2019年春七年级数学下册 第3章 整式的乘除 3.3 第1课时 简单多项式的乘法及应用练习 (新版
七年级数学下册整式的乘法整式的乘法多项式的乘法多项式乘多项式
次二项式的乘法
5. 已知(x+3)(x-2)=x2+ax+b,则 a,b 的值分别
是( B )
A.a=-1,b=-6 B.a=1,b=-6
C.a=-1,b=6
D.a=1,b=6
2019年6月9日
你是眼中最美的风景
6
6. 下 列 多 项 式 相 乘 的 结 果 为 x2 + 3x - 18 的 是
(D )
A.x2+3x+2
B.3(x-1)(x-2)
C.x2-3x+2
D.x3-3x2+2x
2019年6月9日
你是眼中最美的风景
9
11. 计算:(a-b)(a+2b)=_a_2_+__a_b_-__2_b_2_; (x+5y)(2x-y)=_2_x_2_+__9_x_y-__5_y_2__.
12. 定义ac db为二阶行列式,规定它的运算法则为
2019年6月9日
你是眼中最美的风景
2
知识点 多项式乘多项式
1. (2018·武汉)计算(a-2)(a+3)的结果是( B )
A.a2-6
B.a2+a-6
C.a2+6
D.a2-a+6
2. 下面的计算结果为 3x2+13x-10 的是( C )
A.(3x+2)(x+5)
B.(3x-2)(x-5)
C.(3x-2)(x+5)
2019年6月9日
你是眼中最美的风景
8
9. 若(x+2)(x-1)=x2+mx+n,则 m+n=( C )
A.1
B.-2
C.-1
D.2
10. (2018·镇江模拟)学校买来钢笔若干支,可以平均
分给(x-1)名同学,也可分给(x-2)名同学(x 为正整
数).用代数式表示钢笔的数量不可能的是( A )
《整式的乘法》第3课时《多项式乘以多项式的法则》教学课件2022-2023学年北师大版七年级数学下册
你会计
算吗?
教学过程
新知探究
做一做
我们可以用四种方法计算长方形的面积:
方法1: + +
方法2: + + +
方法3: + + +
方法4: + + +
事实上 + + 是两个多项式相乘,你从上面的计算过程中受
C. − 或0
D. 或0
教学过程
新知应用
做一做
3.若 − + − 结果是不含 项,则、
的关系为(B )
A. 互为倒数
B. 互为相反数
C. 相等
D.不能确定
4.若 = , = , 则 − − + − 的值为(A )
北师大版数学七年级(下)
第一章 整式的乘除
4.整式的乘法
第3课时 多项式与多项式的乘法
教学过程
重点难点
1.经历探索多项式与多项式乘法的运算法则的
过程,掌握多项式与多项式乘法的运算法则.
(重点)
2.利用多项式与多项式乘法的运算法则进行运算,进
一步加强学生的运算能力.(难点)
教学过程
温故知新
1.单项式乘以单项式的法则:
项之前,所得积的项数为两个多项式的项数的积.
2.在运算过程中,不要漏乘任何一项,特别是常数项,相乘时
按一定的顺序进行,注意每项的符号,可根据“同号得正,异
号得负”来确定积中每一项的符号.
3.结果中有同类项的,一定要合并同类项,化成最简形式.
教学过程
回归课本
读一读
整式的乘法第3课时多项式与多项式相乘课件北师大版数学七年级下册
(5)(x + y)(x2 - xy + y2).
(6) (x-y)2;
解: (x + y)(x2 - xy + y2) =x·x2+x·(- xy)+x·y2+ y·x2+ y·(- xy)+ y·y2 = x3-x2y + xy2 + x2y -xy2 + y3 = x3+y3.
解: (x-y) (x-y) =x·x+x·(-y)+(-y)·x+(-y)·(-y) =x2-xy-xy+y2 =x2-2xy+y2
( m+a ) (n+b ),n(m+a) +b(m+a),m(n+b) +
a(n+ b) 和mn+mb+na+ba,
b
从而,(m+a) (n+b) = n(m +a) + b(m+a) =m
(n+b)+a (n+b) =mn+mb+na+ba.
a
你认为小明的想法对吗? 从中你受到了什么启发?
m
n
归纳
4. 化简,再求值:(a-2b)(a2+2ab+4b2)-a(a-5b)(a+3b),其中 a = -1,
b = 1. 解:原式 = a·a2+a·(2ab)+a·(4b2)- 2b ·a2- 2b ·2ab- 2b ·4b2 -(a2-5ab)(a+3b)
= a3-8b3-(a2·a+a2·3b-5ab·a-5ab·3b) =a3-8b3-a3-3a2b+5a2b+15ab2 =-8b3+2a2b+15ab2. 当 a = -1,b = 1时, 原式 = -8× 13 +2 × (-1)2 ×1 +15 ×(-1) × 12 = -21.
七年级下册数学课本目录
七年级下册数学课本目录第一章整式的乘除
1.同底数幂的乘法
2.幂的乘方与积的乘方
3.同底数幂的除法
4.整式的乘法
5.平方差公式
6.完全平方公式
7.整式的除法
第二章相交线与平行线
1.两条直线的位置关系
2.探索直线平行的条件
3.平行线的性质
4.用尺规作角
第三章三角形
1.认识三角形
2.图形的全等
3.探索三角形全等的条件
4.用尺规作三角形
5.利用三角形全等测距离
第四章变量之间的关系
1.用表格表示的变量间关系
2.用关系式表示的变量间关系
3.用图像表示的变量间关系第五章生活中的轴对称
1.轴对称现象
2.探索轴对称的性质
3.简单的轴对称图形
4.利用轴对称进行设计
第六章概率初步
1.感受可能性
2.频率的稳定性
3.等可能事件的概率。
北师大版七年级数学下册 (整式的乘法)整式的乘除课件教学(第3课时)
1 时
2
原式= -6
ZYT
典例精析
例3 已知ax2+bx+1(a≠0)与3x-2的积不含x2项,也不含x项,
求系数a、b的值.
方法总结:解决此类问题
解:(ax2+bx+1)(3x-2)
首先要利用多项式乘法法
=3ax3-2ax2+3bx2-2bx+3x-2,
则计算出展开式,合并同
由于积不含x2的项,也不含x的项, 类项后,再根据不含某一
= 8 x 6 y 3 · ( - 7 xy 2 ) ÷14 x 4 y 3 = - 56 x7y5 ÷ 14 x 4 y3
ZYT
第一章 整式的乘除
1.7 整式的除法
第1课时
复习与回顾
1.用字母表示幂的运算性质:
(1)am an amn
(2)(am )n a mn
(3)(ab)n anbn
(4)am an amn
2.快速抢答: (1) a20÷a10; = a10
(3) (−c)4 ÷(−c)2;= c2
由上面计算的结果找规律,观察填空: (x+p)(x+q)=_x__2+_(_p_+_q_)_x+__p_q____.
ZYT
探究新知
已知等式(x+a)(x+b)= x2+mx+28,其中a、b、m均为正
考 整数,你认为m可取哪些值?它与a、b的取值有关吗?请你
考 你
写出所有满足题意的m的值.
解:由题意可得a+b=m,ab=28.
例1 计算:
(1)
3 5
x2
y3
3x2
y
;
浙教版2019年七年级数学下册第3章整式的乘除3.3第2课时复杂多项式的乘法及应用练习(含答案)
3.3 多项式的乘法第2课时复杂多项式的乘法及应用知识点复杂多项式乘多项式的运算较复杂多项式相乘,仍然遵循“先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加”的法则.[注意] (1)多项式相乘要注意多项式每一项的符号;(2)多项式相乘的结果要化为最简.计算:(x-3)(2x2+x-7).一多项式乘多项式的简单应用教材例5变式题解方程:(x-1)(2x-1)=x(x+2)+x2-1.[归纳总结] 解方程时,方程两边均化成整式,再移项,合并同类项,系数化为1即可.二利用多项式乘多项式解决实际问题教材补充题一个长方体的长为x cm,宽为(2x-3)cm,高为(x-1)cm,求这个长方体的体积.[反思] 若多项式(mx2+8x-1)(2-3x)展开后不含x2项,求m的值.一、选择题1.下列计算正确的是( )A.a2·a3=a6B.5a(b-3a2)=5ab-15a3C.(a+b)(a-2b)=a2-2b2D.(x-1)(x2+2)=x3+2x-22.计算(x-1)(x2-1)的结果是( )A.x3-1 B.x3-x2-x+1C.x3-x+1 D.x3-x2+13.如果(x-4)(2x2-x+8)=2x3+mx2+nx-32,那么m,n的值分别是( )A.m=9,n=12 B.m=9,n=-12C.m=-9,n=12 D.m=-9,n=-124.如果三角形的一边长为2a+4,这条边上的高为2a2+a+1,那么这个三角形的面积为( )A.2a3+5a2+3a+2 B.4a3+6a2+6a+4C.(2a+4)(2a2+a+1) D.2a3+25.要使(x2+px+2)(x-q)的乘积中不含x2项,则p与q的关系是( )A.互为倒数B.互为相反数C.相等D.关系不能确定6.由m(a+b+c)=ma+mb+mc,可得(a+b)(a2-ab+b2)=a3-a2b+ab2+a2b-ab2+b3=a3+b3,即(a +b)(a2-ab+b2)=a3+b3.我们把这个等式叫做多项式乘法的立方公式.下列应用这个公式进行的变形不正确的是( )A.(x+4y)(x2-4xy+16y2)=x3+64y3B.(2x+y)(4x2-2xy+y2)=8x3+y3C.(a+1)(a2+a+1)=a3+1D.x3+27=(x+3)(x2-3x+9)二、填空题7.计算:(5b+2)(2b-1)=________;(3a2-2)(3a+2)=________.8.2015·菏泽若x2+x+m=(x-3)(x+n)对x恒成立,则n=________.9.三个连续整数中,n是最小的一个,这三个数的乘积为________.10.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是________.11.已知一个梯形的上底是(x+y)cm,下底是(5x-3y)cm,高是(2x+y)cm,则用含x,y的代数式表示梯形的面积为________ cm2.三、解答题12.计算:(1)(a+2)(a-2)(2a-1);(2)3(x2+2)-3(x+1)(x-1);(3)(2a-b)2-(b2+a-1)(2a+1).13.确定下列各式中m的值.(1)(x+4)(x+9)=x2+mx+36;(2)(x+3)(x+p)=x2+mx+36.14.解方程:x(2x+3)-(x-5)(x+3)=x2+1.15.李老师刚买了一套2室2厅的新房,其结构如图3-3-3所示(单位:米).施工方已经把卫生间和厨房根据合同约定铺上了地板砖,李老师打算把卧室1铺上地毯,其余铺地板砖.问:(1)他至少需要多少平方米的地板砖?(2)如果这种地板砖每平方米m元,那么李老师至少要花多少钱买地板砖?图3-3-3[创新题] (1)计算下列各式:(x-1)(x+1)=__________;(x-1)(x2+x+1)=__________;(x-1)(x3+x2+x+1)=__________.(2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接填写下面的空格.(x-1)(______________)=x6-1.(3)利用你发现的规律计算:(x-1)(x6+x5+x4+x3+x2+x+1)=__________.(4)利用该规律计算:1+4+42+43+ (42017)详解详析【预习效果检测】解:(x -3)(2x 2+x -7)=2x 3+x 2-7x -6x 2-3x +21=2x 3-5x 2-10x +21. 【重难互动探究】例1 解:两边去括号,得2x 2-x -2x +1=x 2+2x +x 2-1.合并同类项,得2x 2-3x +1=2x 2+2x -1. 化简,得5x =2. 所以原方程的解为x =25.例2 [解析] 长方体体积的计算公式为V =长×宽×高. 解:根据题意,这个长方体的体积为 V =x(2x -3)(x -1)=x(2x 2-2x -3x +3)=x(2x 2-5x +3)=(2x 3-5x 2+3x)(cm 3). 【课堂总结反思】[反思] (mx 2+8x -1)(2-3x)=2mx 2-3mx 3+16x -24x 2-2+3x =-3mx 3+(2m -24)x 2+19x -2.因为多项式展开后不含x 2项,所以2m -24=0,解得m =12.[点评] 多项式相乘后不含某一项,说明合并同类项后此项的系数为零. 【作业高效训练】 [课堂达标] 1.B 2.B 3.C4.[解析] A 三角形的面积=12×底×高=12×(2a+4)×(2a 2+a +1)=(a +2)(2a 2+a +1)=2a 3+a 2+a+4a 2+2a +2=2a 3+5a 2+3a +2.5.[解析] C 原式=x 3-qx 2+px 2-pqx +2x -2q =x 3+(p -q)x 2+(2-pq)x -2q ,由于不含x 2项,故p -q =0,即p =q.6.C7.[答案] 10b 2-b -2 9a 3+6a 2-6a -4 8.[答案] 49.[答案] n 3+3n 2+2n 10.[答案] 111.[答案] (6x 2+xy -y 2)12.解:(1)原式=(a 2-4)(2a -1)=2a 3-a 2-8a +4.(2)原式=3x 2+6-3(x 2-1)=3x 2+6-3x 2+3=9.(3)原式=4a 2-2ab -2ab +b 2-(2ab 2+b 2+2a 2+a -2a -1)=4a 2-4ab +b 2-2ab 2-b 2-2a 2-a +2a +1=2a 2-2ab 2-4ab +a +1.13.解:(1)因为(x +4)(x +9)=x 2+mx +36,所以x 2+13x +36=x 2+mx +36, 所以m =13.(2)因为(x +3)(x +p)=x 2+mx +36,所以x 2+(3+p)x +3p =x 2+mx +36,所以⎩⎪⎨⎪⎧3+p =m ,3p =36,解得⎩⎪⎨⎪⎧m =15,p =12.所以m =15.14.解:2x 2+3x -x 2-3x +5x +15=x 2+1. 2x 2+3x -x 2-3x +5x -x 2=1-15. 5x =-14,解得x =-145.所以原方程的解为x =-145.15.解:(1)用总面积减去厨房和卫生间的面积,再减去卧室1的面积即是所铺地板砖的面积,列式为5b·5a-(5b -3b)·(5a-3a)-(5a -3a)·2b=17ab(米2). (2)所花钱数:17ab·m=17abm(元). [数学活动]解: (1)x 2-1 x 3-1 x 4-1(2)发现规律:(x -1)(x n -1+x n -2+…+x +1)=x n-1. x 5+x 4+x 3+x 2+x +1(3)x 7-1(4)因为(1+4+42+43+…+42017)(4-1)=42018-1, 所以1+4+42+43+…+42017=42018-13.。
2019-2020年七年级数学下册第3章整式的乘除3.4乘法公式第1课时校本作业B本新版浙教版
2019-2020年七年级数学下册第3章整式的乘除3.4乘法公式第1课时校本作业B本新版浙教版2019-2020年七年级数学下册第3章整式的乘除3.4乘法公式第1课时校本作业B本新版浙教版课堂笔记两数和与这两数差的积等于这两数的 . 即(a+b)(a-b)=a2-b2.分层训练A组基础训练1. 计算(-4x-5y)(5y-4x)的结果是()A. 16x2-25y2B. 25y2-16x2C. -16x2-25y2D. 16x2+25y22. 下列计算错误的是()A. (6a+1)(6a-1)=36a2-1B. (-m-n)(m-n)=n2-m2C. (a3-8)(-a3+8)=a9-64D. (-a2+1)(-a2-1)=a4-13. (4x2-5y)需乘以下列哪个式⼦,才能使⽤平⽅差公式进⾏计算()A. -4x2-5yB. -4x2+5yC. (4x2-5y)2D. (4x+5y)24. 若x+y=6,x-y=5,则x2-y2的值为()A. 11B. 15C. 30D. 605. 与(9a-b)相乘的积等于b2-81a2的因式为()A. 9a-bB. 9a+bC. -9a-bD. b-9a6. 已知x2-y2=4,那么(x-y)2(x+y)2的结果是()A. 4B. 8C. 16D. 327. 对于(2a+3b-1)(2a-3b+1),为了⽤平⽅差公式,下列变形正确的是()A. [2a-(3b+1)]2B. [2a+(3b-1)][2a-(3b-1)]C. [(2a-3b)+1][(2a-3b)-1]D. [2a-(3b-1)]28. 计算(x4+1)(x2+1)(x+1)(x-1)的结果是()A. x8+1B. x8-1C. (x+1)8D. (x-1)89.判断题(对的打“√”,错的打“×”):(1)(-x+y)(-x-y)=-x2-y2;()(2)(-x-y)(x-y)=-x2+y2;()(3)(-x+y)(x-y)=-x2-y2;()(4)(2x-1)(x+1)=2x2-1.()10. 计算:(1)(a+1)(a-1)= ;(2)(-a+1)(-a-1)= ;(3)(-a+1)(a+1)= ;(4)(a+1)(-a-1)= .11. 如果(-x-y)·P=x2-y2,那么P等于 .12. 填空:(1)(x+y)()=x2-y2;(2)()(m+n)=m2-n2;(3)(-5s+6t)()=25s2-36t2;(4)(+ )( -)=x4-.13. 请你观察如图的图形,依据图形⾯积的关系,不需要添加辅助线,便可得到⼀个⾮常熟悉的乘法公式,这个公式是 .14. 若x-y=4,x2-y2=24,则(x+y)3= .15. 计算:(1)(5ab-3x)(-3x-5ab);(2)(-y2+x)(x+y2);(3)(宜昌中考)(a+b)(a-b)+2b2;(4)(m+n)(m-n);(5)(-2x-1)(1-2x)-(3-2x)(2x+3);(6)(m-)(m2+)(m+).16. ⽤平⽅差公式计算:(1)30.8×29.2;(2)xx2-xx×xx.17. 先化简,再求值:(a-2b)(2a-b)-(2a-b)(b+2a),其中a=-1,b=1.B组⾃主提⾼18. 对于任意的整数n,能整除代数式(n+3)(n-3)-(n+2)(n-2)的整数是()A. 4B. 3C. 5D. 219.某村正在进⾏绿地改造,原有⼀正⽅形绿地,若将它的每边都加长3m,则⾯积增加63m2.问:原绿地的边长为多少⽶?C组综合运⽤20. 我们在计算(2+1)(22+1)(24+1)(28+1)(216+1)时,发现直接运算很⿇烦,如果在算式前乘以(2-1)即1,原算式的值不变,⽽且还使整个算式能⽤乘法公式计算. 即:原式=(22-1)(22+1)(24+1)(28+1)(216+1)=232-1. 你能⽤上述⽅法迅速地算出(5+1)(52+1)(54+1)(58+1)(516+1)的值吗?请试着计算.参考答案3.4 乘法公式(第1课时)【课堂笔记】平⽅差【分层训练】1—5. ACACC 6—8. CBB9. (1)×(2)√(3)×(4)×10. (1)a2-1 (2)a2-1 (3)1-a2(4)-a2-2a-111. -x+y12. (1)x-y (2)m-n (3)-5s-6t(4)x2 x213. (x+y)(x-y)=x2-y2【点拨】利⽤⾯积相等即可列出.14. 21615. (1)原式=9x2-25a2b2(2)原式=x2-y4(3)原式=a2+b2(4)原式=(m)2-(n)2=2m2-3n2(5)原式=4x2-1-(9-4x2)=8x2-10.(6)原式=m4-16. (1)原式=(30+0.8)(30-0.8)=302-0.82=900-0.64=899.36(2)原式=xx2-(xx-1)(xx+1)=xx2-(xx2-1)=1.17. (a-2b)(2a-b)-(2a-b)(b+2a)=2a2-ab-4ab+2b2-[(2a)2-b2]=2a2-5ab+2b2-(4a2-b2)=2a2-5ab+2b2-4a2+b2=-2a2-5ab+3b2. 当a=-1,b=1时,原式=-2×(-1)2-5×(-1)×1+3×12=6.【点拨】利⽤平⽅差公式直接写出结果时,“平⽅”是⼀个整体的平⽅,不但字母要平⽅,系数也必须同时平⽅.18. C19. 设原绿地的边长为x(m),根据题意,得(x+3)2-x2=63,即3(2x+3)=63,解得x=9.答:原绿地的边长为9m.20. (532-1)2019-2020年七年级数学下册第3章整式的乘除3.4乘法公式第2课时校本作业A本新版浙教版课堂笔记1. 两数和的平⽅,等于这两数的平⽅和,加上这两数积的 . 即(a+b)2=a2+2ab+b2.2. 两数差的平⽅,等于这两数的,减去这两数积的2倍. 即(a-b)2=a2-2ab+b2. 分层训练A组基础训练1.计算(a+)2的结果是()A. a2-a+B. -a2+a+C. a2+a+D. -a2-a+2. 下列计算正确的是()A. (a+b)2=a2+b2B. (a-b)2=a2-b2C. (2x+y)2=4x2+4xy+y2D. (x-2y)2=x2-2xy+4y23. 若a2+ab+b2加上⼀个整式后,可得(a-b)2,则这个整式为()A. -abB. 3abC. -3abD. ab4. 在下列各式中:①(-2a-1)2;②(-2a-1)(-2a+1);③(-2a+1)(2a+1);④(2a-1)2;⑤(2a+1)2,计算结果相同的是()A. ①④B. ①⑤C. ②③D. ②④5. 如果(x-y)2+P=(x+y)2,那么P等于()A. ±4xyB. 4xyC. ±2xyD. 2xy 6.利⽤图形中阴影部分的⾯积与边长a,b之间的关系,可以验证某些数学公式.例如,根据图1,可以验证两数和的平⽅公式:(a+b)2=a2+2ab+b2,根据图2能验证的数学公式是()A. (a-2b)2=a2-4ab+4b2B. (a-b)2=a2-2ab+b2C. a2-b2=(a+b)(a-b)D. (a+2b)2=a2+4ab+4b27. 加上下列单项式后,仍不能使4x2+1成为⼀个整式的完全平⽅式的是()A. 2xB. 4xC. -4xD. 4x48. 填空:(1)x2+ +36=(x+6)2;(2)x2- +25=(x-5)2;(3)9x2+6x+ =(3x+1)2;(4)4-12x+ =(2-3x)2.9. 填空:(1)若(7x+A)2=49x2-14xy+B,则A= ,B= ;(2)若(a+b)2+M=(a-b)2,则M= ;(3)(+ )2=a4+ +1;(4)( +3b)2= +12a2b+ .10. 若a2+2a=4,则(a+1)2= .11. 将正⽅形的边长由acm增加6cm,则正⽅形的⾯积增加了 .12. 运⽤完全平⽅公式计算:(1)(3a+b)2= ;(2)(-x+3y)2= ;(3)(x-2y)2= ;(4)(-m-2n)2= ;(5)(a-2)2=.13. 运⽤公式计算下列各题:(1)992;(2)10.2214.利⽤乘法公式计算:(1)(2m+1)2(2m-1)2;(2)(a-2b)(a+2b)(a2-4b2).B组⾃主提⾼15.解⽅程:(1-3x)2+(2x-1)2=13(x-1)(x+1).16.(1)已知a+b=3,ab=2,求a2+b2的值;(2)已知(m+n)2=21,m2+n2=9,求mn的值;(3)若a2+b2=10,ab=-3,求a+b的值;(4)已知x+=2,则x2+=.17.(1)已知x+y=,x-y=,求xy的值.(2)已知x2-2x-2=0,求(x-1)2+(x+3)(x-3)+(x-3)(x-1)的值.C组综合运⽤18. 如下所⽰,(a+b)n与相应的杨辉三⾓中的⼀⾏数相对应. (a+b)1……………………1 1(a+b)2…………………1 2 1(a+b)3………………1 3 3 1(a+b)4……………1 4 6 4 1(a+b)5…………1 5 10 10 5 1由以上规律可知:(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b))4=a4+4a3b+6a2b2+4ab3+b4.请你写出下⾯两个式⼦的结果:(a+b)5= ;(a+b)6= .参考答案3.4 乘法公式(第2课时)【课堂笔记】1. 2倍2. 平⽅和【分层训练】1—5. CCCBB 6—7. BA8. (1)12x (2)10x (3)1 (4)9x29. (1)-y y2(2)-4ab (3)1 a2 (4)2a2 4a4 9b210. 511. (12a+36)cm212. (1)9a2+6ab+b2(2)x2-6xy+9y2(3)x2-2xy+4y2(4)m2+4mn+4n2(5)3a2-4a+413. (1)9801 (2)104.0414. (1)16m4-8m2+1 (2)a4-8a2b2+16b415. 1-6x+9x2+4x2-4x+1=13(x2-1),-10x=-15,解得x=1.5.16. (1)5 (2)6 (3)±2 (4)217. (1)∵(x+y)2=x2+y2+2xy=6,(x-y)2=x2+y2-2xy=5,∴(x+y)2-(x-y)2=4xy=1,∴xy=.(2)∵x2-2x-2=0,∴x2-2x=2. ∴原式=x2-2x+1+x2-9+x2-4x+3=3x2-6x-5=3(x2-2x)-5=3×2-5=1.18. a5+5a4b+10a3b2+10a2b3+5ab4+b5a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6。
七年级数学下册 第3章 整式的乘除 3.3 多项式的乘法作业设计 (新版)浙教版-(新版)浙教版初中
3.3 多项式的乘法一.选择题(共4小题)1.已知(x﹣m)(x+n)=x2﹣3x﹣4,则m﹣n的值为()A.1 B.﹣3 C.﹣2 D.32.(x2+ax+8)(x2﹣3x+b)展开式中不含x3和x2项,则a、b的值分别为()A.a=3,b=1 B.a=﹣3,b=1 C.a=0,b=0 D.a=3,b=83.若2x3﹣ax2﹣5x+5=(2x2+ax﹣1)(x﹣b)+3,其中a、b为整数,则a+b之值为何?()A.﹣4 B.﹣2 C.0 D.44.下列计算错误的是()A.(x+a)(x+b)=x2+(a+b)x+abB.(x+a)(x﹣b)=x2+(a+b)x+abC.(x﹣a)(x+b)=x2+(b﹣a)x+(﹣ab)D.(x﹣a)(x﹣b)=x2﹣(a+b)x+ab二.填空题(共8小题)5.若(x+1)(x+a)展开是一个二次二项式,则a=6.定义运算:a⊕b=(a+b)(b﹣2),下面给出这种运算的四个结论:①3⊕4=14;②a⊕b=b⊕a;③若a⊕b=0,则a+b=0;④若a+b=0,则a⊕b=0.其中正确的结论序号为.(把所有正确结论的序号都填在横线上)7.已知m+n=3,mn=﹣6,则(1﹣m)(1﹣n)=.8.已知(3x﹣p)(5x+3)=15x2﹣6x+q,则p+q=.9.如图,正方形卡片A类、B类和长方形卡片C类各若干X,如果要拼一个长为(a+3b),宽为(2a+b)的长方形,则需要C类卡片X.(第9题图)10.一个三角形的底边长为(2a+6b),高是(3a﹣5b),则这个三角形的面积是.11.计算下列各式,然后回答问题.(a+4)(a+3)=;(a+4)(a﹣3)=;(a﹣4)(a+3)=;(a﹣4)(a﹣3)=.(1)从上面的计算中总结规律,写出下式结果.(x+a)(x+b)=.(2)运用上述结果,写出下列各题结果.①(x+2008)(x﹣1000)=;②(x﹣2005)(x﹣2000)=.12.已知m,n满足|m+1|+(n﹣3)2=0,化简(x﹣m)(x﹣n)=.三.解答题(共6小题)13.已知将(x3+mx+n)(x2﹣3x+4)展开的结果不含x3和x2项.(m,n为常数)(1)求m、n的值;(2)在(1)的条件下,求(m+n)(m2﹣mn+n2)的值.14.探究新知:(1)计算:(a﹣2)(a2+2a+4)=;(2x﹣y)(4x2+2xy+y2)=;(x+3)(x2﹣3x+9)=;(m+3n)(m2﹣3mn+9n2)=.发现规律:(2)上面的多项式乘法计算很简洁,用含a、b字母表示为(a﹣b)(a2+ab+b2)=;(a+b)(a2﹣ab+b2)=.(3)计算:①(4﹣x)(16+4x+x2);②(3x+2y)(9x2﹣6xy+4y2).15.如图所示,某规划部门计划将一块长为(3a+b)米,宽为(2a+b)米的长方形地块进行改建,其中阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.(第15题图)16.已知有理数a、b、c满足|a﹣b﹣3|+(b+1)2+|c﹣1|=0,求(﹣3ab)•(a2c﹣6b2c)的值.17.先阅读后作答:根据几何图形的面积关系可以说明整式的乘法.例如:(2a+b)(a十b)=2a2+3ab+b2,就可以用图①的面积关系来说明.(第17题图)(1)根据图②写出一个等式:(2)(x+p)(x+q)=x2+(p+q)x+pq,请你画出一个相应的几何图形加以说明.18.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.参考答案一.1.D2.A3.D4.B二.5.﹣1或06.①④7.﹣88.﹣69.710.3a2+4ab﹣15b2 11.解:(a+4)(a+3)=a2+7a+12;(a+4)(a﹣3)=a2+a﹣12;(a﹣4)(a+3)=a2﹣a﹣12;(a﹣4)(a﹣3)=a2﹣7a+12.(1)(x+a)(x+b)=x2+(a+b)x+ab.(2)①(x+2008)(x﹣1000)=x2+1008x﹣2 008 000;②(x﹣2005)(x﹣2000)=x2﹣4 005x+4 010 000.12.解:∵|m+1|+(n﹣3)2=0,∴m+1=0,n﹣3=0,即m=﹣1,n=3,则原式=x2﹣(m+n)x+mn=x2﹣2x﹣3.三.13.解:(1)(x3+mx+n)(x2﹣3x+4),=x5﹣3x4+4x3+mx3﹣3mx2+4mx+nx2﹣3nx+4n,=x5﹣3x4+(4+m)x3+(n﹣3m)x2+(4m﹣3n)x+4n,由题意,得,解得,(2)(m+n)(m2﹣mn+n2)=m3+n3.当m=﹣4,n=﹣12时,原式=(﹣4)3+(﹣12)3=﹣64﹣1728=﹣1792.14.解:(1)(a﹣2)(a2+2a+4)=a3﹣8;(2x﹣y)(4x2+2xy+y2)=8x3﹣y3;(x+3)(x2﹣3x+9)=x3+27;(m+3n)(m2﹣3mn+9n2)=m3+27n3.(2)(a﹣b)(a2+ab+b2)=a3﹣b3;(a+b)(a2﹣ab+b2)=a3+b3.(3)①(4﹣x)(16+4x+x2)=43﹣x3=64﹣x3;②(3x+2y)(9x2﹣6xy+4y2)=(3x)3+(2y)3=27x3+8y3.15.解:S阴影=(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=5a2+3ab(平方米),当a=3,b=2时,5a2+3ab=5×9+3×3×2=45+18=63(平方米).16.解:由|a﹣b﹣3|+(b+1)2+|c﹣1|=0,得.解得.(﹣3ab)•(a2c﹣6b2c)=﹣3a3bc+18ab3c,当时,原式=﹣3×23×(﹣1)×1+18×2×(﹣1)3×1=24﹣36=﹣12.17.解:①(a+2b)(2a+b)=2a2+5ab+2b2;②画出的图形如答图.(第17题答图)(答案不唯一,只要画图正确即得分)18.解:(1)(x2+px﹣)(x2﹣3x+q)=x4+(p﹣3)x3+(q﹣3p﹣)x2+(qp+1)x+q,∵积中不含x项与x3项,∴P﹣3=0,qp+1=0∴p=3,q=﹣,(2)(﹣2p2q)2+(3pq)﹣1+p2012q2014=[﹣2×32×(﹣)]2++×(﹣)2=36﹣+=35.。
初中数学浙教版七年级下册第3章 整式的乘除3.3 多项式的乘法-章节测试习题(3)
章节测试题1.【题文】已知|2m-5|+(2m-5n+20)2=0,求(-2m2)-2m(5n-2m)+3n(6m-5n)-3n(4m-5n)的值.【答案】-【分析】首先根据非负数之和为零则每一个非负数都是零求出m和n的值,将所求代数式根据多项式的乘法计算法则和合并同类项法则将多项式进行合并同类项,最后将m和n的值代入化简后的式子进行计算得出答案.【解答】由题意得2m-5=0,2m-5n+20=0,∴m=,n=5,∴原式=2m2-4mn,当m=,n=5时,原式=.2.【题文】如图,小思同学用A,B,C三类卡片若干张拼出了一个长为2a+b,宽为a+b 的长方形图形.请你通过计算求出小思同学拼这个长方形所用A,B,C三类卡片各几张(要求:所拼图形中,卡片之间不能重叠,不能有空隙),并画出他的拼图示意图.【答案】A卡片3张,B卡片1张,C卡片2张.【分析】根据长方形的面积公式求出拼接后的长方形的面积,再利用多项式的乘法运算法则进行计算,然后根据系数即可得解.【解答】解:根据题意得:(2a+b)(a+b)=2a2+2ab+ab+b2=2a2+3ab+b2;∵A、B、C三类卡片的面积分别为ab、b2、a2,∴所以A、B、C三类卡片分别为3张,1张,2张;3.【题文】在一次测试中,甲、乙两同学计算同一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中的符号,得到的结果为6x2+11x-10;由于乙漏抄了第二个多项式中的系数,得到的结果为2x2-9x+10.(1)试求出式子中a,b的值;(2)请你计算出这道整式乘法的正确结果.【答案】(1)a=-5,b=-2.;(2)6x2-19x+10.【分析】(1)先按甲、乙错误的说法得出的系数的数值求出a,b的值;(2)把a,b的值代入原式求出整式乘法的正确结果.【解答】解:(1)由题意得:(2x-a)(3x+b)=6x2+(2b-3a)x-ab,(2x+a)(x+b)=2x2+(a+2b)x+ab,所以2b-3a=11①,a+2b=-9②,由②得2b=-9-a,代入①得-9-a-3a=11,所以a=-5,2b=-4,b=-2.(2)由(1)得(2x+a)(3x+b)=(2x-5)(3x-2)=6x2-19x+10.4.【题文】已知(x3+mx+n)(x2-3x+4)的展开式中不含x3和x2项.(1)求m,n的值;(2)当m,n取第(1)小题的值时,求(m+n)(m2-mn+n2)的值.【答案】(1)m=-4,n=-12;(2)-1 792.【分析】(1)利用多项式乘以多项式法则计算得到结果,根据展开式中不含x2和x3项得出关于m与n的方程组,求出方程组的解即可得到m与n的值;(2)先利用多项式乘以多项式的法则将(m+n)(m2-mn+n2)展开,再合并同类项化为最简形式,然后将(1)中所求m、n的值代入计算即可.【解答】解:(1)(x3+mx+n)(x2-3x+4)=x5-3x4+(m+4)x3+(n-3m)x2+(4m-3n)x+4n,根据展开式中不含x3和x2项得:m+4=0,n-3m=0,解得:m=-4,n=-12.(2)因为(m+n)(m2-mn+n2)=m3-m2n+mn2+m2n-mn2+n3=m3+n3,当m=-4,n=-12时,原式=(-4)3+(-12)3=-64-1 728=-1 792.5.【题文】已知(x+ay)(x+by)=x2-11xy+6y2,求整式3(a+b)-2ab的值.【答案】-45【分析】直接利用多项式乘法运算法则计算进而合并同类项得出a+b,ab的值,即可得出答案.【解答】解:因为(x+ay)(x+by)=x2+(a+b)xy+aby2=x2-11xy+6y2,所以a+b=-11,ab=6.所以3(a+b)-2ab=3×(-11)-2×6=-33-12=-45.6.【题文】计算:3(2x-1)(x+6)-5(x-3)(x+6).【答案】x2+18x+72【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.【解答】解:原式=3(2x2+12x-x-6)-5(x2+6x-3x-18)=6x2+33x-18-5x2-15x+90=x2+18x+72.7.【题文】先化简,再求值:4x·x+(2x-1)(1-2x).其中x=.【答案】4x-1,-【分析】直接利用整式乘法运算法则计算,再去括号,进而合并同类项,把已知代入求出答案即可.【解答】解:原式=4x2+(2x-4x2-1+2x)=4x2+4x-4x2-1=4x-1.当x=时,原式=4×-1=8.【题文】计算:(1)(3x+2y)(9x2-6xy+4y2);(2)(3x-2y)(y-3x)-(2x-y)(3x+y).【答案】(1)27x3+8y3;(2)-15x2-y2+10xy【分析】用多项式乘多项式法则计算即可.【解答】解:(1)原式=27x3-18x2y+12xy2+18x2y-12xy2+8y3=27x3+8y3;(2)原式=3xy-9x2-2y2+6xy-(6x2+2xy-3xy-y2)=-9x2-2y2+9xy-6x2+xy+y2=-15x2-y2+10xy.9.【题文】化简求值:(x-y)(x-2y)- (2x-3y)(x+2y),其中x=2,y=【答案】-xy+5y2,-2【分析】先去括号,再合并同类项,最后代入x,y的值计算即可.【解答】解:原式===当x=2,y=时,原式==-2.点睛:本题考查了整式的混合运算,掌握运算法则是解题的关键.10.【题文】计算:(1)x(x+3)(x+5);(2)(5x+2y)(5x-2y)-5x(5x-3y)【答案】(1) x3+8x2+15x;(2)-4y2+15xy【分析】(1)先算多项式乘多项式,再算单项式乘多项式;(2)先用平方差公式和单项式乘多项式法则计算,再合并同类项.【解答】解:(1)原式= ;(2)原式==.11.【题文】先化简,再求值:,其中.【答案】5【分析】利用平方差公式和单项式乘多项式将原式展开,再合并同类项即可化简,把x的值代入计算即可.【解答】解:原式=当x=2时,原式=-1+3×2=5.12.【题文】你会求的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:(1)由上面的规律我们可以大胆猜想,得到=________利用上面的结论,求(2)的值;(3)求的值.【答案】(1);(2);(3)【分析】(1)根据已知算式得出规律,即可得出答案;(2)先变形,再根据规律得出答案即可;(3)先变形,再根据算式得出即可.【解答】解:(1)(a﹣1)(a2018+a2017+a2016+…+a2+a+1) =a2019﹣1.故答案为:a2019﹣1;(2)22018+22017+22016+…+22+2+1=(2﹣1)×(22018+22017+22016+…+22+2+1)=22019﹣1故答案为:22019﹣1;(3)∵∴∴.13.【题文】若的积中不含与项.(1)求p、q的值;(2)求代数式的值.【答案】(1)p=3 ,q=;(2)【分析】(1)用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加,再令x2与x3项的系数为0,即可得p、q的值;(2)先将p、q的指数作适当变形便于计算,再将p、q的值代入代数式中计算即可.【解答】解:(1)=x4-3x3+qx2+px3-3px2+pqx+x2-28x+q=x4+(p-3)x3+(q-3p+)x2+(pq-28)x+q,因为它的积中不含有x2与x3项,则有,p-3=0,q-3p+=0解得,p=3,q=;(2)===-8×=-8×=216=.14.【题文】计算:(2x﹣3)(x+4)﹣(x﹣1)(x+1)【答案】x2+5x﹣11.【分析】按多项式乘多项式计算即可;【解答】解:原式=2x2+8x﹣3x﹣12﹣(x2﹣1),=2x2+8x﹣3x﹣12﹣x2+1,=x2+5x﹣11.15.【题文】有许多代数恒等式可以用图形的面积来表示,如图①,它表示了(2m +n)(m+n)=2m2+3mn+n2.(1)图②是将一个长2m、宽2n的长方形,沿图中虚线平方为四块小长方形,然后再拼成一个正方形,请你观察图形,写出三个代数式(m+n)2、(m-n)2、mn关系的等式:______;(2)若已知x+y=7、xy=10,则(x-y) 2=______;(3)小明用8个一样大的长方形(长acm,宽bcm)拼图,拼出了如图甲、乙的两种图案,图案甲是一个正方形,图案乙是一个大的长方形,图案甲的中间留下了边长是2cm的正方形小洞,则(a+2b)2-8ab的值为______.【答案】(1);(2)9;(3)4.【分析】(1)利用图形面积关系得出等式即可;(2)利用图形面积之间关系得出(x﹣y)2=(x+y)2﹣4xy即可求出;(3)利用图形面积之间关系得出(a+2b)2﹣8ab=(a﹣2b)2即可求出.【解答】解:(1)由图形的面积可得出:(m+n)2=(m﹣n)2+4mn;故答案为:(m+n)2=(m﹣n)2+4mn;(2)∵x+y=7、xy=10,则(x﹣y)2=(x+y)2﹣4xy=72﹣4×10=9.故答案为:9;(3)∵(a+2b)2﹣8ab=(a﹣2b)2=22=4(cm2),∴(a+2b)2﹣8ab的值为4cm2.故答案为:4cm2.16.【题文】计算:(1);(2);(3).【答案】(1);(2);(3).【分析】根据整式的混合运算法则计算即可.【解答】解:(1)原式=;(2)原式==;(3)原式==.17.【题文】计算:(1) (2)(3) (4)【答案】(1);(2);(3);(4)【分析】(1)(2)(4)根据幂的混合运算法则计算即可;(3)根据整式的混合运算法则计算即可.【解答】解:(1)原式==;(2)原式==;(3)原式= ==0;(4)原式==.18.【题文】如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如4=22﹣02,12=42﹣22,20=62﹣42,因此,4,12,20这三个数都是“和谐数”.(1)28和2016这两个数是“和谐数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?【答案】(1)2016不是“和谐数”;(2)由这两个连续偶数构成的“和谐数”是4的倍数.【分析】(1)28=82-62, 28是“和谐数”,2016不能表示成两个连续偶数的平方差, 2016不是“和谐数”;(2)计算出(2k+2)2-(2k)2得4(2k+1),由k为非负整数,可得2k+1一定为正整数,即4(2k+1)一定能被4整除,故由这两个连续偶数构成的“和谐数”是4的倍数.【解答】解:(1)∵28=82-62,∴28是“和谐数”,∵2016不能表示成两个连续偶数的平方差,∴2016不是“和谐数”;(2)(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=2(4k+2)=4(2k+1),∵k为非负整数,∴2k+1一定为正整数,∴4(2k+1)一定能被4整除,即由这两个连续偶数构成的“和谐数”是4的倍数.19.【题文】计算:().().().【答案】(1) ;(2) ;(3)【分析】按照整式的乘法和除法法则进行运算即可.【解答】解:(),.(),,.(),.20.【题文】阅读后作答:我们知道,有些代数恒等式可以用平面图形的面积来表示,例如(2a+b)(a+b)=2a2+3ab+b2,就可以用图1所示的面积关系来说明.(1)根据图2写出一个等式;(2)已知等式(x+p)(x+q)=x2+(p+q)x+pq,请画出一个相应的几何图形加以说明.【答案】(1) 2a2+5ab+2b2;(2)见解析【分析】根据图2写出等式即可;根据已知等式画出相应图形即可.【解答】解:(1)(2a+b)(a+2b)=2a2+5ab+2b2.(2)等式(x+p)(x+q)=x2+(p+q)x+pq可以用以下图形面积关系说明:。
第3章 整式的乘除——单项式与多项式乘法及化简题型归纳 2023—2024学年浙教版数学七年级下册
专题:单项式的乘法、多项式乘法整式化简题型知识点1:单项式乘单项式单项式与单项式的乘法法则:把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式。
1.计算y 2•(﹣2xy )的结果是( ) A .﹣2xy 3B .2x 2y 3C .﹣2x 2y 3D .2xy 32.计算2a 2•3a 4的结果是( ) A .5a 6B .5a 8C .6a 6D .6a 83.(2019•乐清市模拟)计算2a 3•3a 3的结果是( ) A .5a 3B .6a 3C .6a 6D .6a 94.计算(﹣3x 2)•2x 3的结果是( ) A .﹣5x 6B .﹣6x 6C .﹣5x 5D .﹣6x 55.计算2x •(﹣3xy )2•(﹣x 2y )3的结果是( ) A .18x 8y 5B .6x 9y 5C .﹣18x 9y 5D .﹣6x 4y 56.若□•3xy =27x 3y 4,则□内应填的单项式是( ) A .3x 3y 4B .9x 2y 2C .3x 2y 3D .9x 2y 37.若单项式﹣8x a y 和14x 2y b 的积为﹣2x 5y 6,则ab 的值为( ) A .2B .30C .﹣15D .158.长方形的长为3x 2y ,宽为2xy 3,则它的面积为( ) A .5x 3y 4 B .6x 2y 3C .6x 3y 4D .32xy 2二、填空题9.计算:2a 2b •(﹣3a 3b 2)=.10.计算:(2xy )2(﹣5x 2y )= . 11.计算(−12xy 3)2⋅6x 2y 的结果是 . 12.计算﹣3a 2b •(-4ab 2)•(-2a 3b )2的结果为 . 13.计算:x 4•2(﹣x 2)•(﹣x )2•[﹣(﹣x 2)3]4•2(﹣x )2的值为 . 14.若5a m +1b 2与3a n +2b n 的积是15a 8b 4,则n m = .三、解答题15.计算(1)(8xy3)4•14xy2z(2)(−23x3y2)3(-15xy)(3)-3ab•(-a2c)2•6ab2 (4)(-2a2b)•364ab2•(-8a3bc)2(5)(3a)2•a4+a•a5﹣(﹣a3)2.(6)7x4•x5•(﹣x)7+5(x4)4.知识点2:单项式乘多项式单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.1、化简(−3s+12t)⋅(−7st2)=()A.21s2t2﹣14st3B.21s2t2−72st3C.﹣21s2t2+14st3D.−21s2t2+7 2 st2.把2a(ab﹣b+c)化简后得()A.2a2b﹣ab+ac B.2a2﹣2ab+2acC.2a2b+2ab+2ac D.2a2b﹣2ab+2ac3.已知x2﹣4x﹣1=0,则代数式x(x﹣4)+1的值为()A.2B.1C.0D.﹣14.若□×xy=3x2y+2xy,则□内应填的式子是()A.3x+2B.x+2C.3xy+2D.xy+25.若2x(x﹣2)=ax2+bx,则a、b的值为()A.a=1,b=2B.a=2,b=﹣2C.a=2,b=4D.a=2,b=﹣46.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣3xy (4y﹣2x﹣1)=﹣12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写()A.3xy B.﹣3xy C.﹣1D.17.已知xy2=﹣2,则﹣xy(x2y5﹣xy3﹣y)的值为()A.2B.6C.10D.148.已知,a +b =2,b ﹣c =﹣3,则代数式ac +b (c ﹣a ﹣b )的值是( ) A .5B .﹣5C .6D .﹣69、已知210m m --=,则322023m m m --+的值是( ) A .2021B .2022C .2023D .202410、代数式()()232236532a a ab a b a ab a a +-++-的值( )A .与字母a ,b 都有关B .只与a 有关C .只与b 有关D .与字母a ,b 都无关二、填空题10.﹣2xy (x 2y ﹣3xy 2)= .11.若x 2+7x +9=a (x +1)2+b (x +1)+c ,则a = ,b = ,c = 12.已知x 2+2x =﹣1,则代数式5+x (x +2)的值为 . 13.如果a ﹣b =6,ab =2019,那么b 2+6b +6= .14.对于任意的x 、y ,若存在a 、b 使得8x +y (a ﹣2b )=ax ﹣2b (x ﹣2y )恒成立,则a +b = . 15.一个多项式与﹣x 3y 的积为x 6y 2﹣3x 4y ﹣x 3y 4z ,那么这个多项式为 . 三、解答题 16.计算:(1)−6a ⋅(−12a 2−13a +2) (2)(5mn 2﹣4m 2n+1)(﹣2mn )(3)(25xy 2)2(54x - 32y + 2) (4)(34x 2y - 12xy 2−56y 3 )⋅(-4xy 2)17.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×(−12xy )=3x 2y ﹣xy 2+12xy(1)求所捂的多项式;(2)若x =23,y =12,求所捂多项式的值.18.已知:A =12x ,B 是多项式,王虎同学在计算A +B 时,误把A +B 看成了A ×B ,结果得3x 3﹣2x 2﹣x . (1)求多项式B . (2)求A +B .知识点3:多项式乘多项式多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加. 1.下列结果计算错误的是( )A.(x +2)(x −3)=x 2−x −6B.(x +4)(x −4)=x 2−16C.(2x +3)(2x −6)=2x 2−3x −18D.(2x −1)(2x +2)=4x 2+2x −22. (x −a)(x 2+ax +a 2)的计算结果是( ) A.x 3+2ax 2−a 3 B.x 3−a 3C.x 3+2a 2x −a 3D.x 3+2ax 2+2a 2−a 33.化简(2x −1)(x 2−3x +3)的结果中,二次项的系数是( ) A.−5B.−7C.5D.74.若x −3与多项式x +a 的乘积为x 2+x −12,则a 的值为( ) A.2B.4C.−2D.−45.若(x +4)(x −2)=x 2+mx +n ,则m ,n 的值分别是( ) A.2,8B.−2,−8C.−2,8D.2,−86.计算:(1)(3x −2y)⋅(2x −3y)=________. (2)(a + b )(a 2 – ab + b 2)=7.对于任何实数,我们规定符号|a cb d |=ad −bc .按照这个规定,当x 2﹣3x +1=0时,|x 2+x2x −4x +3|的值是 .8.新定义一种运算,其法则为|acbd |=a 3b 2÷bc ,则|−x 2x 2x 3x|= .题型01 (x+p )(x+q )型多项式乘法1.已知(x +m )(x +n )=x 2+ax +6,且m ,n ,a 都是整数,则a 的值是________.2.已知x 2+bx +c =(x −2)(x +5),则b +c 的值为________.3.多项式x 2−3x +a 可分解为(x −5)(x −b),则a ,b 的值分别为________.4.若x 3 - 6x 2 + 11x – 6 = (x - 1)(x 2 + mx + n ),则m= ,n= .5.若2x 3 – ax 2 – 5x + 5 = (2x 2 + ax - 1)(x - b )+ 3,其中a 、b 为整数,则a + b 的值为 6.若()3221(1)1ax bx ax x x ++=---,则b = .题型02 已知多项式乘积不含某项求字母的值1.若(x +a)(x −3)的积中不含x 的一次项,则a 的值是________.2.如果多项式(2)y a +与多项式(5)y -的乘积中不含y 的一次项,则a 的值为( ) A .52-B .52C .5D .25-3、已知()()242x ax x b +-+的展开式中不含2x 项,常数项是8-,则a b -= .4.已知多项式x ﹣a 与2x 2﹣2x +1的乘积中不含x 2项,则常数a 的值是5.已知将(x 3+mx +n )(x 2−3x +4)展开的结果中不含x 2项,并且x 3的系数为2. 则m +n =______.6.若(x 2+nx +3)(x 2−3x +m )的展开式中不含x 2项和x 3项,求m ,n 的值.7.已知(x ﹣2)(x 2+mx +n )的乘积项中不含x 2和x 项,求m ,n 的值题型03 整式化简运算1.先化简,再求值:(2x +3)(2x ﹣3)﹣(x ﹣2)2﹣3x (x ﹣1),其中x =1.y =﹣3.2.已知x 2﹣2x ﹣2=0,将下式先化简,再求值:(x ﹣1)2+(x +3)(x ﹣3)+(x ﹣3)(x ﹣1).3.先化简,再求值:[(x ﹣2y )2+(x ﹣2y )(x +2y )﹣2x (2x ﹣y )]÷2x ,其中x =3,y =﹣3.4.先化简,再求值:()()()322222084x y x y xy x y xy +-+-÷,其中2023,2024x y ==.5.(1)已知x 2+y 2=34,x ﹣y =2,求(x +y )2的值.(2)设y =kx (x ≠0),是否存在实数k ,使得(3x ﹣y )2﹣(x ﹣2y )(x +2y )+6xy 化简为28x 2?若能,请求出满足条件的k 的值;若不能,请说明理由.题型04多项式乘多项式与图形面积1.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式,你认为其中正确的有( ) ①()()2a b m n ++;①()()2a m n b m n +++;①()()22m a b n a b +++;①22am an bm bn +++.A .①①B .①①C .①①①D .①①①①2.将6张小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD 内,未被覆盖的部分恰好分割为两个长方形,面积分别为1S 和2S .已知小长方形纸片的长为a ,宽为b ,且a b >.当AB 长度不变而BC 变长时,将6张小长方形纸片还按照同样的方式放在新的长方形ABCD 内,1S 与2S 的差总保持不变,则a ,b 满足的关系是 .3.如图,某中学校园内有一块长为()32a b +米,宽为()2a b +米的长方形地块,学校计划在中间位置留出一块长为()2a b -米,宽为2b 米的小长方形地块修建一座雕塑,然后将阴影部分进行绿化.(1)求绿化部分的面积;(用含a 、b 的代数式表示) (2)当3a =,1b =时,求绿化部分的面积.题型05 多项式乘法中的规律性问题1.我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项和的乘方规律,即()na b + (0n =,1,2,3,…)展开式系数的规律:以上系数三角表称为“杨辉三角”,根据上述规律,()6a b +展开式的系数和是( ) A .32B .64C .128D .2562.观察以下等式①第1个等式:()()()22221122122⨯+=⨯+-⨯, 第2个等式:()()()22222134134⨯+=⨯+-⨯ 第3个等式:()()()22223146146⨯+=⨯+-⨯ 第4个等式:()()()22224158158⨯+=⨯+-⨯ ……按照以上规律,写出你猜想的第n 个等式(用含n 的式子表示): .3.在多项式乘法的学习中,我们发现具有某些结构特征的整式的乘法运算及结果都有规律.例如:()23(1)11a a a a +-+=+;()23(2)428y y y y +-+=+;()2233(3)3927m n m mn n m n +-+=+.(1)请观察上述整式的乘法及其运算结果的规律,用含a ,b 的等式表示该规律并证明;(2)一个水平放置的长方体容器,其容积为364(4)t t ->,底面积为2(2)t n +-,装满水时的高度为4t -.求n 的值.4.发现与探索你能求(x﹣1)(x2019+x2018+x2017+…+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先分别计算下列各式的值:①(x﹣1)(x+1)=x2﹣1;②(x﹣1)(x2+x+1)=x3﹣1;③(x﹣1)(x3+x2+x+1)=x4﹣1;…由此我们可以得到:(x﹣1)(x2019+x2018+x2017+…+x+1)=.请你利用上面的结论,完成下面两题的计算:(1)32019+32018+32017+…+3+1;(2)(﹣3)50+(﹣3)49+(﹣3)48+…+(﹣3).5.解答下列问题:(1)已知a2+b2=10,a+b=4,求a﹣b的值.(2)关于x的代数式(ax﹣3)(2x+1)﹣4x2+m化简后不含有x2项和常数项,且an+mn=1,求5n2+9n+2的值.6.阅读理解:已知a+b=4,ab=3,求a2+b2的值.解:∵a+b=4,∴(a+b)2=42,即a2+2ab+b2=16.∵ab=3,∴a2+b2=(a+b)2﹣2ab=10.参考上述过程解答:(1)若x﹣y=﹣3,xy=﹣2,则x2+y2=,(x+y)2=;(2)若m+n﹣p=﹣10,(m﹣p)n=﹣12,求(m﹣p)2+n2的值.7.(1)计算:(a﹣1)(a+1)=;(a﹣1)(a2+a+1)=;(a﹣1)(a3+a2+a+1)=;(2)由此,猜想:(a﹣1)(a99+a98+a97+…+a2+a+1)=.(3)请你利用上式的结论,求2199+2198+…+22+2+1的值.。
七年级数学下册第3章整式的乘除3-1-3-3浙教版
解:(1)原式=-6a·(-12
a2)
-(
-
1 6a)·(3
a)
+(-6a)×2=3a3+2a2-12a;
(2)原式=5mn2·(-2mn)-4m2n·(-2mn)
=-10m2n3+8m3n2.
19.(8分)(1)已知2×8x×16x=222,求x的值; (2)已知2m=3,2n=4,求22m+n的值. 解:(1)∵2×8x×16=222, ∴2×(23)x×(24)x=222,∴2×23x×24x=222, ∴1+3x+4x=22,解得:x=3; (2)∵2m=3,2n=4, ∴22m+n=(2m)2·2n=9×4=36.
三、解答题(共66分)
17.(6分)计算:
(1)x3·x·(-x)2
(2)a3·(-a2)3
解:(1)x3·x·(-x)2=x4·x2=x6;
(2)a3·(-a2)3=a3·(-a6)=-a9.
18.(8 分)计算:
(1)-6a·(-12 a2-13 a+2)
(2)(5mn2-4m2n)(-2mn)
7.一个长方体的长、宽、高分别为3a-4,2a, a,它的体积等于( C) A.3a3-4a2 B.a2 C.6a3-8a2 D.6a2-8a
8.下列四个式子中,结果为1012的是( B ) ①106+106;②(210×510)2; ③(2×5×105)×106;④(103)4. A.①② B.③④ C.②③ D.①④
( C) A.1个 B.2个 C.3个 D.4个
3.1010可以写成( C )
A.102·105 B.102+105
C.(102)5
D.(105)5
4.如果xm-3·xn=x2,则n等于( D )
浙教版数学七年级下册第3章整式的乘除复习课件
思想3 方程思想
12.若 2×8m×16m=229,则 m 的值是( B )
A.3
B.4
C.5
D.6
13.已知 px2-60x+25=(qx-5)2,求 p,q 的值.
解:(qx-5)2=(qx)2-2×5·qx+25=q2x2-10qx +25. 因为 px2-60x+25=(qx-5)2, 所以 px2-60x+25=q2x2-10qx+25, 所以 p=q2,-60=-10q,解得 q=6,p=36. 点拨:若两个多项式相等,则对应项的系数相等.
原式=2a2-6ab+5ab-原式=27x3-18x2y+12xy2+ 15b2=2a2-ab-15b2. 18x2y-12xy2+8y3=27x3+8y3.
(3)(3x-2y)(y-3x)-(2x-y)(3x+y).
原式=(-9x2+9xy-2y2)-(6x2-xy-y2) =-15x2+10xy-y2.
知识考点点 4 三种思想
思想1 整体思想 10.(1)已知 2m-1=2,求 3+4m 的值; 因为2m-1=2,所以2m=3. 所以3+4m=3+(22)m=3+(2m)2=3+32=12. (2)已知 x-y=7,xy=10,求 x2+y2 的值. 因为x2+y2=(x-y)2+2xy,x-y=7, xy=10,所以原式=72+2×10=69.
谢谢
点拨:本题运用了整体思想,将 2m,x-y,xy 整体代入求 出式子的值.
思想2 转化思想 11.计算: (1)(2x-1)(4x2+2x+1);
原式=(2x-1)·4x2+(2x-1)·2x+(2x-1 )·1=8x3-4x2+4x2-2x+2x-1=8x3-1.
(2)(x+y+z)2.
原式=[(x+y)+z]2=(x+y)2+2z(x+ y)+z2=x2+2xy+y2+2xz+2yz+z2.
2018_2019学年七年级数学下册第三章整式的乘除3.3多项式的乘法一课件
反思
1.遇到求值问题时,先化简再代入求值可简化计算. 2.多项式与多项式相乘的结果中,如果有同类项,要把
同类项合并.
【例 3】 多项式与多项式相乘可以利用平面几何图形的面积来表 示,例如:(2a+b)(a+b)=2a2+3ab+b2,就可以用图 3-3-1①或 图 3-3-1②的面积表示. (1)请写出如图 3-3-1③所示的代数恒等式. (2)画一个几何图形,使它的面积能表示成(a+b)(a+3b)=a2+ 4ab+3b2.
在基本作图的基础上,掌握较复杂的尺规作图,即利用基 本作图作三角形、作三角形的外接圆、内切圆等是中考常考的 内容.难度稍有提高,需要结合其他几何图形的性质灵活运用尺 规作图.另外,注意在作图过程中,保留作图痕迹.
基本作图与证明
例 1:如图 Z2-1,在▱ABCD 中,已知 AD>AB.
图 Z2-1 (1)实践与操作:作∠BAD 的平分线交 BC 于点 E,在 AD 上截取 AF=AB,连接 EF;(要求:尺规作图,保留作图痕迹, 不写作法) (2)猜想并证明:猜想四边形 ABEF 的形状,并给予证明.
∵四边形 ABCD 是平行四边形,
∴AD∥BC.
图 Z2-2
∴∠DAE=∠AEB. ∵AE 平分∠BAD, ∴∠BAE=∠DAE, ∴∠BAE=∠AEB. ∴BE=AB. 由(1),得 AF=AB. ∴BE=AF. 又∵BE∥AF, ∴四边形 ABEF 是平行四边形. ∵AF=AB, ∴四边形 ABEF 是菱形.
2.多项式与多项式相乘,仍得多项式,多项式与多项式相乘的展 开式中,有同类项的要合并同类项,在合并同类项之前,积的 项数应该等于两个多项式的项数之积.
3.多项式的乘法法则具有一般性,对项数较多的两个多项式相乘, 法则仍然适用.
初中数学浙教版七年级下册第3章 整式的乘除3.3 多项式的乘法-章节测试习题(4)
章节测试题1.【题文】若关于x的多项式(x2+x-n)(mx-3)的展开式中不含x2和常数项,求m,n的值.【答案】m=3,n=0.【分析】本题考查了利用多项式的不含问题求字母的值,先按照多项式与多项式的乘法法则乘开,再合并关于x的同类项,然后令不含项的系数等于零,列方程求解即可.【解答】解:原式=mx3+(m-3)x2-(3+mn)x+3n,由展开式中不含x2和常数项,得到m-3=0,3n=0,解得m=3,n=0.2.【题文】化简:a(3-2a)+2(a+1)(a-1).【答案】3a-2.【分析】先去括号,然后再合并同类项即可.【解答】解:原式=3a-2a2+2(a2-1)=3a-2a2+2a2-2=3a-2.3.【题文】计算:(1)6mn2·(2-mn4)+(-mn3)2;(2)(1+a)(1-a)+(a-2)2(3)(x+2y)2-(x-2y)2-(x+2y)(x-2y)-4y2.【答案】(1)12mn2- 7m2n6;(2)-4a+5;(3)-x2+8xy.【分析】(1)根据单项式乘多项式法则和积的乘方法则计算后,再合并同类项即可;(2)根据乘法公式计算后,再合并同类项即可;(3)根据乘法公式计算后,再合并同类项即可.【解答】解:(1)原式=12mn2- 6m2n6-m2n6=12mn2- 7m2n6(2)原式=1-a2+a2-4a+4=-4a+5(3)原式=x2+4xy+4y2-x2+4xy-4y2-x2+4y2-4y2=-x2+8xy4.【题文】计算:(2m-3)(2m+5) -(4m-1).【答案】【分析】先进行多项式乘法运算,然后再合并同类项即可.【解答】解:原式=.5.【题文】已知(x2+px+8)(x2-3x+q)的展开式中不含x2和x3项,求p,q的值.【答案】p=3,q=1.【分析】根据整式的乘法,化简完成后,根据不含项的系数为0求解即可.【解答】解:∵(x2+px+8)(x2﹣3x+q)=x4﹣3x3+qx2+px3﹣3px2+pqx+8x2﹣24x+8q=x4+(p﹣3)x3+(q﹣3p+8)x2+(pq﹣24)x+8q.∵乘积中不含x2与x3项,∴p﹣3=0,q﹣3p+8=0,∴p=3,q=1.6.【题文】化简:(1)(-ab-2a)(-a2b2);(2)(2m-1)(3m-2).【答案】(1) a3b3+a3b2;(2) 6m2-7m+2.【分析】(1)根据单项式乘以多项式的运算法则进行计算即可求得结果;(2)根据多项式乘以多项式的运算法则进行计算即可求得结果.【解答】解:(1)原式=a3b3+a3b2;(2)原式=6m2-4m-3m+2=6m2-7m+2.7.【答题】若的值使得x2+4x+a=(x-5)(x+9)-2成立,则的值为______【答案】-47【分析】先根据整式的运算化简,再根据系数相等解答即可.【解答】∵(x-5)(x+9)-2=x2+9x-5x-45-2= x2+4x-47.∴a=-47.8.【答题】若(x+p)与(x+5)的乘积中,不含x的一次项,则p的值是______.【答案】-5【分析】根据整式的乘法运算解答即可.【解答】利用多项式乘以多项式法则计算得到(x+p)(x+5)=x2+(p+5)x+2p,根据乘积中不含一次项可知p+5=0,即p=-5.故答案为:-5.9.【答题】如果(x―3)(x+a)的乘积不含关于x的一次项,那么a=______.【答案】3【分析】根据整式的乘法运算解答即可.【解答】(x-3)(x+a)=x2+(a-3)-3a,由乘积中不含一次项,得到a-3=0,解得a=3.10.【答题】要使的乘积中不含项,则与的关系是()A. 相等B. 互为相反数C. 互为倒数D. 关系不能确定【答案】A【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把p、q看作常数合并关于x的同类项,令x2系数为0,得出p与q的关系.【解答】解:(x2+px+2)(x﹣q)=x3﹣qx2+px2﹣pqx+2x﹣2q=x3+(p﹣q)x2﹣(pq﹣2)x﹣2q因为乘积中不含x2项,则p﹣q=0,即p=q.选A.11.【答题】M是关于x的三次式,N是关于x的五次式,下列说法正确的是()A. M+N是八次式B. N-M是二次式C. M·N是八次式D. M·N是十五次式【答案】C【分析】根据整式的运算解答即可.【解答】∵M是关于x的三次式,N是关于x的五次式,∴M•N是关于x的八(3+5)次式.选C.12.【答题】(x2﹣mx+6)(3x﹣2)的积中不含x的二次项,则m的值是()A. 0B.C. ﹣D. ﹣【答案】C【分析】根据整式的运算解答即可.【解答】解:(x2﹣mx+6)(3x﹣2)=3x3﹣(2+3m)x2+(2m+18)x﹣12,∵(x2﹣mx+6)(3x﹣2)的积中不含x的二次项,∴2+3m=0,解得,m=,选C.13.【答题】如图,根据计算长方形ABCD的面积,可以说明下列哪个等式成立()A.B.C.D.【答案】D【分析】根据整式的运算解答即可.【解答】长方形ABCD的面积的两种表示方法可得,选D.14.【答题】当a=时,代数式(a-4)(a-3)-a(a+2)的值为()A. 9B. -9C. 3D.【答案】A【分析】先化简,再代入求值即可.【解答】解:(a-4)(a-3)-a(a+2)= =-9a+12当a=时,原式==9选A.15.【答题】如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片()A. 2张B. 3张C. 4张D. 5张【答案】B【分析】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.【解答】解:(a+2b)(a+b)=a2+ab+2ab+2b2=a2+3ab+2b2,则需要C类卡片张数为3选B.16.【答题】下列计算正确的是()A. -3x2y·5x2y=2x2yB. -2x2y3·2x3y=-2x5y4C. 35x3y2÷5x2y=7xyD. (-2x-y)(2x+y)=4x2-y2【答案】C【分析】根据整式的运算解答即可.【解答】解:A、-3x2y·5x2y=-15x4y2,故此选项错误;B、-2x2y3·2x3y=-4x5y4,故此选项错误;C、35x3y2÷5x2y=7xy,故此选项正确;D、 (-2x-y)(2x+y)=-4x2-y2+4xy,故此选项错误.选C.17.【答题】已知多项式(x+3)(x+n)=x2+mx-21,则m的值是()A. -4B. 4C. -2D. 2【答案】A【分析】根据整式的运算解答即可.【解答】∵(x+3)(x+n)=x2+nx+3x+3n= x2+(n+3)x+3n,∴x2+(n+3)x+3n =x2+mx-21,∴ ,解之得.选A.18.【答题】如果(x﹣2)(x﹣3)=x2+px+q,那么p、q的值是()A. p=﹣5,q=6B. p=1,q=﹣6C. p=1,q=6D. p=1,q=﹣6【答案】A【分析】先根据多项式乘以多项式的法则,将(x-2)(x+3)展开,再根据两个多项式相等的条件即可确定p、q的值.【解答】解:∵(x-2)(x-3)=x2-5x+6,又∵(x-2)(x-3)=x2+px+q,∴x2+px+q= x2-5x+6,∴p=﹣5,q= 6选A.19.【答题】下列运算正确的是()A. (x2)3=x5B. (-3x2y)3=-9x6y3C. (a+b)(a+b)=a2+b2D.【答案】D【分析】根据整式的运算判断解答即可.【解答】解:A、(x2)3=x6,故本选项错误;B、(-3x2y)3=-27x6y3,故本选项错误;C、(a+b)(a+b)=a2+2ab+b2,故本选项错误;D、4x3y2•(-xy2)=-2x4y4,故本选项正确.选C.20.【答题】若,,则().A.B.C.D.【答案】A【分析】先根据整式的运算化简,再整体代入求解即可.【解答】∵,,∴原式=选A.。
2019年春七年级数学下册第3章整式的乘除3.3第1课时简单多项式的乘法及应用课件新版浙教版2019
3.3 多项式的乘法第3章
整式的乘除
第3章 整式的乘除
第1课时 简单多项式的乘法及应用
学知识
筑方法
勤反思
知识点 多项式乘多项式学知识
类型一 多项式乘多项式的简单计算筑方法
类型二 进行多项式乘多项式的化简求值运算
类型三 多项式乘多项式的简单应用
小结
勤反思
法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积________,即:(a +n)(b +m)=________________
多
项
式
的
乘
法化简求值多项式乘多项式的计算多项式乘多
项式的应用相加 ab +am +nb +nm
反思。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3 多项式的乘法
第1课时 简单多项式的乘法及应用
知识点 多项式乘多项式
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加,能合并同类项的需合并同类项.
ab +am +nb +nm.
计算:(2x +y)(x -3y).
一 多项式乘多项式进行化简求值运算
教材例2变式题先化简,再求值:(x +2)(x -2)-x(x -1),其中x =xx.
[归纳总结] 有关代数式的求值问题,无论题目是否要求“先化简,再求值”,一般都应先化简,再求值.
二 多项式乘多项式与单项式的乘法及幂的运算的混合运算
计算: a(a -3b)+(a +b)(2a -b)-(2a)2
+4a ·12
b.
[归纳总结] (1)应用多项式的乘法法则计算时,应注意法则的使用条件; (2)运算时,遵循先乘方,再乘除,最后加减的运算顺序.
三 多项式乘多项式的简单应用
教材作业题第4题变式题已知一个长方形的长为4,宽为3.若将长增加x ,宽增加
1
2
x. (1)用代数式表示此时长方形的面积S ;
(2)分别计算当x 为0.5,2时,长方形的面积.
[反思] 计算:-2a(a2-2a+1).
解:原式=-2a×a2+(-2a)×(-2a)+1①=-2a3+4a2+1②.
(1)找错:从第________步开始出现错误;
(2)纠错:
一、选择题
1.计算(x -2)(x +3)的结果是( ) A .x 2-6 B .x 2+6
C .x 2+x -6
D .x 2-x -6 2.下列计算正确的是( ) A .(m -1)(m -2)=m 2+2 B .(x +y)(x +y)=x 2+y 2
C .(x +y)(x -2y)=x 2-xy -2y 2
D .(2+b)(1-2b)=2b 2-3b +2
3.若(3x +1)(-2x +5)=-6x 2
+mx +n ,则m 的值为( ) A .3 B .-2 C .13 D .5
4.如图3-3-1所示的阴影部分的面积为( )
图3-3-1
A .ac +bc +ad +bd
B .ab +ac +bd +cd
C .ac +bd +ad
D .ac +bd +bc
5.如果(x +1)(2x +m)的乘积中不含一次项,那么m 的值为( ) A .2 B .-2 C .0.5 D .-0.5 二、填空题
6.xx·福州计算(x -1)(x +2)的结果是________.
7.若(3x +2)(-x -2)=ax 2
+bx +c ,则a =________,b =________,c =________. 8.一辆汽车的速度为(a +2b)千米/时,行驶(a -2b)小时的路程为________千米. 9.若a -b =1,ab =-2,则(b +1)(a -1)=________.
10.如图3-3-2,正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果要拼一个长为a +2b 、宽为a +b 的大长方形,那么需要C 类卡片______张.
图3-3-2
三、解答题
11.计算:(a +3)(a -1)+a(a -2).
12.先化简,再求值:
(1)(3x -2)(x -3)-2(x +6)(x -5)+3(x 2
-7x +13),其中x =72;
(2)(x -y)(x -2y)+(x -2y)(x -3y)-2(x -3y)(x -4y),其中x =4,y =3
2
.
13.一块长方形草坪的长是2x m ,宽比长少4 m .如果将这块草坪的长和宽都增加3 m ,那么面积会增加多少?求出当x =2时,面积增加的值.
1.[技巧性题目] 利用多项式的乘法知识解决以下问题:若M =123456789×123456786,N =123456788×123456787,试比较M 与N 的大小.
2.分类讨论题已知等式(x +a)(x +b)=x 2
+mx +28,其中a ,b ,m 均为整数,你认为整数m 可取哪些值?它与a ,b 的取值有关吗?请写出所有满足题意的整数m 的值.
详解详析
【预习效果检测】
解:(2x +y )(x -3y )=2x 2-6xy +yx -3y 2
= 2x 2-5xy -3y 2. 【重难互动探究】
例1 解:原式=x 2-2x +2x -4-x 2
+x =x -4. 当x =xx 时,原式=xx -4=xx.
例2 解:原式=a 2-3ab +2a 2-ab +2ab -b 2-4a 2+2ab =-a 2-b 2
. 例3 [解析] 长方形的长增加x 后变为4+x ,宽增加12x 后变为3+1
2x.
解:(1)S =(4+x)(3+12x)=12+2x +3x +12x 2=12x 2
+5x +12.
(2)当x =0.5时,S =12×0.52
+5×0.5+12=14.625.
当x =2时,S =12
×22
+5×2+12=24.
【课堂总结反思】 [知识框架]
相加 ab +am +nb +nm [反思] (1)①
(2)原式=-2a×a 2+(-2a)×(-2a)+(-2a)×1=-2a 3+4a 2
-2a. 【作业高效训练】 [课堂达标]
1.C
2.[解析] C A 项,(m -1)(m -2)=m 2
-3m +2,故此选项错误.B 项,(x +y)(x +y)=x 2+2xy +y 2,故此选项错误.D 项,(2+b)(1-2b)=-2b 2
-3b +2,故此选项错误.
3.C 4.C
5.[解析] B (x +1)(2x +m)=2x 2+mx +2x +m =2x 2
+(m +2)x +m.因为乘积中不含一次项,所以m +2=0,即m =-2.
6.[答案] x 2
+x -2
7.[答案] -3 -8 -4
[解析] 根据法则计算后对比就可求解.
因为(3x +2)(-x -2)=-3x 2-6x -2x -4=-3x 2-8x -4=ax 2
+bx +c ,所以a =-3,b =-8,c =-4.
8.[答案] (a 2-4b 2
) 9.[答案] -2
[解析] (b +1)(a -1)=ab -b +a -1=-2+1-1=-2. 10.[答案] 3
[解析] (a +2b)(a +b)=a 2+ab +2ab +2b 2=a 2+3ab +2b 2
,故需C 类卡片3张.
11.解:(a +3)(a -1)+a(a -2)=a 2+2a -3+a 2-2a =2a 2
-3.
12.解:(1)原式=3x 2-9x -2x +6-2x 2+10x -12x +60+3x 2-21x +39=4x 2
-34x +105.
当x =72时,原式=4×⎝ ⎛⎭
⎪⎫722-34×72+105=35.
(2)原式=x 2
-2xy -xy +2y 2
+x 2
-3xy -2xy +6y 2
-2x 2
+8xy +6xy -24y 2
=6xy -16y 2
. 当x =4,y =3
2
时,
原式=6×4×32-16×⎝ ⎛⎭
⎪⎫322=0.
13.[解析] 该题取材于生活,体现了数学来源于生活,又服务于生活的特点,只要根据
题意列出式子并化简即可.
解:(2x +3)(2x -4+3)-2x(2x -4)
=(2x +3)(2x -1)-(4x 2
-8x)
=4x 2-2x +6x -3-4x 2
+8x
=(12x -3)(m 2
).
当x =2时,12×2-3=21(m 2
).
答:如果将这块草坪的长和宽都增加 3 m ,那么面积会增加(12x -3)m 2.当x =2时,面
积增加21 m 2
.
[数学活动]
1.解:令a =123456788,则M =(a +1)(a -2),N =a(a -1),所以M -N =(a +1)(a -
2)- a(a -1)=(a 2-a -2)-(a 2
-a)=-2<0,由此得到M <N .
2.解:∵(x+a)(x +b)=x 2+bx +ax +ab =x 2+(a +b)x +ab =x 2
+mx +28,∴ab =28且a +b =m.
∵ab =28=1×28=(-1) ×(-28)=2×14=(-2) ×(-14)=4×7=(-4)×(-7), ∴m =a +b =1+28=29或(-1)+(-28)=-29或2+14=16或(-2)+(-14)=-16
或4+7=11或(-4)+(-7)=-11,即m与a,b的取值有关,m的值可能为29,-29,16,-16,11,-11.
欢迎您的下载,资料仅供参考!。