《数学期望与方差》习题解答

合集下载

高二数学随机变量的期望与方差试题答案及解析

高二数学随机变量的期望与方差试题答案及解析

高二数学随机变量的期望与方差试题答案及解析1.已知某一随机变量X的分布列如下:且,则a=__________;b=__________。

【答案】,【解析】由得,又由得。

【考点】随机变量的期望2.某市公租房房屋位于A、B、C三个地区,设每位申请人只申请其中一个片区的房屋,且申请其中任一个片区的房屋是等可能的,求该市的任4位申请人中:(1)若有2人申请A片区房屋的概率;(2)申请的房屋在片区的个数的X分布列与期望.【答案】(1)(2)X的分布列为:X123【解析】解:(1)所有可能的申请方式有34种,恰有2人申请A片区房源的申请方式有C·22种,从而恰有2人申请A片区房源的概率为=.(2)X的所有可能值为1,2,3.又p(X=1)==,p(X=2)==,p(X=3)==,综上知,X的分布列为:从而有E(X)=1×+2×+3×=.3.本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算).有人独立来该租车点则车骑游.各租一车一次.设甲、乙不超过两小时还车的概率分别为,;两小时以上且不超过三小时还车的概率分别为,;两人租车时间都不会超过四小时.(1)求出甲、乙所付租车费用相同的概率;(2)求甲、乙两人所付的租车费用之和为随机变量X,求X的分布列与数学期望E(X).【答案】(1) (2) 分布列X02468【解析】解:(1)所付费用相同即为0,2,4元.设付0元为P1=×=,付2元为P2=×=,付4元为P3=×=,则所付费用相同的概率为P=P1+P2+P3=.(2)设甲,乙两个所付的费用之和为X, X可为0,2,4,6,8.P(X=0)=P(X=2)=×+×=P(X=4)=×+×+×=P(X=6)=×+×=P(X=8)=×=.分布列E(X)=+++=.4.已知离散型随机变量X的分布列如表,若E(X)=0,D(X)=1,则a=________,b=________.【答案】【解析】由题意知解得5.设一随机试验的结果只有A和,且P(A)=p令随机变量X=,则X的方差V(X)等于________.【答案】p(1-p)【解析】X服从两点分布,∴V(X)=p(1-p).6.甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为.(1)求乙至多击中目标2次的概率;(2)记甲击中目标的次数为Z,求Z的分布列、数学期望和标准差.【答案】(1) (2) Z的分布列如下表:【解析】解:(1)甲、乙两人射击命中的次数服从二项分布,故乙至多击中目标2次的概率为1-33=.C303=;(2)P(Z=0)=C313=;P(Z=1)=C323=;P(Z=2)=C333=.P(Z=3)=C3Z的分布列如下表:Z0123E(Z)=0×+1×+2×+3×=,D(Z)=2×+2×+2×+2×=,∴=.7.样本4,2,1,0,-2的标准差是:()A.1B.2C.4D.【答案】D【解析】,样本4,2,1,0,-2的标准差是:=,选D。

2021新高考数学专题23 期望、方差及正态分布的实际应用附参考答案3

2021新高考数学专题23 期望、方差及正态分布的实际应用附参考答案3

二、期望与方差的实际应用1、离散型随机变量的期望:(1)若离散型随机变量的概率分布为ξξ1x 2x --- n x --- P1p 2p ---np ---则称为的数学期望(平均值、均值)简称为期望。

++++=n n p x p x p x E 2211ξξ1)求)现从甲、乙两盒各随机抽取的分布列;是服从正态分布名学生的成绩统计如表,规定分以下为一般,大于等于2 718 C .3 413 D 附:若X~N )(0.682 6,2X P μσμ<≤+=-】每个国家身高正常的标准是不一样的,不同年龄、不同种族、不同地区身高都是有差异的,我的生产过程进行检查?剔除之外的数据,用剩下的数据估计为了了解某地区高三男生的身体发育状况抽查结果表明他们的体重3.某车间在三天内,每天生产10件某产品,其中第一天,第二天分别生产出了1件、2件次品,而质检部每天要从生产的10件产品中随意抽取4件进行检查,若发现有次品,则当天的产品不能通过. (I )求第一天通过检查的概率; (II )求前两天全部通过检查的概率;(III )若厂内对车间生产的产品采用记分制:两天全不通过检查得0分,通过1天、2天分别得1分、2分.求该车间在这两天内得分的数学期望.4.两个排球队进行比赛采用五局三胜的规则,即先胜三局的队获胜,比赛到此也就结束,假设按原定队员 组合,较强队每局取胜的概率为0.6,若前四局出现2比2的平局情况,较强队就换人重新组合队员,则其在决赛局中获胜的概率为0.7,设比赛结束时的局数为. ξ (Ⅰ)求的概率分布; ξ (Ⅱ)求E . ξ5.某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响. 已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用表示该学生选修的课程门数和没有选修ξ的课程门数的乘积.(Ⅰ)记“函数为上的偶函数”为事件,求事件的概率;x x x f ξ+=2)(R A A(Ⅱ)求的分布列和数学期望.ξ6.某小组有7个同学,其中4个同学从来没有参加过天文研究性学习活动,3个同学曾经参加过天文研究性学习活动.(1)现从该小组中随机选2个同学参加天文研究性学习活动,求恰好选到1个曾经参加过天文研究性学习活动的同学的概率;(2)若从该小组随机选2个同学参加天文研究性学习活动,则活动结束后,该小组没有参加过天文ξξξ研究性学习活动的同学个数是一个随机变量,求随机变量的分布列及数学期望E.7.旅游公司为3个旅游团提供4条旅游线路,每个旅游团任选其中一条.(1)求3个旅游团选择3条不同的线路的概率(2)求恰有2条线路没有被选择的概率.(3)求选择甲线路旅游团数的期望.8.一个口袋中装有大小相同的2个白球和4个黑球。

数学期望与方差(二)

数学期望与方差(二)
D (x1 E )2 P1 (x2 E )2 P2 (xn E )2 Pn
称为随机变量ξ的均方差,简称为方差,式中的
E 是随机变量ξ的期望.
2、标准差:
D 的算术平方根 D
叫做随机变量ξ的标准差,记作
3、方差的性质:
D(a b) a 2 D 新疆 王新敞 奎屯
D E 2 (E )2
0.04 0.10
问哪一台机床加工质量较好
练习:
1、已知 ~ Bn, p, E 8, D 1.6 ,求 n, p
2、有一批数量很大的商品的次品率为1%,从中 任意地连续取出200件商品,设其中次品数为ξ, 求Eξ,Dξ
新疆 王新敞
奎屯
小结 : 1、求离散型随机变量ξ的方差、标准差的步骤:
①理解ξ的意义,写出ξ可能取的全部值; ②求ξ取各个值的概率,写出分布列; ③根据分布列,由、 期望的定义求出Eξ;
1.2离散型随机变量的期望与方差(二)
问题:甲、乙两名射手在相同条件下进行射击, 分布列如下:

1
8
9
10
P1
0.2
0.6
0.2

2
8
9

0.3
试比较两名射手的射击水平。
随机变量的方差与标准差: 1、方差: 对于离散型随机变量ξ,如果它所有可能取的值是 x1, x2 ,, xn , 且取这些值的概率分别是 P1, P2 ,, Pn , 那么,
若ξ~B(n,p),则 D np(1-p)
若 ~ G(P) ,则 D 1 P
P2
几点说明:
1、随机变量ξ的方差、标准差也是随机变量ξ 的特征数,它们都反映了随机变量取值的稳定 与波动、集中与离散的程度; 方差越大。取值越分散;方差越小,取值越集中。

期望与方差例题选讲(含详解),DOC

期望与方差例题选讲(含详解),DOC

概率统计(理)典型例题选讲(1)等可能性事件(古典概型)的概率:P (A )=)()(I card A card =nm ;等可能事件概率的计算步骤:① 计算一次试验的基本事件总数n ;② 设所求事件A ,并计算事件A 包含的基本事件的个数m ;③ 依公式()m P A n=求值;=6)=.=9)=.??.???则期望Eξ=6×+9×+12×=7.8,????方差Dξ=(6-7.8)2+(9-7.8)2+(12-7.8)2=3.36.2.(2010江西)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3(Ⅰ)(Ⅱ)解:(,(Ⅱ)(小时).3.(2009ξ的(Ⅰ)(Ⅱ)诉2ξ∴A表示“两个月内有一个月被投诉2次,另(2)设事件A表示“两个月内共被投诉2次”事件1A表示“两个月内每月均被投诉12次”外一个月被投诉0次”;事件2则由事件的独立性得故该企业在这两个月内共被消费者投诉2次的概率为0.174.(浙江省温州市2010届高三八校联考(理))甲乙两队参加某知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分?假设甲队中每人答对的概率均为32,乙队中3人答对的概率分别为21,32,32且各人回答正确与否相互之间没有影响.用ξ表示乙队的总得分.(Ⅰ)求随机变量ξ的分布列和数学期望;(Ⅱ)用A 表示“甲、乙两个队总得分之和等于3”这一事件,用B 表示“甲队总得分大于乙队总得分”这一事件,求)|(A B P ?【答案】:(1)1111(2)(P η∴P 5..已知只有,且(Ⅰ)(Ⅱ)用分数表示6.一辆车模25,需要10秒钟,一辆左转去北向的车模驶出停车线需要20秒钟,求: (Ⅰ)前4辆车模中恰有2辆车左转行驶的概率;(Ⅱ)该车模在第一次绿灯亮起时的1分钟内通 过该路口的概率(汽车驶出停车线就算通过路口). 【答案】(Ⅰ)设前4辆车模中恰有2辆左转行驶为事件A,则()222432216()()55625P A C =⨯=(Ⅱ)设该车在第一次绿灯亮起时的1分钟内通过该路口为事件B,其中4辆车模均直行通过路口为事件1B ,3辆直行1辆左转为事件2B ,则事件1B 、2B 互斥.7.(2009高考(湖北理))一个盒子里装有4张大小形状完全相同的卡片,分别标有数2,3,4,5;另一个盒子也装有4张大小形状完全相同的卡片,分别标有数3,4,5,6。

高考数学基础题训练:随机变量的期望与方差含详解

高考数学基础题训练:随机变量的期望与方差含详解

高考数学基础题训练:随机变量的期望与方差一、单选题 1.已知()1,4N η,若()()21P a P a ηη>=<-,则=a ( )A .1-B .0C .1D .22.天气预报,在假期甲地的降雨概率是0.2,乙地的降雨概率是0.3,假设在这段时间内两地是否降雨相互之间没有影响,则这两地中恰有一个地方降雨的概率为 A .0.2B .0.3C .0.38D .0.563.随机变量X 的分布列如下表,其中2b a c =+,且1c ab =,则(2)P X ==( )A .47B .45C .14D .2214.从某地区的儿童中挑选体操学员,已知儿童体型合格的概率为15,身体关节构造合格的概率为14.从中任挑一儿童,这两项至少有一项合格的概率是(假定体型与身体关节构造合格与否相互之间没有影响)( ) A .1320B .25C .14D .155.某市为弘扬我国优秀的传统文化,组织全市10万中小学生参加网络古诗词知识答题比赛,总分100分,经过分析比赛成绩,发现成绩X 服从正态分布()82,16N ,请估计比赛成绩不小于90分的学生人数约为( )〖参考数据〗:()0.683P X μσμσ-<≤+=,()220.954P X μσμσ-<≤+=,()330.997P X μσμσ-<≤+=A .2300B .3170C .3415D .4606.小明参加某项测试,该测试一共3道试题,每道试题做对得5分,做错得0分,没有中间分,小明答对第1,2题的概率都是12,答对第3题的概率是13,则小明答完这3道题的得分期望为( ) A .2512B .6512C .203D .2537.A 同学和B 同学参加某市青少年围棋比赛并进入决赛,决赛采取“3局2胜”制,若A 同学每局获胜的概率均为23,且每局比赛相互独立,则在A 先胜一局的条件下,A 最终能获胜的概率是( )A .34B .89C .79D .568.从区间()0,3和()1,5内分别选取一个实数x ,y ,得到一个实数对(),x y ,称为完成一次试验.若独立重复做3次试验,则x y <的次数T 的数学期望为( ) A .12B .13C .53D .52二、多选题9.设离散型随机变量X 的分布列如下表:若离散型随机变量23Y X =-+,且() 3.2E X =,则正确的是( ).A .0.2m =B .0.2n =C .() 3.4E Y =-D .()()33P X P X ≤=>10.“杂交水稻之父”袁隆平一生致力于杂交水稻技术的研究、应用与推广,创建了超级杂交稻技术体系,为我国粮食安全、农业科学发展和世界粮食供给作出了杰出贡献.某杂交水稻种植研究所调查某地水稻的株高,得出株高ξ(单位:cm )近似服从正态分布()2100,10N .已知()2~,X N μσ时,有(||)0.6827P X μσ-≤≈,(||2)0.9545P X μσ-≤≈,(||3)0.9973P X μσ-≤≈.下列说法正确的是( ) A .该地水稻的平均株高约为100cmB .该地水稻株高的方差约为100C .该地株高超过110cm 的水稻约占68.27%D .该地株高低于130cm 的水稻约占99.87%11.如图是一块高尔顿板示意图:在一块木板上钉着若干排互相平行但相互错开的圆柱形小木钉,小木钉之间留有适当的空隙作为通道,前面挡有一块玻璃,将小球从顶端放入,小球在下落过程中,每次碰到小木钉后都等可能地向左或向右落下,最后落入底部的格子中,格子从左到右分别编号为1,2,3,…,6,用X 表示小球落入格子的号码,则( )A .1(1)(0)64P X P X ==== B .5(2)(5)32P X P X ==== C .5(3)(4)16P X P X ==== D .3()2D X =12.一口袋中有大小和质地相同的5个红球和2个白球,则下列结论正确的是( )A .从中任取3球,恰有一个红球的概率是17B .从中有放回的取球3次,每次任取一球,恰好有两个白球的概率为20343C .从中不放回的取球2次,每次任取1球,若第一次已取到了红球,则第二次再次取1到红球的概率为13D .从中有放回的取球3次,每次任取一球,则至少有一次取到白球的概率为218343第II 卷(非选择题)请点击修改第II 卷的文字说明 三、填空题13.已知随机变量2~(0,)X N σ,且(),0P X a m a >=>,则()P a X a -<<=___________.14.已知某种疾病的患病率为0.5%,在患该种疾病的条件下血检呈阳性的概率为99%,则患该种疾病且血检呈阳性的概率为______.15.一项过关游戏规则规定:在第n 关要抛掷一颗质地均匀的骰子n 次,如果这n 次抛掷所出现的点数之和大于2n ,则算过关.甲同学参加了该游戏,他连过前二关的概率是_____.四、双空题16.在是否接种疫苗的调查中调查了7人,7人中有4人未接种疫苗,3人接种了疫苗,从这7人中随机抽取3人进行身体检查,用X 表示抽取的3人中未接种疫苗的人数,则随机变量X 的数学期望为______;设A 为事件“抽取的3人中,既有接种疫苗的人,也有未接种疫苗的人”,则事件A 发生的概率为______. 17.某地区气象台统计,该地区下雨的概率是415,刮风的概率是215,既刮风又下雨的概率是110.设事件A 为“该地区刮风”,事件B 为“该地区下雨”,则()P B A =______,()P A B =______.18.随机变量X 的分布列为()()1,2,3,,15kP X k k k N *===∈,则正整数k的最大值为__________,1522P X ⎛⎫<< ⎪⎝⎭的值为__________.19.立德中学开展学生数学素养测评活动,高一年级测评分值(满分100分)X 近似服从正态分布,正态曲线如图①所示.为了调查参加测评的学生数学学习的方法与习惯差异,决定在分数段[),m n 内抽取学生,并确定m =67,且()0.8186P m X n <<=.在某班随机抽样得到20名学生的分值分布茎叶图如图①所示.若该班抽取学生分数在分数段[),m n 内的人数为k ,则k 等于______;这k 名学生的人均分为______.(附:()0.6827P X μσμσ-<<+=,()220.9545P X μσμσ-<<+=,()330.9973P X μσμσ-<<+=)五、解答题20.在某校开展的知识竞赛活动中,共有A B C 、、三道题,答对A B C 、、分别得2分、2分、4分,答错不得分.已知甲同学答对问题A B C 、、的概率分别为422,,535,乙同学答对问题A B C 、、的概率均为35,甲、乙两位同学都需回答这三道题,且各题回答正确与否相互独立.(1)求甲同学至少有一道题不能答对的概率;(2)运用你学过的统计学知识判断,谁的得分能力更强.21.第24届冬季奥运会将于2022年2月在北京和张家口举办,为了普及冬奥知识,京西某校组织全体学生进行了冬奥知识答题比赛,从全校众多学生中随机选取了20名学生作为样本,得到他们的分数统计如下:我们规定60分以下为不及格;60分及以上至70分以下为及格;70分及以上至80分以下为良好;80分及以上为优秀.(I)从这20名学生中随机抽取2名学生,恰好2名学生都是优秀的概率是多少?(II)将上述样本统计中的频率视为概率,从全校学生中随机抽取2人,以X表示这2人中优秀人数,求X的分布列与期望.22.某校高一年级组织“知识竞答”活动.每位参赛者第一关需回答三个问题,第一个问题回答正确得10分,回答错误得0分;第二个问题回答正确得20分,回答错误得10-分;第三个问题回答正确得30分,回答错误得20-分.规定,每位参赛者回答这三个问题的总得分不低于30分就算闯关成功.若某位参赛者回答前两个问题正确的概率都是23,回答第三个问题正确的概率是12,且各题回答正确与否相互之间没有影响.(1)求这位参赛者仅回答正确两个问题的概率;(2)求这位参赛者回答这三个问题的总得分ξ的分布列和期望;(3)求这位参赛者闯关成功的概率.参考答案:1.C 【解析】 【分析】首先可通过题意求出正态分布曲线的对称轴,然后根据()()21P a P a ηη>=<-得出2112a a +-=,最后通过计算即可得出结果. 【详解】 因为()1,4N η,所以对称轴方程为1x η==,因为()()21P a P a ηη>=<-, 所以2112a a +-=,解得1a =, 故选:C. 【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,主要考查正态分布曲线的对称性,考查计算能力,是简单题. 2.C 【解析】两地中恰有一个地方降雨分为两种情况:甲地降雨乙地不降雨,乙地降雨甲地不降雨,分别求解然后求和可得结果. 【详解】因为甲地的降雨概率是0.2,乙地的降雨概率是0.3,所以这两地中恰有一个地方降雨的概率为0.2(10.3)(10.2)0.30.38⨯-+-⨯=. 故选:C. 【点睛】本题主要考查事件的独立性,把事件分解为独立事件的积、互斥事件的和,是求解的关键,侧重考查数学建模的核心素养. 3.A 【解析】由概率的性质可得1a b c ++=,结合已知条件求出a 的值,即可求解.【详解】由概率的性质可得1a b c ++=, 由2,1,21b a c c ab a b c =+⎧⎪⎪=⎨⎪++=⎪⎩得4,71,32,21a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩则4(2)7P X ==,故选:A 4.B 【解析】先写出事件“从中任挑一儿童,这两项至少有一项合格”的对立事件,然后再根据相互独立事件同时发生的概率公式求出其概率,最后根据对立事件的概率公式即可算出. 【详解】设事件A :“从中任挑一儿童,这两项至少有一项合格”,则其对立事件B :“从中任挑一儿童,这两项都不合格”,由题可知,儿童体型不合格的概率为45,身体关节构造不合格的概率为34,所以()433545P B =⨯=,故()()321155P A P B =-=-=.故选:B . 【点睛】本题主要考查对立事件的概率公式和相互独立事件同时发生的概率公式的应用,属于基础题. 5.A 【解析】根据正态分布定义,求得比赛成绩不小于90分的学生人数所占比例,即可得结果. 【详解】依题意知,82,4μδ==所以()74900.954P x <≤= 则()()19010.9540.0232P x ≥=-⨯=,所以比赛成绩不小于90分的学生人数约为 1000000.0232300⨯=故选:A6.C 【解析】 【分析】设小明的得分为ξ,则ξ的可能取值为0、5、10、15,求出所对应的概率,即可得到得分ξ的分布列,从而求出数学期望;【详解】解:设小明的得分为ξ,则ξ的可能取值为0、5、10、15, 所以()111101112236P ξ⎛⎫⎛⎫⎛⎫==-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()21211111551112232312P C ξ⎛⎫⎛⎫⎛⎫==⨯⨯-⨯-+-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2121111111011232233P C ξ⎛⎫⎛⎫⎛⎫==⨯-+⨯⨯-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2111152312P ξ⎛⎫==⨯= ⎪⎝⎭;所以小明得分ξ的分布列为:所以小明答完这3道题的得分期望为1511200510156123123⨯+⨯+⨯+⨯=,故选:C. 7.B 【解析】 【分析】先分析A 最终能获胜有两种情况,分别计算概率,再相加即得结果. 【详解】在A 先胜一局的条件下,A 最终能获胜有两种情况: (1)第二局甲再次取胜,概率为23;(2)第二局甲败,第三局甲胜,概率为122339⨯=,故A 最终能获胜的概率为228399+=.故选:B. 【点睛】 方法点睛:计算条件概率通常有两种方法; (1)利用条件概率公式()()()P AB P A B P B =;(2)在事件B 已经发生的前提下,相当于缩小了总事件的空间容量,再计算()()()n AB P A B n B =,或利用独立关系直接计算事件B 发生后的概率情况. 8.D 【解析】 【分析】先根据几何概型求出一次试验中x y <发生的概率,再由二项分布的期望公式即可求数学期望. 【详解】从区间()0,3和()1,5内分别选取一个实数x ,y ,则03,15x y <<⎧⎨<<⎩表示的可行域为矩形ABCD 区域(不含边界),如图所示,0315x y x y <<⎧⎪<<⎨⎪<⎩表示的可行域为图中的阴影部分(不含边界).因为BEF 的面积为12222⨯⨯=,矩形ABCD 的面积为12,所以由几何概型可知,每次试验x y <发生的概率251126P =-=, 由题意知,53,6TB ⎛⎫ ⎪⎝⎭, 所以x y <的次数T 的数学期望为55362⨯=. 故选:D . 9.AC 【解析】 【分析】先由() 3.2E X =可得40.6m n +=,再由概率和为1得0.3m n +=,从而可求出,m n 的值,再利用期望公式求()E Y 即可,从而可得答案. 【详解】()120.130.3450.3 3.2E X m n =⨯+⨯+⨯+⨯+⨯=,所以40.6m n +=,又因为0.10.30.31m n ++++=,所以0.3m n +=,从而得0.2m =,0.1n =,故A 选项正确,B 选项错误;()()23 3.4E Y E X =-+=-,故C 选项正确;()()()()3=3=2=++=0.3+0.1+0.2=01.6P X P X P X P X ≤=, ()()()=+3=4=0.4=5P X P X P X >,故D 选项不正确. 故选:AC. 10.ABD 【解析】 【分析】根据已知条件,结合正态分布的对称性,即可求解. 【详解】由题意可知,100μ=,2100σ=,故A ,B 正确; 由题意得110μσ+=,3130μσ+=所以()()()()1110.317315.87%22P X P X μσμσμσ>+=--<<+≈⨯=⎡⎤⎣⎦,故C 错误; 所以()()()()13113310.0013599.87%2P X P X μσμσμσ<+=---<<+≈-=⎡⎤⎣⎦,故D 正确; 故选:ABD. 11.BC 【解析】 【分析】结合独立重复试验概率计算公式,计算出概率并求得方差,从而确定正确选项. 【详解】已知X 表示小球落入格子的号码,则X 的所有取值范围为1,2,3,4,5,6, 则()5111()232P X ===,由对称性可知()()16132P X P X ====,而()()14511525()2232P X P X C ====⋅⋅=,()()232511534()()2216P X P X C ====⋅⋅=,所以()()()()15571625343232162E X =+⨯++⨯++⨯=, ()22222271717575757551625342322322322322162164D X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯+-⨯+-⨯+-⨯=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,综上得选项BC 正确. 故选:BC 12.AD 【解析】 【分析】利用超几何分布的概率公式可判断A 选项;利用独立重复试验的概率公式可判断B 选项;利用条件概率公式可判断C 选项;利用对立事件的概率公式可判断D 选项. 【详解】对于A 选项,从中任取3球,恰有一个红球的概率是125237C C 1C 7=,A 对;对于B 选项,从中有放回的取球3次,每次任取一球,每次抽到白球的概率为27,则3次取球中恰好有两个白球的概率为2232560C 77343⎛⎫⋅⋅= ⎪⎝⎭,B错;对于C 选项,从中不放回的取球2次,每次任取1球, 记事件:A 第一次取到红球,记事件:B 第二次取到红球,则()()()2527C C 2537P AB P B A P A ===,C 错;对于D 选项,从中有放回的取球3次,每次任取一球,则至少有一次取到白球的概率3521817343⎛⎫-=⎪⎝⎭,D 对. 故选:AD. 13.12m - 【解析】 【分析】根据正态分布区间的对称性直接计算即可. 【详解】由2~(0,)X N σ,且(),0P X a m a >=> 则()P X a m <-=,所以()12P a X a m -<<=- 故答案为:12m - 14.0.495% 【解析】 【分析】根据条件概率公式计算. 【详解】设事件A 表示“血检呈阳性”,事件B 表示“患该种疾病”.依题意知()0.005P B =,()0.99P A B =,由条件概率公式()()()P AB P A B P B =,得()()()0.0050.990.004950.495%P AB P B P A B ==⨯==.故答案为:0.495%. 15.59【解析】 【分析】由题可求过第一、二关的概率,再利用独立事件的概率公式即求. 【详解】由于骰子是均匀正方体,所以,抛掷后各点数出现的可能性是相等的.设事件An ,为“第n 次过关失败”,则对立事件n B 为“第n 次过关成功”,第n 次游戏中,基本事件总数为6n .第1关:事件1A 所含基本事件数为2(即出现点数1和2两种情况). 所以,过此关的概率为 11221163B A P P =-=-=. 第2关:事件2A 所含基本事件数为方程x y a +=当a 分别取2、3、4时的正整数解组数之和,即6个.所以,过此关的概率为 222651166B A P P =-=-=. 故连过两关的概率为1259B B P P ⨯=.故答案为:59.16.12767【解析】 【分析】分别求出,0,1,2,3X =的概率,进一步求出所以()E X 和()P A . 【详解】由题意可知,随机变量X 的取值范围为{0,1,2,3},()33371035C P X C ===,()12433712135C C P X C ===, ()21433718235C C P X C ===,()34374335C P X C ===,所以()112184120123353535357E X =⨯+⨯+⨯+⨯=. 由已知条件可得()()()121861235357P A P X P X ==+==+=. 故答案为:127;67. 17.3438【解析】 【分析】根据条件概率公式即求. 【详解】()215P A =,()415P B =,()110P AB =,()()()34P BA P B A P A ∴==,()()()38P AB P A B P B ==. 故答案为:34;38.18. 5 15【解析】 【分析】由概率和为1,可求出k 的值,由()()1,2,3,,15kP X k k k N *===∈可得15(1)(2)22P X P X P X ⎛⎫<<==+= ⎪⎝⎭【详解】 解:由题意得121151515k++⋅⋅⋅+=,得12315k +++⋅⋅⋅+=,解得5k =, 因为()()1,2,3,,15kP X k k k N *===∈,所以15121(1)(2)2215155P X P X P X ⎛⎫<<==+==+= ⎪⎝⎭,故答案为:5,1519. 10 74分 【解析】 【分析】由已知,测评分值X 服从正态分布2(,)N μσ,根据图像,分别求解出μ,σ,根据给的参考数据,结合给定的范围,即可确定n 的值,然后根据区间[),m n 的范围,在图①输出满足条件的数据,即可确定k 的值,并根据k 的取值再去计算平均数即可. 【详解】有图像可知,X 服从正态分布2(,)N μσ,其中72μ=,5σ=,所以随机变量X ~(7225)N ,,()67770.6827P X <<=,()62820.9545P X <<=,由0.95450.6827(67)0.81860.95452P X n -<<==-,可得82n =.由图①可知,该班在[)67,82内抽取了10人; 所以,人均分为687073757271767876817410+++++++++=分.故答案为:10,74分. 20.(1)5975(2)乙 【解析】 【分析】(1)先求其对立事件的概率即可.(2)分别求甲乙两同学得分的概率分布及均值,比较甲乙两同学得分的均值的大小即可. (1)设甲同学三道题都答对的事件为A ,则()4221653575P A =⨯⨯=, 所以甲同学至少有一道题不能答对的概率为()1659117575P P A =-=-=. (2)设甲同学本次竞赛中得分为X ,则X 的可能取值为0,2,4,6,8分,则()1133053575P X ==⨯⨯=, ()41312318253553575P X ==⨯⨯+⨯⨯=,()42311226453553575P X ==⨯⨯+⨯⨯=,()41212212653553575P X ==⨯⨯+⨯⨯=,()42216853575P X ==⨯⨯=,所以X 的概率分布列为:所以()318261216340680246875757575757515E X =⨯+⨯+⨯+⨯+⨯== 设乙同学本次竞赛中得分为Y ,由Y 的可能取值为0,2,4,6,8分 ()32805125P Y ⎛⎫===⎪⎝⎭, ()2123224255125P Y C ⎛⎫==⨯=⎪⎝⎭, ()2232323045555125P Y ⎛⎫⎛⎫⎛⎫==⨯+⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()2122336655125P Y C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭, ()332785125P Y ⎛⎫===⎪⎝⎭, 所以Y 的概率分布列为:所以()82430362724024681251251251251255E Y =⨯+⨯+⨯+⨯+⨯=, 所以6824155<,所以乙的得分能力更强. 21.(1)395;(2)分布列见详解;()25E X =.【解析】 【分析】(1)利用组合数以及古典概型的概率计算公式即可求解.(2)由题意可得0,1,2x =,再利用二项分布的概率计算公式列出分布列,从而求出数学期望. 【详解】(1)记恰好2名学生都是优秀的事件为A ,则()242206319095C P A C ===. (2)抽到一名优秀学生的概率为41205p ==, X 的取值为0,1,2,()20024********P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭, ()111241815525P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭, ()022241125525P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭, 故X 的分布列为:()168120122525255E X =⨯+⨯+⨯=22.(1)49;(2)分布列见解析,195()9E ξ=;(3)49.【解析】(1)设事件i A 这位参赛者回答对第i 个问题()1,2,3i =,则这位参赛者仅回答正确两个问题的情况有123A A A ,123A A A ,123A A A ,然后利用互斥事件的概率和公式求解即可; (2)由题意可得30,20,0,10,20,30,50,60ξ=--,然后依次求出各个的概率,列出分布列即可,从而可求出数学期望;(3)由(2)可得这位参赛者闯关成功的概率为(30)(50)(60)P P P P ξξξ==+=+= 【详解】(1)设事件i A 这位参赛者回答对第i 个问题()1,2,3i =, ①()()()123123123P P A A A P A A A P A A A =++ 22121112143323323329=⋅⋅+⋅⋅+⋅⋅= (2)30,20,0,10,20,30,50,60ξ=-- ()1231(30)18P P A A A ξ=-==,()1231(20)9P P A A A ξ=-==,()1231(0)9P P A A A ξ===,()1232(10)9P P A A A ξ===,()1231(20)18P P A A A ξ===,()1231(30)9P P A A A ξ===, ()1231(50)9P P A A A ξ===,()1232(60)9P P A A A ξ===, ①ξ的分布列为:11121112195()30200102030506018999189999E ξ=-⨯-⨯+⨯+⨯+⨯+⨯+⨯+⨯=. (3)由(2)得这位参赛者闯关成功的概率为4(30)(50)(60)9P P P P ξξξ==+=+==. 【点睛】关键点点睛:此题考查互斥事件和独立事件的概率的求法,考查离散型随机变量的分布列,考查运算求解能力,解题的关键是正确理解题意,正确利用互斥事件和独立事件的概率公式,属于中档题。

高中数学离散型随机变量的期望与方差练习(含答案)

高中数学离散型随机变量的期望与方差练习(含答案)

高中数学离散型随机变量的期望与方差练习(含答案)1.事件A为“三个点数都不同”,事件B为“至少出现一个6点”,求条件概率P(A|B)和P(B|A)。

2.已知随机变量ξ服从正态分布N(1,1),若P(ξ<3)=0.977,则求P(-1<ξ<3)。

3.随机变量X的取值为1和2,若P(X=0)=0,E(X)=1,则求D(X)。

4.已知随机变量X服从正态分布N(3,1),且P(X≥4)=0.1587,则求P(2<X<4)。

5.甲乙等人参加米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是多少?6.不透明袋子中装有大小、材质完全相同的2个红球和5个黑球,现从中逐个不放回地摸出小球,直到取出所有红球为止,则摸取次数的数学期望是多少?7.下面说法中正确的是:A.离散型随机变量ξ的均值E(ξ)反映了ξ取值的概率的平均值;B.离散型随机变量ξ的方差D(ξ)反映了ξ取值的平均水平;C.离散型随机变量ξ的均值E(ξ)反映了ξ取值的平均水平;D.离散型随机变量ξ的方差D(ξ)反映了ξ取值的概率的平均值。

8.每次试验的成功率为p,重复进行10次试验,其中前7次都未成功,后3次都成功的概率是多少?9.设随机变量X服从二项分布B(n,p),则P(X=k)的分布列为多少。

10.现在有10张奖券,其中7张未中奖,3张中奖,某人从中随机无放回地抽取1张奖券,则此人得奖金额的数学期望为多少?11.已知X~B(n,p),E(X)=2,D(X)=1.6,则n和p的值分别为多少?12.袋中有大小相同的5个球,分别标有1、2、3、4、5五个号码,现在在有放回抽取的条件下依次取出两个球,则它们的和的数学期望为多少?1.一个球,设两个球号码之和为随机变量,则所有可能取值的个数是()A。

5B。

9C。

10D。

25.答案:C。

10.2.电灯泡使用时数在1 000小时以上的概率为0.2,则三个灯泡在1 000小时以后最多有一个坏了的概率是()A。

高二数学随机变量的期望与方差试题答案及解析

高二数学随机变量的期望与方差试题答案及解析

高二数学随机变量的期望与方差试题答案及解析1.已知某一随机变量X的分布列如下:且,则a=__________;b=__________。

【答案】,【解析】由得,又由得。

【考点】随机变量的期望2.马老师从课本上抄录一个随机变量X的概率分布律如下表x123请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同.据此,小牛给出了正确答案E(ε)=________.【答案】2【解析】令“?”为a,“!”为b,则2a+b=1,又E(X)=a+2b+3a=2(2a+b)=2.3.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数是一个随机变量,其分布列为,则的值为()A.B.C.D.【答案】C【解析】从盒中任取3个球来用,用完后装回盒中,当盒中旧球的个数为时,相当于旧球的个数在原来3个的基础上增加了一个,所以取出的3个球中只有一个新球即取出的3个球中有2个是旧球1个新球,所以,故选C.【考点】离散型随机变量及其分布列.4.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,射击停止后尚余子弹的数目X的数学期望值为________.【答案】2.376【解析】X的所有可能取值为3,2,1,0,其分布列为5.已知离散型随机变量X的分布列如表,若E(X)=0,D(X)=1,则a=________,b=________.【答案】【解析】由题意知解得6.若X是离散型随机变量,P(X=x1)=,P(X=x2)=,且x1<x2,又已知E(X)=,V(X)=,则x1+x2的值为________.【答案】3【解析】由题意知,X的所有可能取值为x1,x2,则有解得或 (舍去),∴x1+x2=3.7.A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析,X1和X2的分布列分别为12A和B所获得的利润,求方差V(Y1)、V(Y2);(2)将x(0≤x≤100)万元投资A项目,100-x万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和.求f(x)的最小值,并指出x为何值时,f(x)取到最小值.【答案】(1)4 12 (2) x=75时,f(x)=3为最小值【解析】解:(1)由题设可知Y1和Y2的分布列分别为E(Y1)=5×0.8+10×0.2=6,V(Y1)=(5-6)2×0.8+(10-6)2×0.2=4;E(Y2)=2×0.2+8×0.5+12×0.3=8,V(Y2)=(2-8)2×0.2+(8-8)2×0.5+(12-8)2×0.3=12.(2)f(x)=V+V=2V(Y1)+2V(Y2)=[x2+3(100-x)2]=(4x2-600x+3×1002),当x==75时,f(x)=3为最小值.8.已知某离散型随机变量服从的分布列如图,则随机变量的方差等于()A. B. C. D.【答案】B【解析】由分布列可知【考点】分布列期望方差点评:分布列中各随机变量概率和为1,求期望方差只需将数据代入相应的公式即可,需要学生熟记公式9.设在12个同类型的零件中有2个次品,抽取3次进行检验,每次抽取一个,并且取出不再放回,若以表示取出次品的个数,则的期望值=.【答案】【解析】由题意,相当于从有2个次品的12个同类型的零件中取3个,取出次品的个数可能为0、1、2.套公式即可. , ,则根据期望公式可知其值的期望值=,故答案为。

离散型随机变量的期望和方差(参考答案)

离散型随机变量的期望和方差(参考答案)

离散型随机变量的期望和方差(参考答案)想一想①:1.解:ξ的所有可能取值为1,2,3,4,5,6.对应的概率均为61.易得Eξ=3.5.2.解:E(2ξ+3)=2Eξ+3=37.想一想②:证: D(X +Y)=E[(X +Y)2]−[E(X +Y)]2=E[X 2+Y 2+2XY]−[E(x)+E(Y)]2 =E(X 2)+E(Y 2)+2E(X)E(Y)−[E(X)]2 −[E(Y)]2−2E(X)E(Y)={E(X 2)−[E (X )]2}+{E(Y 2)−[E (Y )]2}=D(X)+D(Y).想一想③:1.解:Eξ=np=7,Dξ=np(1-p)=6,所以p=17.2.解:Dξ=npq≤n(p+q 2)2=n4,等号在p=q=12时成立,此时,Dξ=25,σξ=5.答案:12; 5.想一想④:解:要使保险公司能盈利,需盈利数ξ的期望值大于0,故需求Eξ. 设ξ为盈利数,其概率分布为且Eξ=a(1-p 121212要盈利,至少需使ξ的数学期望大于零,故a >30000p 1+10000p 2.想一想⑤:1.解:直接考虑得分的话,情况较复杂,可以考虑取出的4只球颜色的分布情况:4红得8分,3红1黑得7分,2红2黑得6分,1红3黑得5分,故P(ξ=5)=C 41C 33C 74=435,P(ξ=6)=C 42C 32C 74=1835,P(ξ=70)=C 43C 31C 74,P(ξ=8)=C 44C 30C 74,Eξ=5435.2.解:分析,可能来多少人,是一个随机变量ξ.而ξ显然是服从二项分布的,用数学期望来反映平均来领奖人数,即能说明是否可行.设来领奖的人数ξ=k,(k =0,1,2,⋯,3000),所以P(ξ=k)=C 3000k(0.04)k ⋅(1−0.04)30000−k ,可见ξ~B (30000,0.04),所以, Eξ=3000×0.04=120(人)100>(人). 答:不能,寻呼台至少应准备120份礼品.想一想⑥:解:设X~B(n,p), 则X 表示n 重贝努里试验中的“成功” 次数.若设X i ={1 如第i 次试验成功0 如第i 次试验失败i =1,2,…,n则X =∑X i n i=1是n 次试验中“成功”的次数,E(X i )=0×q +1×p =p , 故D(X i )=E(X i 2)−[E(X i )]2=p −p 2=p(1−p),1,2,,i n =由于X 1,X 2,X 3⋯,X n 相互独立,于是D(X)=∑D(X i )n i=1pq.习题2.3 1.解:由已知q 应满足:解得q =1−√12故ξ的分布列为∴Eξ=(−1)×1+0×(√2−1)+1×(−√2)=−+3−√2=1−√2.Dξ=[−1−(1−√2)]2×12+(1−√2)2×(√2−1)+[1−(1−√2)]2×(32−√2)=(√2−2)2×12+(√2−1)3+2(32−√2).12-=2.解:设学生甲答对题数为ξ,成绩为η,则ξ~B(50,0.8),η=2ξ,故成绩的期望为Eη=E(2ξ)=2Eξ=2×50×0.8=80(分). 成绩的标准差为ση=√Dη=√D(2ξ)=√4Dξ=2√50×0.8×0.2=4√2≈5.7(分). 3.该组练习耗用的子弹数ξ为随机变量,ξ 可以取值为1,2,3,4,5.ξ=1,表示一发即中,故概率为P(ξ=1)=0.8;ξ=2,表示第一发未中,第二发命中,故P(ξ=2)=(1−0.8)×0.8=0.16; ξ=3,表示前二发未中,第三发命中,故P(ξ=3)=(1−0.8)2×0.8=0.032; ξ=4,表示前三发未中,第四发命中,故P(ξ=4)=(1−0.8)3×0.8=0.0064; ξ=5,表示第五发命中,故P(ξ=5)=(1−0.8)4⋅1=0.24=0.0016. 因此,ξ 的分布列为Eξ==1.25=0.05+0.09+0.098+0.0484+0.0225=0.31.说明:此题的随机变量ξ并不服从几何分布.故不能用公式来求期望和方差.要特别注意. 4.解:(1)分别记“客人游览甲景点”,“客人游览乙景点”,“客人游览丙景点” 为事件A 1,A 2,A 3. 由已知A 1,A 2,A 3相互独立,P (A 1)=0.4,P (A 2)=0.5,P (A 3)=0.6, 客人游览的景点数的可能取值为0,1,2,3. 相应地,客人没有游览的景点数的可能取值为3,2,1,0, 所以ξ的可能取值为1,3. P(ξ=3)=P(A 1·A 2·A 3)+ P(A 1⋅A 2⋅A 3) = P(A 1)P(A 2)P(A 3)+P(A 1)P(A 2)P(A 3)=2×0.4×0.5×0.6=0.24,P(ξ=1)=1-0.24=0.76,所以ξ的分布列如右. E ξ=1×0.76+3×0.24=1.48.(2)方法1. 因为f(x)=(x −32ξ)2+1−94ξ2, 所以函数f (x )=x2−3ξx +1在区间[32ξ,+∞)上单调递增,要使f(x)在[2,+∞)上单调递增,当且仅当32ξ≤2,即ξ≤43. 从而;⎪⎪⎪⎪⎨⎧≤≤-≤=+-+.1,1210,1212122q q q qP(A)=P(ξ≤43)=P(ξ=1)=0.76. 方法2.ξ的可能取值为1,3.当ξ=1时,函数f(x)=x 2−3x +1在区间[2,+∞)上单调递增, 当ξ=3时,函数f(x)=x 2−9x +1在区间[2,+∞)上不单调递增.所以P(A)=P(ξ=1)=0.76.5.解:(1)由E ξ=np=3,D ξ=np(1-p)=32,得n=6,p=12. ξ的分布列为:P(A)=1+6+15+2064=2132或P(A)=1-P(ξ>3)=1-1+6+1564=2132.6.解:(1)ξ1的所有取值为0.8、0.9、1.0、1.125、1.25,ξ2的所有取值为0.8、0.96、1.0、1.2、1.44.ξ1、ξ2的分布列分别为:(2)令A 、B 分别表示方案一、方案二两年后柑桔产量超过灾前产量这一事件, P(A)=0.15+0.15=0.3, P(B)=0.24+0.08=0.32. 可见,方案二两年后柑桔产量超过灾前产量的概率更大. (3)令ηi 表示方案i 所带来的效益,则所以Eη1=14.75,Eη2=14.1,可见,方案一所带来的平均效益更大.7.(1)密码中不同数字的个数为2的事件为密码中只有两个数字,注意到密码的第1,2列分别都只含有1,2,即只能取表格第1,2列中的数字作为密码.其中第一排可有11,12两种,第二排可有21,22两种,第三排可有1,2两种. ∴ P(ξ=2)=234=18. (2)由题意可知,ξ的取值为2,3,4三种情形.当ξ=3,注意表格的第一排总含有数字1,第二排总含有数字2则密码中只可能取数字1,2, 3或1,2,4.若为1,2,3时,由于第一排总有1,第二排总有2,第一排取11有5种不同的情形,第一排取12也有5种不同的情形,第一排取13有9种不同的情形,共有19种不同的情形;同理若为1,2,4时也有19种情形. ∴ P(ξ=3)=2×1943=1932.若ξ=4, 则 P(ξ=4)=A 31A 22+A 32A 2243=932(或用1−P(ξ=2)−P(ξ=3)求得).∴ ξ的分布列为:∴ Eξ=2×18+3×1932+4×932=10132.。

高三数学随机变量的期望与方差试题答案及解析

高三数学随机变量的期望与方差试题答案及解析

高三数学随机变量的期望与方差试题答案及解析1.已知随机变量X的分布列为则E(6X+8)=()A.13.2 B.21.2 C.20.2 D.22.2【答案】B【解析】由题意知,E(X)=1×0.2+2×0.4+3×0.4=2.2,∴E(6X+8)=6E(X)+8=6×2.2+8=21.2.2.小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1000元,3000元,6000元的奖品(不重复得奖),小王对三关中每个问题回答正确的概率依次为,,,且每个问题回答正确与否相互独立.(1)求小王过第一关但未过第二关的概率;(2)用X表示小王所获得奖品的价值,写出X的概率分布列,并求X的数学期望.【答案】(1)(2)X的分布列为X0100030006000∴X的数学期望E(X)=2160,【解析】(1)设小王过第一关但未过第二关的概率为P1=()2×(+×)=.则P1(2)X的所有可能取值为0,1000,3000,6000,则P(X=0)=+×=,P(X=1000)=()2×(+×)=,P(X=3000)=()2×()2×[()2+×()2×2]=,P(X=6000)=()2×()2×[()2+ ()2×]=,∴X的分布列为∴X的数学期望E(X)=0×+1000×+3000×+6000×=2160.3.甲乙两人分别独立参加某高校自主招生面试,若甲、乙能通过面试的概率都是,则面试结束后通过的人数X的数学期望是()A.B.C.1D.【答案】A【解析】依题意,X的取值为0,1,2,且P(X=0)=(1-)×(1-)=,P(X=1)=×(1-)+(1-)×=,P(X=2)=×=.故X的数学期望E(X)=0×+1×+2×==,故选A.4.某学生在参加政、史、地三门课程的学业水平考试中,取得A等级的概率分别为、、,且三门课程的成绩是否取得A等级相互独立.记ξ为该生取得A等级的课程数,其分布列如表所示,则数学期望E(ξ)的值为________.0123【答案】【解析】∵a=××+××+××=,b=××+××+××=,∴E(ξ)=0×+1×+2×+3×=.5.某学校为了解高三年级学生寒假期间的学习情况,抽取甲、乙两班,调查这两个班的学生在寒假期间每天平均学习的时间(单位:小时),统计结果绘成频率分布直方图(如图).已知甲、乙两班学生人数相同,甲班学生每天平均学习时间在区间的有8人.(1)求直方图中的值及甲班学生每天平均学习时间在区间的人数;(2)从甲、乙两个班每天平均学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为,求的分布列和数学期望.【答案】(1);3(2)详见解析【解析】(1)频率分布直方图中每个小矩形的面积表示概率,概率和为1,则可求得。

高三数学随机变量的期望与方差试题答案及解析

高三数学随机变量的期望与方差试题答案及解析

高三数学随机变量的期望与方差试题答案及解析1.某班50名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].从样本成绩不低于80分的学生中随机选取2人,这2人中成绩在90分以上(含90分)的人数为ξ,则ξ的数学期望为()A.B.C.D.【答案】B【解析】由频率分布直方图知,3×0.006×10+0.01×10+0.054×10+10x=1,解得x=0.018,∴成绩不低于80分的学生有(0.018+0.006)×10×50=12人,成绩在90分以上(含90分)的学生有0.006×10×50=3人.ξ的可能取值为0,1,2,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,∴ξ的分布列为ξ012∴E(ξ)=0×+1×+2×=.选B.2.某游戏的得分为1,2,3,4,5,随机变量表示小白玩游戏的得分.若=4.2,则小白得5分的概率至少为 .【答案】【解析】设=1,2,3,4,5的概率分别为,则由题意有,,对于,当越大时,其值越大,又,因此,所以,解得.【考点】随机变量的均值(数学期望),排序不等式.3.(2011•浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙、丙公司面试的概率均为P,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=,则随机变量X的数学期望E(X)=_________.【答案】【解析】由题意知X为该毕业生得到面试的公司个数,则X的可能取值是0,1,2,3,∵P(X=0)=,∴,∴p=,P(X=1)=+=P(X=2)==,P(X=3)=1﹣=,∴E(X)==,故答案为:4.已知离散型随机变量ξ1的概率分布为离散型随机变量ξ2的概率分布为求这两个随机变量数学期望、方差与标准差.【答案】4;4;0.2.【解析】E(ξ1)=1×+2×+…+7×=4;V(ξ1)=(1-4)2×+(2-4)2×+…+(7-4)2×=4,σ1==2.E(ξ2)=3.7×+3.8×+…+4.3×=4;V(ξ2)=0.04,σ2=)=0.2.5.如图,将一个各面都涂了油漆的正方体,切割成125个同样大小的小正方体.经过搅拌后,从中随机取出一个小正方体,记它的涂油漆面数为X,则X的均值为E(X)=________.【答案】【解析】用分布列解决这个问题,根据题意易知X=0,1,2,3.列表如下:X0123所以E(X)=0×+1×+2×+3×==.6.为防止山体滑坡,某地决定建设既美化又防护的绿化带,种植松树、柳树等植物.某人一次种植了n株柳树,各株柳树成活与否是相互独立的,成活率为p,设ξ为成活柳树的株数,数学期望E(ξ)=3,标准差σ(ξ)为.(1)求n、p的值并写出ξ的分布列;(2)若有3株或3株以上的柳树未成活,则需要补种,求需要补种柳树的概率.【答案】(1)n=6,p=,(2)【解析】(1)由E(ξ)=np=3,(σ(ξ))2=np(1-p)=,得1-p=,从而n=6,p=,ξ的分布列为(2)记“需要补种柳树”为事件A,则P(A)=P(ξ≤3),得P(A)=.7.甲向靶子A射击两次,乙向靶子射击一次.甲每次射击命中靶子的概率为0.8,命中得5分;乙命中靶子的概率为0.5,命中得10分.(1)求甲、乙二人共命中一次目标的概率;(2)设X为二人得分之和,求X的分布列和期望.【答案】(1)0.18;(2)详见解析.【解析】本题主要考查二项分布、独立事件、随机变量的分布列和数学期望等基础知识,考查学生分析问题解决问题的能力和计算能力.第一问,由题意分析,“甲乙二人共命中”共有2种情况:一种是甲射击2次中一次、乙没中,一种情况是甲射击2次都没中、乙中一次;第二问,由题意分析:甲乙射击是否命中有以下几种情况:1.甲2次都没中、乙没中,2.甲2次都没中、乙中一次,3.甲2次中一次、乙没中,4.甲2次中1次、乙中1次,5.甲2次都中、乙没中,6.甲2次都中、乙中一次,共6种情况,所以得分情况分别为0分、5分、10分、15分、20分,共5种情况,分别与上述情况相对应,求出每一种情况的概率,列出分布列,再利用计算数学期望.试题解析:(1)记事件“甲、乙二人共命中一次”为A,则P(A)=0.8×0.2×0.5+0.22×0.5=0.18. 4分(2)X的可能取值为0,5,10,15,20.P(X=0)=0.22×0.5=0.02,P(X=5)=0.8×0.2×0.5=0.16,P(X=10)=0.82×0.5+0.22×0.5=0.34,P(X=15)=0.8×0.2×0.5=0.16,P(X=20)=0.82×0.5=0.32.X的分布列为X05101520X的期望为E(X)=0×0.02+5×0.16+10×0.34+15×0.16+20×0.32=13. 12分【考点】二项分布、独立事件、随机变量的分布列和数学期望.8.现有甲、乙、丙三人参加某电视台的应聘节目《非你莫属》,若甲应聘成功的概率为,乙、丙应聘成功的概率均为,(0<t<2),且三个人是否应聘成功是相互独立的.(1)若乙、丙有且只有一个人应聘成功的概率等于甲应聘成功的概率,求t的值;(2)记应聘成功的人数为,若当且仅当为=2时概率最大,求E()的取值范围.【答案】(1);(2)【解析】(1)乙、丙有且只有一个人应聘成功分为乙成功且丙不成功和乙不成功且丙成功两种情况,根据相互独立事件有一个发生的概率公式列出关于t的方程,解之即可.(2)写出随机变量的所有可能取值,然后计算出相应的概率,列出分布列,求出E()的表达式,由于=2时概率最大,可得,,,而0<t<2,解得,即得E()的取值范围..试题解析:(1)由题意得,解得. 3分(2)的所有可能取值为0,1,2,3;;;.故的分布列为:7分. 8分由题意得:,,,又因为所以解得的取值范围是. 11分. 12分【考点】1.相互独立事件的概率;2.随机变量的分布列和数学期望.9.甲、乙两人将参加某项测试,他们能达标的概率都是0.8,设随机变量为两人中能达标的人数,则的数学期望为.【答案】1.6【解析】甲、乙两人将参加某项测试,他们能达标的概率都是0.8.所以相当与他们是独立性重复的实验,所以=,即=.【考点】1.独立性重复试验.2.数学期望的公式.10.生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:81240328(Ⅰ)试分别估计元件A、元件B为正品的概率;(Ⅱ)生产一件元件A,若是正品可盈利50元,若是次品则亏损10元;生产一件元件B,若是正品可盈利100元,若是次品则亏损20元,在(Ⅰ)的前提下;(i)求生产5件元件B所获得的利润不少于300元的概率;(ii)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望.【答案】(Ⅰ)元件A为正品的概率为,元件B为正品的概率为(Ⅱ)(i)(ii)所以的分布列为:1509030-30【解析】(Ⅰ)用频率估计概率值;(Ⅱ)设出随机变量,确定随机变量的所有可能取值,求出各个取值的概率,列出概率分布表,从而得出答案.试题解析:(Ⅰ)由题可知元件A为正品的概率为,元件B为正品的概率为。

期望与方差例题选讲含详解

期望与方差例题选讲含详解

期望与方差例题选讲含详解Hessen was revised in January 2021概率统计(理)典型例题选讲(1)等可能性事件(古典概型)的概率:P (A )=)()(I card A card =nm ; 等可能事件概率的计算步骤:① 计算一次试验的基本事件总数n ;② 设所求事件A ,并计算事件A 包含的基本事件的个数m ;③ 依公式()m P A n=求值;④ 答,即给问题一个明确的答复.(2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B );特例:对立事件的概率:P (A )+P (A )=P (A +A )=1.(3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B );特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.(4)解决概率问题要注意“四个步骤,一个结合”:① 求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件互斥事件 独立事件n 次独立重复试验即所给的问题归结为四类事件中的某一种.第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1)k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复.典型例题分析1.有10张卡片,其中8张标有数字2,有2张标有数字5.从中随机地抽取3张卡片,设3张卡片上的数字和为ξ,求E ξ与D ξ.解:这3张卡片上的数字和ξ这一随机变量的可能取值为6,9,12,且“ξ=6”表示取出的3张卡上都标有2,则P (ξ=6)=.“ξ=9”表示取出的3张卡片上两张为2,一张为5,则P (ξ=9)= . “ξ=12”表示取出的3张卡片上两张为5,一张为2,则P (ξ=12)=.则期望E ξ=6×+9×+12×=,方差D ξ=2+2+2=.2.(2010江西)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门,再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止。

高考数学离散型随机变量的期望与方差解答题

高考数学离散型随机变量的期望与方差解答题

高考数学离散型随机变量的期望与方差解答题【例1】已知:甲盒子内有3个正品元件和4个次品元件,乙盒子内有5个正品元件和4个次品元件,现从两个盒子内各取出2个元件,试求(Ⅰ)取得的4个元件均为正品的概率;(Ⅱ)取得正品元件个数ε的数学期望.【例2】 某车间在三天内,每天生产10件某产品,其中第一天,第二天分别生产出了1件、2件次品,而质检部每天要从生产的10件产品中随意抽取4件进行检查,若发现有次品,则当天的产品不能通过. (I )求第一天通过检查的概率;(II )求前两天全部通过检查的概率;(III )若厂内对车间生产的产品采用记分制:两天全不通过检查得0分,通过1天、2天分别得1分、2分.求该车间在这两天内得分的数学期望.【例3】A 、B 两队进行篮球决赛,共五局比赛,先胜三局者夺冠,且比赛结束。

根据以往成绩,每场中A 队胜的概率为32,设各场比赛的胜负相互独立. (1)求A 队夺冠的概率;(2)设随机变量ξ表示比赛结束时的场数,求E ξ.【例4】两个排球队进行比赛采用五局三胜的规则,即先胜三局的队获胜,比赛到此也就结束,假设按原定队员组合,较强队每局取胜的概率为0.6,若前四局出现2比2的平局情况,较强队就换人重新组合队员,则其在决赛局中获胜的概率为0.7,设比赛结束时的局数为ξ.(Ⅰ)求ξ的概率分布;(Ⅱ)求E ξ.【例5】甲、乙两人各射击1次,击中目标的概率分别是32和43,假设两人射击是否击中标, 相互之间没有影响. 每人各次射击是否击中目标,相互之间没有影响.(1)甲射击4次,至少有一次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(3)假设某人连续2次未击中目标,则中止其射击,问:乙恰好射击5次后,被中止射击的概率是多少?【例6】甲、乙两人玩投篮游戏,规则如下:两人轮流投篮,每人至多投2次,甲先投,若有人投中即停止投篮,结束游戏,已知甲每次投中的概率为41,乙每次投中的概率为.31求: (1)乙投篮次数不超过1次的概率;(2)记甲、乙两人投篮次数和为ξ,求ξ的分布列和数学期望.【例7】甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92。

高三数学随机变量的期望与方差试题

高三数学随机变量的期望与方差试题

高三数学随机变量的期望与方差试题1.某保险公司新开设了一项保险业务,若在一年内事件E发生,该公司要赔偿a元.设在一年内E发生的概率为p,为使公司收益的期望值等于a的百分之十,公司应要求顾客交保险金为________元.【答案】(0.1+p)a【解析】设保险公司要求顾客交x元保险金,若以ξ表示公司每年的收益额,则ξ是一个随机变量,其分布列为:因此,公司每年收益的期望值为E(ξ)=x(1-p)+(x-a)p=x-ap.为使公司收益的期望值等于a 的百分之十,只需E(ξ)=0.1a,即x-ap=0.1a,解得x=(0.1+p)a.即顾客交的保险金为(0.1+p)a时,可使公司期望获益10%a.2.某游戏的得分为1,2,3,4,5,随机变量表示小白玩游戏的得分.若=4.2,则小白得5分的概率至少为 .【答案】【解析】设=1,2,3,4,5的概率分别为,则由题意有,,对于,当越大时,其值越大,又,因此,所以,解得.【考点】随机变量的均值(数学期望),排序不等式.3.甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.4.用击中环数的期望与方差比较两名射手的射击水平.【答案】在射击之前,可以预测甲、乙两名射手所得的平均环数很接近,均在9环左右,但甲所得环数较集中,以9环居多,而乙得环数较分散,得8、10环的次数多些.【解析】Eξ1=8×0.2+9×0.6+10×0.2=9,V(ξ1)=(8-9)2×0.2+(9-9)2×0.6+(10-9)2×0.2=0.4;同理有E(ξ2)=9,V(ξ2)=0.8.由上可知,E(ξ1)=E(ξ2),V(ξ1)<V(ξ2).所以,在射击之前,可以预测甲、乙两名射手所得的平均环数很接近,均在9环左右,但甲所得环数较集中,以9环居多,而乙得环数较分散,得8、10环的次数多些.4.某工艺厂开发一种新工艺品,头两天试制中,该厂要求每位师傅每天制作10件,该厂质检部每天从每位师傅制作的10件产品中随机抽取4件进行检查,若发现有次品,则当天该师傅的产品不能通过.已知李师傅第一天、第二天制作的工艺品中分别有2件、1件次品.(1)求两天中李师傅的产品全部通过检查的概率;(2)若厂内对师傅们制作的工艺品采用记分制,两天全不通过检查得0分,通过1天、2天分别得1分、2分,求李师傅在这两天内得分的数学期望.【答案】(1)(2)【解析】(1)设李师傅产品第一天通过检查为事件A;第二天产品通过检查为事件B.则有P(A)==,P(B)==,由事件A、B独立,∴P(AB)=P(A)P(B)=.答:李师傅这两天产品全部通过检查的概率为.(2)记得分为ξ,则ξ的可能值为0,1,2.∵P(ξ=0)=×=;P(ξ=1)=×+×=;P(ξ=2)=×=.∴E(ξ)=0×+1×+2×=.答:李师傅在这两天内得分的数学期望为.5.甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量ξ和η,且ξ、η分布列为ξ123(2)计算ξ、η的期望和方差,并以此分析甲、乙的技术状况.【答案】(1)a=0.3,b=0.4.(2)甲、乙两人技术都不够全面【解析】(1)由离散型随机变量的分布列性质可知a+0.1+0.6=1,即a=0.3,同理0.3+b+0.3=1,b=0.4.(2)E(ξ)=1×0.3+2×0.1+3×0.6=2.3,E(η)=1×0.3+2×0.4+3×0.3=2.V(ξ)=0.81,V(η)=0.6.由计算结果E(ξ)>E(η),说明在一次射击中甲的平均得分比乙高,但V(ξ)>V(η),说明甲得分的稳定性不如乙,因此甲、乙两人技术都不够全面.6.某校举行中学生“日常生活小常识”知识比赛,比赛分为初赛和复赛两部分,初赛采用选手从备选题中选一题答一题的方式进行;每位选手最多有5次答题机会,选手累计答对3题或答错3题即终止比赛,答对3题者直接进入复赛,答错3题者则被淘汰.已知选手甲答对每个题的概率均为,且相互间没有影响.(1)求选手甲进入复赛的概率;(2)设选手甲在初赛中答题的个数为,试求的分布列和数学期望.【答案】(1);(2)【解析】(1)选手甲进入复赛分为三类:①回答了三个题且都对,概率为;②回答了四个题答对三个,概率为;③回答了五个题答对三个,概率为,故选手进入复赛的概率为;(2)依题意,的可能取值为3,4,5,每个取值都分为两种情况,即因淘汰而离开初赛,或者进入复赛.试题解析:(1)设选手甲答对每个题的概率为,则,设“选手甲进入复赛”为事件,则选手甲答了3题都对进入复赛概率为:;或选手甲答了4个题,前3个2对1错,第4次对进入复赛, 4分或选手甲答了5个题,前4个2对2错,第5次对进入复赛6分选手甲进入复赛的概率 7分(2)的可能取值为3,4,5,对应的每个取值,选手甲被淘汰或进入复赛的概率的分布列为:13分【考点】1、n次独立重复试验中事件A发生K次的概率;2、离散型随机变量的分布列和期望.7.某高校在2012年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.(1)分别求第3,4,5组的频率;(2)若该校决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,(ⅰ)已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙恰有一人进入第二轮面试的概率;(ⅱ)学校决定在这已抽取到的6名学生中随机抽取2名学生接受考官L的面试,设第4组中有名学生被考官L面试,求的分布列和数学期望.【答案】(1)0.3 0.2 0.1 (2)(ⅰ) (ⅱ)【解析】(1)由频率分布直方图的横坐标得到组距,纵坐标得到每组的频率/组距,故而每组的频率即为纵坐标与组距的乘积.(2)分层抽样就是在保持每个个体入样的可能性相等的条件下把样本容量分摊到每一层,即样本容量与总体数量之比与某层抽样个数与该层总数之比相等,进而得到每层抽样的人数(i)第三组要抽样3人,在30人中抽样三人,无序即为组合数,即中抽样情况,根据题目要求“学生甲和学生乙恰有一人进入第二轮面试”的事件分为两种情况①甲乙中只有甲入选,即还需要在28人中无序抽样2人,即,②甲乙中只有乙入选,即还需要在28人中无序抽样2人,即.在利用古典概型概率计算公式即可得到相应的概率(ii)由分层抽样的结果可知6人中有两人是第四组的,即,再利用组合数算得从6人中无序抽样两人的情况数和分别有0,1,2人是第四组的情况数,即可得到相应的概率,进而得到分布列,在把三种情况的概率与其分别相乘再相加即可得到期望.试题解析:(1) 第三组的频率为0.065="0.3;" 第四组的频率为0.045=0.2;第五组的频率为0.025=0.1. 3分(2)(ⅰ)设“学生甲和学生乙恰有一人进入第二轮面试”为事件A,第三组应有3人进入面试则: P(A)== 6分(ⅱ)第四组应有2人进入面试,则随机变量可能的取值为0,1,2. 7分且,则随机变量的分布列为:012P12分【考点】分布列期望排列组合频率分布直方图8.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为,得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=,则随机变量X的数学期望E(X)=.【答案】【解析】1-=.∵P(X=0)==(1-p)2×,∴p=.1-=.随机变量X的可能取值为0,1,2,3,因此P(X=0)=,P(X=1)=×()2+×()2×2=,P(X=2)=×()2×2+×()2=,P(X=3)=×()2=,因此E(X)=0×+1×+2×+3×=.9.甲、乙、丙三人参加某次招聘会,假设甲能被聘用的概率是,甲、丙两人同时不能被聘用的概率是,乙、丙两人同时能被聘用的概率为,且三人各自能否被聘用相互独立.(1)求乙、丙两人各自被聘用的概率;(2)设为甲、乙、丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求的分布列与均值(数学期望).【答案】(1)乙、丙两人各自被聘用的概率分别为、;(2)详见解析.【解析】(1)分别设乙、丙两人各自被聘用的概率为、,利用事件的独立性列出相应的方程进行求解,从而得出乙、丙两人各自被聘用的概率;(2)先列举出随机变量的可能取值,并根据事件的独立性求出在相应条件的概率,列出分布列并求出随机变量的均值(即数学期望). 试题解析:(1)设乙、丙两人各自被聘用的概率分别为、,则甲、丙两人同时不能被聘用的概率是,解得,乙、丙两人同时能被聘用的概率为,因此乙、丙两人各自被聘用的概率分别为、;(2)的可能取值有、,则,,因此随机变量的分布列如下表所示所以随机变量的均值(即数学期望).【考点】1.独立事件概率的计算;2.离散型随机变量的概率分布列与数学期望10.生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:81240328(Ⅰ)试分别估计元件A、元件B为正品的概率;(Ⅱ)生产一件元件A,若是正品可盈利50元,若是次品则亏损10元;生产一件元件B,若是正品可盈利100元,若是次品则亏损20元,在(Ⅰ)的前提下;(i)求生产5件元件B所获得的利润不少于300元的概率;(ii)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望.【答案】(Ⅰ)元件A为正品的概率为,元件B为正品的概率为(Ⅱ)(i)(ii)所以的分布列为:【解析】(Ⅰ)用频率估计概率值;(Ⅱ)设出随机变量,确定随机变量的所有可能取值,求出各个取值的概率,列出概率分布表,从而得出答案.试题解析:(Ⅰ)由题可知元件A为正品的概率为,元件B为正品的概率为。

概率论 第五章数学期望和方差

概率论 第五章数学期望和方差
0
=
1 5λ
.
(b)Z = max(X1, X2, . . . , X5) 表示 5 台计算机都被感染病毒的时间, P (Z > z) = 1 − P (Z ≤ z) = 1 − P (X1 ≤ z, . . . , X5 ≤ z) = 1 − P (X1 ≤ z)5 = 1 − (1 − exp(−zλ))5, 故 5 台计算机都被病毒感染前的时间期望为
exp?t2exp?t20即得y?e120bey112020vary11202400537解设过生日的分摊的费用为x不过生日的分摊的费用为y则2x5y?要使得分摊公平故在这六次生日中每人分摊的费用是相等的即5?6xy4?6由以上两式可解得x?42y4?21
第五章 数学期望和方差
5.1 解 因为这个家庭是随机抽取的, 故这个小区的每个家庭的年平均收入也为 a 元.
EX
=
9
E(
i=1
Xi)
=
9 i=1
E(Xi)
=
9
×
(1

838 938
).
5.17 解 (a) 设 Xi 表示第 i 台计算机被感染病毒前的时间, i = 1, 2, 3, 4, 5
则 P (Xi > y) =
∞ y
λ
exp(−xλ)dx
=
exp(−yλ),
Y = min(X1, X2, X3, X4, X5) 表示首台计算机被感染病毒前的时间,
5.2 解 所以 E(X)
设X = [3 ×
表示盈利金额, 则 P (X = 3 × 106 × 0.8 − 1) =
106
×
0.8

1]
×
1 107

高二数学随机变量的期望与方差试题答案及解析

高二数学随机变量的期望与方差试题答案及解析

高二数学随机变量的期望与方差试题答案及解析1.设X为随机变量,X~B ,若随机变量X的数学期望E(X)=2,则P(X=2)等于( ) A.B.C.D.【答案】A【解析】由二项分布X~B 的数学期望E(X)=,知,得,即X~B ,那么P(X=2)=.【考点】服从二项分布的离散型随机变量的均值与方差.2.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,则其中含红球个数的数学期望是________.【答案】【解析】法一同时取出的2个球中含红球数X的概率分布为P(X=0)==,P(X=1)==,P(X=2)==.E(X)=0×+1×+2×=.法二同时取出的2个球中含红球数X服从参数N=5,M=3,n=2的超几何分布,所以E(X)==.3.马老师从课本上抄录一个随机变量X的概率分布律如下表请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同.据此,小牛给出了正确答案E(ε)=________.【答案】2【解析】令“?”为a,“!”为b,则2a+b=1,又E(X)=a+2b+3a=2(2a+b)=2.4.若X是离散型随机变量,,且,又已知,则()A.B.C.D.【答案】C【解析】本题考查期望与方差的公式,利用期望及方差的公式,建立方程,即可求得结论.【考点】离散型随机变量的期望方差.5.在个同样型号的产品中,有个是正品,个是次品,从中任取个,求(1)其中所含次品数的期望、方差;(2)事件“含有次品”的概率。

【答案】(1)E(x)=,D(x)=;(2)P(A)=.【解析】(1)依题意可知随机变量ξ的一切可取值为0,1,2,求出相应的概率,可求所含次品数ξ的期望、方差;(2)事件“含有次品”,则随机变量ξ取1,2,从而可求概率.试题解析:(1)依题意可知随机变量的一切可取值为,则,(2)设集合A为抽取的3件产品中含有次品则.【考点】离散型随机变量的期望与方差.6.某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为,科目B每次考试成绩合格的概率均为.假设各次考试成绩合格与否均互不影响.(1)求他不需要补考就可获得证书的概率;(2)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求的分布列及数学期望E.【答案】(1) ;(2) E=【解析】(1)不需要补考就获得证书的事件表示科目第一次考试合格且科目第一次考试合格,这两次考试合格是相互独立的,根据相互独立事件同时发生的概率,得到结果.(2)参加考试的次数为,由已知得,注意到各事件之间的独立性与互斥性,根据相互独立事件同时发生的概率写出概率,得到的分布列并求出期望.试题解析:解:设“科目A第一次考试合格”为事件A1,“科目A补考合格”为事件A2;“科目B第一次考试合格”为事件B1,“科目B补考合格”为事件B2..............1分(1)不需要补考就获得证书的事件为A1·B1,注意到A1与B1相互独立,则.该考生不需要补考就获得证书的概率为..............4分(2)由已知得,=2,3,4,注意到各事件之间的独立性与互斥性,可得.............6分8分10分234故答:该考生参加考试次数的数学期望为 12分【考点】1、互相独立事件的概率乘法公式;2、离散型随机变量的分布列与数学期望.7.2012年3月2日,江苏卫视推出全新益智答题类节目《一站到底》,甲、乙两人报名参加《一站到底》面试的初试选拔,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次抢答都从备选题中随机抽出3题进行测试,至少答对2题初试才能通过.(Ⅰ)求甲答对试题数ξ的概率分布及数学期望;(Ⅱ)求甲、乙两人至少有一人初试通过的概率.【答案】(Ⅰ)分布列如下:0123甲答对试题数ξ的数学期望Eξ=.(Ⅱ)甲、乙两人至少有一人通过的概率为。

概率论分布列期望方差习题及答案

概率论分布列期望方差习题及答案

圆梦教育离散型随机变量的分布列、期望、方差专题姓名:__________班级:__________学号:__________1.红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为,,,假设各盘比赛结果相互独立。

(Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用表示红队队员获胜的总盘数,求的分布列和数学期望.2.已知某种从太空带回的植物种子每粒成功发芽的概率都为,某植物研究所分两个小组分别独立开展该种子的发芽实验,每次实验种一粒种子,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.(1) 第一小组做了三次实验,求实验成功的平均次数;(2) 第二小组连续进行实验,求实验首次成功时所需的实验次数的期望;(3)两个小组分别进行2次试验,求至少有2次实验成功的概率.3.一种电脑屏幕保护画面,只有符号“○”和“×”随机地反复出现,每秒钟变化一次,每次变化只出现“○”和“×”之一,其中出现“○”的概率为,出现“×”的概率为.若第次出现“○”,则a=1;出现“×”,则a=.令S=a+a+…+a.(1)当时,求S2的概率;(2)当,时,求S=2且S≥0(i=1,2,3,4)的概率.4.在一个有奖问答的电视节目中,参赛选手顺序回答三个问题,答对各个问题所获奖金(单位:元)对应如下表:当一个问题回答正确后,选手可选择继续回答下一个问题,也可选择放弃.若选择放弃,选手将获得答对问题的累计奖金,答题结束;若有任何一个问题回答错误,则全部奖金归零,答题结束.设一名选手能正确回答的概率分别为,正确回答一个问题后,选择继续回答下一个问题的概率均为,且各个问题回答正确与否互不影响.(Ⅰ)按照答题规则,求该选手回答正确但所得奖金为零的概率;(Ⅱ)设该选手所获奖金总数为,求的分布列与数学期望.5.某装置由两套系统M,N组成,只要有一套系统工作正常,该装置就可以正常工作。

数学期望与方差练习题

数学期望与方差练习题

第三章 多维随机变量及其分布一、问答题1、 事件},{y Y x X ≤≤表示事件}{x X ≤与}{y Y ≤的积事件,为什么},{y Y x X P ≤≤不一定等于}{}{y Y P x X P ≤⋅≤?2、二维随机变量(X ,Y )的联合分布、边缘分布及条件分布之间存在什么样的关系?3、多维随机变量的边缘分布与一维随机变量的分布之间有什么联系与区别?4、两个随机变量相互独立的概念与两个事件相互独立是否相同?为什么?5、两个相互独立的服从正态分布的随机变量1X 与2X 之和仍是正态随机变量,那么它们的线性组合21bX aX ±呢?1、答:如同仅当事件A 、B 相互独立时,才有)()()(B P A P AB P ⋅=一样,这里},{y Y x X P ≤≤ 依乘法原理有}|{}{},{x X y Y P x X P y Y x X P ≤≤⋅≤=≤≤,只有事件}{x X ≤与}{y Y ≤相互独立时,才有}{}{},{y Y P x X P y Y x X P ≤⋅≤=≤≤2、答:由边缘分布与条件分布的定义与公式知,联合分布唯一确定边缘分布,因而也唯一确定条件分布。

反之,边缘分布与条件分布都不能唯一确定联合分布。

但由)|()(),(|x y f x f y x f X Y X ⋅=知,一个条件分布和它对应的边缘分布,能唯一确定联合分布。

但是,如果X ,Y 相互独立,则}{}{},{y Y P x X P y Y x X P ≤⋅≤=≤≤,即)()(),(y F x F y x F Y X ⋅=。

说明当X ,Y 相互独立时,边缘分布也唯一确定联合分布,从而条件分布也唯一确定联合分布。

3、答:从某种意义上讲,可以说多维随机变量的边缘分布是一维随机变量的分布。

如二维正态分布),,,,(~),(222121ρσσμμN Y X 的边缘分布),(~211σμN X ,),(~222σμN Y 也具有一维分布的性质。

期望与方差练习题(答案)

期望与方差练习题(答案)

期望与方差练习题(答案)1(A )0 (B )0.2 (C )-1 (D )-0.3提示:直接用定义计算.2 (A )0.7 (B )0.61 (C)-0.3 (D )0提示:直接用定义或性质计算.3 (A ) E ξ=p ,D ξ=pq (B ) E ξ=p ,D ξ=p 2(C ) E ξ=q ,D ξ=q 2 (D ) E ξ=l 一p ,D ξ=p -p 2 提示:ξ~B (l ,q ),p +q =1. 4.抛掷一颗骰子,设所得点数为ξ,则E ξ= 3.5 ,D ξ=3512. 提示:ξ的概率分布为P (ξ=k )=61,k =1,2,……,6按定义计算得E ξ=(1+2+3+……+6)·61=3.5,D ξ=2221777[(1)(2)(6)]6222⋅-+-++-L =3512. 5.有两台自动包装机甲与乙,包装重量分别为随机变量ξ1,ξ2,已知E ξ1=E ξ2,D ξ1>D ξ2,则自动包装机 乙 的质量较好.6.设一次试验成功的概率为p ,进行100次独立重复试验,当p = 21 时,成功次数的标准差的值最大,其最大值为 5 .解:D ξ=npq ≤2()24p q n n +=,等号在p =q =21时成立,此时,D ξ=25,σξ=5. 7.一袋中装有6只球,编号为1,2,3,4,5,6,在袋中同时取3只,求三只球中的最大号码ξ的数学期望.解:ξ的取值为3,4,5,6,P (ξ=k )=212k kC C -,k =3,4,5,6.Eξ=3×20+4×20+5×20+6×20=4=5.25.8.人寿保险中(某一年龄段),在一年的保险期内,每个被保险人需交纳保费a元,被保险人意外死亡则保险公司赔付3万元,出现非意外死亡则赔付1万元.经统计此年龄段一年内意外死亡的概率是p1,非意外死亡的概率为p2。

,则a需满足什么条件,保险公司才可能盈利.l2lp2=a-30000p1—10000p2.要想盈利,至少需使ξ的数学期望大于零,故a>30000p1+10000p2.9、思考题在某一项有奖销售中,每10万张奖券中有1个头奖,奖金10000元;2个二等奖,奖金各5000元;500个三等奖,奖金各100元,10000个四等奖,奖金各5元.试求每张奖券奖金的期望值.如果每张奖券2元,销售一张平均获利多少?(假设所有奖券全部售完)每张奖券的期望值Eξ= 10000×100000+5000×100000+100×100000+5×10000100000=1.2元.如果每张奖券2元,销售一张平均获利0.8元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论《数学期望与方差》
习题参考解答
1. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 求ξ的期望值 解:由习题二第2题算出ξ的分布率为
ξ 0 1 P
1/3
2/3
因此有E ξ=0×P (ξ=0)+1×P (ξ=1)=2/3
2. 矩形土地的长与宽为随机变量ξ和η, 周长ζ=2ξ+2η, ξ与η的分布律如下表所示:
长的分布计算.
解: 由长和宽的分布率可以算得
E ξ=29×P (ξ=29)+30×P (ξ=30)+31×P (ξ=31) =29×0.3+30×0.5+31×0.2=29.9
E η=19×P (η=19)+20×P (η=20)+21×P (η=21) =19×0.3+20×0.4+21×0.3=20 由期望的性质可得
E ζ=2(E ξ+E η)=2×(29.9+20)=99.8
而如果按ζ的分布律计算它的期望值, 也可以得
E ζ=96×0.09+98×0.27+100×0.35+102×0.23+104×0.06=99.8 验证了期望的性质.
4. 连续型随机变量ξ的概率密度为
⎩⎨
⎧><<=其它
)
0,(10)(a k x kx x a
ϕ
又知Eξ=0.75, 求k 和a 的值。

解: 由性质
⎰+∞

-=1)(dx x ϕ

11
1)(|10110
=+=+
=
=++∞

-⎰⎰a k
x a k dx kx dx x a a
ϕ
即k =a +1
(1)
又知
75.02
2)(|1021
1
=+=+=
==
+++∞

-⎰⎰a k
x a k dx kx dx x x E a a ϕξ
得k =0.75a +1.5 (2)
由(1)与(2)解得
0.25a =0.5, 即a =2, k =3
6. 下表是某公共汽车公司的188辆汽车行驶到发生一次引擎故障的里程数的分布数列.若表中各以组中值为代表. 从188辆汽车中, 任意抽选15辆, 得出下列数字: 90, 50, 150, 110, 90, 90, 110, 90, 50, 110, 90, 70, 50, 70, 150. (1)求这15个数字的平均数; (2)
解 (90+50+150+110+90+90+110+90+50+110+90+70+50+70+150)/15 = 91.33 (2) 按上表计算期望值为
(10×5+30×11+50×16+70×25+90×34+110×46+130×33+150×16+170×2)/188 =96.17
7. 两种种子各播种300公顷地, 调查其收获量, 如下表所示, 分别求出它们产量的平均值
E ξ=(4500×12+4800×38+5100×40+5400×10)/100=4944 E η=(4500×23+4800×24+5100×30+5400×23)/100=4959
8. 一个螺丝钉的重量是随机变量, 期望值为10g , 标准差为1g . 100个一盒的同型号螺丝钉重量的期望值和标准差各为多少?(假设各个螺丝钉的重量相互之间独立) 解: 假设这100个螺丝钉的重量分别为ξ1, ξ2,…, ξ100, 因此有
E ξi =10, Dξi =102=12=1, (i =1,2,…,100), 设ξ为这100个螺丝钉的总重量,因此
∑==100
1
i i ξξ,则ξ的数学期望和标准差为
g
D D D kg
g E E E i i
i i i i i i 1011001)(100010100100
1
100
1
100
1
1001=⨯==
⎪⎭

⎝⎛
====⨯==⎪⎭⎫ ⎝⎛=∑∑∑∑====ξ
ξξσξξξξ
9. 已知100个产品中有10个次品,求任意取出的5个产品中次品数的期望值.
解: 假设ξ为取出5个产品中的次品数, 又假设ξi 为第i 次取出的次品数, 即, 如果第i 次取到的是次品, 则ξi =1否则ξi =0, i =1,2,3,4,5, ξi 服从0-1分布,而且有 P {ξi =0}=90/100, P {ξi =1}=10/100, i =1,2,3,4,5 因此, E ξi =10/100=1/10, 因为∑==
5
1
i i
ξ
ξ
因此有5.010155
1
51=⨯==⎪⎭⎫ ⎝⎛=∑∑==i i i i E E E ξξξ
10. 一批零件中有9个合格品和3个废品, 在安装机器时, 从这批零件中任取一个, 如果取出的是废品就不再放回去. 求取得第一个合格品之前, 已经取出的废品数的数学期望和方差.
解: 假设在取到第一个合格品之前已取出的废品数为ξ, 则可算出
0045
.02201
101112123}3{041
.02209
109112123}2{2045
.011
9
123}1{75.0129
}0{==⋅⋅====⋅⋅===⋅====
=ξξξξP P P P
因此有
319
.009.0409.0)(409.090045.04041.02045.03.030045.02041.02045.0222===-==⨯+⨯+==⨯+⨯+=ξξξξξE E D E E
11. 假定每人生日在各个月份的机会是同样的, 求3个人中生日在第一个季度的平均人数. 解: 设三个随机变量ξi ,(i =1,2,3), 如果3个人中的第i 个人在第一季度出生, 则ξi =1, 否则ξi =0, 则ξi 服从0-1分布, 且有 P (ξi =1)=1/4, 因此E ξi =1/4, (i =1,2,3)
设ξ为3个人在第一季度出生的人数, 则ξ=ξ1+ξ2+ξ3, 因此Eξ=E (ξ1+ξ2+ξ3)=3Eξi =3/4=0.75
12. ξ有分布函数⎩⎨
⎧>-=-其它
1)(x e x F x
λ, 求E ξ及D ξ. 解: 因ξ的概率密度为⎩⎨
⎧>='=-其它
)()(x e x F x x
λλϕ, 因此 ()
λ
λ
λϕξλλλλλ1
1
)(0
=
-
=+-=-=
=
=

+-∞+-∞
+-+∞
-+∞
-+∞

-⎰⎰⎰⎰x
x x
x
x
e dx e xe e xd dx e
x dx x x E
()
2
20
202
2
2
2
2
2)(|λξλ
λϕξλλλλ=
=
+-=-=
=
=
⎰⎰⎰⎰∞+-∞+-+∞
-+∞
-+∞

-E dx xe e x e d x dx e
x dx x x E x x x
x
2
2
2
221
1
2
)(λ
λ
λ
ξξξ=
-
=
-=E E D
13. ⎪⎩⎪
⎨⎧
<-=其它
1||11)(~2
x x x πϕξ, 求E ξ和D ξ.
解: 因φ(x )是偶函数, 因此Eξ=0, 则D ξ=Eξ2-(Eξ)2=Eξ2
因此有
⎰⎰-==
=+∞

-1
2
22
2
12)(dx x
x dx x x E D π
ϕξξ
令θθθd dx x cos ,sin ==
则上式=21
12sin 21212cos 2sin 1
2||2020202
2
=+=+=⎰⎰π
ππ
π
θπθπθθπθθπd d 即D ξ=1/2=0.5。

相关文档
最新文档