ANSYS Workbench 动力学分析指南

合集下载

workbench动力学概论

workbench动力学概论

DYNAMICS 11.0
How to Approximate Rayleigh Damping Constants
Rayleigh Equation: the sum of
the and terms is nearly constant over the range of frequencies
DYNAMICS 11.0
模态叠加法
• 按自然频率和模态将完 全耦合的通用运动方程 转化为一组独立的非耦 合方程 • 可以用来处理瞬态动力 学分析和谐响应分析 • 详见《模态叠加法》
动力学控制方程方法求解方法
显式求解法
Training Manual
– ANSYS-LS/DYNA方法,也称为闭式求解法或预测求解 法; – 积分时间步 Dt必须很小,但求解速度很快(没有收敛问 题); – 可用于波的传播,冲击载荷和高度非线性问题; – 当前时间点的位移 {u}t 由包含时间点 t 的方程推导出来 – 无条件稳定: Dt的大小仅仅受精度条件控制, 无稳定性。
DYNAMICS 11.0
阻尼定义与分类
Training Manual
阻尼是一种能量耗散机制,它使振动随时间减 弱并最终停止。 阻尼的数值主要取决于材料、运动速度和振动 频率。 阻尼可分类如下:
– 粘性阻尼
– 滞后或固体材料阻尼 – 库仑或干摩擦阻尼
DYNAMICS 11.0
粘性阻尼
Training Manual
• 比例常数 m 就是摩擦系数;
Training Manual
DYNAMICS 11.0
– 动力学分析中一般不予考虑。
阻尼矩阵
在ANSYS中,阻尼是各种指定阻尼的和
[C ] [ M ] ( c )[ K ]

workbench 谐响应 扫频 转子动力学

workbench 谐响应 扫频 转子动力学

workbench 谐响应扫频转子动力学
我猜你想了解的是 Workbench 进行谐响应扫频和转子动力学分析的相关内容。

Workbench 是 ANSYS 公司推出的一款协同仿真环境,广泛应用于结构、流体、电磁等领域的仿真分析。

在 Workbench 中进行谐响应扫频和转子动力学分析的基本流程如下:
1. 建立模型:首先需要建立分析模型,包括几何模型和网格划分等。

可以使用Workbench 中的 DesignModeler 或 SpaceClaim 等工具进行建模和网格划分。

2. 施加激励:在模型上施加激励,例如力、压力、位移等。

可以使用 Workbench 中的Static Structural 或 Modal 等模块进行激励的施加。

3. 设置分析选项:设置谐响应分析的选项,例如频率范围、求解器等。

可以使用Workbench 中的 Harmonic Response 模块进行设置。

4. 进行分析:运行谐响应分析,得到模型的频率响应曲线。

可以使用 Workbench 中的Results 模块查看分析结果。

5. 进行转子动力学分析:如果需要进行转子动力学分析,可以在模型上添加轴承、轴等组件,并设置相应的边界条件和激励。

可以使用 Workbench 中的 Rotordynamics 模块进行分析。

需要注意的是,具体的分析流程和方法可能会因模型的不同而有所差异,建议你根据实际情况进行调整。

Ansys-Workbench动力学分析

Ansys-Workbench动力学分析

4.1: 动力学绪论
第一节 动力学分析目的及定义 为什么要对结构进行动力学分析?
土木建筑、地质工程领域
1940年11月7日倒塌—风载
1940年7月1日通车 美国塔科曼悬索大桥
交通运输、航空航天领域
机械、机电领域
什么是结构动力学?
定义:研究结构在动力荷载作用下的动力反应。
目的:动力荷载作用下结构的内力和变形;
4.2: 模态分析
第一节 模态分析的含义
什么是模态分析?
模态分析是用来确定结构的振动特性(固有频率和振型) 的一种技术。 模态分析的好处:
– 使结构设计避免共振或以特定频率进行振动(例如 扬声器);
– 使工程师可以认识到结构对于不同类型的动力载荷 是如何响应的。
建议: 在准备进行其它动力分析之前首先要进行
单地用简谐函数来表示。
FP
t
(3)冲击荷载 荷载的幅值(大小)在很短时间内急剧增大或急剧减小。
FP 冲击荷载
t
FP 突加荷载
t
(4)随机荷载 荷载的幅值变化复杂、难以用解析函数解析表示的荷载。
风荷载 地震作用
25 Wind speed (m/s) 20
15
10
5
0
0
50
100
脉动风
平均风
150
200
fn
n 2
为系统的固有频率,Hz
1 2
T
fn n
为系统的周期,s
2.二自由度无阻尼线性系统
对质量块m1、 m2受力分析, 由Newton第二定律得
mm12xx12 kk13xx12kk22(
x2 x1) (x2 x1)
mm12xx12(kk21x1

ANSYS动力学分析指南

ANSYS动力学分析指南

ANSYS 动力学分析指南目 录第1章 模态分析 (1)§1.1 模态分析的定义及其应用 (1)§1.2 模态分析中用到的命令 (1)§1.3 模态提取方法 (1)§1.3.1 分块Lanczos法 (2)§1.3.2 子空间法 (3)§1.3.3 PowerDynamics法 (3)§1.3.4 缩减法 (3)§1.3.5 非对称法 (3)§1.3.6 阻尼法 (4)§1.3.7 QR阻尼法 (4)§1.4 矩阵缩减技术和主自由度选择准则 (5)§1.4.1矩阵缩减 技术 (5)§1.4.2人工选择主自由度的准则 (5)§1.4.3程序选择主自由度的要点 (7)§1.5 模态分析过程 (7)§1.6 建模 (7)§1.7 加载及求解 (8)§1.7.1 进入ANSYS求解器 (8)§1.7.2 指定分析类型和分析选项 (8)§1.7.3 定义主自由度 (10)§1.7.4 在模型上加载荷 (11)§1.7.5 指定载荷步选项 (12)§1.7.6 参与系数表输出 (12)§1.7.7 求解 (13)§1.7.8 退出求解器 (14)§1.8 扩展模态 (14)§1.8.1 注意要点 (14)§1.8.2 扩展模态 (14)§1.9观察结果 (16)§1.9.1 注意要点 (16)§1.9.2 观察结果数据的过程 (16)§1.9.3 选项:列表显示所有频率 (17)§1.9.4 选项:图形显示变形 (17)§1.9.5 选项:列表显示主自由度 (17)§1.9.6 选项:线单元结果 (17)§1.9.7 选项:等值图显示结果项 (18)§1.9.9 选项:列表显示结果项 (18)§1.9.10 其它功能 (18)§1.10 有预应力模态分析 (18)§1.11 大变形预应力模态分析 (19)§1.12 循环对称结构的模态分析 (20)§1.12.1 基本扇区 (20)§1.12.2 节径 (20)§1.12.3 标准(无应力)循环对称结构模态分析 过程 (21)§1.12.4 有预应力循环对称结构模态分析 (24)§1. 13 模态分析实例 (25)§1.13.1飞机机翼模态分析实例 (25)§1.13.2 循环对称结构模态分析实例-简化齿轮的模态分析 (31)§1.13.3 其它模态分析实例的出处 (38)第2章 谐响应分析 (40)§2.1谐响应分析 的定义与应用 (40)§2.2谐响应分析中用到的命令 (40)§2.3三种求解方法 (40)§2.3.1完全法 (41)§2.3.2缩减法 (41)§2.3.3模态叠加法 (41)§2.3.4三种方法共同的局限性 (42)§2.4完全法谐响应分析 (42)§2.4.1完全法谐响应分析过程 (42)§2.4.2建模 (42)§2.4.3加载并求解 (42)§2.4.4观察结果 (49)§2.5缩减法谐响应分析 (51)§2.5.1加载并求得缩减解 (52)§2.5.2观察缩减法求解的结果 (53)§2.5.3扩展解(扩展过程) (53)§2.5.4观察已扩展解的结果 (55)§2.5.5典型的缩减法谐响应分析命令流 (56)§2.6模态叠加法谐响应分析 (57)§2.6.1获取模态分析解 (57)§2.6.2获取模态叠加法谐响应解 (58)§2.6.3扩展模态叠加解 (59)§2.6.4观察结果 (59)§2.6.5典型的模态叠加法谐响应分析命令流 (59)§2.7有预应力的完全法谐响应分析 (61)§2.7.1 有预应力的完全法谐响应分析 (61)§2.7.2有预应力的缩减法谐响应分析 (61)§2.7.3有预应力的模态叠加法谐响应分析 (61)§2.8谐响应分析实例 (61)§2.8.1“工作台-电动机”系统谐响应分析 (62)§2.8.2有预应力的吉他弦的谐响应 (66)§2.8.3其它谐响应分析实例的出处 (73)第3章 瞬态动力学分析 (74)§3.1 瞬态动力学分析的定义 (74)§3.2 学习瞬态动力学的预备工作 (74)§3.3 三种求解方法 (74)§3.3.1 完全法 (75)§3.3.2 模态叠加法 (75)§3.3.3 缩减法 (75)§3.4 完全法瞬态动力学分析 (76)§3.4.1 建造模 型 (76)§3.4.2 建立初始条件 (77)§3.4.3 设置求解控制 (79)§3.4.4 设置其他求解选项 (82)§3.4.5 施加载荷 (84)§3.4.6 存储当前载荷步的载荷配置 (84)§3.4.7 针对每个载荷步重复§3.4.3-6 (85)§3.4.8 存储数据库备份文件 (85)§3.4.9 开始瞬态求解 (85)§3.4.10 退出求解器 (86)§3.4.11 观察结果 (86)§3.4.12 完全法瞬态分析的典型命令流 (87)§3.5 模态叠加法瞬态动力分析 (89)§3.5.1 建造模型 (89)§3.5.2 获取模态解 (89)§3.5.3 获取模态叠加法瞬态分析解 (90)§3.5.4 扩展模态叠加解 (93)§3.5.5 观察结果 (94)§3.5.6 模态叠加法瞬态分析的典型命令流 (94)§3.6 缩减法瞬态动力学分析 过程 (95)§3.6.1 获取缩减解 (96)§3.6.2 观察缩减法求解的结果 (100)§3.6.3 扩展解(扩展处理) (100)§3.6.4 观察已扩展解的结果 (102)§3.7 有预应力瞬态动力学分析 (103)§3.7.1 有预应力的完全法瞬态动力学分析 (103)§3.7.2 有预应力的模态叠加法瞬态动力学分析 (103)§3.7.3 有预应力的缩减法瞬态动力学分析 (103)§3.8 瞬态分析的关键技术细节 (104)§3.8.1 积分时间步长选取准则 (104)§3.8.2 自动时间步长 (106)§3.8.3 阻尼 (106)§3.9 瞬态动力学分析实例 (109)§3.9.1 瞬态完全法分析板-梁结构实例 (109)§3.9.2 瞬态缩减法分析简支梁-质量系统实例 (114)§3.9.3 瞬态模态叠加法分析板-梁结构实例 (119)§3.9.4 其它的分析实例的出处 (124)第4章 谱分析 (125)§4.1 谱分析的定义 (125)§4.2 什么是谱 (125)§4.2.1 响应谱分析 (125)§4.2.2 动力设计分析方法 (126)§4.2.3 功率谱密度 (126)§4.2.4 确定性分析与概率分析 (126)§4.3 谱分析使用的命令 (126)§4.4 单点响应谱(SPRS)分析步骤 (126)§4.4.1 建造模型 (127)§4.4.2 获得模态解 (127)§4.4.3 获得谱解 (127)§4.4.4 扩展模态 (129)§4.4.5 合并模态 (130)§4.4.6 观察结果 (132)§4.4.7 典型的单点响应谱分析命令流 (133)§4.5 随机振动(PSD)分析步骤 (134)§4.5.1 扩展模态 (135)§4.5.2 获得谱解 (135)§4.5.3 合并模态 (138)§4.5.4 观察结果 (139)§4.5.5 典型的PSD分析命令流 (141)§4.6 随机振动分析结果应用 (143)§4.6.1 随机振动结果与失效计算 (143)§4.6.2 随机疲劳失效 (144)§4.7 DDAM(动力设计分析方法)谱分析 (146)§4.8 多点响应谱(MPRS)分析 (146)§4.9 谱分析的实例(GUI命令流和批处理) (147)§4.9.1 单点响应谱分析的算例 (147)§4.9.2 多点响应谱分析的算例 (153)§4.9.3 随机振动和随机疲劳分析算例 (156)§4.9.4 谱分析的其他例题 (165)第1章 模态分析§1.1 模态分析的定义及其应用模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是 承受动态载荷结构设计中的重要参数。

Ansys动力学分析

Ansys动力学分析

有阻尼自由振动的解 瞬态解
瞬态响应 逐渐衰减
稳态振动的解 稳态解
稳态响应 持续等幅振动
精品课件
系统的瞬态响应:
系统的稳态响应:
系统的全响应:
x (t ) x0
稳态响应 全响应
0
t
经过充分长时间后,瞬态响应消失,只剩稳态强迫振动 。
精品课件
对连续体的通用运 动 方程M x Cx K x F
[F]矩阵和 {x}矩阵是简谐的,频率为 :
精品课件
六阶模态总变形分析云图
一阶预拉应力振型
二阶预拉应力振型
三阶预拉应力振型
四阶预拉应力振型
五阶预拉应力振型
精品课件
六阶预拉应力振型
前五阶模态频率
没有预应力
预应力为108N
讨论:为什么会出现这样的差异?
精品课件
4.3: 谐响应分 析
精品课件
第一节 谐响应分析的目的
简谐激励
转子 机械损伤 污染物堆积 轴弯曲 轴孔偏离中心
目的:动力荷载作用下结构的内力和变形;
确定结构的动力反应规律。
安全性:确定结构在动力荷载作用下可能产生的最大内力 ,作为强度设计的依据; 舒适度:满足舒适度条件(位移、速度和加速度不超过规 范的许可值)。
精品课件
结构动力体系
静荷载
大小 方向 作用点
结构体系
静力响应
输入 input
刚度、约束 杆件尺寸 截面特性
输出 Output
动荷载
大小 方向 作用点 时间变化
结构体系
输入
input
质量、刚度 阻尼、约束 频率、振型
动力响应
输出 Output
精品课件
位移 内力 数值

ANSYSWorkbench基础教程与工程分析详解第五章显式动力学分析

ANSYSWorkbench基础教程与工程分析详解第五章显式动力学分析

ANSYSWorkbench基础教程与工程分析详解第五章显式动力学分析通过第4章动力学分析的学习,相信读者对ANSYS Workbench 中的隐式动力学已经有一定的了解了,本章主要讲解显式动力学,包括三个模块,ANSYS LS-DYNA,主要完成在Workbench下的前处理工作;ANSYS AUTODYN,其功能是提供一个全面的多解决方案;ANSYS Explicit,主要用于满足固体、流体、气体及它们之间相互作用的非线性动力学仿真。

同样,本章通过图例详解来讲解显式动力学的分析流程。

本章所要学习的内容包括:了解显式动力学分析基础熟悉显式动力学分析的操作流程掌握ANSYS Workbench显式动力学中命令选项的应用了解显式动力学分析的应用场合5.1 显式动力学分析基础显式动力学通常的应用领域主要有:汽车工业,如碰撞分析、气囊设计等;航天航空,如飞机结构冲击动力分析、碰撞和坠毁、火箭级间分离模拟分析、冲击爆炸及动态载荷和特种复合材料设计等;制造业,如冲压、锻造、铸造和切割等;建筑业,如爆破拆除、地震安全和混凝土结构等;国防工业,如穿甲弹与破甲弹设计、冲击波传播和空气,水与土壤中爆炸等;电子领域,如跌落分析、包装设计和电子封装等。

当数值仿真问题涉及瞬态、大应变、大变形、材料的破坏,材料完全失效或者伴随复杂接触的结构问题时,通过显式动力学求解可以解决这些问题。

拉格朗日法,其网格是在计算模型上,受力后网格随计算模型变化而变化。

应用拉格朗日法的单元类型有三种:实体单元、壳单元和梁单元。

拉式法主要用于计算结构响应。

不同于拉格朗日法,欧拉法的网格是固定于空间,在计算力学模型流动或变形时是经过空间固定的网格,从而在计算时通常可以避免问题的网格畸变。

欧拉法主要用于计算流该软件为功能成熟、输入要求复杂的程序,是一个单独的程序,提供方便、实用的接口技术来连接有多年应用实践的显式动力学求解器。

1996年一经推出,ANSYS LS-DYNA 就帮助众多行业的客户解决了诸多复杂的设计问题。

ANSYSworkbench联合dyna显示动力学分析

ANSYSworkbench联合dyna显示动力学分析
3. 返回1界面,双击进入model (1)设置材料参数
(2)suppress 多余的y
4.part 及接触设置
5.网格设置及划分
6.载荷及边界设置
7. 求解设置,求解并保存
8.找到K文件,如图所示的文件夹
K文件保存在目录(文件名)_files\dp0\SYS\MECH下,如图所示:
9.调用ansys-lsdyna求解K文件设置
10.
通过LS-prepost打开d3plot文件,进行后处理。如下图:
进入engineeringdata设置材料参数3
ANSYSworkbench联合dyna显示动力学分析
ANSYS workbench联合dyna显示动力学分析
说明:本文例子无太多工程意义,旨在说明操作步骤,供学习交流之用,如能起到抛砖引玉的作用,实乃荣幸!
1.打开workbench选中如图所示模块
2. 进入Engineering data 设置材料参数

ANSYS Workbench 19.0基础入门与工程实践 第13章 显式动力学分析

ANSYS Workbench 19.0基础入门与工程实践 第13章 显式动力学分析
?1322几何建模?1323材料属性设置?1324接触设置?1325网格划分?1326边界及载荷施加?1327求解设置?1328结果后处理133显式动力学实例跌落分析?跌落问题仿真非常典型尤其是在家电小型电子产品等工业领域应介
• 显式动力学用来分析结构在应力波作用、外部冲击以及短 时间内载荷快速变化等情形下的响应。通常情况下,当分 析项目中作用时间小于1s(通常单位为ms)时适合采用 本方法进行分析求解。
• 13.2.2 几何建模 • 13.2.3 材料属性设置 • 13.2.4 接触设置 • 13.2.5 网格划分 • 13.2.6 边界及载荷施加 • 13.2.7 求解设置 • 13.2.8 结果后处理
13.3 显式动力学实例——跌落分析
• 跌落问题仿真非常典型,尤其是在家电、小型电子产品等工业 领域应用尤其广泛。本例主要针对光学镜头的跌落分析进行显 式动力学分析,详细介绍跌落分析的设置方法,为读者掌握和 学习提供案例指导和案例实践。
• 在前面的章节中已经知悉,系统的运动方程可以用式描述:
13.2 显式动力学实例—子弹射击简单模拟
• 本例以子弹射击为分析对象,利用显式动力学分析模块研究高速状态 下结构的相互作用情况,为读者学习和掌握显式动力学的分析方法提 供详细的使用指导。
• 13.2.1 问题描述
• 子弹射击是显式动力学最常见的一类分析问题,图13-2所示为子弹 射击场景的几何模型,假设子弹在远离钢板0.1m远处以100m/s的速 度射出,模拟该击中并穿透过程中子弹及钢板的应力和变形情况,整 个过程历时2ms。
• 13.3.1 问题描述 • 13.3.2 几何建模 • 13.3.3 材料属性设置 • 13.3.4 接触设置 • 13.3.5 网格划分 • 13.3.6 边界及载荷施加 • 13.3.7 求解设置 • 13.3.8 结果后处理

基于ANSYS WORKBENCH的刚体动力学-静力学分析

基于ANSYS WORKBENCH的刚体动力学-静力学分析

基于ANSYS Workbench的刚体动力学-静力学分析在机械系统中,大量构件处于运动状态。

在构件的运动过程中,在某些时刻,它处于最危险的工况。

那么,如何对于一个运动的机构中某个别构件进行强度分析呢?按照以往的方法,是先使用多体动力学软件例如ADAMS进行刚体动力学分析,得到铰链处的约束力,然后再在有限元软件例如ANSYS中对感兴趣的构件划分网格,并导入从ADAMS中得到的载荷,对之进行强度分析。

ANSYS提供了一套完善的解决方案,使得直接在WORKBENCH中就可以完成全过程。

其方法如下:1. 从工具箱中,拖拽一个刚体动力学模板到项目示意图中,然后按照正常步骤创建一个刚体动力学分析,施加力,力偶等,然后插入所需要的求解结果物体。

2. 在图形窗口中确定感兴趣的时间点。

3. 选择某个求解结果物体,然后在右键菜单中选择Export Motion Loads,并指定一个载荷文件名。

4. 在项目示意图中,拷贝一个rigid dynamics分析系统。

并把它用static structural 分析系统进行取代。

5.编辑static structural分析系统,压制不需要的构件,而只留下需要分析其强度刚度的构件。

6. 把该构件的刚度行为从rigid改变成flexible.7. 把网格求解器设置从ANSYS Rigid Dynamics改成ANSYS Mechanical8. 删除或者压制所有在Rigid Dynamics分析中所使用的载荷。

9.选择static structural分支,然后在其右键菜单汇总选择Insert> Motion Loads....,从而导入前面文件中的载荷。

10.删除原有的结果物体,添加新的应力,变形等物体。

11. 求解得到此时刻(t=0.49495s)构件的应力和变形。

12.返回workbench工作平面。

Ansys_Workbench动力学分析

Ansys_Workbench动力学分析

单自由度线性系统在谐波激励下的响应仍然是谐波。
响应频率等于激励频率。
振幅X与激励的幅值A成比例。 相位差 表示响应滞后于激励的相位角。
系统的全解为:
x(t) Cent cos(dt ) A H() cos(t )
有阻尼自由振动的解 瞬态解
瞬态响应 逐渐衰减
稳态振动的解 稳态解 稳态响应
结构体系
输入
input
质量、刚度 阻尼、约束 频率、振型
动力响应
输出 Output
位移 内力 数值
应力
动位移 加速度 速度 动应力 动力系数
时间函数
第二节 结构动力学研究的内容
第一类问题:反应分析(结构动力计算)
输入 (动力荷载)
结构 (系统)
输出 (动力反应)
第二类问题:参数(或称系统)识别
输入 (动力荷载)
结构 (系统)
输出 (动力反应)
第三类问题:荷载识别
输入 (动力荷载)
结构 (系统)
第四类问题:控制问题
输入 (动力荷载)
结构 (系统)
控制系统 (装置、能量)
输出 (动力反应)
输出 (动力反应)
第三节 动力学分析类型
1.动荷载 静荷载:
大小、方向和作用点不随时间变化或变化很 缓慢的荷载。如:结构的自重、雪荷载等。
m
m
m
令:
A F k
c m
2n
k m
n2
得:
&x&(t) 2n x&(t) n2x(t) n2 Acost
式中: 为阻尼比
设其解为:
x(t) X cos(t )
代入原方程,可得: X
A

ANSYS动力学分析指南——模态分析

ANSYS动力学分析指南——模态分析

ANSYS动力学分析指南——模态分析ANSYS动力学分析是一种用于评估和优化机械结构、系统或装置的动态性能的分析方法。

其中模态分析是其中一种常见的分析类型,通过模态分析可以获取结构的固有频率、振型和模态质量等信息,从而更准确地评估结构的动态响应。

下面是一个ANSYS动力学模态分析的步骤指南:1.导入几何模型:首先,需要将几何模型导入到ANSYS中。

可以使用ANSYS自带的几何建模工具创建模型,也可以从CAD软件中导入现有模型。

在导入几何模型时,需要确保模型的几何尺寸和几何形状正确无误。

2.建立材料属性:为了进行动力学分析,在模型中必须定义材料的属性。

这包括材料的密度、弹性模量、泊松比等。

如果需要考虑材料的各向异性,还需要定义合适的各向异性参数。

3.设置边界条件:为了模拟真实工程环境下的载荷作用,需要为模型设置适当的边界条件。

这包括固支约束、加载条件和约束条件等。

在模型中的各个节点上,需要确保边界条件的正确性和合理性。

4.选择求解器类型:ANSYS提供了多种求解器类型,可以根据实际需求选择合适的求解器。

在动力学模态分析中,通常使用的是频域求解器或模型超级定法(Modal Superposition Method)求解器。

5.网格划分:在进行动力学模态分析之前,需要对模型进行网格划分。

网格划分的目的是将连续的结构离散为有限的单元,从而对模型进行数值求解。

在网格划分时,需要根据模型的复杂程度和准确性要求进行适当的划分。

6.设置求解参数:在进行动力学模态分析之前,需要设置一些求解参数。

这包括求解器的收敛准则、求解的频率范围和预期的模态数量等。

这些参数的设置可以影响到求解结果的准确性和计算效率。

7.进行模态分析:设置好求解参数后,可以进行动力学模态分析。

在分析过程中,ANSYS会通过计算结构的固有频率和振型来评估结构的动态响应。

如果需要获取更多的信息,可以通过后处理功能查看模态质量、模态阻尼和模态形状等结果。

第9章 WORKBENCH中的动力学分析简介课堂

第9章 WORKBENCH中的动力学分析简介课堂
第9章
WORKBENCH 中的 动力学分析简介
第九章
WORKBENCH 中的动力学分析简介
第一节 ANSYS WorkBench 概述 第二节 WorkBench 中的模态分行 第三节 WorkBench 中的谐响应分析
Training Manual
DYN
WORKBENCH 中的动力学分析
第一节 ANSYS WORKBENCH 概述
Availability x x x x x
… 接触域
Training Manual
? 在模态分析中,接触对是可能出现的 . 但是,由于模态分析是纯粹的线 性分析,所以接触对不同于非线性分析中的接触类型 , 如下所示:
Contact Type
Static Analysis
Initially Touching
DYN
– 或者,用户也可以直接从 CAD 系统中进入
WORKBENCH 中的动力学分析
… ANSYS WORKBENCH 概述
Training Manual
ANSYS Workbench 起始界面
? 进入ANSYS Workbench 以后,出现起始页面,用户可以使用上面的选项 : DYN
尽管运行 DS 需要LICENSE ,启 动开始页面却不需要
– 线性应力: ? 误差估计、应力、安全系数 等,基于承受静力载荷下的 材料强度理论
– 模态: ? 计算包括预应力结构在内的 系统固有频率(自由振动)
– 热传递: ? 求解温度场和热流场的稳态 热分析,允许与温度相关的 热传导和对流,支持热应力 分析
Training Manual
DYN
WORKBENCH 中的动力学分析
– DS是用ANSYS的求解器,做结构或热分析。 – DM用来建立CAD几何模型,为分析作准备 – DX和DXVT用于研究变量的输入(如几何、载荷)对响应(如应力、频

WORKBENCH中的动力学分析简介

WORKBENCH中的动力学分析简介

…求解结果
• 对应于Frequency Finder 分支得ANSYS 命令如下:
– 假如Frequency Finder 分支被选上, 对应于ANTYPE,MODAL 命令 – 定义模态得阶数使用 nmodes 命令, 定义“搜索频率”得最小和最大范围使
用MODOPT,,nmodes,freqb,freqe 命令得freqb 和 freqe,振型被放大通过 MXPAND 命令、 为了节省磁盘空间和计算时间,单元求解选项不能打开,除 非需要得到应力或者应变结果、
影响。 – FE Modeler 用来把Nastran得网格转化到ANSYS中使用。
WORKBENCH中得动力学分析
… ANSYS WORKBENCH概述
Design Simulation ANSYS Workbench
DesignXplorer
DesignModeler
FE Modeler
WORKBENCH中得动力学分析
– 边界条件对于模态分析来说,就是很重要得。因为她们能影响部件得振型和固 有频率、 因此需要仔细考虑模型就是如何被约束得、
– 压缩约束就是非线性得,因此在此分析中将不能被使用、 • 如果存在得话, 压缩约束通常会表现出与无摩擦约束相似、
ANSYS License DesignSpace Entra DesignSpace Professional Structural Mechanical/Multiphysics
们会转化为绑定或者无间隙接触方式来替代并产生作用、
– 假如有间隙存在, 非线性得接触行为将就是自由无约束得(也就就是说, 好像 就是没有接触一样)、 绑定得和无间隙得接触将取决于pinball 区域得大小、
• pinball 区域由缺省值自动产生

ANSYS workbench 多体动力学分析功能说明

ANSYS workbench 多体动力学分析功能说明
ANSYS Workbench 刚柔混合--多体 动力学分析
刚体动力学分析模块(ANSYS Rigid Dynamics)
ANSYS Rigid Dynamics是ANSYS 产品的一个附加模块,它集成于ANSYS Workbench环境下(继承了 Workbench与各种CAD软件之间的良好接口能力,如双向参数链接和互动等),在ANSYS 所具有的柔性 体动力学(瞬态动力学)分析功能的基础上,基于全新的模型处理方法和求解算法(显式积分技术),专 用于模拟由运动副和弹簧连接起来的刚性组件的动力学响应。其功能简述如下:
自动探测运动副 利用自动探测运动副功能来建立零件之间的连接关系。 根据自动探测的结果,可以快速修改运动副的连接关系。 完整的运动副类型和弹簧
利用完整的运动副类型(固定、转动、柱面滑动和转动、平动、滑槽、万向连接、球铰、平 面运动、自定义等) 和弹簧来建立零件之间的连接,提供精确的定位方法保证零件间的定位。 提供体对体(BTB)和体对地(BTG)等连接方法。 与Flexible Dynamics直接耦合 可以和ANSYS 模块的Flexible Dynamics功能在Workbench中实现无缝集成,一次求解同时 得到结构运动结果和强度/变形结果等,并支持柔性体的各种非线性特性(如接触、大变形、 材料非线性等)。 用户可自由定义零件为刚体或柔体,设置相关求解属性,直接计算刚体的位移、速度、加速 度和反作用力以及柔体的变形和应力。真正意义上实现了刚柔动力学分析的直接耦合。 Rigid Dynamics独特的前后处理 Windows操作风格 目录树管理模型数据库 支持两个零件连接面(运动关系)的清晰显示 快速高质量的动画显示效果 支持多窗口画面分割显示 自动生成计算报告
© 2008 PERA Global

WORKBENCH中的动力学分析简介

WORKBENCH中的动力学分析简介

– 假如需要得到应力、应变或者
各方向位移,可以通过
假如需要得到应力或者应变结 果,一定要在Frequency
ANSYS License DesignSpace Entra
Context 工具栏添加这些想要 Availability x
Finder 分支条 里加上这些选项, 而不是在Solution 分支条里面
– “大挠度” 和 “弱弹簧” 选项对应于静态分析, 因此不要改变其设置.
– “求解器类型(Solver Type)” 可以设置为“直 接求解器(Direct)” 或者 “迭代求解器( Iterative)”
• “程序自动选择求解器(Program Controlled)” 或者 “直接求解器(Direct)” 采用Block Lanczos 特征 值提取方法,使用的是稀疏矩阵直接方程求解器 (
DesignSpace
x
得到的结果. Professional
x
Structural
x
Mechanical/Multiphysics
x
加.
…求解结果
• 对应于Frequency Finder 分支的ANSYS 命 令如下:
– 假如Frequency Finder 分支被选上, 对应于 ANTYPE,MODAL 命令
WORKBENCH中的动力学分析
… ANSYS WORKBENCH 概述
Design Simulation 概述
• DS可以做的分析类型(续):
– 谐分析: • 计算结构在正弦激励下的响应.
– 线性屈曲: • 计算屈曲的失效载荷和安全系数及其屈曲形态.
– 形状优化: • 通过使用拓扑优化技术,对受载荷的零件体积优化给出预测

ANSYS Workbench 17·0有限元分析:第10章-瞬态动力学分析

ANSYS Workbench 17·0有限元分析:第10章-瞬态动力学分析

第10章 瞬态动力学分析
瞬态动力学分析(亦称时间历程分析)是用于确定承受任意随时间变化的载荷的结构动力学响应的一种方法。

利用瞬态动力学分析可以确定结构在静载荷、瞬态载荷和简谐载荷的随意组合下随时间变化产生的位移、应变、应力及力。

★ 了解瞬态动力学分析。

10.1 瞬态动力学分析概述
瞬态动力学分析(Transient Structural Analysis)给出的是结构关于时间载荷的响应,它不同于刚体动力学分析,在Workbench中瞬态动力学的模型可以是刚体,也可以是柔性体,而对于柔性体可以考虑材料的非线性特征,由此可得出柔性体的应力和应变值。

在进行瞬态动力学分析时,需要注意:
当惯性力和阻尼可以忽略时,采用线性或非线性的静态结构分析来代替瞬态动力学分析。

当载荷为正弦形式时,响应是线性的,采用谐响应分析更为有效。

当几何模型简化为刚体且主要关心的是系统的动能时,采用刚体动力学分析更为有效。

除上述三种情况外,其余情况均可采用瞬态动力学分析,但其所需的计算资源较其他方法要大。

10.2 瞬态动力学分析流程
在ANSYS Workbench左侧工具箱中Analysis
Systems下的Transient Structural上按住鼠标左键拖动到
项目管理区的A6栏,即可创建瞬态动力学分析项目,
如图10-1所示。

当进入Mechanical后,单击选中分析树中的
Analysis Settings即可进行分析参数的设置,如图10-2
图10-1 创建瞬态动力学分析项目。

ANSYS workbench 多体动力学分析功能说明

ANSYS workbench 多体动力学分析功能说明
ANSYS Workbench 刚柔混合--多体 刚柔混合-- --多体 动力学分析
刚体动力学分析模块( 刚体动力学分析模块(ANSYS Rigid Dynamics) )
ANSYS Rigid Dynamics是ANSYS 产品的一个附加模块,它集成于ANSYS Workbench环境下(继承了 Workbench与各种CAD软件之间的良好接口能力,如双向参数链接和互动等),在ANSYS 所具有的柔性 体动力学(瞬态动力学)分析功能的基础上,基于全新的模型处理方法和求解算法(显式积分技术),专 用于模拟由运动副和弹簧连接起来的刚性组件的动力学响应。其功能简述如下: 自动探测运动副 利用自动探测运动副功能来建立零件之间的连接关系。 根据自动探测的结果,可以快速修改运动副的连接关系。 完整的运动副类型和弹簧 利用完整的运动副类型(固定、转动、柱面滑动和转动、平动、滑槽、万向连接、球铰、平 面运动、自定义等) 和弹簧来建立零件之间的连接,提供精确的定位方法保证零件间的定位。 提供体对体(BTB)和体对地(BTG)等连接方法。 与Flexible Dynamics直接耦合 直接耦合 可以和ANSYS 模块的Flexible Dynamics功能在Workbench中实现无缝集成,一次求解同时 得到结构运动结果和强度/变形结果等,并支持柔性体的各种非线性特性(如接触、大变形、 材料非线性等)。 用户可自由定义零件为刚体或柔体,设置相关求解属性,直接计算刚体的位移、速度、加速 度和反作用力以及柔体的变形和应力。真正意义上实现了刚柔动力学分析的直接耦合。 Rigid Dynamics独特的前后处理 独特的前后处理 Windows操作风格 目录树管理模型数据库 支持两个零件连接面(运动关系)的清晰显示 快速高质量的动画显示效果 支持多窗口画面分割显示 自动生成计算报告

ANSYS Workbench有限元分析实例详解(动力学)

ANSYS Workbench有限元分析实例详解(动力学)
03
5.6瞬态分 析之复合材 料
04
5.7转子动 力学之瞬态 分析
06
5.9总结
05
5.Байду номын сангаас声场之 瞬态分析
5.3.1准静态法之移动载荷瞬态分析 5.3.2瞬态法之移动载荷分析
5.4.1全刚性体(柔性体)零件全Joint连接的多体动力学 5.4.2刚柔性体零件全Joint连接的多体动力学 5.4.3刚柔性体零件Joint和Contact连接的多体动力学
5.5.1跌落冲击分析 5.5.2三辊弯曲成型分析 5.5.3接触磨损分析
作者介绍
这是《ANSYS Workbench有限元分析实例详解(动力学)》的读书笔记模板,暂无该书作者的介绍。
精彩摘录
这是《ANSYS Workbench有限元分析实例详解(动力学)》的读书笔记模板,可以替换为自己的精彩内容摘 录。
1.1动力学基本解 析
1.3低版本程序打 开高版本文件的过

2.1模态分析之计算 原理
2.2普通模态及自由 模态分析
2.3线性摄动模态分 析
2.4模态分析之拓扑 优化
1
2.5含阻尼的 模态分析
2
2.6模态之子 结构分析
3
2.7转子动力 学之模态分析
4
2.8声场模态 分析
5
2.9总结
2.2.1模态分析之固有频率研究 2.2.2模态分析之振型研究 2.2.3模态分析之线性叠加
2.3.1线性摄动模态分析之应力刚化和旋转软化 2.3.2非线性模态分析
2.4.1模态分析之拓扑优化基本实例 2.4.2齿轮减重拓扑优化设计基本实例
2.5.1复模态分析基本实例 2.5.2非对称复模态分析基本实例

ANSYS刚体运动学分析详解

ANSYS刚体运动学分析详解

刚体运动学分析一、前处理1.创建分析项目双击主界面Toolbox中的Analysis System>Rigid Dynamics(刚体动力学)选项,在项目管理区创建分析项目A,如图所示。

2.定义材料数据1)双击项目A中的A2栏Engineering Data项,进入材料参数设置界面,在该界面下即可进行材料参数设置。

2)根据实际工程材料的特性,在Properties of Outline Row 2: Structure Steel表中可以修改材料的特性。

3)关闭A2:Engineering Data,返回到Workbench主界面,材料库添加完毕。

3.添加几何模型1)在A2栏的Geometry上单击鼠标右键,在弹出的快捷菜单中选择Import Geometry>Browse,此时会弹出“打开”对话框。

2)在弹出的对话框中选择文件路径,导入chap16几何体文件,此时A2栏Geometry后的?变为√,表示实体模型已经存在。

3)单击DM(DesignModeler)界面右上角的“关闭”按钮退出DM,返回到Workbench主界面。

4. 定义零件行为1)双击主界面项目管理区项目A中的A3栏Model项,进入Mechanical界面,在该界面下即可进行网格的划分、分析设置、结果查看等操作。

2)选择Mechanical界面左侧Outline树结构图中Geometry选项下的所有Solid,在Details of “Solid”中确保所有的Solid对象的Stiffness Behavior(刚度特性)均为Rigid(刚性),如图所示。

5.设置连接1)查看是否生成了Contact接触,如存在,则全部删除,如图所示。

2)选择Mechanical界面左侧Outline树结构图中的Connections对象,然后在工具箱中选择Body-Ground>Revolute,此时树结构图中出现Revolute对象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13
July 10, 2007 © 2007 ANSYS, Inc. All rights reserved.
ANSYS, Inc. Proprietary
Inventory #002406 WS2-9
. . . Workshop 2 – 结果
Workshop Supplement
Workbench-Simulation Dynamics
ANSYS, Inc. Proprietary
Inventory #002406 WS2-3
Workshop 2 – 设置
Workshop Supplement
Workbench-Simulation Dynamics
1. 2. 3. 4.
当导入几何模型之后,从“Map of Analysis Types”选择“Modal”。 在” Number of frequency modes“输入 10,求解10阶模态。 点击 OK 选择单位系统为:
Workshop Supplement
Workbench-Simulation Dynamics

前处理的首先是指定零件的材料属 性指定为铝和指定板的厚度. 展开Geometry分支,点击Part 1. 在Details中, 指定 “Material”.
1. 点击下拉目录,点击 >Import 从 Workbench 材料列表中选取 “Aluminum Alloy” .
1. 2. Calculate Stress “Yes” Calculate Strain “Yes” 如果只是期望得到固有频率和振型 ,不需要计算应力和应变,跳过这 些计算将会节省计算时间
10
11
July 10, 2007 © 2007 ANSYS, Inc. All rights reserved.
Workshop Supplement
Workbench-Sim了约束中心孔,点击“Modal” >Insert>Fixed Supports。 切换至边选模式。 采用框选或者单选4条边。
在 Details中,点击“Apply”
7
8. 9.
8
9
July 10, 2007 © 2007 ANSYS, Inc. All rights reserved.
5.
6.
在 Details中,Thickness指定为 0.1
5
6
July 10, 2007 © 2007 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary
Inventory #002406 WS2-5
Workshop 2 – 求解环境

在模态分析求解完毕,查看每一阶频率的固有振型。
13. 在目录树中点击“Modal Solution”. 在“Tabular Data”左键单击顶部, 然 后右键点击选择“Create Mode Shape Results”
– – 这样就会自动插入所有求解模态的振型”Total Deformation” 。 点击 “求解”,结果将会进行更新 。
Workbench-Simulation Dynamics
• 目的在于分析如图所示带孔平板的前10阶固有频率 和振型。 • 板的材料是铝。 • 假设板在孔位置处是完全约束的。
– 比如在孔的位置施加有紧固螺栓。
Fixed Center
July 10, 2007 © 2007 ANSYS, Inc. All rights reserved.
ANSYS, Inc. Proprietary
Inventory #002406 WS2-10
Workshop 2 – 评述
Workshop Supplement

记住:
– 在模态振型中显示的位移是相对的,并不反映实际的 位移幅值,实际的位移幅值取决于系统输入能量的多 少。
15
Workbench-Simulation Dynamics
“Units > U.S. Customary (in, lbm, lbf…)
1 3
4
2
July 10, 2007 © 2007 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary
10
Inventory #002406 WS2-4
Workshop 2 –前处理
Inventory #002406 WS2-11
ANSYS, Inc. Proprietary
Inventory #002406 WS2-7
Workshop 2 – 模态求解
Workshop Supplement
Workbench-Simulation Dynamics

当Modal分支已经准备好,就可以进行模 态分析的求解. 经过最后的校核,所有的分支的符号必须 是下面的一种:
14. 查看每一阶模态的分析结果,点击每一阶模 态的”Total Deformation”.
– – 可以动画显示每一阶振型。 注意: 关注最高阶自然频率的振型:
Max Indicated Freq = _________________Hz.
14
July 10, 2007 © 2007 ANSYS, Inc. All rights reserved.


如果进入“Simulation” ,点击 >File>New
基于培训,可以点击 “No: do not save any items”

点击 “ >Geometry>From File… ”,从相应文件夹中打开几何模 型文件 plate.iges
July 10, 2007 © 2007 ANSYS, Inc. All rights reserved.
– – (准备好) (完成)

12
12. 求解.
• 工具栏按钮 >Solve may only solve this object and not evaluate objects elsewhere in the Outline Tree
• •
注意: 点击工具条的求解,将会求解所有 的分支。 如果我们希望只求解一个分支的话,点击 相应的分支即可进行求解。
模态分析 带孔平板
Workshop 2
July 10, 2007 © 2007 ANSYS, Inc. All rights reserved.
ANSYS, Inc. Proprietary
Inventory #002406 WS2-1
Workshop 2 –目的
Workshop Supplement
15. 有时从简单的云图,不能直观地显示模态振型,可 以尝试一下矢量图显示模式。
1. 调整矢量标尺滑块 2. 动画显示矢量图
矢量图显示
箭头更加直 观
云图显示. 很难 确定变形的方向
July 10, 2007 © 2007 ANSYS, Inc. All rights reserved.
ANSYS, Inc. Proprietary
ANSYS, Inc. Proprietary
Inventory #002406 WS2-6
Workshop 2 – 模态求解
Workshop Supplement
Workbench-Simulation Dynamics

校核模态分析设置
10. 输入求解10阶模态。 11. 修改 “Output Controls”
July 10, 2007 © 2007 ANSYS, Inc. All rights reserved.
ANSYS, Inc. Proprietary
Inventory #002406 WS2-8
Workshop 2 – 结果
Workshop Supplement
Workbench-Simulation Dynamics
ANSYS, Inc. Proprietary
Inventory #002406 WS2-2
Workshop 2 – 起始页
Workshop Supplement
Workbench-Simulation Dynamics

从“ WorkBench Project Launcher ”点击“ Simulation”。
相关文档
最新文档