频成分,衰减快,趋肤深度小;而晚期成分则相当于频率域中的低频成分,衰减慢,趋肤深度大。

通过测量断电后各个时间段的二次场随时间变化规律,可得到不同深度的地电特征。

瞬变电磁法是在没有一次场背景情况下观测研究二次场,简化了对探测目标产生异常的研究。

该方法以其装置轻便、受旁侧影响小、高工效、低成本等特点已被广泛用于金属矿和煤田地质勘探、工程物探、地下水与地热勘探、采空区与岩溶发育带探测及环境灾害地质调查研究等诸多领域。

由于方法本身的属性,不宜在高压超高压输变电线路、铁路等强干扰源附近采集资料,这也为相关规范、技术规程所规定。

2、优点瞬变电磁法探测具有如下优点⑴由于施工效率高,纯二次场观测以及对低阻体敏感,使得它在当前的煤田水文地质勘探中成为首选方法;⑵瞬变电磁法在高阻围岩中寻找低阻地质体是最灵敏的方法,且无地形影响;⑶采用同点组合观测,与探测目标有最佳耦合,异常响应强,形态简单,分辨能力强;⑷剖面测量和测深工作同时完成,提供更多有用信息。

瞬变电磁法原理

瞬变电磁法原理

瞬变电磁法原理瞬变电磁法是一种地球物理勘探方法,它利用地球瞬变电磁场的变化来探测地下的电性结构。

瞬变电磁法原理是基于法拉第电磁感应定律和麦克斯韦方程组的理论基础上发展起来的。

在地球物理勘探中,瞬变电磁法具有较高的探测深度和分辨率,被广泛应用于矿产勘探、地下水资源调查、环境地质调查等领域。

瞬变电磁法原理的核心是通过地面上的发射线圈激发电磁信号,然后利用接收线圈测量地下介质对电磁信号的响应。

在瞬变电磁法中,发射线圈产生的电磁信号会在地下的不同介质中发生反射、折射和散射,这些过程会导致接收线圈接收到不同的电磁信号。

通过分析接收到的电磁信号,可以推断地下介质的电性特征,从而实现地下结构的探测。

瞬变电磁法原理的实现过程可以简单描述为,首先,发射线圈施加电流激发电磁信号,然后接收线圈测量地下介质对电磁信号的响应。

接收到的信号经过放大、滤波等处理后,得到地下介质的电性特征信息。

通过分析这些信息,可以绘制出地下电性结构的剖面图,从而为地质勘探工作提供重要的参考依据。

瞬变电磁法原理的关键在于对地下电磁响应的准确解释和分析。

地下介质的电性特征会对电磁信号产生不同的响应,这种响应与地下介质的电导率、介电常数等物理性质有关。

因此,通过对接收到的电磁信号进行反演处理,可以推断地下介质的电性结构,包括电导率、介电常数等参数。

这些参数对地质勘探具有重要的意义,可以帮助勘探人员判断地下是否存在矿产、地下水资源的分布情况等。

总的来说,瞬变电磁法原理是基于地球物理学和电磁学的理论基础,通过对地下电磁响应的测量和分析,可以实现对地下电性结构的探测。

瞬变电磁法在地质勘探、水资源调查、环境地质调查等领域具有重要的应用价值,可以为勘探工作提供重要的技术支持和科学依据。

随着科学技术的不断发展,瞬变电磁法原理和技术将继续得到改进和完善,为地下结构的探测提供更加精准和可靠的技术手段。

瞬变电磁原理与应用课件

瞬变电磁原理与应用课件

无损探测
瞬变电磁法是一种非接触式探 测方法,对地下目标进行无损 探测,不会破坏地质结构。
成本低
瞬变电磁法所需设备相对简单, 成本较低,便于推广应用。
瞬变电磁法的局限性
受地形影响较大
瞬变电磁法在复杂地形和地表覆盖地 区的应用受到一定限制,探测精度和 可靠性可能下降。
对高阻覆盖层穿透能力以探测深部目标。
对低阻目标敏感度低
瞬变电磁法对低阻目标体的敏感度较 低,可能难以识别和区分。
数据处理和解释难度较大
瞬变电磁法的数据处理和解释涉及到 多个参数和复杂的地球物理特征,需 要专业知识和经验。
瞬变电磁法的发展趋势与展望
智能化探测
多方法综合应用
随着人工智能和机器学习技术的发展,未 来瞬变电磁法有望实现智能化探测,提高 数据处理的自动化程度和精度。
瞬变电磁法的应用领域
矿产资源勘探
瞬变电磁法可以用于寻找金属矿、煤炭等矿产资源,通过测量和分析 二次磁场的变化,可以推断出矿体的位置和埋深等信息。
工程地质勘察
瞬变电磁法可以用于工程地质勘察,如公路、铁路、桥梁、建筑等工 程的场地勘察,了解场地地质构造和岩土性质等信息。
水文地质调查
瞬变电磁法可以用于水文地质调查,如地下水资源的勘探、地下水污 染的监测等,了解地下水的分布和流动规律等信息。
瞬变电磁法在矿产资源勘探中的应用
总结词
高效、准确
详细描述
瞬变电磁法在矿产资源勘探中应用广泛,通过测量地下介质的电性特征,能够高效准确地探测出矿产 资源的分布和储量,为矿产资源开发提供重要的技术支持。
瞬变电磁法在地下水勘探中的应用
总结词
快速、无损
详细描述
瞬变电磁法在地下水勘探中具有快速、 无损的优势,通过测量地下介质的电 导率变化,能够快速准确地确定地下 水的位置和储量,为地下水资源开发 提供重要的技术手段。

瞬变电磁原理

瞬变电磁原理

瞬变电磁法的“烟圈”理论 (2)
在发送一次脉冲磁场的间歇期间,观测由地质体受激 励引起的涡流产生的随时间变化的感应二次场的强度。
地质体介质被激励所感应的二次涡流场的强弱决定于 地质体介质所耦合的一次脉冲磁场磁力线的多少,即二次场 的大小与地下介质的电性有关:
(1)低阻地质体感应二次场衰减速度缓慢,二次场 电压较大;
瞬变电磁法特点就基于这两个可分性。
瞬变电磁响应过程(1)
在导电率为s、磁导率为μ的均匀地质体表面敷设面积为S 的矩形发射回线中供以阶跃电流。
I
t
1 0
t0 t0
在电流断开之前(t<0时),发射电流在回线周围
的地质体和空间中建立起一个稳定的磁场。
均匀大地瞬变电磁响应过程(2)
在t=0时刻,将电流突然关断,由该电 流产生的磁场也立即消失。一次场的剧烈变 化通过空气传至回线周围的地质体中,并在 地质体中激发出感应电流以维持发射电流断 开之前存在的磁场不会立即消失。
均匀大地瞬变电磁响应过程(3)
由于介质的欧姆损耗,这一感应电流将迅速衰 减,由它产生的磁场也随之迅速衰减,这种迅速衰 减的磁场又在其周围介质感应出新的强度更弱的涡 流。这一过程继续下去,直至地质体的欧姆损耗将 磁场能量消耗殆尽。这便是地质体中的瞬变电磁过 程,伴随这一过程的地磁场就是地质体的瞬变电磁 场。
视电阻率(2)
• 视电阻率ρr 以Ω·m为计量单位 • 重叠回路晚期视电阻率计算公式
ρr = 6.32×10-3×L4/3S2/3×[V(t)/I]-2/3×t-5/3
其中:L:线圈边长,以m为单位 S:接收面积,以m2为单位 V(t)/I :归一化值,以uV/A为单位 t :测道时间,以ms为单位
V d t

瞬变电磁法

瞬变电磁法

瞬变电磁法(TEM)1.基本原理瞬变电磁法也称时间域电磁法(Time domain electromagnetic methods),简称TEM,它是利用阶跃波形电磁脉冲激发,利用不接地回线向地下发射一次场,激励电流便形成了一次磁场,瞬间断开“关断”脉冲。

这一随时间突变的磁场在管体中激励起随时间变化的“衰变涡流”,从而在周围空间产生与一次场方向相同的二次“衰变磁场”,二次磁场穿过接收回线中的磁通量随时间变化,在回线中激励起感生电动势,通过测得的感应电动势来判断管道的畸变。

2.国内外发展现状最早提出关于时间域电磁法是西方的“Eltran”法,它基于美国科学家L.W.Blan在1933年的专利,该方法利用电流脉冲激发供电偶极形成电磁场,用电偶极测量电场,此方法提出后,石油公司做了很多野外实验,希望得到类似地震反向法的结果,但由于脉冲激发的瞬变电磁响应频率较低,在沉积盆地难以得到能够识别的分辨率,因此没能达到预期效果。

在上世纪30年代末,前苏联的A.П.Краев才提出将瞬变电磁信号应用于地质构造测深,而利用瞬变电磁法寻找导电矿体,最早是由加拿大地球物理学家J.R.Wait于1951年提出,并于1953年获得专利权。

直到50~60年代,原苏联科学家完成了瞬变电磁法的一维正、反演问题,建立了瞬变电磁法(亦称建场法)的解释理论和野外工作方法,瞬变电磁法才步入实用阶段;80年代以后,随着计算机技术的发展,G.W.Hohmem、A.P.Raiche、B.R.Spies与M.N.Nabighian等学者发表了大量论文,促进了二、三维正演模拟技术的发展。

我国的瞬变电磁法研究起始于上世纪70年代初,其中较早开展这项研究工作的有朴化荣、曾孝箴与王延良等人,推出了均匀大地上空时间域电磁响应,并将脉冲式航电仪器用于地质填图和找矿;1977年地矿部物化探勘查研究所的蒋邦远等将脉冲电磁法用于勘探良导体金属矿;1985年牛之琏将脉冲电磁法用于金属矿勘探,并取得了明显的效果;随后北京矿产地质研究所、中国地质大学、中国有色金属工业总公司矿产地质研究院、中南工业大学、西安地质学院等单位进行研究。

瞬变电磁法

瞬变电磁法

瞬变电磁法
一种新的时间反演方法
瞬变电磁法是一种新的时间反演方法,它是基于地球电磁场的快速变化原理,用以检测地球介质中的地震波时间反演,进而可以对大范围的地震活动进行研究。

它的原理是当地的地震波发生变化时,地球介质中的电磁场变化也会被快速激发,通过观测和记录这些电磁场变化可以推断某一特定时间段内发生了什么样的地震波变化。

在时间反演中,首先要让记录仪记录大量的原始地震数据,然后利用一些数学模型对这些数据进行处理,进而对地震活动(地震波发生的时间和性质)进行重建。

瞬变电磁法的时间反演效果可以空间大范围地探测地震活动,而且也不受地
震波层次结构、目标位置分布等空间因素的影响。

另外,该方法采用多极体检测系统,检测只需很少时间,即使对于大规模地震反演,也很容易实现。

瞬变电磁法基本理论

瞬变电磁法基本理论

瞬变电磁法基本理论瞬变电磁法[1][2](Transient Electromagnetic Methods)的基础是电磁感应原理,场源为人工源,因为研究的是响应场与时间的关系,又被称为时间域电磁法(Time Domain Electromagnetic Methods)。

其人工场源分为2类:电偶源(即接地回线)和电磁源(即不接地回线)。

利用人工场源向地下发射一次脉冲场,在其激发下的瞬间,产生一个向回线法线方向传播的一次磁场(即一次场),在一次场激励下,地质体将产生涡流。

在一次场消失以后,涡流不会马上消失,它会有一个衰减的过程,此过程会产生一个衰减的二次磁场,并继续传播,再由接收回线接收二次场。

这样,通过分析二次磁场的信息变化,就可以得到地质体的电性分布情况。

图1 瞬变电磁法的原理图[3]对于层状大地的瞬变电磁场,在垂直磁偶源的情况下,其均匀半空间的计算公式如下[4]:1.1烟圈效应针对瞬变电磁法激发的磁场,美国科学家M.N.Nahighian 提出[4][5]:感应涡流场在地表的磁场值为地下各个“环带”涡流层的总效应,该效应等效于一个电流环。

人们形象的将其称为“烟圈效应”。

涡流的形状为向下、向外扩散的同心环状,涡流与地面成47°扩散,其密度最大值的扩散方向与地面夹角大概30°。

其扩散公式如下[7]:其原因可以做如下解释:从上面的原理部分我们可以知道,在一次场激励下,地质体将产生涡流,涡流会引发一个磁场。

这个迅速衰减的电磁场会在它的周围感应出一个更弱的涡流。

如此不断循环。

这一过程将会继续到磁场能量耗光。

为了克服烟圈效应提高探测精度,一些地质工作者对此进行了探索。

2011年,王大设等人设计了,基于烟圈效应的11点超前探观测系统设计,可以在不同巷道条件下使用。

2015年,杨聘卿等人基于烟圈效应,对于山西常蒋煤矿的老空积水危害问题,设计了一个精度较高的方案,经验证比较准确。

1.2视电阻率磁偶源条件下的早期视电阻率,指取的极限条件时,推导出的计算视电阻率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

瞬变电磁响应过程(1)
在导电率为s、磁导率为μ的均匀地质体表面敷设面积为S 的矩形发射回线中供以阶跃电流。
1 t 0 I t 0 t 0
在电流断开之前(t<0时),发射电流在回线周围 的地质体和空间中建立起一个稳定的磁场。
均匀大地瞬变电磁响应过程(2)
在t=0时刻,将电流突然关断,由该电流 产生的磁场也立即消失。一次场的剧烈变化 通过空气传至回线周围的地质体中,并在地 质体中激发出感应电流以维持发射电流断开 之前存在的磁场不会立即消失。
瞬变电磁法的“烟圈”理论 (2)
在发送一次脉冲磁场的间歇期间,观测由地质体受激 励引起的涡流产生的随时间变化的感应二次场的强度。 地质体介质被激励所感应的二次涡流场的强弱决定于 地质体介质所耦合的一次脉冲磁场磁力线的多少,即二次场 的大小与地下介质的电性有关: (1)低阻地质体感应二次场衰减速度缓慢,二次场 电压较大; (2)高阻地质体感应二次场衰减速度较快,二次场 电压较小。 根据二次场衰减曲线的特征,就可以判断被测地质体 的电性、性质、规模和产状等,由于瞬变电磁仪接收的信号 是二次涡流场的电动势(即二次电位),因此,瞬变电磁作 为一种时间域的人工源地球物理电磁感应探测方法,是根据 地质构造本身存在的物性差异来间接判断相关地质现象的一 种有效的地质勘探手段。
0t
V d t 2
矿井瞬变电磁法特点(1)
• 从烟圈效应的观点看,早期瞬变电磁场是由近地 表的感应电流产生的,反应浅部电性分布,晚期 瞬变电磁场是由深部的感应电磁场产生的,反映 深部的电性分布。因此,观测和研究大地瞬变电 磁场随时间的变化规律,可以探测大地电位的垂 向变化,这便是瞬变电磁测深的原理。 • 矿井瞬变电磁法由于受仪器煤安条件限制、施工 环境限制、测量线圈大小限制等诸多因素,其勘 探深度不如地面深,一般深度小于100 m左右, • 井下为全空间瞬变响应,这种瞬变响应来自于回 线平面上下(或前后)地层,井下的支护、轨道等 铁构件属于良导体,这对确定异常体的位置带来 困难。
均匀大地瞬变电磁响应过程(4)
决定瞬变过程状态的基本参数是场的瞬 变时间。瞬变时间t依赖于地质体的导电性和 发—收距离。在近区和高阻岩石区,瞬变时 间很短——几十~几百毫秒。在断面中赋存 着良导地质体时这一过程变缓。在远区,瞬 变时间可达到几十秒,而在良导地质体上有 时达到一分钟或更长。 由此可见,研究电磁场的瞬变过程可得 到不同电导率地层系列的地质信息及总纵向 电导,也可以分离出断面中的高导电带。
干扰和噪声(1)
• 低于1Hz的噪声主要来自地球磁场的微脉动。 • 5Hz – 25kHz的噪声源主要是雷电或人文噪 声,其中雷电在8Hz、14Hz、20Hz、26Hz、 32Hz频点的电磁场相对较强,但雷电对井 下的干扰非常微弱,其影响可忽略不计。 • 赤道或热带地区的电磁噪声比中纬度地区 高200多倍,中纬度地区的夏天比冬天的干 扰高100多倍,一天之内的中午比早晚高10 多倍。
交流 电法
人工场
瞬变电磁法 电磁法
瞬变电磁法基本原理(2)
瞬变电磁法或称时间域电磁法(Transient Electromagnetic Method,简称TEM),利用 不接地回线(线圈)向被测地质体发射脉冲 式电场作为场源(一次场),以激励被测地 质体产生二次场,在发射脉冲的间隙利用接 收回线(线圈)接收二次场随时间变化的响 应。从接收的二次场数据中分析出地质体异 常导电体的位置,从而达到解决地质问题的 目的。
瞬变电磁法的“烟圈”理论 (3)
任一时刻地下涡旋电流在地表产生的磁场可以 等效为一个水平环状线电流的磁场。在发射电流刚 关断时,该环状线电流紧接发射回线,与发射回线 具有相同的形状。随着时间的推移,该电流环向下、 向外扩散,并逐渐变形为圆电流环。附图示意了发 射电流关断后不同时刻地下等效电流环的分布。从 图中可以看到,等效电流环很像从发射回线中“吹” 出的一系列“烟圈” 。
瞬变电磁法基本原理(1)
类别 场的性质 方法名称 应用
天然场
自然电场法
电剖面法
地下水流向、金属硫化矿
断层破碎带、熔岩发育带 含水层厚度、埋深 电剖面法+电测深法 地下水、石油、金属硫化矿
直流 电法
电阻率法
电测深法 高密度电法
激发极化法
充电法
频率电磁测深法
地下河、供水裂隙带
区域构造、石油 含水层厚度、埋深 找水
均匀大地瞬变电磁响应过程(3)
由于介质的欧姆损耗,这一感应电流将迅速衰 减,由它产生的磁场也随之迅速衰减,这种迅速衰 减的磁场又在其周围介质感应出新的强度更弱的涡 流。这一过程继续下去,直至地质体的欧姆损耗将 磁场能量消耗殆尽。这便是地质体中的瞬变电磁过 程,伴随这一过程的地磁场就是地质体的瞬变电磁 场。
瞬变电磁法基本原理(3)
瞬变电磁法基本原理(4)
前面提到测量数据是在脉冲间隙中得到 的,理论上不存在一次场源的干扰,这称之 为时间上的可分性。 根据傅立叶变换理论可知,方波脉冲可 视为许多不同频率的组合,不同延时观测的 主要频率成分不同,相应时间的场在地质体 中的传播速度不同,调查深度也就不同,这 称之为空间的可分性。 瞬变电磁法特点就基于这两个可分性。
矿井瞬变电磁法特点(4)
• 由于瞬变电磁法关断时间、一次场干扰等 因素的影响,与其它物探方法相比,无法 探测到更浅部的异常体(浅部2-10 m左右)
观测数据
• 用发送脉冲电流幅值归一化的参数: V(t)/I值,以uV/A为计量单位 • 感应磁场B值: B(t)/I,以nV/(m2×A)为计量单位
瞬变电磁法的“烟圈”理论 (4)
―烟圈”的半径r、深度d的表达式分别为: (5-3-1) r 8c 2 t / 0 a 2
d 4 t / 0
(5-3-2)
式中:a为发射线圈半径,c2 (8 / ) 2 0.546479 当发射线圈半径对于“烟圈”半径很小时,可得 tanθ=d/r≈1.07,θ≈47°,故“烟圈”将沿47°倾斜锥 面扩散,其向下传播的速度为: (5-3-3) 从式(5-3-1)到式(5-3-3)可以看出:感应涡流扩散的速 度与地质体电导率和磁导率有关。导电性和磁导率越好,扩 散速度越慢,在导电性和导磁性较好的地质体上,能在更长 的延时后观测到大地瞬变电磁场。ຫໍສະໝຸດ 均匀大地瞬变电磁响应过程(4)
在瞬变过程早期阶段,高频谐波占主导地位。 由于高频的趋肤效应,涡旋电流主要集中在导电介 质的表层附近且阻碍电磁场向地质体深处传播。所 以早期阶段主要反映地质体断面上部地质信息。 随着时间的推移,高频成分被导电介质吸收, 从而低频成分占主导地位。它在导电地质体中激发 出很强的涡旋电流。然而由于热损耗,这些涡旋电 流场很快就消失了。 在瞬变过程的晚期,局部地质体中的涡流实际 上全部消失,而在各个地层中的涡流磁场之间连续 的相互作用使场均匀化和使电流均匀分布,晚期场 将依赖于断面的总纵向电导。
干扰和噪声(2)
• 电网噪声主要来自工频50Hz及其谐波, 干扰水平可高达百mV级别。 • 电气设备开启、关闭及工作过程会产 生高值脉冲干扰。 • 接收线圈的摆动,可感应出低频干扰, 幅度可达10uV以上。 • 器件性能差异、电路设计、PCB电路 布板等都亦能产生仪器机内噪声。
噪声的抑制
• 瞬变电磁仪主要干扰之一为50Hz极其谐波。由于 二次场信号为宽频信号,频率范围主要集中在 20KHz以内,其中包含的50Hz也属于有效信号点, 造成传统的数字滤波手段难以适用。 • 双极性处理作为消除工频干扰的有效手段,在发 射频率周期为工频周期整数倍时(如发射频率 2.5Hz、6.25Hz、12.5Hz、25Hz),干扰可被理 想抵消。 • 多次叠加作为提高信噪比的主要手段,可有效抑 制白噪声、随机干扰、天电干扰等常见噪声,提 高数据信噪比。
视电阻率(2)
• 视电阻率ρr 以Ω· m为计量单位 • 重叠回路晚期视电阻率计算公式
ρr = 6.32×10-3×L4/3S2/3×[V(t)/I]-2/3×t-5/3
其中:L:线圈边长,以m为单位 S:接收面积,以m2为单位 V(t)/I :归一化值,以uV/A为单位 t :测道时间,以ms为单位 • 本计算公式是理想条件下半空间晚期视电阻率计 算公式
矿井瞬变电磁法特点(2)
• 由于井下测量环境不同于地面,不可能采用地表 测量时的大线圈(地面线圈边长都大于50 m)、大 电流装置,只能采用边长小于3 m的多匝小线框, 因此数据采集劳动强度小,测量设备轻便,工作 效率高、成本低。 • 由于采用小线圈测量,点距更密(一般为2 -3 m), 降低了体积效应的影响,提高了勘探分辨率,特 别是横向分辨率 • 由于是小电流、小线圈,就造成一次场强小,所 得到的二次感应场也小,二次场容易被人文电磁 场噪声干扰、甚至淹没。
其中:Sn:接收线圈等效面积,N:发射匝数 I:发射电流
观测数据
• 用发送脉冲电流幅值归一化的参数: V(t)/I值,以uV/A为计量单位 • 感应磁场B值: B(t)/I,以nV/(m2×A)为计量单位
其中:Sn为接收线圈等效面积,N为匝数
视电阻率(1)
• 视电阻率是形象表达地下电性结构的一种常用参 数,因此也往往通过某种算法将时间域瞬变电磁 法(TEM)观测到的感应电动势转化为视电阻 率参数进行瞬变电磁响应的地球物理解释 • 由于瞬变场与一维层状介质表面的瞬变场表达式 之间存在着复杂的隐函数关系,难以用解析法导 出视电阻率与场之间的显式反函数,通常只能使 用各种近似定义方法、精确定义再通过数值计算 的方法,求视电阻率与场之间的显式反函数 • 近似定义方法即所谓的早期和晚期视电阻率定义, 数值计算方法则是全区视电阻率定义
矿井瞬变电磁法特点(3)
• 井下测量装置排除天电干扰,提高了测量信号的 信噪比。 • 可以将线圈置于巷道底板测量,探测巷道底板下 一定深度内含水异常体垂向和横向发育规律, • 可以将线圈直立于巷道内,当线圈面平行巷道掘 进前方,可进行超前探测;当线圈面平行于巷道侧 面煤层,可探测工作面内和顶、底板一定范围内 含水低阻异常体的发育规律
相关文档
最新文档