人教版数学九年级上册-24.3-正多边形和圆-练习题
部编版人教初中数学九年级上册《24.3正多边形和圆 同步练习题(含答案)》最新精品优秀
![部编版人教初中数学九年级上册《24.3正多边形和圆 同步练习题(含答案)》最新精品优秀](https://img.taocdn.com/s3/m/69ebd15410661ed9ac51f32d.png)
前言:
该同步练习题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。
以高质量的同步练习题助力考生查漏补缺,在原有基础上更进一步。
(最新精品同步练习题)
基础导练
1.一正多边形外角为90°,则它的边心距与半径之比为( )
A.1∶2 B.1∶ 2 C
.1∶ 3 D.1∶3
2.如图,正六边形ABCDEF内接于⊙O,则∠ADB的度数是( )
A.60° B.45° C.30° D.22.5°
3.圆的半径扩大一倍,则它的相应的圆内接正n边形的边长与半径之比()
A.扩大了一倍
B.扩大了两倍
C.扩大了四倍
D.没有变化
能力提升
4.从一个半径为10 cm的圆形纸片上裁出一个最大的正方形,则此正方形的边长为________ cm.
5.如图,要把一个边长为a的正三角形剪成一个最大的正六边形,要剪去怎样的三个三角形?剪成的正六边形的边长是多少?它的面积与原来三角形面积的比是多少?
1。
人教版-数学-九年级上册 版九年级上二十四章 圆24.3正多边形和圆 作业
![人教版-数学-九年级上册 版九年级上二十四章 圆24.3正多边形和圆 作业](https://img.taocdn.com/s3/m/7ec40a982f60ddccdb38a054.png)
正多边形和圆一、判断题:①各边相等的圆外切多边形一定是正多边形.( )②各角相等的圆内接多边形一定是正多边形.( )③正多边形的中心角等于它的每一个外角.( )④若一个正多边形的每一个内角是150°,则这个正多边形是正十二边形.( )⑤各角相等的圆外切多边形是正多边形.( )二、填空题:①一个外角等于它的一个内角的正多边形是正____边形.②正八边形的中心角的度数为____,每一个内角度数为____,每一个外角度数为____.③边长为6cm的正三角形的半径是____cm,边心距是____cm,面积是____cm.6cm2的正六边形的周长是____.④面积等于3⑤同圆的内接正三角形与外切正三角形的边长之比是____.⑥正多边形的面积是240cm2,周长是60cm2,则边心距是____cm.⑦正六边形的两对边之间的距离是12cm,则边长是____cm.⑧同圆的外切正四边形与内接正四边形的边心距之比是____.⑨同圆的内接正三角形的边心距与正六边形的边心距之比是____.三、选择题:①下列命题中,假命题的是( )A.各边相等的圆内接多边形是正多边形.B.正多边形的任意两个角的平分线如果相交,则交点为正多边形的中心.C.正多边形的任意两条边的中垂线如果相交,则交点是正多边形的中心.D.一个外角小于一个内角的正多边形一定是正五边形.②若一个正多边形的一个外角大于它的一个内角,则它的边数是( )A.3B.4C.5D.不能确定③同圆的内接正四边形与外切正四边形的面积之比是( )A.1:3B.1:2C.1:2D.2:1④正六边形的两条平行边间距离是1,则边长是( )A.63B.43C.33D.23 ⑤周长相等的正三角形、正四边形、正六边形的面积S 3、S 4、S 6之间的大小关系是:( )A.S 3>S 4>S 6B.S 6>S 4>S 3C.S 6>S 3>S 4D.S 4>S 6>S 3 ⑥正三角形的边心距、半径和高的比是( ) A.1:2:3 B.1:2:3 C.1:2:3 D.1:2:3四、解答题1.已知正六边形ABCDEF 的半径是R,求正六边形的边长面积,6a S 6.答案:一、判断题 ①× ②× ③√ ④√ ⑤√二、填空题①四 ②45°,135°,45° ③39,3,32 ④12 ⑤1:2 1:4 ⑥8 ⑦34 ⑧2:1 ⑨1:3三、选择题 ①D ②A ③C ④C ⑤B ⑥A四、解答题1.作半径OA 、OB ,过O 做OH ⊥AB ,则∠AOH=6180=30°∵OAAH = 30sin ∴ 30sin ⋅=OA AH ∴R AH 21= ∴R AH a ==26 A H B ∵R r 630cos =∴R r 236= S 6=26623362321621R R R r a =⋅⋅⋅=⨯⋅⋅。
24.3+正多边形和圆同步练习2024-2025学年人教版数学九年级上学期
![24.3+正多边形和圆同步练习2024-2025学年人教版数学九年级上学期](https://img.taocdn.com/s3/m/c2c582da82d049649b6648d7c1c708a1294a0a62.png)
24.3 正多边形和圆同步练习2024-2025学年九年级上学期数学人教版基础题夯实知识点1正多边形的有关概念1.下列正多边形中,既是轴对称图形,又是中心对称图形的是( )A.正三角形B.正方形C.正五边形D.正七边形2.下列说法:①矩形是正多边形;②菱形是正多边形;③各角相等的圆内接多边形是正多边形;④各边相等的圆内接多边形是正多边形.其中结论正确的个数是( )A.0B.1C.2D.33.第29届自贡国际恐龙灯会“辉煌新时代”主题灯组上有一幅不完整的正多边形图案,小华量得图中一边与对角线的夹角∠ACB=15°,算出这个正多边形的边数是( )A.9B.10C.11D.12知识点2 正多边形的有关计算4.如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD 的度数为 .5.⊙O是等边△ABC的外接圆,若AB=3,则⊙O的半径是 .6.如图,正八边形的边长为2,对角线AB,CD 相交于点E,则线段 BE 的长为 .7.半径为 R 的圆内接正十二边形的面积为( )A.R 24B.12R2 C.3R² D.6R²8.分别求半径为R 的圆内接正三角形、正方形、正六边形的边长、边心距、周长和面积.(直接写出结果)边长边心距周长面积圆内接正三角形圆内接正方形圆内接正六边形中档题运用̂上,Q是DF̂的中点,则∠CPQ的度数为 .9.如图,正六边形ABCDEF内接于⊙O,点P在AB10.如图,点P₁∼P₁是⊙O 的八等分点.若△P₁P₁P₁,四边形P₁P₁P₁P₁的周长分别为a,b,比较a,b的大小 .11.如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是 .12.如图,⊙O 的半径为R,六边形 ABCDEF 是圆内接正六边形,四边形 EFGH 是正方形.(1)求∠OGF 的度数;(2)求正六边形与正方形的面积比.综合题探究13.如图1,正五边形ABCDE 内接于⊙O,阅读以下作图过程,并解答下列问题,作法如图2.步骤如下:①作直径AF;②以F 为圆心,FO 为半径作圆弧,与⊙O 交于点 M,N;③连接AM,MN,NA.(1)求∠ABC的度数;(2)△AMN 是正三角形吗? 请说明理由;(3)从点 A 开始,以DN 长为半径,在⊙O 上依次截取点,再依次连接这些分点,得到正n 边形,求n 的值.。
人教版数学j九年级上册第24章 24.3正多边形和圆 突破训练
![人教版数学j九年级上册第24章 24.3正多边形和圆 突破训练](https://img.taocdn.com/s3/m/9d3cb8e5b90d6c85ed3ac607.png)
【24.3正多边形和圆】突破训练一.选择题1.如图,五边形ABCDE是⊙O的内接正五边形,则正五边形中心角∠COD的度数是()A.60°B.36°C.76°D.72°2.如图,正五边形ABCDE内接于⊙O,点P是劣弧上一点(点P不与点C重合),则∠CPD =()A.45°B.36°C.35°D.30°3.下列说法错误的是()A.平分弦的直径垂直于弦B.圆内接四边形的对角互补C.任意三角形都有一个外接圆D.正n边形的中心角等于4.如图,正方形ABCD和正三角形AEF都内接于⊙O,EF与BC,CD分别相交于点G,H,则的值为()A.B.C.D.25.半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a6.10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A、B、C、D、E、O均是正六边形的顶点.则点O是下列哪个三角形的外心()A.△AED B.△ABD C.△BCD D.△ACD7.如图,在边长为1的正六边形ABCDEF中,M是边DE上一点,则线段AM的长可以是()A.1.4B.1.6C.1.8D.2.28.若正n边形的一个内角为135°,那么n的值为()A.12B.10C.8D.79.如图,在正八边形ABCDEFGH中,连结AC,AE,则的值是()A.B.C.D.10.如图,有一个边长为2cm的正六边形纸片,若在该纸片上沿虚线剪一个最大圆形纸片,则这个圆形纸片的半径是()A.B.2cm C.2cm D.4cm二.填空题11.正六边形的边长为2,则边心距为.12.如图,正五边形ABCDE内接于圆O,P为弧DE上的一点(点P不与点D、E重合),则∠CPD 的度数为.13.如图,正方形ABCD内接于⊙O,若⊙O的半径是1,则正方形的边长是.14.如图,在同一平面内,将边长相等的正方形、正五边形的一边重合,那么∠1=°.15.如图,若正六边形ABCDEF边长为1,连接对角线AC,AD.则△ACD的周长为.三.解答题16.如图,正方形ABCD内接于⊙O,P为上一点,连接DE,AE.(1)∠CPD=°;(2)若DC=4,CP=,求DP的长.17.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形.(2)若⊙O的半径为2,求等边△ABC的边心距.18.如图,以△ABC的一边AC为直径的⊙O交AB边于点D,E是⊙O上一点,连接DE,∠E=∠B.(1)求证:BC是⊙O的切线;(2)若∠E=45°,AC=4,求⊙O的内接正四边形的边长.19.如图,⊙O外接于正方形ABCD,P为弧AD上一点,且AP=1,PC=3,求正方形ABCD的边长和PB的长.20.如图,⊙O是正方形ABCD与正六边形AEFCGH的外接圆.(1)正方形ABCD与正六边形AEFCGH的边长之比为;(2)连接BE,BE是否为⊙O的内接正n边形的一边?如果是,求出n的值;如果不是,请说明理由.参考答案一.选择题1.解:∵五边形ABCDE是⊙O的内接正五边形,∴五边形ABCDE的中心角∠COD的度数为=72°,故选:D.2.解:如图,连接OC,OD,∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.3.解:A、∵平分弦(不是直径)的直径垂直于弦,∴选项A符合题意;B、∵圆内接四边形的对角互补,∴选项B不符合题意;C、∵任意三角形都有一个外接圆,∴选项C不符合题意;D、∵正n边形的中心角等于,∴选项D不符合题意;故选:A.4.解:如图,连接AC、BD、OF,设⊙O的半径是r,则OF=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,∵OA=OF,∴∠OFA=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r•sin60°=r,∴EF=r×2=r,∵AO=2OI,∴OI=r,CI=r﹣r=r,∴==,∴GH=BD=r,∴==.故选:C.5.解:设圆的半径为R,则正三角形的边心距为a=R×cos60°=R.四边形的边心距为b=R×cos45°=R,正六边形的边心距为c=R×cos30°=R.∵R R R,∴a<b<c,故选:A.6.解:从O点出发,确定点O分别到A,B,C,D,E的距离,只有OA=OC=OD,∵三角形的外心到三角形的三个顶点的距离相等,∴点O是△ACD的外心,故选:D.7.解:连接AE,AD,BD,过点F作FH⊥AE于点H,∵多边形ABCDEF是正六边形,∴∠AFE=120°,∴∠FAH=30°,∴HF=AF=,∴AH==,∴AE=2AH=,∵AD是正六边形ABCDEF外接圆的直径,∴AD=2,∴<AM<2,故选:C.8.解:∵正n边形的一个内角为135°,∴正n边形的一个外角为180°﹣135°=45°,∴n=360°÷45°=8.故选:C.9.解:连接AG、GE、EC,如图所示:在正八边形ABCDEFGH中,AB=BC=AH=HG,∠B=∠H=135°,∴△ABC≌△AHG(SAS),∴AC=AG,同法可得AC=CE=EG,∴AC=CE=EG=AG,∴四边形ACEG是菱形,∵∠BAC=∠GAH=22.5°,∠BAH=135°,∴∠CAG=135°﹣22.5°﹣22.5°=90°,∴四边形ACEG为正方形,∴∠CAE=45°,∴=sin45°=,故选:A.10.解:如图所示,连接OB、OC,过点O作OG⊥BC于点G,正六边形的边长为2cm,OG⊥BC,∵六边形ABCDEF是正六边形,∴∠BOC=360°÷6=60°,∵OB=OC,OG⊥BC,∴∠BOG=∠BOC=×60°=30°,∵OG⊥BC,OB=OC,BC=2cm,∴BG=BC=×2=1cm,∴OB==2cm,∴OG===,∴圆形纸片的半径为cm,故选:A.二.填空题11.解:如图所示:连接OA、OB,作OC⊥AB于C,则∠OCA=90°,AC=BC=AB=1,∠AOB=60°,∴∠AOC=30°,∴OC=AC=;故答案为:.12.解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故答案为:36°.13.解:连接OB,OC,则OC=OB=1,∠BOC=90°,在Rt△BOC中,BC==.∴正方形的边长是,故答案为:.14.解:∵正五边形的内角的度数是×(5﹣2)×180°=108°,又∵正方形的内角是90°,∴∠1=108°﹣90°=18°;故答案为:18.15.解:∵正六边形ABCDEF中,AB=BC=CD=1,∠B=∠BCD=120°,∴∠ACB=∠BAC=30°,∴∠ACD=90°,∵∠CDA=∠EDA=60°,∴∠CAD=30°,∴AD=2CD=2,AC=CD=,∴△ACD的周长=AD+AC+CD=3+,故答案为:3+.三.解答题16.解:(1)如图,连接BD,∵正方形ABCD内接于⊙O,P为上一点,∴∠DBC=45°,∵∠CPD=∠DBC,∴∠CPD=45°.故答案为:45;(2)如图,作CH⊥DP于H,∵CP=2,∠CPD=45°,∴CH=PH=2,∵DC=4,∴DH===2,∴DP=PH+DH=2+2.17.(1)证明:在⊙O中,∵∠BAC与∠CPB是对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)过O作OD⊥BC于D,连接OB,则∠OBD=30°,∠ODB=90°,∵OB=2,∴OD=1,∴等边△ABC的边心距为1.18.解:(1)证明:连接CD,∵AC为直径,∴∠ADC=90°,∵∠E=∠ACD,∠E=∠B.∴∠ACD=∠B,∴∠ACD+∠CAD=∠B+∠CAD=90°,∴∠ACB=90°,∴BC是⊙O的切线;(2)如图,连接OD、CE,若∠E=45°,则∠AOD=90°,∵AC=4,∴OA=OD=2,∴AD=2.∴⊙O的内接正四边形的边长为AD的长为2.19.解:连接AC,作AE⊥PB于E,如图所示:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠ABC=∠D=∠BCD=90°,∠ACB=45°,∴AC是⊙O的直径,△ABC是等腰直角三角形,∴∠APC=90°,AC=AB,∴AC===,∴AB==,∵∠APB=∠ACB=45°,AE⊥PB,∴△APE是等腰直角三角形,∴PE=AE=AP=,∴BE===,∴PB=PE+BE=+=2.20.解:(1)设此圆的半径为R,则它的内接正方形的边长为R,它的内接正六边形的边长为R,内接正方形和内接正六边形的边长比为R:R=:1.故答案为::1;(2)BE是⊙O的内接正十二边形的一边,理由:连接OA,OB,OE,在正方形ABCD中,∠AOB=90°,在正六边形AEFCGH中,∠AOE=60°,∴∠BOE=30°,∵n==12,∴BE是正十二边形的边.。
【新】人教版九年级数学上册24.3 正多边形和圆同步练习 含答案
![【新】人教版九年级数学上册24.3 正多边形和圆同步练习 含答案](https://img.taocdn.com/s3/m/c3940e96b9f3f90f76c61bd2.png)
第24章 24.3《正多边形和圆》同步练习及答案 (2)1.下列边长为a 的正多边形与边长为a 的正方形组合起来,不能镶嵌成平面的是( )(1)正三角形 (2)正五边形 (3)正六边形 (4)正八边形A .(1)(2)B .(2)(3)C .(1)(3)D .(1)(4)2.以下说法正确的是A .每个内角都是120°的六边形一定是正六边形.B .正n 边形的对称轴不一定有n 条.C .正n 边形的每一个外角度数等于它的中心角度数.D .正多边形一定既是轴对称图形,又是中心对称图形.(3)(2006年天津市)若同一个圆的内角正三角形、正方形、正六边形的边心距分别为r 3,r 4,r 6,则r 3:r 4:r 6等于( )A .BC .1:2:3D . 3:2:14. 已知正六边形ABCDEF 内接于⊙O ,图中阴影部分的面积为312,则⊙O 的半径为______________________.5.如图,正方形ABCD 内接于⊙O ,点E 在»AD 上,则∠BEC= . 6.将一块正六边形硬纸片(图1),做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于底面,见图2),需在每一个顶点处剪去一个四边形,例如图中的四边形AGA /H ,那么∠GA /H 的大小是 度.7.(2006年威海市)如图,若正方形A 1B 1C 1D 1内接于正方形ABCD 的内接圆,则ABB A 11的值为( ) A .21 B .22 C .41 D .42 8.从一个半径为10㎝的圆形纸片上裁出一个最大的正方形,则此正方形的边长为 .9.如图五边形ABCDE 内接于⊙O,∠A=∠B=∠C=∠D=∠E .求证:五边形ABCDE 是正五边形10.如图,10-1、10-2、10-3、…、10-n 分别是⊙O 的内接正三角形ABC ,正四边形ABCD 、正五边形ABCDE 、…、正n 边形ABCD …,点M 、N 分别从点B 、C 开始以相同的速度在⊙O 上逆时针运动。
人教版九年级数学上册24.3 正多边形和圆练习题
![人教版九年级数学上册24.3 正多边形和圆练习题](https://img.taocdn.com/s3/m/ea47ab95b84ae45c3a358c4f.png)
24.3正多边形和圆知识点1正多边形与圆的关系1.如果一个四边形的外接圆与内切圆是同心圆,那么这个四边形一定是()A.矩形B.菱形C.正方形D.不能确定2.如图24-3-1所示,已知△ABC是⊙O的内接等腰三角形,顶角∠BAC=36°,弦BD,CE分别平分∠ABC,∠ACB.求证:五边形AEBCD是正五边形.图24-3-1知识点2与正多边形有关的计算3.如果一个正多边形的中心角为72°,那么这个正多边形的边数是()A.4 B.5 C.6 D.74.若正方形的边长为6,则其内切圆半径的大小为()A.3 2 B.3 C.6 D.6 25.2021·南平若正六边形的半径为4,则它的边长等于()A.4 B.2 C.2 3 D.4 36.如图24-3-2所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是()图24-3-2A.60°B.45°C.30°D.22.5°7.正八边形的中心角等于________度.8.将一个边长为1的正八边形补成如图24-3-3所示的正方形,这个正方形的边长等于________.(结果保留根号)图24-3-39.2021·资阳边长相等的正五边形和正六边形如图24-3-4所示拼接在一起,则∠ABC =________°.图24-3-410.如图24-3-5,已知正五边形ABCDE,M是CD的中点,连接AC,BE,AM.求证:(1)AC=BE;(2)AM⊥CD.图24-3-5知识点3与正多边形有关的作图11.已知⊙O和⊙O上的一点A,作⊙O的内接正方形和内接正六边形(点A为正方形和正六边形的顶点).12.如图24-3-6所示,⊙O的内接多边形的周长为3,⊙O的外切多边形的周长为3.4,则下列各数中与此圆的周长最接近的是()图24-3-6A. 6B.8C.10D.1713.若AB是⊙O内接正五边形的一边,AC是⊙O内接正六边形的一边,则∠BAC等于()A.120°B.6°C.114°D.114°或6°14.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为()A. 2 B.2 2-2C.2- 2 D.2-115.2021·达州以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.22 B.32 C. 2 D. 316.2021·云南如图24-3-7,边长为4的正方形ABCD外切于⊙O,切点分别为E,F,G,H.则图中阴影部分的面积为________.图24-3-717.如图24-3-8,正六边形ABCDEF 内接于⊙O ,若⊙O 的内接正三角形ACE 的面积为48 3,试求正六边形的周长.图24-3-818.如图24-3-9①②③④,M ,N 分别是⊙O 的内接正三角形ABC ,正方形ABCD ,正五边形ABCDE ,…,正n 边形ABCDEFG …的边AB ,BC 上的点,且BM =CN ,连接OM ,ON .图24-3-9(1)求图①中∠MON 的度数;(2)图②中,∠MON 的度数是________,图③中∠MON 的度数是________;(3)试探究∠MON 的度数与正n 边形的边数n 的关系(直接写出答案).教师详解详析1.C [解析] 只有正多边形的外接圆与内切圆才是同心圆,故这个四边形是正方形.故选C .2.证明:∵△ABC 是等腰三角形,且∠BAC =36°,∴∠ABC =∠ACB =72°.又∵BD 平分∠ABC ,CE 平分∠ACB ,∴∠ABD =∠CBD =∠BCE =∠ACE =36°,即∠BAC =∠ABD =∠CBD =∠BCE =∠ACE ,∴BC ︵=AD ︵=CD ︵=BE ︵=AE ︵,∴A ,E ,B ,C ,D 是⊙O 的五等分点,∴五边形AEBCD 是正五边形.3.B [解析] 设这个正多边形为正n 边形,由题意可知72n =360,解得n =5.故选B .4.B5.A [解析] 正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边组成一个等边三角形.因为正六边形的外接圆半径等于4,所以正六边形的边长等于4.6.C [解析] 连接OB ,则∠AOB =60°,∴∠ADB =12∠AOB =30°. 7.458.1+ 2[解析] 如图,∵△BDE 是等腰直角三角形,BE =1,∴BD =22, ∴正方形的边长等于AB +2BD =1+ 2.9.24 [解析] 正六边形的一个内角=16×(6-2)×180°=120°,正五边形的一个内角=15×(5-2)×180°=108°,∴∠BAC =360°-(120°+108°)=132°.∵两个正多边形的边长相等,即AB =AC ,∴∠ABC =12×(180°-132°)=24°. 10.证明:(1)由五边形ABCDE 是正五边形,得AB =AE ,∠ABC =∠BAE ,AB =BC , ∴△ABC ≌△EAB ,∴AC =BE.(2)连接AD ,由五边形ABCDE 是正五边形,得AB =AE ,∠ABC =∠AED ,BC =ED , ∴△ABC ≌△AED ,∴AC =AD.又∵M 是CD 的中点,∴AM ⊥CD.11.解:如图所示.作法:①作直径AC ;②作直径BD ⊥AC ,依次连接AB ,BC ,CD ,DA ,则四边形ABCD 是⊙O 的内接正方形;③分别以点A ,C 为圆心,OA 的长为半径画弧,交⊙O 于点E ,H 和F ,G ,顺次连接AE ,EF ,FC ,CG ,GH ,HA ,则六边形AEFCGH 为⊙O 的内接正六边形.12.C [解析] 根据两点之间,线段最短可得圆的周长大于3而小于3.4,选项中只有C 满足要求.13.D [解析] 分两种情况考虑:(1)如图①所示,∵AB 是⊙O 内接正五边形的一边,∴∠AOB =360°5=72°.∵AC 是⊙O 内接正六边形的一边,∴∠AOC =360°6=60°,∴∠BOC =72°-60°=12°,∴∠BAC =12∠BOC =6°. (2)如图②所示,∠AOB =72°,∠AOC =60°,∴∠OAB =54°,∠OAC =60°,∴∠BAC =60°+54°=114°.综上所述,可知选D .14.B [解析] ∵等腰直角三角形的外接圆半径为2,∴此直角三角形的斜边长为4,两条直角边的长均为2 2.如图,根据三角形内切圆的性质可得CD =CE =r ,AD =BE =AO =BO =2 2-r ,∴AB =AO +BO =4 2-2r =4,解得r =2 2-2.故选B .15.A [解析] 如图①,∵OC =2,∴OD =1;如图②,∵OB =2,∴OE =2;如图③,∵OA =2,∴OD =3,则该三角形的三边长分别为1,2, 3.∵12+(2)2=(3)2,∴该三角形是直角三角形,∴该三角形的面积是12×1×2=22. 故选A .16.2π+4 [解析] 如图,连接HO ,并延长交BC 于点P ,连接EO ,并延长交CD 于点M.∵正方形ABCD 外切于⊙O ,∴∠A =∠B =∠AHP =90°,∴四边形AHPB 为矩形,∴∠OPB =90°.又∵∠OFB =90°,∴点P 与点F 重合,∴HF 为⊙O 的直径,同理:EG 为⊙O 的直径.由∠D =∠OGD =∠OHD =90°且OH =OG 知,四边形DGOH 为正方形.同理:四边形OGCF 、四边形OFBE 、四边形OEAH 均为正方形,∴DH =DG =GC =CF =2,∠HGO =∠FGO =45°,∴∠HGF =90°,GH =GF =GC 2+CF 2=2 2,则阴影部分面积=12S ⊙O +S △HGF =12·π·22+12×2 2×2 2 =2π+4.故答案为2π+4.17.解:如图,连接OA ,作OH ⊥AC 于点H ,则∠OAH =30°.在Rt △OAH 中,设OA =R ,则OH =12R ,由勾股定理可得AH =OA 2-OH 2=R 2-(12R )2=123R. 而△ACE 的面积是△OAH 面积的6倍,即6×12×12 3R ×12R =48 3,解得R =8, 即正六边形的边长为8,所以正六边形的周长为48.18.解:(1)方法一:如图①,连接OB ,OC.图①∵正三角形ABC 内接于⊙O ,∴∠OBM =∠OCN =30°,∠BOC =120°.又∵BM =CN ,OB =OC ,∴△OBM ≌△OCN ,∴∠BOM =∠CON ,∴∠MON=∠BOC=120°.方法二:如图②,连接OA,OB.图②∵正三角形ABC内接于⊙O,∴AB=BC,∠OAM=∠OBN=30°,∠AOB=120°. ∵BM=CN,∴AM=BN.又∵OA=OB,∴△AOM≌△BON,∴∠AOM=∠BON,∴∠MON=∠AOB=120°.(2)90°72°(3)∠MON=360°n.。
24.3正多边形和圆-人教版九年级数学上册练习
![24.3正多边形和圆-人教版九年级数学上册练习](https://img.taocdn.com/s3/m/619c9bc843323968001c9266.png)
人教版九年级数学上册24.3正多边形和圆一.选择题(共6小题)1.如图,正六边形ABCDEF 内接于。
0, 连接BD.则ZCDB 的度数是()3.下列判断中正确的是()A.矩形的对角线互相垂直B.正八边形的每个内角都是145°C.三角形三边垂直平分线的交点到三角形三边的距离相等D. 一组对边平行,一组对角相等的四边形是平行四边形 4.正六边形的周长为6,则它的外接圆半径为()5.若一个正六边形的半径为2,则它的边心距等于()6.有一边长为2去的正三角形,则它的外接圆的而积为(二.填空题(共6小题)7. 如图,在同一平面内,将边长相等的正方形、正五边形的一边重合,那么匕1=60° C. 45° D. 30°2.若一个圆内接正多边形的中心角是36’ ,则这个多边形是(A.正五边形B.正八边形C.正十边形D. 正十八边形A. 1B. 2C. 3D.A. 2B. 1c. VsD.2^3C. 4nD. 12n8.如图,将边长相等的正六边形和正五边形拼接在一起,则ZABC的度数为9.我们把正多边形的一个内角与外角的比值叫做正多边形的内外比,内外比为3的正多边形的边数为.10.如果一个正〃边形的每个内角为108° ,那么这个正〃边形的边数为.11.正六边形的中心角为:当它的半径为1时,边心距为.12.已知。
过正方形ABCD顶点A、B,且与CO相切,若正方形边长为2,则圆的半径13.有一正六边形ABCDEF的内切圆半径为R,求R与这个正六边形ABCDEF的外接圆半径之比.14.如图,已知正六边形ABCDEF内接于。
,且边长为4.(1)求该正六边形的半径、边心距和中心角;(2)求该正六边形的外接圆的周长和面积.15.如图所示,在正五边形ABCDE中,A/是CD的中点,连接AC, BE, AM.求证:(1)AC=BE;(2)AMLCD.人教版九年级数学上册24.3正多边形和圆参考答案一. 选择题(共6小题)1.如图,正六边形ABCDEF 内接于。
人教版九年级数学上学期《24.3 正多边形和圆》 同步练习卷
![人教版九年级数学上学期《24.3 正多边形和圆》 同步练习卷](https://img.taocdn.com/s3/m/c260e72219e8b8f67d1cb9b5.png)
24.3 正多边形和圆一.选择题1.如图,正六边形ABCDEF的中心与坐标原点O重合,其中A(﹣2,0).将六边形ABCDEF 绕原点O按顺时针方向旋转2018次,每次旋转60°,则旋转后点A的对应点A'的坐标是()A.(1,)B.(,1)C.(1,)D.(﹣1,)2.如图,等边三角形ABC和正方形ADEF都内接于⊙O,则AD:AB=()A.2:B.:C.:D.:23.10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A、B、C、D、E、O 均是正六边形的顶点.则点O是下列哪个三角形的外心()A.△AED B.△ABD C.△BCD D.△ACD4.如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠QOB的度数是()A.30°B.20°C.18°D.15°5.如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为()A.24﹣4πB.12+4πC.24+8πD.24+4π二.填空题6.如图,6个半径为1的圆围成的弧边六角形(阴影部分)的面积为.7.如图,以AB为边,在AB的同侧分别作正五边形ABCDE和等边△ABF,连接FE,FC,则∠EF A的度数是.8.如图,正五边形ABCDE内接于⊙O,点P为上一点(点P与点D,点E不重合),连接PC、PD,DG⊥PC,垂足为G,∠PDG等于度.9.如图,在边长为3的正六边形ABCDEF中,将四边形ADEF绕顶点A顺时针旋转到四边形AD'E'F′处,此时边AD′与对角线AC重叠,则图中阴影部分的面积是.10.一个蜘蛛网如图所示,若多边形ABCDEFGHI为正九边形,其中心点为点O,点M、N 分别在射线OA、OC上,则∠MON=度.11.如图是一个摩天轮,它共有8个座舱,依次标为1~8号,摩天轮中心O的离地高度为50米,摩天轮中心到各座舱中心均相距25米,在运行过程中,当1号舱比3号舱高5米时,1号舱的离地高度为米.12.如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若∠ADB=18°,则这个正多边形的边数为.13.如图,⊙O的半径为2,正八边形ABCDEFGH内接于⊙O,对角线CE、DF相交于点M,则△MEF的面积是.14.如图,正六边形A1A2A3A4A5A6内部有一个正五边形B1B2B3B4B5,且A3A4∥B3B4,直线l经过B2、B3,则直线l与A1A2的夹角α=°.15.如图,⊙O的半径为1,作两条互相垂直的直径AB、CD,弦AC是⊙O的内接正四边形的一条边.若以A为圆心,以1为半径画弧,交⊙O于点E,F,连接AE、CE,弦EC 是该圆内接正n边形的一边,则该正n边形的面积为.16.如果正六边形的两条平行边间的距离是,那么这个正六边形的边长为.17.如图,⊙O是正方形ABCD的内切圆,切点分别为E、F、G、H,ED与⊙O相交于点M,则sin∠MFG的值为.18.如图,六边形ABCDEF是正六边形,曲线F A1B1C1D1E1F1…叫做“正六边形的渐开线”,,,,,,,…的圆心依次按A,B,C,D,E,F循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB=1时,曲线F A1B1C1D1E1F1的长度是.19.同一个正方形的内切圆与外接圆的面积比为.三.解答题20.中心为O的正六边形ABCDEF的半径为6cm,点P,Q同时分别从A,D两点出发,以1cm/s的速度沿AF,DC向终点F,C运动,连接PB,PE,QB,QE,设运动时间为t(s).(1)求证:四边形PBQE为平行四边形;(2)求矩形PBQE的面积与正六边形ABCDEF的面积之比.参考答案一.选择题1.解:连接OB、OC、OE、OF,作EH⊥OD于H,∵六边形ABCDEF是正六边形,∴∠AOF=∠FOE=∠EOD=∠DOC=∠COB=∠BOA=60°,∵将正六边形ABCDEF绕原点O顺时针旋转,每次旋转60°,∴点A旋转6次回到点A,2018÷6=336 (2)∴正六边形ABCDEF绕原点O顺时针旋转2018次,与点E重合,在Rt△EOH中,OH=OE=1,EH=OH=∴顶点A的坐标为(1,),故选:A.2.解:连接OA、OB、OD,过O作OH⊥AB于H,如图所示:则AH=BH=AB,∵等边三角形ABC和正方形ADEF,都内接于⊙O,∴∠AOB=120°,∠AOD=90°,∵OA=OD=OB,∴△AOD是等腰直角三角形,∠AOH=∠BOH=×120°=60°,∴AD=OA,AH=OA•sin60°=OA,∴AB=2AH=2×OA=OA,∴==,故选:B.3.解:从O点出发,确定点O分别到A,B,C,D,E的距离,只有OA=OC=OD,∵三角形的外心到三角形的三个顶点的距离相等,∴点O是△ACD的外心,故选:D.4.解:连接OA.∵△PQR是等边三角形,∴=,∴OP⊥QR,∵AD∥CB∥QR,∴OP⊥AD,∴=,∴∠AOP=45°,∵△PQR是等边三角形,四边形ABCD是正方形,∴∠POQ=120°,∠AOB=90°,∴∠AOQ=120°﹣45°=75°,∴∠BOQ=∠AOB﹣∠AOQ=90°﹣75°=15°,故选:D.5.解:设正六边形的中心为O,连接OA,OB.由题意,OA=OB=AB=4,∴S弓形AmB=S扇形OAB﹣S△AOB=﹣×42=π﹣4,∴S阴=6•(S半圆﹣S弓形AmB)=6•(•π•22﹣π+4)=24﹣4π,故选:A.二.填空题6.解:如图,∵圆的半径为1,∴顺次连接六个圆的圆心,得到边长为2的正六边形,∴其面积为6,∵正六边形的内角为120°,∴正六边形相邻的两边与圆围成的扇形的面积为=,∴6个扇形的面积为6×=2π,∴阴影部分的面积为6﹣2π,故答案为6﹣2π.7.解:∵正五边形ABCDE,∴∠EAB==108°,∵△ABF是等边三角形,∴∠F AB=60°,∴∠EAF=108°﹣60°=48°,∵AE=AF,∴∠AEF=∠AFE=(180°﹣48°)=66°,故答案为:66°.8.解:连接OC、OD,如图所示:∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,∵DG⊥PC,∴∠PGD=90°,∴∠PDG=90°﹣∠CPD=90°﹣36°=54°,故答案为:54.9.解:∵在边长为3的正六边形ABCDEF中,∠DAC=30°,∠B=∠BCD=120°,AB =BC,∴∠BAC=∠BCA=30°,∴∠ACD=90°,∵CD=3,∴AD=2CD=6,∴图中阴影部分的面积=S四边形ADEF+S扇形DAD′﹣S四边形AF′E′D′,∵将四边形ADEF绕顶点A顺时针旋转到四边形AD'E'F′处,∴S四边形ADEF=S四边形AD′E′F′∴图中阴影部分的面积=S扇形DAD′==3π,故答案为:3π.10.解:根据正多边形性质得,中心角为:∠AOB=360°÷9=40°,∴∠MON=2∠AOB=80°.故答案为:80.11.解:当1号舱、3号舱在摩天轮中心上方时,如图1所示:作BA、CD分别垂直于摩天轮水平的直径,A、D为垂足,则∠BAO=∠ODC=90°,∠AOB+∠B=90°,由题意得:∠BOC=90°,OB=OC=25,AB=CD+5,∴∠AOB+∠COD=90°,∴∠B=∠OCD,在△AOB和△DCO中,,∴△AOB≌△DCO(AAS),∴OA=CD,AB=OD,设OA=x,则AB=x+5,在Rt△AOB中,由勾股定理得:x2+(x+5)2=252,解得:x=15,∴AB=15+5=20(米),∴1号舱的离地高度为20米+50米=70米;同理,当1号舱、3号舱在摩天轮中心下方时,如图2所示:CD=20米,∴AB=20﹣5=15米,∴1号舱的离地高度为50米﹣15米=35米;故答案为:35米或70.12.解:连接OA,OB,∵A、B、C、D为一个正多边形的顶点,O为正多边形的中心,∴点A、B、C、D在以点O为圆心,OA为半径的同一个圆上,∵∠ADB=18°,∴∠AOB=2∠ADB=36°,∴这个正多边形的边数==10,故答案为:10.13.解:设OE交DF于N,如图所示:∵正八边形ABCDEFGH内接于⊙O,∴DE=FE,∠EOF==45°,,∴∠OEF=∠OFE=∠OED,OE⊥DF,∴△ONF是等腰直角三角形,∴ON=FN=OF=,∠OFM=45°,∴EN=OE﹣OM=2﹣,∠OEF=∠OFE=∠OED=67.5°,∴∠CED=∠DFE=67.5°﹣45°=22.5°,∴∠MEN=45°,∴△EMN是等腰直角三角形,∴MN=EN,∴MF=MN+FN=ON+EN=OE=2,∴△MEF的面积=MF×EN=×2×(2﹣)=2﹣;故答案为:2﹣.14.解:设l交A1A2于E、交A4A3于D,如图所示:∵六边形A1A2A3A4A5A6是正六边形,六边形的内角和=(6﹣2)×180°=720°,∴∠A1A2A3=∠A2A3A4==120°,∵五边形B1B2B3B4B5是正五边形,五边形的内角和=(5﹣2)×180°=540°,∴∠B2B3B4==108°,∴∠B4B3D=180°﹣108°=72°,∵A3A4∥B3B4,∴∠EDA3=∠B4B3D=72°,∴α=∠A2ED=360°﹣∠A1A2A3﹣∠A2A3A4﹣∠EDA3=360°﹣120°﹣120°﹣72°=48°,故答案为:48.15.解:如图,连接OE,根据题意可知:AB⊥CD,AE=AO=EO,∴∠AOC=90°,∠AOE=60°,∴∠EOC=30°,∴EC是该圆内接正12边形的一边,∵△COE是顶角为30度的等腰三角形,作EG⊥OC于点G,∴EG=OE=,∴正12边形的面积为:12S△COE=12×OC•EG=12×1×=3.故答案为:3.16.解:如图所示,∵此正多边形是正六边形,∴∠ABC=120°,连接AC,过B作BD⊥AC于点D,∵AC=2,∴AD=,∠ABD=∠ABC=60°,∴AB===2.故答案为:2.17.解:∵⊙O是正方形ABCD的内切圆,∴AE=AB,EG=BC;根据圆周角的性质可得:∠MFG=∠MEG.∵sin∠MFG=sin∠MEG==,∴sin∠MFG=.故答案为:.18.解:的长==,的长==,的长==,的长==,的长==,的长==,∴曲线F A1B1C1D1E1F1的长度=++…+==7π,故答案为7π.19.解:连接OA,OB,根据题意得:OB⊥AC,∠OAB=45°,∴OB=AB,∴OA==OB,∴OB:OA=1:,∴正四边形内切圆与外接圆的面积比为:π(OB)2:π(OA)2=1:2.故答案为:1:2.三.解答题20.(1)证明:∵六边形ABCDEF是正六边形,∴AB=BC=CD=DE=EF=F A,∠A=∠ABC=∠C=∠D=∠DEF=∠F,∵点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,∴AP=DQ=t,PF=QC=6﹣t,在△ABP和△DEQ中,,∴△ABP≌△DEQ(SAS),∴BP=EQ,同理可证PE=QB,∴四边形PEQB为平行四边形.(2)解:连接BE、OA,则∠AOB==60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OA=6,BE=2OB=12,当t=0时,点P与A重合,Q与D重合,四边形PBQE即为四边形ABDE,如图1所示:则∠EAF=∠AEF=30°,∴∠BAE=120°﹣30°=90°,∴此时四边形ABDE是矩形,即四边形PBQE是矩形.当t=6时,点P与F重合,Q与C重合,四边形PBQE即为四边形FBCE,如图2所示:同法可知∠BFE=90°,此时四边形PBQE是矩形.综上所述,t=0s或6s时,四边形PBQE是矩形,∴AE==6,∴矩形PBQE的面积=矩形ABDE的面积=AB×AE=6×6=36;∵正六边形ABCDEF的面积=6△AOB的面积=6×矩形ABDE的面积=6××36=54,∴矩形PBQE的面积与正六边形ABCDEF的面积之比=.。
人教版九年级数学上册24.3__正多边形和圆练习试卷(含知识点)
![人教版九年级数学上册24.3__正多边形和圆练习试卷(含知识点)](https://img.taocdn.com/s3/m/261cf87fa76e58fafbb00340.png)
24.3 正多边形和圆附参考答案一、正多边形的有关概念1.把圆分成n 等份,依次连接各分点所得的多边形是______________.2.正多边形__________________叫做正多边形的中心,______________________叫做正多边形的半径,中心到正多边形一边的距离叫做正多边形的_____________,正多边形的每一边所对的圆心角叫做正多边形的______________.问题1.圆内接正六边形一边所对的圆周角是( ) (A )30︒.(B )60︒.(C )150︒.(D )30︒或150︒. 二、正多边形的对称性3.正多边形都是______对称图形,正n 边形有_______条对称轴,每条对称轴都经过正n 边形的__________.4.若n 为偶数,正n 边形为_________对称图形,它的中心就是__________. 问题2.正n 边形的对称轴的总数是( ) (A )n 条.(B )2n条.(C )2n 条.(D )()2n -条. 三、正多边形的有关计算5.正n 边形的内角和为_______________,每个内角的度数为________________. 6.正n 边形有n 个相等的中心角,每个中心角的度数为____________,正n 边形有n 个相等的外角,每个外角的度数为____________,正n 边形的中心角和它的外角__________.问题3.要用圆形要板截出一个边长为3cm 的正方形桌面,则选用的圆形木板的直径至少应为_____________cm .要点探究探究1.正多边形的有关计算例1.如图,已知正六边形的外接圆半径为4,求这个正六边形的中心角、边长、周长、面积.解析:连接正六边形半径,把一个正六边形划分为六个全等的等边三角形,再利用每个三角形的面积求正六边形的面积.答案:正六边形的中心角为360︒÷6=60︒.∵OA =OF ,∠AOF =60︒,∴△AOF 是等边三角形,∴AF =OA =4.∴正六边形的周长为24.过O 作OG ⊥AF 于G ,∴∠AOG =30︒,∴AG =2,则OG 23=.∴△AOF 的面积为43,∴正六边形的面积为243.智慧背囊:正多边形边长的一半、半径、边心距构成了一个直角三角形,正多边形的有关计算都可以归结到这个直角三角形中.活学活用:已知正三角形、正方形、正六边形的半径都是R ,请你将各正多边形的边长、边心距、周长和面积值填在下表中.(用R 来表示)边长 边心距 周长 面积 正三角形 正方形 正六边形随堂尝试A 基础达标1.选择题(1)如图,将若干全等的正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需要五边形( )(A )7个.(B )8个.(C )9个.(D )10个.ORQDCBA(第1(1)题) (第1(2)题)(2)如图,正方形ABCD 与等边△PRQ 内接于⊙O ,RQ ∥BC ,则∠AOP 等于( ) (A )45o .(B )60o .(C )30o .(D )55o .(3)下列图形中既是中心对称图形,又是轴对称图形的是( ) (A )正三角形.(B )正五边形.(C )正六边形.(D )正七边形.(4)若一个正多边形的每个内角的度数是中心角的3倍,则正多边形的边数是( ) (A )4.(B )6.(C )8.(D )12. 2.填空题(1)要用圆形铁片截出边长为4cm 的正方形铁片,则选用的圆形铁片的直径最小要____________cm.(2)如图,这是一个滚珠轴承的平面示意图,若该滚珠轴承的内外圆的半径分别为2和6,则在该轴承内最多能放___________颗半径为2的滚珠.F EDCBA A'HGA(第2(2)题)(第2(3)题)(第2(4)题)(3)如图,有一个边长为1.5cm的正六边形,如果要剪一张圆形纸片完全盖住这个图形,那么这张圆形纸片的最小半径为___________cm.(4)如图,将一块正六边形硬纸片,做成一个底面仍为正六边形且高相等的无盖的纸盒(侧面均垂直于底面),需在每一个顶点处剪去一个四边形,则∠GA/H为________度.3.已知两个正多边形的边数之比为2:1,而它们的内角和之比为8:3,求这两个正多边形的边数.4.如图,已知⊙O的两直径AB、CD互相垂直,弦MN垂直平分OB,交OB于点E;求证:MB与MC分别为该圆的内接正六边形和正十二边形的边长.B能力升级5.图①是“口子窖”酒的一个由铁片制成的包装底盒,它是一个无盖的六棱柱形状的盒子(如图②),侧面是矩形或正方形.经测量,底面六边形有三条边的长是9cm,有三条边长是3cm,每个内角都是120 ,六棱柱的高为3cm.现沿它的侧棱剪开展平,得到如图③的平面展开图.①②③④⑤(1)制作这种底盒时,可以按图④中虚线裁剪出如图③的模片.现有一块长为17.5cm、宽为16.5cm的长方形铁片,请问能否按图④的裁剪方法制作这样的无盖底盒?并请说明理由;(2)如果用一块正三角形铁皮按图⑤中虚线剪出如图③的模片,那么这个正三角形的边长至少应为________________cm.(说明:以上裁剪不计接缝处损耗)C感受中考6.已知圆内接正六边形的边长是1,则这个圆的内接正方形的边长是____________.7.如图①、②、③、④分别是⊙O的内接正三角形、正四边形、正五边形、…、正n边形,点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动.(1)求图①中∠APN的度数;(2)图②中,∠APN的度数是___________,图③中,∠APN的度数是___________;(3)试探索∠APN的度数与正多边形边数n的关系(直接写答案).图①图②图③图④课后实践从正五角星形的内角谈起我们常见到的五星红旗上的五角星形,不但给庄严的感觉,而且还给人一种和谐、对称、协调的美感,很容易得到它的一个内角为36︒.我们将圆周五等分,得五个分点1、2、3、4、5,如果按1→2→3→4→5相连,则得一个正五边形(如图①).如果按1→3→5→2→4→1相连,则得一个正五角星形(如图②).前者看成是5/1边形,后者则可以看成是5/2边形.所以每一个内角为55 18023622⎛⎫︒⨯-÷=︒⎪⎝⎭.图①图②图③图④以此类推,如图③、④将两个七角星形分别看成7/2边形和7/3边形,其内角分别为77540 1802227︒⎛⎫︒⨯-÷= ⎪⎝⎭,77180 1802337︒⎛⎫︒⨯-÷=⎪⎝⎭.有兴趣的同学不妨继续沿着这个思路研究下去,你一定会有很大的收获.参考答案基础准备问题1.D.问题2.A.问题3.要点探究活学活用:略.随堂尝试A基础达标1.(1)A (2)A (3)C (4)C2.(1)(2)6 (3)1.5 (4)60 3.两个正多边形的边数分别为10和5.4.连结MO.∵弦MN垂直平分OB,OE=BE=12OB=12OM,∠EMO=30︒,∴∠MOE=60︒.MB为圆内接六边形边长,CD⊥AB,∠MOC=30︒,∴MC为圆内接十二边形的边长.B能力升级5.(1)经计算所需的长方形铁片至少为(12+cm,宽至少为(6+cm,1217.5+<,616.5+<,能按图④裁剪方法制作无盖底盒;(2)约25.4cm.C感受中考6.7.(1)∠APN=60︒;(2)90︒,108︒;(3)∠APN=()2180 nn-.以下不需要可以删除人教版初中数学知识点总结必备必记目录七年级数学(上)知识点 (1)第一章有理数 (1)第二章整式的加减 (3)第三章一元一次方程 (4)第四章图形的认识初步 (5)七年级数学(下)知识点 (6)第五章相交线与平行线 (6)第六章平面直角坐标系 (8)第七章三角形 (9)第八章二元一次方程组 (12)第九章不等式与不等式组 (13)第十章数据的收集、整理与描述 (13)八年级数学(上)知识点 (14)第十一章全等三角形 (14)第十二章轴对称 (15)第十三章实数 (16)第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。
人教版九年级上数学24.3正多边形和圆练习题含答案
![人教版九年级上数学24.3正多边形和圆练习题含答案](https://img.taocdn.com/s3/m/1e683070f7ec4afe04a1dfec.png)
24.3正多边形和圆01基础题知识点1认识正多边形1.下面图形中,是正多边形的是(C)A.矩形B.菱形C.正方形D.等腰梯形2.(柳州中考)如图,正六边形的每一个内角都相等,则其中一个内角α的度数是(B) A.240°B.120°C.60°D.30°3.(连云港中考)一个正多边形的一个外角等于30°,则这个正多边形的边数为12.4.(资阳中考)如图,AC是正五边形ABCDE的一条对角线,则∠ACB=36°.知识点2与正多边形有关的计算5.(沈阳中考)如图,正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是(B)A. 3B.2C.2 2D.2 36.(株洲中考)下列圆的内接正多边形中,一条边所对的圆心角最大的图形是(A) A.正三角形B.正方形C.正五边形D.正六边形7.(滨州中考)若正方形的外接圆半径为2,则其内切圆半径为(A)A. 2 B .2 2 C.22D .18.边长为6 cm 的等边三角形的外接圆半径是9.(宁夏中考)如图,将正六边形ABCDEF 放在直角坐标系中,中心与坐标原点重合.若A 点的坐标为(-1,0),则点C 的坐标为(12,-2).10.(教材P109习题T6变式)将一个边长为1的正八边形补成如图所示的正方形,这个正方形的边长等于结果保留根号).知识点3 画正多边形11.如图,AD 为⊙O 的直径,作⊙O 的内接正三角形ABC ,甲、乙两人的作法分别是:对于甲、乙两人的作法,可判断(A)A .甲、乙均正确B .甲、乙均错误C .甲正确,乙错误D .甲错误,乙正确12.(镇江中考改编)图1是我们常见的地砖上的图案,其中包含了一种特殊的平面图形——正八边形. 如图2,AE 是⊙O 的直径,用直尺和圆规作⊙O 的内接正八边形ABCDEFGH(不写作法,保留作图痕迹).解:如图.02中档题13.正三角形内切圆半径r与外接圆半径R之间的关系为(D)A.4R=5r B.3R=4rC.2R=3r D.R=2r14.(滨州中考)如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E的坐标是(C)A.(2,-3) B.(2,3)C.(3,2) D.(3,-2)15.(达州中考)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是(A)A.22 B.32 C. 2 D. 316.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为(A)A.2a2 B.3a2 C.4a2D.5a217.(山西中考命题专家原创)如图,圆O与正八边形OABCDEFG的边OA,OG分别交于点M,N,则弧MN所对的圆心角∠MPN的大小为67.5°.18.(连云港中考)如图,正十二边形A 1A 2…A 12,连接A 3A 7,A 7A 10,则∠A 3A 7A 10=75°.19.如图,⊙O 是正方形ABCD 与正六边形AEFCGH 的外接圆.(1)正方形ABCD 与正六边形AEFCGH(2)连接BE ,BE 是否为⊙O 的内接正n 边形的一边?如果是,求出n 的值;如果不是,请说明理由.解:BE 是⊙O 的内接正十二边形的一边, 理由:连接OA ,OB ,OE , 在正方形ABCD 中, ∠AOB =90°,在正六边形AEFCGH 中,∠AOE =60°, ∴∠BOE =30°. ∵n =360°30°=12,∴BE 是正十二边形的边. 03 综合题20.如图1,2,3,…,m ,M ,N 分别是⊙O 的内接正三角形ABC ,正方形ABCD ,正五边形ABCDE ,…正n 边形ABCDEF …的边AB ,BC 上的点,且BM =CN ,连接OM ,ON.(1)求图1中∠MON 的度数;(2)图2中∠MON 的度数是90°,图3中∠MON 的度数是72°; (3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案). 解:(1)连接OA ,OB. ∵正三角形ABC 内接于⊙O , ∴OA =OB ,∠OAM =∠OBA =30°, ∠AOB =120°.∵BM =CN ,AB =BC , ∴AM =BN.∴△AOM ≌△BON(SAS). ∴∠AOM =∠BON.∴∠AOM +∠BOM =∠BON +∠BOM , 即∠AOB =∠MON. ∴∠MON =120°. (3)∠MON =360°n .。
人教版九年级数学上册《24.3 正多边形和圆》同步练习题-附答案
![人教版九年级数学上册《24.3 正多边形和圆》同步练习题-附答案](https://img.taocdn.com/s3/m/01a69da5c9d376eeaeaad1f34693daef5ef713ba.png)
人教版九年级数学上册《24.3 正多边形和圆》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点 正多边形与圆1.定义:正多边形的 圆的圆心叫做这个正多边形的中心 圆的半径叫做正多边形的半径 正多边形每一边所对的 角叫做正多边形的中心角 到正多边形的一边的距离 叫做正多边形的边心距。
2.公式:正多边形的有关概念:边长(a ) 中心(O ) 中心角(∠AOB ) 半径(R )) 边心距(r ) 如图所示①.边心距222a r R ⎛⎫=- ⎪⎝⎭中心角360n ︒=关键点:三角形的内切圆与外接圆 关系定义圆心 实质半径图示外接圆经过三角形各顶点的圆外心三角形各边垂直平分线的交点交点到三角形三个顶点的距离相等内切圆与三角形各边都相切的圆内心三角形各内角平分线的交点交点到三角形各边的距离相等名校提高练习:一选择题:本题共10小题每小题3分共30分。
在每小题给出的选项中只有一项是符合题目要求的。
1.(2024·四川省泸州市·月考试卷)已知圆内接正三角形的面积为√ 3则该圆的内接正六边形的边心距是( )A. 2B. 1C. √ 3D. √ 322.同一个圆的内接正三角形正方形正六边形的边心距分别为r3r4r6则r3:r4:r6等于( )A. 1:√2:√3B. √3:√2:1C. 1:2:3D. 3:2:13.如图若干个全等的正五边形排成环状图中所示的是前3个正五边形要完成这一圆环还需正五边形的个数为( )A. 10B. 9C. 8D. 74.(2024·贵州省黔东南苗族侗族自治州·月考试卷)正六边形ABCDEF内接于⊙O正六边形的周长是12则⊙O的半径是( )A. √ 3B. 2C. 2√ 2D. 2√ 35.(2024·山东省·单元测试)《几何原本》中记载了用尺规作某种六边形的方法其步骤是:①在⊙O上任取一点A连接AO并延长交⊙O于点B②以点B为圆心BO为半径作圆弧分别交⊙O于C D两点③连接CO DO并延长分别交⊙O于点E F④顺次连接BC CF FA AE ED DB得到六边形AFCBDE.再连接AD EF AD EF交于点G.则下列结论不正确的是( )A. GF=GDB. ∠FGA=60°C. EFAE=√ 2 D. AF⊥AD6.(2024·江苏省·同步练习)以半径为2的圆的内接正三角形正方形正六边形的边心距为三边作三角形则该三角形的面积是( )A. √ 22B. √ 32C. √ 2D. √ 37.(2024·江苏省·同步练习)如图正十二边形A1A2…A12连接A3A7A7A10则∠A3A7A10的度数为( )A. 60°B. 65°C. 70°D. 75°8.(2024·江苏省·同步练习)如图若干个全等的正五边形排成环状.图中所示的是前3个正五边形要完成这一圆环还需正五边形的个数为( )A. 6B. 7C. 8D. 99.(2024·北京市市辖区·期末考试)如图正方形ABCD的边长为6且顶点A B C D都在⊙O上则⊙O 的半径为().A. 3B. 6C. 3√ 2D. 6√ 210.(2024·广东省广州市·月考试卷)如图已知⊙O的周长等于4πcm则圆内接正六边形的边长为()cm.A. √ 3B. 2C. 2√ 3D. 4二填空题:本题共6小题每小题3分共18分。
【初中数学】人教版九年级上册24.3 正多边形和圆(练习题)
![【初中数学】人教版九年级上册24.3 正多边形和圆(练习题)](https://img.taocdn.com/s3/m/b9737bd009a1284ac850ad02de80d4d8d15a01ed.png)
人教版九年级上册24.3 正多边形和圆(153)1.正多边形的一边所对的中心角与该多边形的一个内角的关系是()A.互余B.互补C.互余或互补D.不能确定2.如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为.3.如图,正六边形ABCDEF内接于⊙O,若⊙O的内接正三角形ACE的面积为48√3,试求正六边形的周长.4.如图①②③④,M,N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,…,正n边形ABCDEFG…的边AB,BC上的点,且BM=CN,连接OM,ON.(1)求图①中∠MON的度数;(2)图②中,∠MON的度数是,图③中∠MON的度数是;(3)试探究∠MON的度数与正n边形边数n的关系(直接写出答案).5.将一个边长为1的正八边形补成如图所示的正方形,这个正方形的边长等于结果(结果保留根号).6.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1−∠2=.7.如图,已知正五边形ABCDE,M是CD的中点,连接AC,BE,AM.求证:(1)AC=BE;(2)AM⊥CD.8.已知⊙O和⊙O上的一点A,作⊙O的内接正方形和内接正六边形(点A为正方形和正六边形的顶点).9.如图所示,⊙O的内接多边形的周长为3,⊙O的外切多边形的周长为3.4,则下列各数中与此圆的周长最接近的是()A.√6B.√8C.√10D.√1710.若AB是⊙O内接正五边形的一边,AC是⊙O内接正六边形的一边,则∠BAC等于()A.120∘B.6∘C.114∘D.114∘或6∘11.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为()A.√2B.2√2−2C.2−√2D.√2−112.如图所示,△OAB为正三角形,以点O为圆心,OA的长为半径作⊙O,直径FC∥AB,AO,BO的延长线分别交⊙O于点D,E.求证:六边形ABCDEF是正六边形.13.如果一个正多边形的中心角为72∘,那么这个正多边形的边数是()A.4B.5C.6D.714.若正方形的边长为6,则其内切圆半径的大小为()A.3√2B.3C.6D.6√215.若正六边形的半径长为4,则它的边长等于()A.4B.2C.2√3D.4√316.如图所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是()A.60∘B.45∘C.30∘D.22.5∘17.正八边形的中心角等于度.18.如果一个四边形的外接圆与内切圆是同心圆,那么这个四边形一定是()A.矩形B.菱形C.正方形D.不能确定参考答案1.【答案】:B【解析】:正n边形的中心角是360∘n ,正n边形的每一个内角是(n−2)·180∘n,∴正多边形的一边所对的中心角和它的一个内角的关系是互补2.【答案】:2√6【解析】:连接AC,OE,OF,作OM⊥EF于点M.∵四边形ABCD是正方形,∴AB=BC=4,∠ABC=90∘,∴AC是⊙O的直径,AC=4√2,∴OE=OF=2√2.∵OM⊥EF,∴EM= MF.∵△EFG是等边三角形,∴∠GEF=60∘. 在Rt△OME中,∵OE=2√2,∠OEM=12∠GEF=30∘,∴OM=√2,EM=√OE2−OM2=√6,∴EF=2√6.3.【答案】:连接OA,作OH⊥AC于点H,则∠OAH=30∘. 在Rt△OAH中,设OA=R,则OH=12R,由勾股定理可得AH=√OA2−OH2=√R2−(12R)2=12√3R.而△ACE的面积是△OAH面积的6倍,即6×12×12√3R×12R=48√3,解得R=8, 即正六边形的边长为8,所以正六边形的周长为48【解析】:连接OA,作OH⊥AC于点H,则∠OAH=30∘. 在Rt△OAH中,设OA=R,则OH=1 2R,由勾股定理可得AH=√OA2−OH2=√R2−(12R)2=12√3R.而△ACE的面积是△OAH面积的6倍,即6×12×12√3R×12R=48√3,解得R=8, 即正六边形的边长为8,所以正六边形的周长为484(1)【答案】方法一:如图①,连接OB,OC.①∵正三角形ABC内接于⊙O,∴∠OBM=∠OCN=30∘,∠BOC=120∘.又∵BM=CN,OB=OC,∴△OBM≌△OCN,∴∠BOM=∠CON,∴∠MON=∠BOC=120∘.方法二:如图②,连接OA,OB.②∵正三角形ABC内接于⊙O,∴AB=BC,∠OAM=∠OBN=30∘,∠AOB=120∘.∵BM=CN,∴AM=BN.又∵OA=OB,∴△AOM≌△BON,∴∠AOM=∠BON,∴∠MON=∠AOB=120∘(2)【答案】90∘;72∘(3)【答案】∠MON=360∘n5.【答案】:1+√2,∴正方形的边长【解析】:∵△BDE是等腰直角三角形,BE=1,∴BD=√22等于AB+2BD=1+√2.6.【答案】:24∘7(1)【答案】由五边形ABCDE是正五边形,得AB=AE,AB=BC,∠ABC=∠BAE,∴△ABC≌△EAB,∴AC=BE.(2)【答案】连接AD,易证△ABC≌△AED, ∴AC=AD.又∵M为CD的中点,∴AM⊥CD8.【答案】:解:如图所示.作法:①作直径AC;②作直径BD⊥AC,依次连接AB,BC,CD,DA,则四边形ABCD是⊙O的内接正方形;③分别以A,C为圆心,OA的长为半径画弧,交⊙O于点E,H和F,G,顺次连接AE,EF,FC,CG,GH,HA,则六边形AEFCGH为⊙O的内接正六边形【解析】:如图所示.作法:①作直径AC;②作直径BD⊥AC,依次连接AB,BC,CD,DA,则四边形ABCD是⊙O的内接正方形;③分别以A,C为圆心,OA的长为半径画弧,交⊙O于点E,H和F,G,顺次连接AE,EF,FC,CG,GH,HA,则六边形AEFCGH为⊙O的内接正六边形9.【答案】:C【解析】:根据两点之间,线段最短可得圆的周长大于3而小于3.4,选项中只有C满足要求.10.【答案】:D【解析】:分两种情况考虑:(1)如图①所示,∵AB是⊙O内接正五边形的一边,∴∠AOB=360∘5=72∘.∵AC是⊙O内接正六边形的一边,∴∠AOC=360∘6=60∘,∴∠BOC=72∘−60∘=12∘,∴∠BAC=12∠BOC=6∘. (2)如图②所示,∠AOB=72∘,∠AOC=60∘,∴∠OAB=54∘,∠OAC=60∘,∴∠BAC=60∘+54∘=114∘.综上所述,可知选D.11.【答案】:B【解析】:∵等腰直角三角形的外接圆半径为2,∴此直角三角形的斜边长为4,两条直角边的长分别为2√2.如图,根据三角形内切圆的性质可得CD=CE=r,AD=BE=AO=BO=2√2−r.∴AB=AO+BO=4√2−2r=4,解得r=2√2−2.故选B12.【答案】:∵△OAB为正三角形,∴∠AOB=∠OAB=∠OBA=60∘,OB=AB=OA, ∴点B在⊙O上.∵FC∥AB,∴∠FOA=∠OAB=∠COD=60∘,∠COB=∠OBA=∠EOF=60∘, ∴∠AOB=∠COB=∠COD=∠EOD=∠EOF=∠FOA=60∘, ∴AB=BC=CD=DE=EF=FA,即A,B,C,D,E,F六等分⊙O, ∴六边形ABCDEF是⊙O的内接正六边形.即六边形ABCDEF是正六边形【解析】:∵△OAB为正三角形,∴∠AOB=∠OAB=∠OBA=60∘,OB=AB=OA, ∴点B在⊙O上.∵FC∥AB,∴∠FOA=∠OAB=∠COD=60∘,∠COB=∠OBA=∠EOF=60∘, ∴∠AOB=∠COB=∠COD=∠EOD=∠EOF=∠FOA=60∘, ∴AB=BC=CD=DE=EF=FA,即A,B,C,D,E,F六等分⊙O, ∴六边形ABCDEF是⊙O的内接正六边形.即六边形ABCDEF是正六边形13.【答案】:B【解析】:设这个正多边形为正n边形,由题意可知72n=360,解得n=5.故选B.14.【答案】:B15.【答案】:A【解析】:正六边形的中心角为360∘÷6=60∘,那么外接圆的半径和正六边形的边组成一个等边三角形.因为正六边形的外接圆半径等于4,所以正六边形的边长等于416.【答案】:C∠AOB=30∘【解析】:连接OB,则∠AOB=60∘, ∴∠ADB=1217.【答案】:4518.【答案】:C【解析】:只有正多边形的外接圆与内切圆才是同心圆,故这个四边形是正方形.故选C.。
2019-2020学年人教版九年级数学上学期同步测试专题24-3:正多边形和圆
![2019-2020学年人教版九年级数学上学期同步测试专题24-3:正多边形和圆](https://img.taocdn.com/s3/m/eb97169f81c758f5f61f67b2.png)
专题24.3正多边形和圆(测试)一、单选题1.若正多边形的一个中心角是30°,则该正多边形的边数是( )A .6B .12C .16D .18【答案】B【解析】003603012÷=.故这个正多边形的边数为12.故选:B .2.正多边形的一边所对的中心角与它的一个外角的关系是( )A .相等B .互余C .互补D .互余或互补【答案】A【解析】设正多边形是正n 边形,则它的一边所对的中心角是360n ︒,正多边形的外角和是360°,则每个外角也是360n ︒,所以正多边形的一边所对的中心角与它的一个外角相等,故选A .3.在半径为R 的圆上依次截取等于R 的弦,顺次连接各分点得到的多边形是( )A .正三角形B .正四边形C .正五边形D .正六边形【答案】D【解析】解:由题意这个正n 边形的中心角=60°,∴n=36060︒︒=6∴这个多边形是正六边形,故选:D .4.如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为()A .1BCD .2【答案】C【解析】如图,作BG AC ⊥,依题可得:ABC ∆是边长为2的等边三角形,在Rt BGA ∆中,∵2AB =,1AG =,∴BG =故答案为:C.5 )A .πB .3πC .4πD .12π【答案】C【解析】解:如图,六边形ABCDEF 为正六边形,作OH ⊥AB 于H ,连接OA ,∴OA 为正六边形ABCDEF 的外接圆的半径,OH 为正六边形ABCDEF 的边心距,∴在Rt AOH 中,∠AOH=1806︒=30°,∴cos ∠AOH=OH OA == ∴OA=2, ∴它的外接圆的面积=2πOA ()=4π. 故选:C .6.如图,正八边形各边中点构成四边形,则正八边形边长与AB 的比是( )A.2B C D【答案】A【解析】过E作EF⊥AD于F,过G作GH⊥AD于H,则△AEF与△DGH是等腰直角三角形,四边形EFHG是矩形,∴AF=EF=DH=GH,EG=FH,设AF=EF=GH=DH=k,∴AE=DG k,∴EG=2AE=k,∴AB=AD=+2k,=∴正八边形边长与AB2故选A.7.如图,在半径为6的⊙O中,正方形AGDH与正六边形ABCDEF都内接于⊙O,则图中阴影部分的面积为()A .27﹣B .54﹣C .D .54【答案】B 【解析】解:设EF 交AH 于M 、交HD 于N ,连接OF 、OE 、MN ,如图所示:根据题意得:△EFO 是等边三角形,△HMN 是等腰直角三角形,∴EF =OF =6,∴△EFO 的高为:OF•sin60°=MN =2(6﹣12﹣ ∴FM =12(6﹣12+3, ∴阴影部分的面积=4S △AFM =4×12(3)×54﹣ 故选:B .8.一个圆形餐桌直径为2米,高1米,铺在上面的一个正方形桌布的四个角恰好刚刚接触地面,则这块桌布的每边长度为( )米A .12x xB .4 C.D .4π【答案】A【解析】解:正方形桌布对角线长度为圆形桌面的直径加上两个高,即2+1+1=4(米),设正方形边长是x 米,则x 2+x 2=42,解得:,所以正方形桌布的边长是米.故选:A .9.下面给出五个命题(1)正多边形都有内切圆和外接圆,且这两个圆是同心圆(2)各边相等的圆外切多边形是正多边形(3)各角相等的圆内接多边形是正多边形(4)正多边形既是轴对称图形又是中心对称图形(5)正n 边形的中心角360n a n ︒=,且与每一个外角相等 其中真命题有( )A .2 个B .3 个C .4 个D .5 个 【答案】A【解析】解:(1)正多边形都有一个内切圆和一个外接圆,是同心圆,圆心是正多边形的中心,故正确;(2)各边相等的圆外切多边形的角不一定相等,故不一定是正多边形,如菱形,故错误;(3)圆内接矩形,各角相等,但不是正多边形,故错误;(4)边数是偶数的正多边形既是轴对称图形又是中心对称图形,而边数是奇数的多边形是轴对称图形,不是中心对称图形;(5)正n 边形的中心角360n a n︒=,且与每一个外角相等. 故正确的是(1)(5).共有2个.故选:A .10.一个圆的内接正三角形的边长为( )AB .4C .D .【答案】D【解析】根据题意画图如下:过点O 作OD ⊥BC 于D ,连接OB ,∴BD=CD=12, ∵△ABC 是等边三角形,∴∠ABC=60°,∴∠OBD=30°,∴OD=12OB , ∴OB 2-(12OB)2=BD 2, 解得:OB=2,即圆的半径为2,∴该圆的内接正方形的对角线长为4,设正方形的边长为x ,∴x 2+x 2=42,解得x=∴该圆的内接正方形的边长为故选D.11.如图,⊙O是正六边形ABCDEF的外接圆,P是弧EF上一点,则∠BPD的度数是()A.30°B.60°C.55°D.75°【答案】B【解析】连接OB,OD,∵六边形ABCDEF是正六边形,∴∠BOD==120°,∴∠BPD=∠BOD=60°,故选:B.12.距资料,我国古代数学家祖冲之和他的儿子发展了刘徽的“割圆术”(即圆的内接正多边形边数不断增加,它的周长就越接近圆周长),他们从圆内接正六边形算起,一直算到内接正24576边形,将圆周率精确到小数点后七位,使中国对圆周率的计算在世界上领先了一千多年,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是( )A.B.3 C.D.【答案】B【解析】解:由题意n=6时,π≈ =3,故选:B .13.如图,用四根长为5cm 的铁丝,首尾相接围成一个正方形(接点不固定),要将它的四边按图中的方式向外等距离移动a cm ,同时添加另外四根长为5cm 的铁丝(虚线部分)得到一个新的正八边形,则a 的值为( )A .4cmB .5cmC . D【答案】D【解析】如图,由题意可知:△ABC 是等腰直角三角形,AB=5,AC=BC=a .则有:a 2+a 2=52,∴a=2或-2(舍弃)故选:D .14.如图,将边长为5的正六边形ABCDEF 沿直线MN 折叠,则图中阴影部分周长为()A .20B .24C .30D .35【答案】C【解析】由翻折不变性可知,阴影部分的周长等于正六边形ABCDEF 的周长=5×6=30,故选:C .15.如图,已知O 的周长等于6cm ,则它的内接正六边形ABCDEF 的面积是( )A .4B .4C .2D .【答案】C【解析】过点O 作OH ⊥AB 于点H ,连接OA ,OB ,设⊙O 的半径为r ,∵⊙O 的周长等于6πcm ,∴2πr=6π,解得:r=3,∴⊙O 的半径为3cm ,即OA=3cm ,∵六边形ABCDEF 是正六边形,∴∠AOB=16×360°=60°,OA=OB ,∴△OAB 是等边三角形,∴AB=OA=3cm ,∵OH ⊥AB ,∴AH=12AB ,∴AB=OA=3cm ,∴AH=32cm ,=2cm ,∴S 正六边形ABCDEF =6S △OAB =6×12×3×2=2(cm2).故选C.16.⊙O 是一个正n 边形的外接圆,若⊙O 的半径与这个正n 边形的边长相等,则n 的值为() A .3 B .4 C .6 D .8【答案】C【解析】⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,则这个正n边形的中心角是60°,÷︒=360606n的值为6,故选:C二、填空题17.若正多边形的一个外角为60°,则这个正多边形的中心角的度数是___________.【答案】60°【解析】∵正多边形的一个外角为60°,∴正多边形的边数为=6,即正多边形为六边形,∴这个正多边形的中心角的度数==60°.故答案为60°18.如图,六边形ABCDEF是正六边形,若l1∥l2,则∠1﹣∠2=_____.【答案】60°【解析】解:如图,过A作l∥l1,则∠4=∠2,∵六边形ABCDEF是正六边形,∴∠FAB=120°,即∠4+∠3=120°,∴∠2+∠3=120°,即∠3=120°﹣∠2,∵l1∥l2,∴l∥l2,∴∠1+∠3=180°,∴∠1+120°﹣∠2=180°,∴∠1﹣∠2=180°﹣120°=60°,故答案为:60°.19.如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10=_____.【答案】75°【解析】解:设该正十二边形的中心为O,如图,连接A10O和A3O,由题意知,37105 12A A A=⊙O的周长,∴∠A3OA10=536012︒⨯=150°,∴∠A3A7A10=75°,故答案为:75°.20.已知正方形MNKO和正六边形ABCDEF边长均为1,把正方形放在正六边形外边,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B顺时针旋转,使KN边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使NM边与CD边重合,完成第二次旋转;………在这样连续6次旋转的过程中,点M在图中直角坐标系中的纵坐标可能是()A .2B .﹣2.2C .2.3D .﹣2.3【答案】A【解析】如图,∵正方形MNKO 和正六边形ABCDEF 边长均为1∴第一次旋转后点M 1 纵坐标坐标为12 ,第二次、第三次旋转后点M 2(M 3,四次旋转后点M 4的纵坐标为﹣12﹣2,第五次旋转后点M 5的纵坐标为 12+2,第六次旋转后的点M 6的纵坐标为2. 故选:A .三、解答题21.如图,已知O .(1)用尺规作正六边形,使得O 是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.【答案】(1)答案见解析;(2)答案见解析【解析】解:(1)如图所示:,(2)如图所示:22.如图是由7个形状、大小完全相同的正六边形组成的网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,求△ABC的面积.【答案】【解析】延长AB,再作出过点C与格点所在的直线,交于格点E.∵正六边形的边长为1,∴正六边形的半径是1,则CE=4,则△BCE 的边EC ,△ACE 边EC ,则S △ABC =S △AEC -S △BEC =12×4×)=23.回顾旧知:在探究有关正多边形的有关性质时,我们是从那几个方面展开的?探究的方法与过程又是怎样的?(不要求回答)温馨提示,如图1,是一个边长为a 的正六边形.我们知道它具有如下的性质:①正六边形的每条边长度相等;②正六边形的六个内角相等,都是120°;③正六边形的内角和为720°;④正六边形的外角和为360°.等.解答问题:(1)观察图2,请你在下面的横线上,再写出边长为a 的正六边形所具有不同于上述的性质(不少于5条): .(2)尺规作图:在图2中作出圆内接正六边形的内切圆(不要求写作法,只保留作图痕迹);(3)求出这个正六边形外接圆半径与内切圆半径的比值.【答案】(1)见解析;(2)作图见解析;(3). 【解析】(1)①正六边形既是轴对称图形,又是中心对称图形;②正六边形的面积为: a 2,周长为6a ;③正六边形有一个内切圆、外接圆,它们是同心圆;④圆内接正六边形的每条边在圆内所对的优弧长度相等;⑤圆内接正六边形的每条边在圆内所对的优弧的弧度相等;⑥圆内接正六边形的每条边(或说弦)在圆内所对的劣弧的长度相等;⑦圆内接正六边形的每条边(或说弦)在圆内所对的劣弧的弧度相等;⑧圆内接正六边形的每条边(或说弦)在圆内所对的圆心角(中心角)相等,都是60°;⑨圆内接正六边形的边长等于圆的半径;⑩圆内接正六边形的边心距为: a 等.(2)如图2所示:(3)如图2,连结EO,在Rt△ONE中,∵OE=DE=a,∠EON=DOE=30°,∴OE=a,∴边长为a正六边形外接圆半径与内切圆半径的比值为:.24.(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为弧BC上一动点,求证:PA=PB+PC.下面给出一种证明方法,你可以按这一方法补全证明过程,也可以选择另外的证明方法.证明:在AP上截取AE=CP,连接BE∵△ABC是正三角形∴AB=CB∵∠1和∠2的同弧圆周角∴∠1=∠2∴△ABE≌△CBP(2)如图2,四边形ABCD是⊙O的内接正方形,点P为弧BC上一动点,求证:PA=PC+ PB.(3)如图3,六边形ABCDEF是⊙O的内接正六边形,点P为弧BC上一动点,请探究PA、PB、PC三者之间有何数量关系,直接写出结论.【答案】(1)见解析;(2)见解析;(3)【解析】证明:(1)延长BP至E,使PE=PC,连接CE.∵∠1=∠2=60°,∠3=∠4=60°,∴∠CPE=60°,∴△PCE是等边三角形,∴CE=PC,∠E=∠3=60°;又∵∠EBC=∠P AC,∴△BEC≌△APC,∴P A=BE=PB+P C.(2)过点B作BE⊥PB交P A于E.∵∠1+∠2=∠2+∠3=90°∴∠1=∠3,又∵∠APB=45°,∴BP=BE,∴;PE=又∵AB=BC,∴△ABE≌△CBP,∴PC=AE.∴PA AE PE PC=+=.=+;(3)答:PA PC证明:在AP上截取AQ=PC,连接BQ,∵∠BAP=∠BCP,AB=BC,∴△ABQ≌△CBP,∴BQ=BP.又∵∠APB=30°,∴PQ==+=∴PA PQ AQ25.如图①②③④,M,N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,…,正n边形ABCDEFG…的边AB,BC上的点,且BM=CN,连接OM,ON.(1)求图①中∠MON的度数;(2)图②中,∠MON的度数是________,图③中∠MON的度数是________;(3)试探究∠MON的度数与正n边形的边数n的关系(直接写出答案).【答案】90°72°【解析】(1)方法一:如图①,连接OB,OC.图①∵正三角形ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△OBM≌△OCN,∴∠BOM=∠CON,∴∠MON=∠BOC=120°.方法二:如图②,连接OA,OB.图②∵正三角形ABC内接于⊙O,∴AB=BC,∠OAM=∠OBN=30°,∠AOB=120°.∵BM=CN,∴AM=BN.又∵OA=OB,∴△AOM≌△BON,∴∠AOM=∠BON,∴∠MON=∠AOB=120°.(2)90°72°(3)∠MON=.26.如图,一个圆形街心花园,有三个出口A,B,C,每两个出口之间有一条60米长的道路,组成正三角形ABC,在中心点O处有一亭子,为使亭子与原有的道路相通,需再修三条小路OD,OE,OF,使另一出口D、E、F分别落在ΔABC分成三个全等的多边形,以备种植不同品种的花草.(1)请你按以上要求设计两种不同的方案,将你的设计方案分别画在图1,图2中,并附简单说明.(2)要使三条小路把ΔABC分成三个全等的等腰梯形,应怎样设计?请把方案画在图3中,并求此时三条小路的总长.(3)请你探究出一种一般方法,使得出口D不论在什么位置,都能准确地找到另外两个出口E、F的位置,请写明这个方法.(4)你在(3)中探究出的一般方法适用于正五边形吗?请结合图5予以说明,这种方法能推广到正n边形吗?【答案】(1)方案1:D,E,F与A,B,C重合,方案2:OD,OE,OF分别垂直于AB,BC,AC;(2)60;(3)如图(4)见解析;(4)可推广到正n边形.【解析】(1)方案1:D,E,F与A,B,C重合,连OD,OE,OF.方案2:OD,OE,OF分别垂直于AB,BC,AC.(2)OD//AC,OE//AB,OF//BC,如图(3),作OM⊥BC于M,连OB,∵ΔABC是等边Δ,∴BM=BC=30,且∠OBM=30°,∴OM=10,∵OE//AB,∴∠OEM=60°,OE==20,又OE=OF=OD,∴OE+OF+OD=3OE=60,答:略.(3)如图(4),方法1:在BC,CA,AB上分别截取BE=CF=AD,连结OD,OE,OF,方法2:在AB上任取一点D,连OD,逆时针旋转OD120°两次,得E,F.(4)设M1为A1A2上任一点,在各边上分别取A2M2=A3M3=A4M4=A5M5=A1M1,连OM1……OM5即可,∴可推广到正n边形.。
人教版九年级数学上册24.3 正多边形和圆同步练习含答案
![人教版九年级数学上册24.3 正多边形和圆同步练习含答案](https://img.taocdn.com/s3/m/0723c6615901020206409c21.png)
第24章 24.3《正多边形和圆》同步练习及答案 (1) 1.边长为a的正六边形的边心距是__________,周长是____________,面积是___________。
2.如图1,正方形的边长为a,以顶点B、D为圆心,以边长a为半径分别画弧,在正方形内两弧所围成图形的面积是___________。
(1) (2) (3)3.圆内接正方形ABCD的边长为2,弦AE平分BC边,与BC交于F,则弦AE的长为__________。
4.正六边形的面积是183,则它的外接圆与内切圆所围成的圆环面积为_________。
5.圆内接正方形的一边截成的小弓形面积是2π-4,则正方形的边长等于__________。
6.正三角形的内切圆半径、外接圆半径和高的比为___________。
7.在半径为R的圆中,内接正方形与内接正六边形的边长之比为___________。
8.同圆的内接正n边形与外切正n边形边长之比是______________。
9.正三角形与它的内切圆及外接圆的三者面积之比为_____________。
10.正三角形的外接圆半径为4cm,以正三角形的一边为边作正方形,则此正方形的外接圆半径长为___________。
B卷1.正方形的内切圆半径为r,这个正方形将它的外接圆分割出四个弓形,其中一个弓形的面积为_________。
2.如果正三角形的边长为a,那么它的外接圆的周长是内切圆周长的_______倍。
3.如图2,正方形边长为2a,那么图中阴影部分的面积是__________。
4.正多边形的一个内角等于它的一个外角的8倍,那么这个正多边形的边数是________。
5.半径为R的圆的内接正n边形的面积等于__________。
6.如果圆的半径为a,它的内接正方形边长为b,该正方形的内切圆的内接正方形的边长为c,则a,b,c间满足的关系式为___________。
7.如图3,正△ABC内接于半径为1cm的圆,则阴影部分的面积为___________。
人教版 九年级数学上册 24.3 正多边形和圆 课时训练(含答案)
![人教版 九年级数学上册 24.3 正多边形和圆 课时训练(含答案)](https://img.taocdn.com/s3/m/7becd3f6192e45361166f5a5.png)
人教版九年级数学上册24.3 正多边形和圆课时训练一、选择题1. 正八边形的中心角是()A.45°B.135°C.360°D.1080°2. 下列圆的内接正多边形中,一条边所对的圆心角最大的图形是()A.正三角形B.正方形C.正五边形D.正六边形3. (2019•贵阳)如图,正六边形ABCDEF内接于⊙O,连接BD.则∠CBD的度数是A.30°B.45°C.60°D.90°4. 2019·安徽月考如图,正五边形ABCDE内接于⊙O,过点A作⊙O的切线交对角线DB的延长线于点F,则下列结论不成立的是()A.AE∥BF B.AF∥CDC.DF=3AF D.AB=BF5. 若正方形的外接圆的半径为2,则其内切圆的半径为()A. 2 B.2 2 C.22D.16. 已知正六边形的半径为r ,则它的边长、边心距、面积分别为( ) A.233r ,r ,3r 2 B .r ,r2,23r 2 C.33r ,r ,3r 2D .r ,3r 2,332r 27. 以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边长作三角形,则该三角形的面积是 ( ) A.38B.34C.24D.288. 如图,将两张完全相同的正六边形纸片(边长为2a )重合在一起,下面一张纸片保持不动,将上面一张纸片沿水平方向向左平移a 个单位长度,则空白部分与阴影部分的面积之比是( )A .5∶2B .3∶2C .3∶1D .2∶19. 如图0,AD 为⊙O 的直径,作⊙O 的内接正三角形ABC ,甲、乙两人的作法分别如下:A .甲对,乙不对B .甲不对,乙对C.两人都对D.两人都不对10. 如图是由7个全等的正六边形组成的网格,正六边形的顶点称为格点,△ABC 的顶点都在格点上,设定AB边如图所示,则使△ABC是直角三角形的格点有()A.10个B.8个C.6个D.4个二、填空题11. 一个圆内接正六边形的边长为2,那么这个正六边形的边心距为________.12. 如图①,小敏利用课余时间制作了一个脸盆架,图②是它的截面图,垂直放置的脸盆与架子的交点为A,B,AB=40 cm,脸盆的最低点C到AB的距离为10 cm,则该脸盆的半径为________cm.13. 如图,正五边形ABCDE和正三角形AMN都是⊙O的内接多边形,则∠BOM =________°.14. 如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形,则原来的纸带宽为________.15. (2019•扬州)如图,AC是⊙O的内接正六边形的一边,点B在弧AC上,且B C是⊙O的内接正十边形的一边,若AB是⊙O的内接正n边形的一边,则n=_ _________.16. 如图,AB,AC分别为⊙O的内接正四边形与内接正三角形的一边,而BC恰好是⊙O内接正n边形的一边,则n等于________.17. 如图为一个半径为4 m的圆形场地,其中放有六个宽为1 m的长方形临时摊位,这些摊位均有两个顶点在场地边上,另两个顶点紧靠相邻摊位的顶点,则每个长方形摊位的长为__________m.三、解答题18. 如图,在正六边形ABCDEF中,点O是中心,AB=10,求这个正六边形的半径、边心距、周长、面积.19. 如图2,M,N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,…,正n边形ABCDEFG…的边AB,BC上的点,且BM=CN,连接OM,ON.(1) 求图①中∠MON的度数;(2) 图②中∠MON的度数是________,图③中∠MON的度数是________;(3)试探究∠MON的度数与正n边形的边数n的关系(直接写出答案).20. 如图,A,B,C,D,E是⊙O上的五等分点,连接AC,CE,EB,BD,DA,得到一个五角星图形和五边形MNFGH.(1)计算∠CAD的度数;(2)连接AE,求证:AE=ME.人教版九年级数学上册24.3 正多边形和圆课时训练-答案一、选择题1. 【答案】A2. 【答案】A[解析] ∵正三角形一条边所对的圆心角是360°÷3=120°,正方形一条边所对的圆心角是360°÷4=90°,正五边形一条边所对的圆心角是360°÷5=72°,正六边形一条边所对的圆心角是360°÷6=60°,∴一条边所对的圆心角最大的图形是正三角形.故选A.3. 【答案】 A【解析】∵在正六边形ABCDEF中,∠BCD=(62)1806-⨯︒=120°,BC=CD,∴∠CBD=12(180°-120°)=30°,故选A.4. 【答案】C5. 【答案】A[解析] 如图所示,连接OA,OE.∵AB是小圆的切线,∴OE⊥AB.∵四边形ABCD是正方形,∴AE=OE.在Rt△AOE中,由勾股定理,得OA2=AE2+OE2,∴22=AE2+OE2,∴OE= 2.故选A.6. 【答案】D7. 【答案】D[解析] 如图①,∵OC=1,∴OD=1 2;如图②,∵OB =1,∴OE =22;如图③,∵OA =1,∴OD =32,则该三角形的三边长分别为12,22,32. ∵(12)2+(22)2=(32)2,∴该三角形是以12,22为直角边长,32为斜边长的直角三角形,∴该三角形的面积是12×12×22=28. 故选D.8. 【答案】C[解析] 正六边形的面积=6×34×(2a )2=6 3a 2,阴影部分的面积=a ·2 3a =2 3a 2,∴空白部分与阴影部分的面积之比是=6 3a 2∶2 3a 2=3∶1.9. 【答案】C[解析] 由甲的作法可知连接OB ,BD ,OC ,CD 后,OB =BD =OD=OC =CD ,所以△BOD 和△COD 都是等边三角形,四边形OBDC 是菱形,所以∠BOC =120°,则∠BAC =60°.因为四边形OBDC 是菱形,所以AD ⊥BC ,AD 平分BC ,所以AB =AC ,所以△ABC 是等边三角形,所以他的作法是正确的.由乙的作法可知∠BOC =120°,所以∠BAC =60°.又因为AD ⊥BC ,所以AD 平分BC ,所以AB =AC ,所以△ABC 是等边三角形,所以他的作法是正确的.故选C.10. 【答案】A[解析] 如图,当AB 是直角边时,点C 共有6个位置,即有6个直角三角形;当AB 是斜边时,点C 共有4个位置,即有4个直角三角形. 综上所述,使△ABC 是直角三角形的格点有6+4=10(个).故选A.二、填空题11. 【答案】 312. 【答案】25【解析】如解图,取圆心为O,连接OA、OC,OC交AB于点D,则OC⊥AB.设⊙O的半径为r,则OA=OC=r,又∵CD=10,∴OD=r-10,∵AB=40,OC⊥A B,∴AD=20.在Rt△ADO中,由勾股定理得:r2=202+(r-10)2,解得r=25,即脸盆的半径为25 cm.13. 【答案】48[解析] 连接AO,则有∠AOM=13×360°=120°,∠AOB=15×360°=72°,∴∠BOM=∠AOM-∠AOB=120°-72°=48°.14. 【答案】3[解析] 边长为2的正六边形由6个边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,所以原来的纸带宽度为 3.15. 【答案】15【解析】如图,连接OB,∵AC是⊙O的内接正六边形的一边,∴∠AOC=360°÷6=60°,∵BC 是⊙O 的内接正十边形的一边,∴∠BOC=360°÷10=36°, ∴∠AOB=60°–36°=24°,即360°÷n=24°,∴n=15,故答案为:15.16. 【答案】12[解析] 连接OA ,OB ,OC ,如图.∵AB ,AC 分别为⊙O 的内接正四边形与内接正三角形的一边, ∴∠AOB =90°,∠AOC =120°, ∴∠BOC =∠AOC -∠AOB =30°,∴n =360°30°=12,即BC 恰好是⊙O 内接正十二边形的一边.17. 【答案】-3+3 72[解析] 设圆心是O ,连接OA ,OB ,过点O 作OC ⊥BC 于点C ,交AD 于点D .设长方形摊位的长是2x m .在Rt △OAD 中,∠AOD =30°,AD =x m ,则OD =3x m.在Rt △OBC 中,由勾股定理,得OC =16-x 2 m.∵OC -OD =CD =1 m , ∴16-x 2=3x +1,解得x =-3+3 74(负值已舍去),则2x =-3+3 72, ∴长方形摊位的长为-3+3 72m.三、解答题18. 【答案】解:连接OB ,OC ,过点O 作OH ⊥BC 于点H.∵正六边形的中心角为360°6=60°,OB =OC ,∴△OBC 是等边三角形,∴半径R =OB =BC =AB =10.∵OH ⊥BC ,∴∠BOH =30°,∴BH =12OB =5. 在Rt △OBH 中,边心距r =OH =102-52=5 3,周长l =6AB =6×10=60. ∵S △OBC =12BC·OH =12×10×5 3=25 3, ∴正六边形的面积S =6S △OBC =6×25 3=150 3.19. 【答案】解:(1)方法一:连接OB ,OC . ∵正三角形ABC 内接于⊙O ,∴∠OBM =∠OCN =30°,∠BOC =120°. 又∵BM =CN ,OB =OC ,∴△OBM ≌△OCN ,∴∠BOM =∠CON , ∴∠MON =∠BOC =120°. 方法二:连接OA ,OB . ∵正三角形ABC 内接于⊙O ,∴AB =BC ,∠OAM =∠OBN =30°,∠AOB =120°. ∵BM =CN ,∴AM =BN .又∵OA =OB ,∴△AOM ≌△BON ,∴∠AOM =∠BON ,∴∠MON =∠AOB =120°. (2)90° 72° (3)∠MON =⎝ ⎛⎭⎪⎫360n °.20. 【答案】解:(1)∵A ,B ,C ,D ,E 是⊙O 上的五等分点, ∴∠COD =360°5=72°,11 / 11 ∴∠CAD =12∠COD =36°.(2)证明:∵A ,B ,C ,D ,E 是⊙O 上的五等分点,∴CD ︵=DE ︵=AE ︵=AB ︵=BC ︵,∴∠DAE =∠AEB =∠CAD =36°,∴∠MAE =72°,∴∠AME =180°-∠MAE -∠AEB =72°=∠MAE ,∴AE =ME.。
人教版九年级数学上册24.3 正多边形和圆同步练习 含答案
![人教版九年级数学上册24.3 正多边形和圆同步练习 含答案](https://img.taocdn.com/s3/m/6a8fa49ea76e58fafab003f2.png)
第24章 24.3《正多边形和圆》同步练习及答案 (2)1.下列边长为a 的正多边形与边长为a 的正方形组合起来,不能镶嵌成平面的是( )(1)正三角形 (2)正五边形 (3)正六边形 (4)正八边形A .(1)(2)B .(2)(3)C .(1)(3)D .(1)(4)2.以下说法正确的是A .每个内角都是120°的六边形一定是正六边形.B .正n 边形的对称轴不一定有n 条.C .正n 边形的每一个外角度数等于它的中心角度数.D .正多边形一定既是轴对称图形,又是中心对称图形.(3)(2006年天津市)若同一个圆的内角正三角形、正方形、正六边形的边心距分别为r 3,r 4,r 6,则r 3:r 4:r 6等于( )A .BC .1:2:3D . 3:2:14. 已知正六边形ABCDEF 内接于⊙O ,图中阴影部分的面积为312,则⊙O 的半径为______________________.5.如图,正方形ABCD 内接于⊙O ,点E 在»AD 上,则∠BEC= . 6.将一块正六边形硬纸片(图1),做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于底面,见图2),需在每一个顶点处剪去一个四边形,例如图中的四边形AGA /H ,那么∠GA /H 的大小是 度.7.(2006年威海市)如图,若正方形A 1B 1C 1D 1内接于正方形ABCD 的内接圆,则ABB A 11的值为( ) A .21 B .22 C .41 D .42 8.从一个半径为10㎝的圆形纸片上裁出一个最大的正方形,则此正方形的边长为 .9.如图五边形ABCDE 内接于⊙O,∠A=∠B=∠C=∠D=∠E .求证:五边形ABCDE 是正五边形10.如图,10-1、10-2、10-3、…、10-n 分别是⊙O 的内接正三角形ABC ,正四边形ABCD 、正五边形ABCDE 、…、正n 边形ABCD …,点M 、N 分别从点B 、C 开始以相同的速度在⊙O 上逆时针运动。
人教版九年级的数学上册24.3正多边形和圆同步练习
![人教版九年级的数学上册24.3正多边形和圆同步练习](https://img.taocdn.com/s3/m/819609e8fc4ffe473268abf0.png)
.精选文档 .人教版九年级数学上册24.3 正多边形和圆同步练习2018-2019 学年度人教版数学九年级上册同步练习24.3正多边形和圆一.选择题(共12 小题)1.在正六边形ABDEF的中,若 BE=10,则这个正六边形外接圆半径是()A.B. 5. D.52.以下对于圆的表达正确的有()①对角互补的四边形是圆内接四边形;②圆的切线垂直于圆的半径;③正多边形中心角的度数等于这个正多边形一个外角的度数;④过圆外一点所画的圆的两条切线长相等.A.1 个 B.2 个.3 个 D.4 个3.如图,用一张圆形纸片完整覆盖边长为 2 的正方形ABD,则该圆形纸片的面积最少为()A.π B.. 2πD.4π4.已知正方形Nk 和正六边形ABDEF边长均为1,把正方形放在正六边形中,使k 边与 AB 边重合,如下图:按以下步骤操作:将正方形在正六边形中绕点 B 顺时针旋转,使 k 边与 B 边重合,达成第一次旋转;再绕点顺时针旋转,使 N 边与 D 边重合,达成第二次旋转连续经过六次旋转.在旋转的过程中,当正方形和正六边形的边重合时,点B,间的距离可能是()A.0.5B . 0.7 .﹣ 1D.﹣ 15.如图,点A、B、、 D、 E、 F 是⊙的平分点,分别以点B、D、F 为圆心, AF 的长为半径画弧,形成漂亮的“三叶轮”图案.已知⊙的半径为1,那么“三叶轮”图案的面积为()A.B.. D.6.已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()A.2B.1. D.7.如图,正五边形ABDE内接于⊙,过点 A 作⊙的切线交对角线 DB的延伸线于点F,则以下结论不建立的是()A.AE∥BDB.AB=BF.AF∥ DD.DF=8.如图,在正八边形ABDEFGH中,若四边形ADEH的面积等于 20,则暗影部分的面积等于()A.10B. 20.18D. 209.如图,分别把正六边形边AB、 EF、D 向两个方向延长,订交于、N、Q,则暗影部分与空白部分的面积比为()A.B.. D.10.如图,正六边形ABDEF的中心与坐标原点0 重合,此中 A(﹣ 2,0).将六边形 ABDEF绕原点按顺时针方向旋转2018 次,每次旋转60°,则旋转后点 A 的对应点 A 的坐标是()A.( 1,) B.(, 1).(1,) D.(﹣ 1,)11.如图,正六边形螺帽的边长是2,这个扳手的张口a 的值应是()A.2B.. D. 112.如图,圆的内接正六边形的边长是12,则边心距是()A.6B.12.6D. 6二.填空题(共 6 小题)13.圆内接正三边形的边长为12,则边心距是.14.正六边形的边长为4,它的半径等于.15.一个半径为 5 的圆内接正六边形的面积等于.16.如图,有公共极点A、 B 的正五边形和正六边形,连结 A 交正六边形于点D,则∠ ADE的度数为.17.如图,⊙与正五边形ABDE的两边AE, D 分别相切于 A,两点,则∠ B 的度数为度.18.如图,有一个正六边形图片,每组平行的对边距离为 3 米,点 A 是正六边形的一个极点,现点重合,工人将图片沿数轴正方向转动一周,点轴点 A′上,则点A′对应的实数是.A 与数轴的原点A 恰巧落在数三.解答题(共 6 小题)19.如图,正五边形ABDE的两条对角线A, BE 订交于点 F.(1)求证: AB=EF;(2)若 BF=2,求正五边形 ABDE的边长.20.如图,⊙是正方形 ABD与正六边形AEFGH的外接圆.( 1)正方形 ABD与正六边形 AEFGH的边长之比为;(2)连结 BE, BE能否为⊙的内接正 n 边形的一边?假如是,求出 n 的值;假如不是,请说明原因.21.已知正六边形ABDEF,如下图,其外接圆的半径是 a,求正六边形的周长和面积.22.如图,⊙的周长等于8 π,正六边形ABDEF内接于⊙.(1)求圆心到 AF 的距离;(2)求正六边形 ABDEF的面积.23.如图正方形ABD内接于⊙, E 为 D 随意一点,连结DE、 AE.(1)求∠ AED的度数.(2)如图 2,过点 B 作 BF∥ DE交⊙于点 F,连结 AF,AF=1, AE=4,求 DE的长度.24.( 1)已知△ AB为正三角形,点是 B 上一点,点N 是A 上一点, A、 BN订交于点Q,B= N,证明△ AB≌△ BN,并求出∠ BQ的度数.(2)将( 1)中的“正△ AB”分别改为正方形 ABD、正五边形 ABDE、正六边形 ABDEF、正 n 边形 ABD,“点 N 是 A 上一点”改为点N 是 D 上一点,其他条件不变,分别推测出∠BQ等于多少度,将结论填入下表:n 边形正多边形正方形正五边形正六边形正∠BQ的度数参照答案与试题分析一.选择题(共12 小题)1.【解答】解:由于正六边形ABDEF的中, BE=10,因此这个正六边形外接圆半径是,应选: B.2.【解答】解:对角互补的四边形是圆内接四边形,所以①正确;圆的切线垂直于过切点的半径,因此②错误;正多边形中心角的度数等于这个正多边形一个外角的度数,因此③正确;过圆外一点所画的圆的两条切线长相等,因此④正确.应选:.3.【解答】解:∵正方形的边长为2,∴正方形的对角线的长为2,∴正方形的外接圆的直径为2,∴正方形的外接圆的面积=2π,应选:.4.【解答】解:如图,在这样连续 6 次旋转的过程中,点的运动轨迹是图中的红线,察看图象可知点B,间的距离大于等于2﹣小于等于1,当正方形和正六边形的边重合时,点B,间的距离可能是 1 或﹣1,应选: D.5.【解答】解:连结 A、 B、 AB,作 H⊥ AB于 H,∵点 A、B、、 D、E、 F 是⊙的平分点,∴∠ AB=60°,又 A=B,∴△ AB是等边三角形,∴A B=B=1,∠ AB=60°,∴H==,∴“三叶轮”图案的面积=(﹣× 1×)× 6=π ﹣,应选: B.6.【解答】解:由于圆内接正三角形的面积为,因此圆的半径为,因此该圆的内接正六边形的边心距×sin60 °=,应选: B.7.【解答】解:∵五边形ABDE是正五边形,∴∠ BAE=∠ AB=∠ =∠ ED=∠ E==108°, B=D,∴∠ BD=∠ DB=×( 180°﹣∠) =36°,∴∠ ABD=108°﹣ 36°=72°,∴∠ EAB+∠ ABD=180°,∴AE∥ BD,故本选项不切合题意;B、连结 A、 B,∵五边形 ABDE是正五边形,∴∠ AB==72°,∵A=B,∴∠ AB=∠ BA=( 180°﹣ 72°) =54°,∵F A 切⊙于 A,∴∠ AF=90°,∴∠ FAB=90°﹣ 54°=36°,∵∠ ABD=72°,∴∠ F=72°﹣ 36° =36° =∠ FAB,∴AB=BF,故本选项不切合题意;、∵∠ F=∠ DB=36°,∴AF∥ D,故本选项不切合题意;D、连结 AD,过 A 作 AH⊥ DF于 H,则∠ AHF=∠ AHD=90°,∵∠ ED=108°,∠ DB=∠EDA=36°,∴∠ ADF=108°﹣ 36°﹣ 36° =36° =∠ F,∴A D=AF,∴F H=DH,当∠ F=30°时, AF=2AH, FH=DH=AH,此时 DF=AF,∴此时∠ F=36°时, DF≠ AF,故本选项切合题意;应选: D.8.【解答】解:作出正方形NQR,如下图:△AB中, A=x,则 B=x, AB=x,正八边形的边长是x.则正方形的边长是(2+) x.依据题意得:x ( 2+)x=20,解得: x2=10(﹣ 1).则暗影部分的面积是:2[x( 2+)x ﹣2×x2]=2 ( +1)x2=2 (+1)× 10(﹣ 1) =20.应选: B.9.【解答】解:由题意可得:空白部分为正六边形,阴影部分是三个全等的正三角形,它们的边长相等,由正六边形能够切割为 6 个全等的三角形,则暗影部分与空白部分的面积比为:= .应选: A.10.【解答】解:连结B、、E、 F,作 EH⊥D 于 H,∵六边形 ABDEF是正六边形,∴∠ AF=∠ FE=∠ ED=∠D=∠ B=∠BA=60°,∵将正六边形ABDEF绕原点顺时针旋转,每次旋转 60°,∴点 A 旋转 6 次回到点A,2018÷ 6=336 2∴正六边形ABDEF绕原点顺时针旋转2018 次,与点 E 重合,在 Rt △EH中, H=E=1,EH=H=∴极点 A 的坐标为( 1,),应选: A.11.【解答】解:∵正六边形的任一内角为120°,∴∠ 1=30°(如图),∴a=2s ∠ 1=,∴a=2.应选: A.12.【解答】解:如下图,连结B、,过作 G⊥ B 于 G,∵此多边形是正六边形,∴△ B 是等边三角形,∴∠ BG=30°,∴边心距 G=B•sin ∠BG=12×=6;应选: D.二.填空题(共 6 小题)13.【解答】解:如图在正三角形AB 中, AB=B=A=12,作 H⊥B于 H,连结 B.∵H⊥ B,∴B H=H=6,在 Rt △BH中, H=BH•tan30° =6×=2(),故答案为: 2.14.【解答】解:∵此多边形为正六边形,∴∠ AB==60°;∵A=B,∴△ AB是等边三角形,∴A=AB=4,故答案为: 415.【解答】解:连结正六边形的中心与各个极点,获得六个等边三角形,等边三角形的边长是 5,因此面积是× 5×=2,因此正六边形的面积 2 .故答案为2.16.【解答】解:正五边形的内角是∠AB==108°,∵A B=B,∴∠AB=36°,正六边形的内角是∠ ABE=∠E==120°,∵∠ ADE+∠ E+∠ ABE+∠AB=360°,∴∠ ADE=360°﹣ 120°﹣ 120°﹣ 36°=84°,故答案为 84°.17.【解答】解:∵⊙与正五边形ABDE的两边 AE, D 分别相切于 A,两点,∴A⊥ AE,⊥ D,∴∠ AE=∠ D=90°,∵∠ BD=108°,∴B=108°﹣ 90° =18°故答案为 18.18.【解答】解:如图作BH⊥于 H.∵B=B,BH⊥,∴H=H=,在 Rt △BH中,∵ s30 °=,∴H=,由题意 A′ =6B=6,故答案为 6.三.解答题(共 6 小题)19.【解答】解:( 1)∵正五边形ABDE,∴AB=AE,∠ BAE=108°,∴∠ ABE=∠ AEB=36°,同理:∠ BAF=∠ BA=36°,∴∠ FAE=∠ AFE=72°,∴A E=EF,∴A B=EF;(2)设 AB=x,由( 1)知;∠ BAF=∠AEB,∵∠ ABF=∠ ABE,∴△ ABF∽△ EBA,∴,即,解得:(舍去),∴五边形 ABDE的边长为 1+.20.【解答】解:( 1)设此圆的半径为R,则它的内接正方形的边长为R,它的内接正六边形的边长为R,内接正方形和外切正六边形的边长比为R: R=: 1;故答案为:: 1;(2) BE是⊙的内接正十二边形的一边,原因:连结 A, B, E,在正方形 ABD中,∠ AB=90°,在正六边形 AEFGH中,∠AE=60°,∴∠ BE=30°,∵n==12,∴BE是正十二边形的边.21.【解答】解:∵正六边形的半径等于边长,∴正六边形的边长AB=A=a;正六边形的周长=6AB=6a;∵=A•sin60 ° =a,正六边形的面积S=6×× a× a=a2.22.【解答】解:( 1)连结、 D,作 H⊥ D 于 H,∵⊙的周长等于8π,∴半径 =4,∵六边形 ABDE是正六边形,∴∠ D=60°,∴∠ H=30°,∴圆心到 D 的距离 =4× s30 ° =2,∴圆心到 AF 的距离为 2;(2)正六边形 ABDEF的面积 =×4× 2× 6=242.23.【解答】解:( 1)如图 1 中,连结 A、 D.∵四边形 ABD是正方形,∴∠ AD=90°,∴∠ AED=∠ AD=45°.(2)如图 2 中,连结 F,E, A, BD,作 DH⊥ AE于 H.∵BF∥ DE, AB∥ D,∴∠ BDE=∠ DBF,∠ BD=∠ ABD,∴∠ ABF=∠ DE,∵∠ FA=∠ AE=90°,∴∠ DE=∠ AFB=135°,∵D=AB,∴△ DE≌△ ABF,∴A F=E=1,∴A==,∴A D=A=,∵∠DHE=90°,∴∠ HDE=∠ HED=45°,∴D H=HE,设 DH=EH=x,在 Rt △ADH中,∵ AD2=AH2+DH2,∴=( 4﹣ x) 2+x2,解得 x=或(舍弃),∴DE=DH=24.【解答】( 1)证明:∵△ AB为等边三角形,∴∠ AB=∠ =60°,在△ AB和△ BN中,,∴△ AB≌△ BN,∴∠ BA=∠ BN,∴∠ BQ=∠ BA+∠ ABQ=∠BN+∠ ABQ=60°;(2)正方形 ABD中,由( 1)得,△ AB≌△ BN,∴∠ BA=∠ BN,∴∠ BQ=∠ BA+∠ ABQ=∠BN+∠ ABQ=90°,同理正五边形 ABDE中,∠ BQ=108°,正六边形 ABDEF中,∠ BQ=120°,正 n 边形 ABD中,∠ BQ=,故答案为: 90°; 108°; 120°;.。
人教新版数学九年级上学期《24.3正多边形和圆》同步练习(有答案)
![人教新版数学九年级上学期《24.3正多边形和圆》同步练习(有答案)](https://img.taocdn.com/s3/m/353c165cde80d4d8d15a4fce.png)
人教新版数学九年级上学期《24.3正多边形和圆》同步练习一.选择题(共12小题)1.对于以下说法:①各角相等的多边形是正多边形;②各边相等的三边形是正三边形;③各角相等的圆内接多边形是正多边形;④各顶点等分外接圆的多边形是正多边形.其中,正确的有()A.1个B.2个C.3个D.4个2.如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴,将正六边形ABCDEF绕原点O顺时针旋转n次,每次旋转60°,当n=2019时,顶点A的坐标为()A.(4,0)B.(﹣4,0)C.(2,2)D.(﹣2,2)3.如图是一个餐盘,它的外围是由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成,已知正三角形的边长为10,则该餐盘的面积是()A.50π﹣50B.50π﹣25C.25π+50D.50π4.如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB为()A.30°B.40°C.45°D.60°5.已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()A.2 B.1 C.D.6.如图,半径为1的⊙O与正六边形ABCDEF相切于点A、D,则弧AD的长为()A.B.C.D.7.半径为a的正六边形的面积等于()A.B.C.a2D.8.如图,有一个边长为2cm的正六边形纸片,若在该纸片上剪一个最大圆形,则这个圆形纸片的直径是()A.cm B.2cm C.2cm D.4cm 9.如图,圆O的内接正六边形的边长是12,则边心距是()A.6 B.12 C.6D.610.如图,⊙O内切于正方形ABCD,边BC、DC上两点M、N,且MN是⊙O的切线,当△AMN的面积为4时,则⊙O的半径r是()A.B.C.2 D.11.如图,分别把正六边形边AB、EF、CD向两个方向延长,相交于M、N、Q,则阴影部分与空白部分的面积比为()A.B.C.D.12.如图,用一张圆形纸片完全覆盖边长为2的正方形ABCD,则该圆形纸片的面积最少为()A.πB.C.2πD.4π二.填空题(共10小题)13.如图,正五边形ABCDE内接于⊙O,对角线AC,BE相交于点M.若AB=1,则BM的长为.14.如图,在正六边形ABCDEF中,延长AB交EC的延长线于点G,则∠G的度数为.15.如图,ABCDE是正五边形,已知AG=1,则FG+JH+CD=.16.在平面上将边长相等的正方形、正五边形和正六边形按如图所示的位置摆放,则∠1的度数为.17.如图,AB,AC分别为⊙O的内接正六边形,内接正方形的一边,BC是圆内接n边形的一边,则n等于.18.如图,正八边形ABCDEFGH的边长为a,I、J、K、L分别是各自所在边的中点,且四边形IJKL是正方形,则正方形IJKL的边长为(用含a的代数式表示).19.如图,正六边形ABCDEF内接于⊙O,若AB=2,则⊙O的半径为.20.如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ 排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点,…,最后一个△A n B n C n的顶点B n、C n在圆上.如图1,当n=1时,正三角形的边长a1=;如图2,当n=2时,正三角形的边长a2=;如图3,正三角形的边长a n=(用含n的代数式表示).21.如图,正六边形ABCDEF中,P是边ED的中点,连接AP,则=.22.如图,正六边形ABCDEF的顶点B,C分别在正方形AMNP的边AM,MN上,若AB=1,则CN=.三.解答题(共3小题)23.如图所示,正六边形ABCDEF内接于⊙O,已知⊙O的周长等于6πcm(1)求∠ADB的度数(2)求正六边形ABCDEF的周长和面积.24.正方形ABCD的边长为1,E、F两点分别位于BC、CD上,DF=m,BE=n,∠EAF=45°,△EFC的内切圆的半径为r.(1)证明:EF=m+n;(2)证明:(m+1)(n+1)=2;(3)若m<n,r=求m、n的值.25.在直角坐标系中,正方形OABC的两边OC、OA分别在x轴、y轴上,A点的坐标为(0、4).(1)将正方形OABC绕点O顺时针旋转30°,得到正方形ODEF,边DE交BC于G.求G点的坐标;(2)如图,⊙O1与正方形ABCO四边都相切,直线MQ切⊙O1于点P,分别交y轴、x轴、线段BC于点M、N、Q.求证:O1N平分∠MO1Q.(3)若H(﹣4、4),T为CA延长线上一动点,过T、H、A三点作⊙O2,AS ⊥AC交O2于F.当T运动时(不包括A点),AT﹣AS是否为定值?若是,求其值;若不是,说明理由.参考答案一.选择题1.B.2.C.3.A.4.A.5.B.6.A.7.B.8.B.9.D.10.C.11.A.12.C.二.填空题13..14.30°15.+1.16.42°.17.1218.a.19.2.20.,,.21.22..三.解答题23.解:(1)连接DB,OB,∵正六边形ABCDEF内接于⊙O,∴∠AOB=60°,∴∠ADB=30°;(2)过点O作OH⊥AB于点H,连接OA,OB,∴AH=AB,∵⊙O的周长等于6πcm,∴⊙O的半径为:3cm,∵∠AOB=×360°=60°,OA=OB,∴△OAB是等边三角形,∴AB=OA=3cm,∴AH=cm,∴OH=(cm),∴S正六边形ABCDEF =6S△OAB=6××3×=(cm2).∴正六边形ABCDEF的周长=18cm.24.(1)证明:延长CB至G,使BG=DF,连接AG.在△AGB和△AFD中,∵AB=AD,∠ABG=∠ADF,BG=DF,∴△AGB≌△AFD,∴AG=AF,∠GAB=∠FAD,又∵∠EAF=45°,∴∠BAE+∠FAD=∠BAE+∠GAB=45°,∴∠EAG=∠EAF=45°,在△EAG和△EAF中,∵AE=AE,∠EAG=∠EAF,AG=AF,∴△EAG≌△EAF,∴EG=EF,又∵EG=EB+BG=BE+DF=n+m,∴EF=m+n.(2)在Rt△FEC中,∵EF2=CE2+CF2,∴(m+n)2=(1﹣n)2+(1﹣m)2,展开整理得mn+m+n=1,两边同加上1,左边因式分解得(m+1)(n+1)=2.=(CE+CF+EF)r,(3)∵S△EFC∴当r=时得,(1﹣m)(1﹣n)= [(1﹣m)+(1﹣n)+(m+n)]×,整理得(1﹣m)(1﹣n)=,结合第2问结论:(m+1)(n+1)=2消元得m=,n=;m=,n=.∵m<n,∴m=,n=.25.解:(1)连接OG,∵∠AOD=∠FOC=30°,由轴对称可得∠DOG=∠COG=30°,又∴OC=4,∵CG=OC•tan∠COG=4×=,∴G(4,);(2)∵BQ∥AM,∴∠BQM+∠AMQ=180°,根据切线长定理,∠O1QM+∠Q1MQ=180°×=90°,∴∠MO1Q=180°﹣90°=90°,由切线长定理∠NO1Q=45°,∴O1N平分∠MO1Q.(3)AQ﹣AF的值是定值为4,在AT上取点V,使TV=AS,即AT﹣AS=AV,∵AS⊥AC,∴∠THS=∠TAS=90°,∵H(﹣4、4),A(0、4),∴AH⊥AO;又∵∠OAC=45°,∴∠TAH=45°,∵∠THS=∠TAS=90°,∴∠TSH=45°,∴HT=HS;又∠HTV=∠HAS,TV=AS,∴△HTV≌△HSA,∴△HAV为等腰直角三角形,∴AT﹣AS=AV=AH=4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学圆一章正多边形和圆练习题及答案一、课前预习1.圆的半径扩大一倍,则它的相应的圆内接正n 边形的边长与半径之比( )A.扩大了一倍B.扩大了两倍C.扩大了四倍D.没有变化2.正三角形的高、外接圆半径、边心距之比为( )A.3∶2∶1B.4∶3∶2C.4∶2∶1D.6∶4∶33.正五边形共有__________条对称轴,正六边形共有__________条对称轴.4.中心角是45°的正多边形的边数是__________.5.已知△ABC 的周长为20,△ABC 的内切圆与边AB 相切于点D,AD=4,那么BC=__________.二、课中强化(10分钟训练)1.若正n 边形的一个外角是一个内角的32时,此时该正n 边形有_________条对称轴.2.同圆的内接正三角形与内接正方形的边长的比是( ) A.26 B.43 C.36 D.34 3.周长相等的正三角形、正四边形、正六边形的面积S 3、S 4、S 6之间的大小关系是( ) A.S 3>S 4>S 6 B.S 6>S 4>S 3 C.S 6>S 3>S 4 D.S 4>S 6>S 34.已知⊙O 和⊙O 上的一点A(如图24-3-1).(1)作⊙O 的内接正方形ABCD 和内接正六边形AEFCGH ;(2)在(1)题的作图中,如果点E 在弧AD 上,求证:DE 是⊙O 内接正十二边形的一边.图24-3-1三、课后巩固(30分钟训练)1.正六边形的两条平行边之间的距离为1,则它的边长为( )A.63B.43C.332D.33 2.已知正多边形的边心距与边长的比为21,则此正多边形为( )A.正三角形B.正方形C.正六边形D.正十二边形3.已知正六边形的半径为3 cm,则这个正六边形的周长为__________ cm.4.正多边形的一个中心角为36度,那么这个正多边形的一个内角等于___________度.5.如图24-3-2,两相交圆的公共弦AB为23,在⊙O1中为内接正三角形的一边,在⊙O2中为内接正六边形的一边,求这两圆的面积之比.图24-3-26.某正多边形的每个内角比其外角大100°,求这个正多边形的边数.7.如图24-3-3,在桌面上有半径为2 cm的三个圆形纸片两两外切,现用一个大圆片把这三个圆完全覆盖,求这个大圆片的半径最小应为多少?图24-3-38.如图24-3-4,请同学们观察这两个图形是怎么画出来的?并请同学们画出这个图形(小组之间参与交流、评价).图24-3-49.用等分圆周的方法画出下列图案:图24-3-510.如图24-3-6(1)、24-3-6(2)、24-3-6(3)、…、24-3-6(n),M 、N 分别是⊙O 的内接正三角形ABC 、正方形ABCD 、正五边形ABCDE 、…、正n 边形ABCDE…的边AB 、BC 上的点,且BM=CN ,连结OM 、ON.图24-3-6(1)求图24-3-6(1)中∠MON 的度数;(2)图24-3-6(2)中∠MON 的度数是_________,图24-3-6(3)中∠MON 的度数是_________;(3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案).参考答案一、课前预习 (5分钟训练)1.圆的半径扩大一倍,则它的相应的圆内接正n 边形的边长与半径之比( )A.扩大了一倍B.扩大了两倍C.扩大了四倍D.没有变化 思路解析:由题意知圆的半径扩大一倍,则相应的圆内接正n 边形的边长也扩大一倍,所以相应的圆内接正n 边形的边长与半径之比没有变化.答案:D2.正三角形的高、外接圆半径、边心距之比为( )A.3∶2∶1B.4∶3∶2C.4∶2∶1D.6∶4∶3 思路解析:如图,设正三角形的边长为a ,则高AD=23a ,外接圆半径OA=33a ,边心距OD=63a ,所以AD∶OA∶OD=3∶2∶1.答案:A 3.正五边形共有__________条对称轴,正六边形共有__________条对称轴.思路解析:正n 边形的对称轴与它的边数相同.答案:5 64.中心角是45°的正多边形的边数是__________.思路解析:因为正n 边形的中心角为n ︒360,所以45°=n ︒360,所以n=8.答案:8 5.已知△ABC 的周长为20,△ABC 的内切圆与边AB 相切于点D,AD=4,那么BC=__________.思路解析:由切线长定理及三角形周长可得.答案:6二、课中强化(10分钟训练)1.若正n 边形的一个外角是一个内角的32时,此时该正n 边形有_________条对称轴. 思路解析:因为正n 边形的外角为n ︒360,一个内角为nn ︒•-180)2(, 所以由题意得n ︒360=32·nn ︒•-180)2(,解这个方程得n=5. 答案:52.同圆的内接正三角形与内接正方形的边长的比是( )A.26B.43C.36 D.34 思路解析:画图分析,分别求出正三角形、正方形的边长,知应选A.答案:A3.周长相等的正三角形、正四边形、正六边形的面积S 3、S 4、S 6之间的大小关系是( )A.S 3>S 4>S 6B.S 6>S 4>S 3C.S 6>S 3>S 4D.S 4>S 6>S 3思路解析:周长相等的正多边形的面积是边数越多面积越大.答案:B4.已知⊙O 和⊙O 上的一点A(如图24-3-1).(1)作⊙O 的内接正方形ABCD 和内接正六边形AEFCGH ;(2)在(1)题的作图中,如果点E 在弧AD 上,求证:DE 是⊙O 内接正十二边形的一边.图24-3-1思路分析:求作⊙O 的内接正六边形和正方形,依据定理应将⊙O 的圆周六等分、四等分,而正六边形的边长等于半径;互相垂直的两条直径由垂径定理知把圆四等分.要证明DE 是⊙O 内接正十二边形的一边,由定理知,只需证明DE 所对圆心角等于360°÷12=30°.(1)作法:①作直径AC;②作直径BD⊥AC;③依次连结A 、B 、C 、D 四点,四边形ABCD 即为⊙O 的内接正方形;④分别以A 、C 为圆心,OA 长为半径作弧,交⊙O 于E 、H 、F 、G;⑤顺次连结A 、E 、F 、C 、G 、H 各点.六边形AEFCGH 即为⊙O 的内接正六边形.(2)证明:连结OE 、DE.∵∠AOD=4360︒=90°,∠AOE=6360︒=60°,∴∠DOE=∠AOD -∠AOE=30°.∴DE 为⊙O 的内接正十二边形的一边.三、课后巩固(30分钟训练)1.正六边形的两条平行边之间的距离为1,则它的边长为( )A.63B.43C.332D.33 正六边形的两条平行边之间的距离为1,所以边心距为0.5,则边长为33.答案:D 2.已知正多边形的边心距与边长的比为21,则此正多边形为( ) A.正三角形 B.正方形 C.正六边形 D.正十二边形 思路解析:将问题转化为直角三角形,由直角边的比知应选B.答案:B3.已知正六边形的半径为3 cm ,则这个正六边形的周长为__________ cm.思路解析:转化为直角三角形求出正六边形的边长,然后用P 6=6a n 求出周长.答案:184.正多边形的一个中心角为36度,那么这个正多边形的一个内角等于______度.答案:144.5.如图24-3-2,两相交圆的公共弦AB 为23,在⊙O 1中为内接正三角形的一边,在⊙O 2中为内接正六边形的一边,求这两圆的面积之比.图24-3-2思路分析:欲求两圆的面积之比,根据圆的面积计算公式,只需求出两圆的半径R 3与R 6的平方比即可.解:设正三角形外接圆⊙O 1的半径为R 3,正六边形外接圆⊙O 2的半径为R 6,由题意得R 3=33AB ,R 6=AB ,∴R 3∶R 6=3∶3.∴⊙O 1的面积∶⊙O 2的面积=1∶3. 6.某正多边形的每个内角比其外角大100°,求这个正多边形的边数.思路分析:由正多边形的内角与外角公式可求.解:设此正多边形的边数为n ,则各内角为n n ︒•-180)2(,外角为n︒360,依题意得n n ︒•-180)2(-n︒360=100°.解得n =9. 7.如图24-3-3,在桌面上有半径为2 cm 的三个圆形纸片两两外切,现用一个大圆片把这三个圆完全覆盖,求这个大圆片的半径最小应为多少?图24-3-3思路分析:设三个圆的圆心为O 1、O 2、O 3,连结O 1O 2、O 2O 3、O 3O 1,可得边长为4 cm 的正△O 1O 2O 3,设大圆的圆心为O ,则点O 是正△O 1O 2O 3的中心,求出这个正△O 1O 2O 3外接圆的半径,再加上⊙O 1的半径即为所求.解:设三个圆的圆心为O 1、O 2、O 3,连结O 1O 2、O 2O 3、O 3O 1,可得边长为4 cm 的正△O 1O 2O 3,则正△O 1O 2O 3外接圆的半径为334 cm ,所以大圆的半径为334+2=3634+ (cm).8.如图24-3-4,请同学们观察这两个图形是怎么画出来的?并请同学们画出这个图形(小组之间参与交流、评价).图24-3-4答案:略.9.用等分圆周的方法画出下列图案:图24-3-5作法:(1)分别以圆的4等分点为圆心,以圆的半径为半径,画4个圆;(2)分别以圆的6等分点为圆心,以圆的半径画弧.10.如图24-3-6(1)、24-3-6(2)、24-3-6(3)、…、24-3-6(n),M、N分别是⊙O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、…、正n边形ABCDE…的边AB、BC上的点,且BM=CN,连结OM、ON.图24-3-6(1)求图24-3-6(1)中∠MON的度数;(2)图24-3-6(2)中∠MON的度数是______,图24-3-6(3)中∠MON的度数是_________;(3)试探究∠MON的度数与正n边形边数n的关系(直接写出答案).答案:(1)方法一:连结OB、OC.∵正△ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△OBM≌△OCN.∴∠BOM=∠CON.∴∠MON=∠BOC=120°.方法二:连结OA、OB.∵正△ABC内接于⊙O,∴AB=AC,∠OAM=∠OBN=30°,∠AOB=120°.又∵BM=CN,∴AM=BN.又∵OA=OB,∴△AOM≌△BON.∴∠AOM=∠BON.∴∠MON=∠AOB=120°.(2)90° 72°(3)∠MON=n360.(注:文档可能无法思考全面,请浏览后下载,供参考。