圆锥曲线经典性质总结及证明

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线的经典结论

一、椭 圆

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.(椭圆的光学性质)

2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径

的圆,除去长轴的两个端点.(中位线)

3. 以焦点弦PQ 为直径的圆必与对应准线相离.以焦点半径PF 1为直径的圆必与以长轴为直

径的圆内切.(第二定义)

4. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y

a b

+=.(求

导)

5. 若000(,)P x y 在椭圆22

221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点

弦P 1P 2的直线方程是00221x x y y

a b

+=.(结合4)

6. 椭圆22

221x y a b

+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点

12F PF γ∠=,则椭圆的焦点角形的面积为122tan

2

F PF S b γ

∆=.(余弦定理+面积公式+

半角公式)

7. 椭圆22

221x y a b

+=(a >b >0)的焦半径公式:

10||MF a ex =+,20||MF a ex =-(1(,0)F c -,2(,0)F c 00(,)M x y ).(第二定义)

8. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和

AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF

9. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q

交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. MN 其实就在准线上,下面证明他在准线上

根据第8条,证毕

10. AB 是椭圆22

221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则

2

2OM AB b k k a ⋅=-,

即0

20

2y a x b K AB -=。(点差法)

11. 若000(,)P x y 在椭圆22

221x y a b

+=内,则被Po 所平分的中点弦的方程是

22

00002222x x y y x y a b a b +=+.(点差法) 12. 若000(,)P x y 在椭圆22

221x y a b

+=内,则过Po 的弦中点的轨迹方程是

22002222x x y y

x y a b a b

+=+.(点差法) 二、双曲线

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.(同上)

2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为

直径的圆,除去长轴的两个端点.(同上)

3. 以焦点弦PQ 为直径的圆必与对应准线相交.(同上)

4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:

P 在左支)(同上)

5. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)上,则过0P 的双曲线的切线方程

是00221x x y y

a b

-=.(同上) 6. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)外 ,则过Po 作双曲线的两条切

线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y

a b

-=.(同上)

7. 双曲线22

221x y a b

-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意

一点12F PF γ∠=,则双曲线的焦点角形的面积为122

t

2

F PF S b co γ

∆=.(同上)

8. 双曲线22

221x y a b

-=(a >0,b >o )的焦半径公式:(1(,0)F c -,2(,0)F c

当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.

当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--(同上) 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,

连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.(同上) 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,

A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.(同上)

11. AB 是双曲线22

221x y a b

-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB

的中点,则0202y a x b K K AB

OM =⋅,即0

20

2y a x b K AB =。

(同上) 12. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)内,则被Po 所平分的中点弦的

方程是22

00002222x x y y x y a b a b

-=-.(同上)

13. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)内,则过Po 的弦中点的轨迹方

程是22002222x x y y

x y a b a b

-=-.(同上)

椭圆与双曲线的对偶性质--(会推导的经典结论)

椭 圆

1. 椭圆22

221x y a b

+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直

线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22

221x y a b

-=.

证明

2. 过椭圆

22

22

1x y

a b += (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且20

20

BC b x k a y =(常数).

证明

相关文档
最新文档