线性代数1-4 行列式的性质

合集下载

线性代数1-4行列式的展开定理

线性代数1-4行列式的展开定理

,
M 12 = a31 a33 a41 a43
(− 1)1+ 2 M 12 = − M 12 . A12 =
a23 , A44 = (− 1)4+ 4 M 44 = M 44 . a33
行列式的每个元素分别 对应着一个余子式和一 个代数余子式 .
信息系 刘康泽 二、基于行列式某一行(列)的展开定理 基于行列式某一行(
akj a1 j1 L ak −1 jk −1 ak +1 jk +1 L anjn
个展开项中的某一项, 显然这些项都是 D 的 n !个展开项中的某一项,
信息系 刘康泽
因此只需证明在两端的展开式中, 因此只需证明在两端的展开式中,这些项前面的 符号也相同即可。 符号也相同即可。 中的项: 右端 akj Akj 中的项:
0 0 0
0 0 0
a1 +x a2 a3 an − 2 an −1
−1
0
0
0 0 0 −1 x
L L L L 0 0 L −1 0 0 0 L x −1
x −1 0 0 x 0 L L L L 0 0 0 0 L L x 0
信息系 刘康泽
Dn = xDn −1 + ( −1) n +1 a n ( −1) n −1 = xDn −1 + a n
= L = x n −1 D1 + a 2 x n −2 + L + a n −1 x + a n = a1 x n −1 + a 2 x n − 2 + L + a n −1 x + a n
信息系 刘康泽
a + b ab 1 a+b 0 ab L 0 0 L L L L 0 0 0 L 1 0 0 0 L ab a+b .( a ≠ b )

线性代数 1-4 第1章4讲-行列式的性质及其应用(2)

线性代数 1-4 第1章4讲-行列式的性质及其应用(2)

D a21 a22
a2n
D a1 j A1 j a2 j A2 j anj Anj,j 1, 2, , n
an1 an2
ann
推论
பைடு நூலகம்
ai1 As1 ai2 As2 ain Asn 0,i s a1 j A1t a2 j A2t anj Ant 0,j t
n
D, i s
(2)根据行列式展开定理推论
1 (1)41 5 0 (1)42 10 2 (1)43 a 4 (1)44 4=0 解得 a 21
2
注 A 余子式与代数余子式的关系: ij ( 1)i j M ij
7
行列式的简单应用(2)
典型例题
例4
a00 0a0 00a Dn
000 10 0
线性代数(慕课版)
第一章 行列式
第四讲 行列式的性质及其应用(2)
主讲教师 |
本讲内容
行列式性质的简单应用(2)
行列式的简单应用(2)
余子式
n 阶行列式中,把元素 aij 所在的第i 行和第j 列划去,留下来的n 1 阶 行列式称为元素 aij 的余子式,记作Mij .
代数余子式 记 Aij 1 i j Mi,j Aij 称为元素aij 的代数余子式。
注 元素aij 的代数余子式仅与aij 的位置有关,而与aij 的大小无关。
1 4 8
1 M 23 3
4, 6
A23
()23
1 3
41
63
4 6
例如
5 2 9
361
4 M31 2
8 , 9
A31
()31
4 2
8 4
92
8 9
3

行列式大一知识点总结归纳

行列式大一知识点总结归纳

行列式大一知识点总结归纳行列式是线性代数中的一个重要概念,它在解决方程组、计算矩阵的逆、求解线性方程等方面有着广泛的应用。

在大一的线性代数学习中,行列式是必不可少的一部分。

本文将对大一学习中的行列式知识点进行总结和归纳。

一、行列式的定义行列式是一个实数或复数的方阵所特有的一个标量。

对于一个n阶的方阵A = [a_ij],其行列式记作det(A)或|A|,行列式的定义如下:det(A) = ∑(-1)^(i+j) * a_ij * det(A_ij)其中,(-1)^(i+j)是一个符号项,a_ij表示A的第i行第j列的元素,det(A_ij)为去掉第i行和第j列后的(n-1)阶方阵的行列式。

二、行列式的性质1. 行列式的转置等于其本身的行列式:det(A^T) = det(A)2. 互换行列式的两行(列)则行列式变号:若交换行列式A的第i行和第j行(列),则有:det(A) = -det(A')3. 行列式的某一行(列)的公因子可以提出:若A的第i行(列)的所有元素都乘以k,则有:det(A) = k * det(A')4. 行列式有一个相同的行(列)或有一个行(列)全为0,则行列式为0:若A的某一行(列)全为0,或A的某两行(列)相同,则det(A) = 0。

5. 行列式的两行(列)对换后不变:若交换A的某两行(列)位置,行列式不变:det(A) = det(A')三、行列式的计算方法1. 二阶行列式:对于二阶行列式A = [a11 a12; a21 a22],其行列式的值为: det(A) = a11 * a22 - a12 * a212. 三阶行列式:对于三阶行列式A = [a11 a12 a13; a21 a22 a23; a31 a32 a33],其行列式的值为:det(A) = a11 * a22 * a33 + a12 * a23 * a31 + a13 * a21 * a32 - a13 * a22 * a31 - a12 * a21 * a33 - a11 * a23 * a323. 多阶行列式:对于n阶行列式,可以利用代数余子式与余因子展开法进行计算。

线性代数自考知识点汇总

线性代数自考知识点汇总

行列式1. 行列式的性质性质1 行列式与它的转置行列式相等T D D =.性质2 互换行列式的两行列,行列式变号.推论1 如果行列式有两行列的对应元素完全相同,则此行列式的值为零.如a b ca b c 0a b c'''= 性质3 行列式的某一行列中所有的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a = 推论2 如果行列式中有两行列元素成比例,则此行列式的值为零.如a b ca b c 0ka kb kc'''= 性质4 若行列式的某一行列的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+ 性质5 把行列式的某一行列的各元素乘以同一数然后加到另一行列对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++2. 余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i jij ij A (1)M +=-叫做元素ij a 的代数余子式.如111213212223313233a a a a a a a a a ,元素23a 的余子式为1112233132aa M a a =,元素23a 的代数余子式为11122323233132a a A (1)M a a +=-=-.3. 行列式按行列展开法则定理1 行列式的值等于它的任一行列的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++或 1122j j j j nj nj D a A a A a A =+++()1,2,,;1,2i n j n ==如111213212223313233a a a a a a a a a 111112121313a A a A a A =++ 定理2 行列式任一行列的元素与另一行列的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++=或,11220.j j j j nj nj a A a A a A i j +++=≠()1,2,,;1,2i n j n ==4. 行列式的计算 1二阶行列式1112112212212122a a a a a a a a =- 2三阶行列式111213212223313233a a a a a a a a a 112233122331132132132231122133112332a a a a a a a a a a a a a a a a a a =++--- 3对角行列式1212n nλλλλλλ=,n(m 1)21212n n(1)λλλλλλ-=-4三角行列式1111121n 2122222n 1122nn n1n2nn nn a a a a a a a a a a a a a a a ==111,n 11n1n n(n 1)212,n 12,n 12n 21n 2,n 1n1n1n1n2nna a a a a a a a (1)a a a a a a a -----==-5消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值.6降阶法:利用行列式的性质,化某行列只有一个非零元素,再按该行列展开,通过降低行列式的阶数求出行列式的值.7加边法:行列式每行列所有元素的和相等,将各行列元素加到第一列行,再提出公因式,进而求出行列式的值.矩阵1. 常见矩阵1对角矩阵:主对角线以外的元素全为0的方阵,称为对角矩阵.记作Λ. 2单位矩阵:主对角线上的元素全为1的对角矩阵,称为单位矩阵.记作E.3上三角矩阵:对角线以下的元素全为0的方阵.如11121n 222n nn a a a a a a ⎛⎫⎪⎪⎪ ⎪⎝⎭ 4下三角矩阵:对角线以上的元素全为0的方阵.如112122n1n2nn a a a a a a ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭5对称矩阵:设A 为n阶方阵,若T A A =,即ij ji a a =,则称A 为对称矩阵. 6反对称矩阵:设A 为n阶方阵,若T A A =-,即ij ji a a =- ,则称A 为反对称矩阵. 7正交矩阵:设A 为n阶方阵,如果T AA E =或T A A E =,则称A 为正交矩阵. 2. 矩阵的加法、数乘、乘法运算 1矩阵的加法 如a b c a b c a a b b c c d e f d e f d d e e f f ''''''+++⎛⎫⎛⎫⎛⎫+=⎪ ⎪⎪''''''+++⎝⎭⎝⎭⎝⎭注:① 只有同型矩阵才能进行加减运算;② 矩阵相加减就是对应元素相加减. 2数乘矩阵 如a b c ka kb kc k d e f kd ke kf ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭注:数乘矩阵就是数乘矩阵中的每个元素.3矩阵的乘法:设ij m ij n s s A (a ),B (b )⨯⨯==,规定ij m n AB C (c ),⨯== 其中sij i11j i22j is sj ik kj k 1c a b a b a b a b ==+++=∑(i 1,2,,m,j 1,2,,n.)==注:①左矩阵A 的列数等于右矩阵B 的行数;②左矩阵A 的第i 行与右矩阵B 的第j 列对应元素乘积的和是矩阵乘积C 的元素ij c . ③左矩阵A 的行数为乘积C 的行数,右矩阵B 的列数为乘积C 的列数. 如行矩阵乘列矩阵是一阶方阵即一个数,即()112111121s 111112211s s1s1b ba a a ab a b a b b ⎛⎫ ⎪ ⎪=++⎪ ⎪⎝⎭列矩阵乘行矩阵是s 阶方阵,即()1111111112111s 2121112112211s 11121s s1s111s112s11s a a b a b a b a a b a b a b b b b a a b a b a b ⎛⎫⎛⎫⎪⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭3. 逆矩阵设n 阶方阵A 、B,若AB=E 或BA=E,则A,B 都可逆,且11A B,B A --==.1二阶方阵求逆,设a b A c d ⎛⎫=⎪⎝⎭,则1*d b 11A A c a A ad bc --⎛⎫== ⎪--⎝⎭两调一除法. 2对角矩阵的逆11111221n n a a a a a a ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭, 111n 2121n1a a a a a a ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭.3分块对角阵的逆11111221s s A A A A ;A A ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭111s 2121s1A A A A A A ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭. 4一般矩阵求逆,初等行变换的方法:()()ERT1A E EA -−−−→.4. 方阵的行列式由n阶方阵A 的元素所构成的行列式各元素的位置不变叫做方阵A 的行列式.记作A 或detA. 5. 矩阵的初等变换下面三种变换称为矩阵的初等行列变换:1互换两行列;2数乘某行列;3某行列的倍数加到另一行列. 6. 初等矩阵单位矩阵经过一次初等变换得到的矩阵,称为初等矩阵.如001100100010,0k 0,010100001k 01⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭都是初等矩阵. 7. 矩阵的秩矩阵A 的非零子式的最高阶数,称为矩阵A 的秩.记作RA 或rA. 求矩阵的秩的方法:1定义法:找出A 中最高阶的非零子式, 它的阶数即为A 的秩.2初等行变换法:ERTA −−−→行阶梯形矩阵,RA=R 行阶梯形矩阵=非零行的行数. 8. 重要公式及结论 1矩阵运算的公式及结论()()12121212k k k k k k k k k k k k kk 10A B B A,(A B )C A (B C ),(A B )A B (AB )C A(BC ),(A B )C AC BC ,(AB )(A )B A(B )A A A ,(A )A ,(A )A ,E EAB A BA B ,EA AE A,A Eλλλλλλλλ+-+=+++=+++=+=+=+==⋅========()()()()()()T TTT T T T T T TTT nT n n A A,(A B )A B ,A A ,AB B A A A ,AB B A ,AA A A A EA A ,A A ,AB A B BA ,A A ,A B A Bλλλλ*******=+=+===========+≠+矩阵乘法不满足交换律,即一般地A B ≠AB;矩阵乘法不满足消去律,即一般地若AB=AC,无B=C ;只有当A 可逆时,有B=C.一般地若AB=O,则无A=O 或B=O.()222A B ?A 2AB B +++.2逆矩阵的公式及定理()()()()()()()()11111111n 11111k1k1T11T 1A A ,A A ,,A A 1A A,A A,A A ,A A AB B A1A A A AAA A ,Aλλ----------*-**--**-----===========A 可逆⇔|A |≠0⇔A ~E 即A 与单位矩阵E 等价 3矩阵秩的公式及结论()()()T m n R(O )0,R(A )min{m,n },R(A )R(A ),R(kA )R(A ),k 0A 0R(A )n ,R A B R A R B ⨯=≤==≠≠⇔=+≤+R AB ≤R A , R AB ≤R B .特别地,当A 可逆时,RAB=RB ;当B 可逆时,RAB=RA.()()ET A B A ~B R A R B −−→⇔⇒= 即等价矩阵的秩相等或初等变换不改变矩阵的秩.9. 矩阵方程1设 A 为n 阶可逆矩阵,B 为n ×m 矩阵,则矩阵方程AX=B 的解为1X A B -=;解法:① 求出1A -,再计算1A B -; ② ()()ERTAB E X −−−→ .2设 A 为n 阶可逆矩阵,B 为m ×n 矩阵,则矩阵方程XA=B 的解为1X BA -=;解法:① 求出1A -,再计算1BA -; ② ECT A E B X ⎛⎫⎛⎫−−−→⎪ ⎪⎝⎭⎝⎭. 10. 矩阵间的关系1等价矩阵:如果矩阵A 经过有限次初等变换变成矩阵B,那么称矩阵A 与B 等价.即存在可逆矩阵P,Q,使得PAQ=B.性质:等价矩阵的秩相等.2相似矩阵:如果存在可逆矩阵P,使得1P AP B -=,那么称A 与B 相似. 性质:相似矩阵有相同的特征多项式,相同的特征值,相同的行列式,相同的迹. 3合同矩阵:如果存在可逆矩阵P,使得TP AP B =,那么称A 与B 合同. 性质:合同矩阵的秩相等.向量空间1. 线性组合1若α=k β,则称向量α与β成比例. 2零向量O是任一向量组的线性组合.3向量组中每一向量都可由该向量组线性表示. 2. 线性相关与线性无关1 单独一个向量线性相关当且仅当它是零向量.2 单独一个向量线性无关当且仅当它是非零向量.3 两向量线性相关当且仅当两向量对应成比例.4 两向量线性无关当且仅当两向量不对应成比例.5 含有O向量的向量组一定线性相关.6 向量组12m ,,,ααα线性相关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=有非零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩<向量的个数m.7n 个n 维向量12n ,,,ααα线性相关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα=0.8 向量组12m ,,,ααα线性无关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=只有零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩=向量的个数m.9 n 个n 维向量12n ,,,ααα线性无关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα≠0.10当m>n 时,m 个n 维向量一定线性相关.定理1:向量组 a 1 , a 2 ,……, a m m ≥2线性相关的充分必要条件是向量组中至少有一个向量可由其余m-1个向量线性表示.向量组线性无关的充分必要条件是向量组中任何一个向量都不能由其余向量线性表示. 定理2:如果向量组A :a 1 , a 2 ,……, a r 线性无关,而向量组 a 1 , a 2 ,……, a r ,α线性相关,则α可由A线性表示,且表示式唯一.定理3:设向量组2r 1A :,,,ααα,12r r 1m B :,,,,,,ααααα+若A 线性相关,则向量组B 也线性相关;反之,若向量组B 线性无关,则向量组A 也线性无关.即部分相关,则整体相关;整体无关,则部分无关. 定理4:无关组的截短组无关,相关组的接长组相关. 3. 极大无关组与向量组的秩定义1 如果在向量组 T 中有 r 个向量 a 1 , a 2 ,……, a r ,满足条件: ⑴ 向量组 a 1 , a 2 ,……, a r 线性无关, ⑵ T α∀∈,2r 1,,,,αααα线性相关.那么称向量 a 1 , a 2 ,……, a r 是向量组 T 的一个极大无关组.定义2 向量组的极大无关组中所含向量的个数,称为向量组的秩.定义3 矩阵的行向量组的秩称为矩阵的行秩;矩阵的列向量组的秩称为矩阵的列秩; 结论1 线性无关的向量组的极大无关组就是它本身;结论2 如果向量组的秩是r ,那么该向量组的任意 r 个线性无关的向量都是它的一个极大无关组; 定理1 设向量组A:a 1,a 2, …,a r ;及向量组B:b 1,b 2, …, b s ,如果组A 能由组B 线性表示,且组A 线性无关,则r ≦s.推论1 等价的向量组有相同的秩.定理2 矩阵的秩=矩阵列向量组的秩=矩阵行向量组的秩. 4. 向量空间定义1 设V 为n 维向量的集合,如果集合V 非空,且集合V 对于加法及乘数两种运算封闭,那么就称集合V 为向量空间.5. 基与向量在基下的坐标定义2 设V 是向量空间,如果向量组a 1 , a 2 ,……, a r ,满足条件: 1向量组 a 1 , a 2 ,……, a r 线性无关; 2T α∀∈,2r 1,,,,αααα线性相关.那么称向量组a 1 , a 2 ,……, a r 是向量空间V 的一个基, 基中所含向量的个数称为向量空间V 的维数,记作dimV ,并称V 为r 维向量空间.定义3 设向量组 a 1 , a 2 , … , a r 是向量空间V 的一个基,则V 中任一向量x 可唯一地表示为基的一个线性组合,即 1122r r x a a a λλλ=+++,称有序数组12r ,,,λλλ为向量x 在基 a 1 , a 2 , … , a r 下的坐标.线性方程组1. 线性方程组解的判定1 线性方程组Ax=b 有解的充分必要条件是它的系数矩阵A 和增广矩阵A,b 的秩相同,即RA=RA,b . 当RA=RA,b=r① 方程组AX=b 有惟一解的充分必要条件是r=n; ② 方程组AX=b 有无穷多解的充分必要条件是r < n. 2 方程组AX= b 无解的充分必要条件是R A ≠RA,b. 2. 齐次线性方程组有非零解的判定1 齐次方程组AX=0有非零解的充分必要条件是系数矩阵A 的秩 RA < 未知量的个数n .2 含有n 个方程,n 个未知量的齐次线性方程组AX=0有非零解的充分必要条件是方程组的系数行列式等于零.即|A |=03 齐次线性方程组AX=0中,若方程的个数m<未知量的个数n,则方程组有非零解 3. 齐次线性方程组解的性质(1) 若12,ξξ是Ax=0的解,则12ξξ+也是Ax=0的解; (2) 若ξ是Ax=0的解,则k ξ也是Ax=0的解.4. 齐次线性方程组的基础解系与通解 (1) 解空间齐次线性方程组Ax=0的全体解向量所组成的集合,是一个向量空间,称为方程组 Ax=0的解空间.记作V,即V={ x | Ax=0,x ∈R }. 2 基础解系齐次方程组AX=0的解空间 V 的一个基,称为齐次方程组AX=0 的一个基础解系. 基础解系中解向量的个数是n-rA.方程组AX=0的任意n-r 个线性无关的解都是AX=0的基础解系. 3齐次线性方程组的通解为1122n r n r k k k ξξξ--+++,其中12n r ,,,ξξξ-是Ax=0的一个基础解系.5. 非齐次线性方程组解的性质1若12,ηη是Ax=b 的解,则12ηη-是Ax=0的解; 即Ax=b 的任意两个解的差必是其导出组A x =0的解. 2若η是Ax=b 的解,ξ是Ax=0的解,则ηξ+是Ax=b 的解.即Ax=b 的任意一个解和其导出组 A x =0 的任意一个解之和仍是 Ax=b 的解. 6. 非齐次线性方程组的通解非齐次线性方程组AX=b 的通解为*1122n r n r k k k ξξξη--++++其中12n r ,,,ξξξ-为对应的齐次线性方程组Ax=0的一个基础解系, *η为非齐次线性方程组AX=b 的任意一个解,称为特解.方阵的特征值1. 向量的内积设1122n n x y x y x ,y x y ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则x,y 的内积为[]1122n n x,y x y x y x y =+++.1向量x 的长度:2n x x ==++2非零向量的单位化:若向量 x ≠0 , 1x .x则是单位向量 3当[]x,y 0,x y =时称向量与正交.4若非零向量组中的向量两两正交,则称该向量组为正交组. 5若正交组中每个向量都是单位向量,则称它为标准正交组. 定理1 正交向量组必线性无关定理2 A 为正交矩阵的充分必要条件是 A 的列行向量都是单位向量且两两正交. 6施密特正交化过程设123,,ααα是一个线性无关的向量组,① 正交化:令11,βα=[][]1222111,a ,,ββββββ=-[][][][]132333121122,a ,a a ,,βββββββββ=--;② 单位化:取312123123e ,e ,e ββββββ===. 则123e ,e ,e 是与123,,ααα等价的标准正交组. 2. 特征值与特征向量1方阵A 的特征值λ是特征方程A E 0λ-=的根. 2三角矩阵和对角矩阵的全部特征值就是它的全部对角元.3方阵和它的转置方阵有相同的特征值. 4设12n ,,,λλλ是n 阶方阵A 的全部特征值,则()12n tr A λλλ=+++,12n A λλλ=⋅⋅.即方阵A 的对角线上元素之和等于A 的全部特征值之和,方阵A 的行列式等于A 的全部特征值的乘积. 5若λ是方阵A 的特征值,则()fλ是方阵()f A 的特征值. 特别地,当()f A 0=时,方阵A 的特征值是()f 0λ=的根.说明:m m 1m m 110f (x )a x a xa x a --=++++,m m 1m m 110f (A )a A a A a A a E --=++++.例如λ是方阵A 的特征值,则方阵()f A A 2E =+的特征值是()f2λλ=+.方阵()2f A A 3A 4E =--的特征值是()2f34λλλ=--.例如若2A 3A 4E 0--=,则方阵A 的特征值是2340λλ--=的根,即121,4λλ=-=.6设12P ,P 都是方阵A 的属于同一特征值0λ的特征向量,则()112212k P k P k ,k +不全为零也是0λ的特征向量.7属于不同特征值的特征向量线性无关.8属于不同特征值的线性无关的特征向量的并集仍线性无关. 3. 方阵的对角化1若方阵A 与对角矩阵Λ相似,则说A 可以对角化.即存在可逆矩阵P,使得1P AP Λ-=. Λ是以A 的n 个特征值为对角元素的对角矩阵. 2n 阶方阵A 可以对角化的充分必要条件是①A 有n 个线性无关的特征向量;②属于每一个特征值的线性无关的特征向量的个数与该特征值的重数相同. 3n 阶方阵A 可以对角化的充分条件是n 阶方阵A 的n 个特征值互不相等. 4若A 与B 相似,则()f A 与()f B 相似.4. 实对称矩阵的对角化1实对称矩阵的属于不同特征值的特征向量彼此正交.2实对称矩阵一定可以对角化. 即存在正交矩阵P,使得1P AP Λ-=.Λ是以A 的n 个特征值为对角元素的对角矩阵.3利用正交矩阵将对称矩阵化为对角矩阵的步骤:1求特征值;2求特征向量;3将特征向量正交化,单位化;4最后将这些特征向量做成矩阵.二次型1. 二次型的标准化(1) 用正交变换化二次型为标准形的具体步骤:① 写出二次型T f x Ax =的对称矩阵A ;② 求A 的全部特征值12n ,,,λλλ;③ 求每个特征值的线性无关的特征向量12n ,,,ξξξ; ④ 将特征向量正交化,单位化,得12n ,,,ηηη;⑤ 将这些特征向量做成矩阵,记()12n C ,,,ηηη=,最后做正交变换x=Cy ,得到f 的标准形为 2221122n n f y y y λλλ=+++.其中12n ,,,λλλ是T f x Ax =的矩阵A 的特征值.(2) 用配方法化二次型为标准形的具体步骤:① 若二次型含有i x 的平方项,则先把含有i x 的项集中,然后配方,再对其余的变量同样进行,直到都配成平方项为止,经过可逆的线性变换,就得到标准形;② 若二次型中不含有平方项,则先作可逆线性变换,令i i j j i j kk x y y x y y x y =-⎧⎪=+⎨⎪=⎩,k=1,2,…,n,i≠j化二次型为含有平方项的二次型,然后再按1中方法配方.2. 规范二次型设二次型T f x Ax =的标准形为222211p p p 1p 1r r f d y d y d y d y ++=++---,i d 0>,r 是f 的秩令11p p p 1p 1r r y z y z y z y z ++⎧=⎪⎪⎪⎪⎪=⎪⎪⎨⎪=⎪⎪⎪⎪⎪=⎪⎩,得22221p p 1r f z z z z +=++---,称为二次型T f x Ax =的规范形.注:规范形是唯一的.其中正平方项的个数p 称为Tf x Ax =正惯性指数,负平方项的个数r-p 称为T f x Ax =负惯性指数,它们的差p-r-p=2p-r 称为T f x Ax =符号差.3. 正定二次型二次型T f x Ax =正定⇔矩阵A 正定⇔A 的特征值全为正⇔A 的各阶顺序主子式都为正. 二次型T f x Ax =负定⇔矩阵A 负定⇔A 的奇数阶顺序主子式为负,偶数阶顺序主子式为正.。

线性代数之行列式的性质及计算

线性代数之行列式的性质及计算

第二节 行列式的性质与计算 §2.1 行列式的性质考虑111212122212n n n n nna a a a a a D a a a =将它的行依次变为相应的列,得称T D 为D 的转置行列式 .性质1 行列式与它的转置行列式相等.(T D D =)事实上,若记111212122212n n T n n nnb b b b b b D b b b =则(,1,2,,)ij ji b a i j n ==说明:行列式中行与列具有同等的地位, 因此行列式的性质凡是对行成立的结论, 对列也同样成立.性质2 互换行列式的两行(i j r r ↔)或两列(i j c c ↔),行列式变号.例如 123123086351.351086=- 推论 若行列式D 有两行(列)完全相同,则0D =. 证明: 互换相同的两行, 则有D D =-, 所以0D =.性质3 行列式某一行(列)的所有元素都乘以数k ,等于数k 乘以此行列式,即 推论:(1) D 中某一行(列)所有元素的公因子可提到行列式符号的外面;(2) D 中某一行(列)所有元素为零,则0D =;性质4: 行列式中如果有两行(列)元素对应成比例, 则此行列式等于零.性质5: 若行列式某一行(列)的所有元素都是两个数的和,则此行列式等于两个行列式的和.这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)的元素与原行列式相同 .即11121112212n i i i i in in n n nna a a ab a b a b a a a +++=111211212n i i in n n nna a a a a a a a a +111211212n i i in n n nna a ab b b a a a . 证: 由行列式定义性质6 行列式D 的某一行(列)的各元素都乘以同一数k 加到另一行(列)的相应元素上,行列式的值不变()i jr kr D D +=,即计算行列式常用方法: 利用性质2,3,6, 特别是性质6把行列式化为上(下)三角形行列式, 从而, 较容易的计算行列式的值. 例1: 计算行列式解: 211231231232123223240188(1)3234086204250425r r r r r r D +↔-----=------=43324130858412321232018801880058620058621430303729r r r r r r -++------==143[1(1)58]28629=-⨯-⨯⨯=. 41212,3,4666611111111131113110200(2)66113111310020111311130002ii i r r r r i D=+-=∑===6(1222)48=⨯⨯⨯⨯=.此方法称为归边法. 例2: 计算n 阶行列式 解: (1)1112132,3,1111100000i r r ni nna a a D a a a a -=+---=221111111001001nna a a a a -=+-(箭形行列式)(2) 注意到行列式各行元素之和等于(1)x n a +-,有12,3,,100[(1)]i r r i na a x a x n a x a-=-+--=1[(1)]()n x n a x a -=+--.例3: 设111111111111,kk kk k n n nkn nna a a a D c cb bc c b b =11111,kk kka a D a a =11121,nn nnb b D b b =证明:12.D D D =证: 对1D 作行运算i j r kr +, 把1D 化为下三角形行列式: 对2D 作列运算i j c kc +, 把2D 化为下三角形行列式:先对D 的前k k 行作行运算i j r kr +, 然后对D 的后n 列作列运算i j c kc +, 把D 化为下三角形行列式: 故, 111112.kk nn D p p q q D D =⋅=.思考练习 1.计算行列式2.证明1111111112222222222a bb c c a a b c a b b c c a a b c a b b c c a a b c ++++++=+++ 3. 证明4.计算行列式2324323631063a b c d a a b a b ca b c dD a a b a b ca b c da ab a bc a b c d++++++=++++++++++++答案2.左边=21111111111111222222222222c c a bb c c a a b c a c a a b b c c a a b c a c a a b b c c a a b c a c a -++++-++++=+-+++++-+2312121111111222222222c c c c c c a b a c b a c a b a c b a c a b a c b a c -+↔+--=+-=-=+--1112222a b c a b c a b c . 3. 证(1)左边111111111abcdef -=--213111102020r r r r abcdef ++-=23111020002r r abcdef ↔-=-4.abcdef = (2)左边12222,3,42214469214469214469214469i c c i a a a a b b b b cc c cd d d d -=++++++=++++++324222223221262126021262126c c c c a a b b cc d d --++==++=右边 4. 解: 从第4行开始,后行减前行得, §2.2 行列式按行(列)展开对于三阶行列式,容易验证:可见一个三阶行列式可以转化成三个二阶行列式的计算.问题:一个n 阶行列式是否可以转化为若干个n -1阶行列式来计算? 一、余子式与代数余子式定义:在n 阶行列式111212122212n n n n nna a a a a a D a a a =中,划去元素ij a 所在的第i 行和第j 列,余下的元素按原来的顺序构成的1n -阶行列式,称为元素ij a 的余子式,记作ij M ;而(1)i j ij ij A M +=-称为元素ij a 的代数余子式.例如 三阶行列式 111213212223313232a a a a a a a a a 中元素ij a 的余子式为1112233132aa M a a =元素23a 的代数余子式为23232323(1)A M M +=-=-四阶行列式1011025112331x ---中元素x 的代数余子式为3232111(1)0515001A +-=--= 二、行列式按行(列)展开定理 n 阶行列式111212122212n n n n nna a a a a a D a a a =等于它的任意一行(列)的各元素与其对应的代数余子式的乘积之和,即证 (1)元素11a 位于第一行、第一列,而该行其余元素均为零;此时 11212221200n n n nna a a a D a a a =1212121211()()121211(1)(1)n n n n j j j j j j j j nj j j nj j j a a a a a a ττ=≠=-+-∑∑而11111111(1)A M M +=-=,故1111D a A =;(2)111110j n ij n njnna a a a D a a a = 将D 中第i 行依次与前1i -行对调,调换1i -次后位于第一行; 将D 中第j 列依次与前1j -列对调,调换1j -次后位于第一列; 经(1)(1)2i j i j -+-=+-次对调后,ij a 就位于第一行、第一列,即2(1)(1)i j i j ij ij ij ij ij ij D a M a M a A +-+=-=-=.(3) 一般地1122j j j j nj nj D a A a A a A =++同理有.推论 n 阶行列式111212122212n n n n nna a a a a a D a a a =的任意一行(列)的各元素与另一行(列)对应的代数余子式的乘积之和为零,即 证 考虑辅助行列式1122).t j t j t nj nt a A a A a A j t =++≠按第列展(该行列式中有两列对应元素相等.而10D =,所以1122)0j t j t nj nt a A a A a A j t ++≠=(.关于代数余子式的重要性质在计算数字行列式时,直接应用行列式展开公式并不一定简化计算,因为把一个n 阶行列式换成n 个(n -1)阶行列式的计算并不减少计算量,只是在行列式中某一行或某一列含有较多的零时,应用展开定理才有意义.但展开定理在理论上是重要的. 三、行列式的计算利用行列式按行按列展开定理,并结合行列式性质,可简化行列式计算:计算行列式时,可先用行列式的性质将某一行(列)化为仅含1个非零元素,再按此行(列)展开,变为低一阶的行列式,如此继续下去,直到化为三阶或二阶行列式.计算行列式常用方法:化零,展开.例4: 计算四阶行列式123410123110125D =---.解: 31412122210031461217c c c c D-------=()22122211146217+=⨯------按第行展()()122(1)111121146217r r ÷÷--⨯⨯---=1112146217=--21311002135239c c c c ----=()113521139+=⨯⨯---按第1行展3522439==---.例5 已知4阶行列式解: (方法1) 直接计算4(1,2,3,4),.i A i =的值然后相加(略)(方法2) 利用行列式的按列展开定理,简化计算.304222207001111=---3407222111=--34014111002=342811=28=-. 例6: 计算n 阶行列式 解:11111212111(1)nn n D a A a A a A =++按第列展1(1)n n n x y +=+-.1110000200(1)(1)!00200001n n nn n n ++=-=---.例7: 计算四阶行列式4000000a ba b a b a b D a b a b a ba b+-+-=-+-+.解: 按第1行展开,有1114400()(1)0()(1)000a b a ba b a b D a b a b a ba b a b a b a ba b +++-+-=+--++---++-, 对等式右端的两个3阶行列式都按第3行展开,得22[()()]a b a b D a b a b a b a b+-=+---+4222a b =.例8: 证明范得蒙行列式(Vandermonde )12111112111()(2)nn i j j i nn n n nx x x D x x n x x x ≤<≤---==-≥∏,其中1()i j j i nx x ≤<≤-∏表示所有可能的())i j x x j i -<(的乘积. 证: (用数学归纳法)2n =时,2211211,D x x x x ==-结论正确; 假设对n -11n -范得蒙行列式结论成立,以下考虑n 阶情形.112()nii x x ==-∏按第列展提取公因子2322223111nn n n nx x x x x x ---1()i j j i nx x ≤<≤=-∏.例9 用范德蒙行列式计算4阶行列式解 :对照范德蒙行列式,此处12344,3,7,5x x x x ====- 所以有(34)(74)(54)(73)(53)(57)10368 =----⋅---⋅--=. 第三环节:课堂练习练习:已知4阶行列式解: (方法1) 直接计算4(1,2,3,4),.iA i=的值然后相加(略)(方法2) 利用行列式的按列展开定理,简化计算.它是D中第2列元素与第4列元素的代数余子式的乘积之和,故有。

线性代数第一章

线性代数第一章

0 0
a11a22 ann
ann
除了以上三种特殊行列式外,还有以下对角行列式和三角行列式:
a2 ,n1
a1n
a1n
a11 a12
a1n
a2 ,n1 a2n a21 a22
an1
an1 an2
ann
an1
n ( n 1)
(1) 2 a1na2 ,n1 an1 ,
1.2.4 特殊行列式
定义4
(4)如果行列式 D 中元素满足 aij aji ,则行列式 D 称为对称行列式.
(1-3)
1.2.1 二阶行列式
定义1
二元线性方程组的解(1-2)可简单表示为
x1
D1 D
,x2
D2 D
(D 0) .
(1-4)
其中, D a11 a12 为方程组未知数的系数所组成的行列式,称为方程组的系数行列 a21 a22
式;D1
b1 b2
a12 a22
(用方程组的常数项代替系数行列式的第 1 列);D2
uvgh
分析:按行列式的定义,它应有 4! 24 项.但只有 adeh,adfg,bceh,bcfg 这四项不为
零.与这四项相对应列标的排列分别为 1 2 3 4,1 2 4 3,2 1 3 4 和 2 1 4 3,它们的逆序数分
别为 0,1,1,2,所以第一、四项应取正号,第二、三项应取负号.
解: D adeh adfg bceh bcfg .
行列式的和,即
a11
a12
bi1 ci1 bi2 ci2
a1n
a11 a12
bin cin bi1 bi2
a1n
a11 a12
bin ci1 ci2

§12行列式的性质与计算

§12行列式的性质与计算

§1.2 行列式的性质与计算行列式是线性代数中的基本概念之一,它是一种特殊的方阵,由一个方阵中的所有元素按照一定规则构成。

行列式具有一些重要的性质和计算方法,以下是关于行列式的性质与计算的介绍。

一、行列式的性质1.行列式的行和列具有相同的独立性。

即对于一个n阶行列式,它的行和列都是n个独立的元素,可以独立进行变换,而不影响其他元素的位置。

2.行列式的行和列具有相同的代数余子式。

即对于一个n阶行列式,它的行代数余子式和列代数余子式都是n阶行列式,可以通过伴随矩阵的方式求得。

3.行列式的行和列具有相同的转置矩阵。

即对于一个n阶行列式,它的行转置矩阵和列转置矩阵都是n阶矩阵,可以通过转置矩阵的方式求得。

4.行列式的行和列具有相同的逆矩阵。

即对于一个n阶行列式,它的行逆矩阵和列逆矩阵都是n阶矩阵,可以通过逆矩阵的方式求得。

5.行列式的行和列具有相同的特征值。

即对于一个n阶行列式,它的行特征值和列特征值都是n个独立的特征值,可以通过特征多项式的方式求得。

二、行列式的计算1.按照定义计算。

行列式的定义是一个由方阵中的元素按照一定规则构成的多项式,可以按照定义直接计算。

2.化简计算。

行列式中的元素可以进行化简和约分,使得计算更加简便。

3.公式计算。

行列式有一些常用的公式,可以通过这些公式进行计算。

4.软件计算。

现在有很多数学软件可以用来计算行列式,例如MATLAB、Mathematica等等。

三、特殊行列式的计算1.二阶行列式的计算。

二阶行列式只有两个元素,可以通过交叉相乘的方式计算。

2.三阶行列式的计算。

三阶行列式有六个元素,可以按照展开式的公式进行计算,也可以通过软件计算。

3.n阶行列式的计算。

对于n阶行列式,可以使用Laplace展开式进行计算,也可以使用软件进行计算。

四、行列式的应用1.在解线性方程组中的应用。

通过求解线性方程组的系数矩阵和常数向量,可以得到方程组的解。

而系数矩阵就是一个n阶行列式,因此行列式在解线性方程组中有着重要的应用。

简述行列式的性质

简述行列式的性质

简述行列式的性质
性质1:行列式与它的转置行列式相等。

性质2:互换行列式的两行(列),行列式变号。

性质3:行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k乘此行列式。

性质4:行列式中如果有两行(列)元素成比例,则此行列式等于零。

性质5:若行列式的某一行(列)的元素都是两数之和,例如第j列的元素都是两数之和。

行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或|A|。

无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。

行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。

或者说,在n维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。

行列式的性质及求解方法

行列式的性质及求解方法

行列式的性质及求解方法行列式是线性代数中的一个重要概念,具有广泛的应用领域,例如矩阵求逆、线性方程组的解法、空间向量的叉积等。

在本文中,我们将探讨行列式的性质及其求解方法。

一、行列式的定义及性质1.1 行列式的定义对于一个$n$阶方阵$A=[a_{ij}]$,定义它的行列式为:$$\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn}\\\end{vmatrix}=\sum_{\sigma \in S_n}(-1)^{\mathrm{sgn}(\sigma)}a_{1\sigma(1)}a_{2\sigma(2)}\cdotsa_{n\sigma(n)}$$其中,$\sigma$是$n$个元素的全排列,$S_n$表示$n$个元素的置换群,$\mathrm{sgn}(\sigma)$表示$\sigma$的符号,即$(-1)^k$,其中$k$为$\sigma$的逆序数。

1.2 行列式的性质- 行列式的值不变性行列式的值只与矩阵的元素有关,而与矩阵的行列变换或线性组合无关。

- 互换矩阵的两行或两列,行列式变号将矩阵的两行(列)互换,则该行列式的值取相反数。

- 矩阵的某一行(列)乘以一个数$k$,行列式的值乘以$k$将矩阵的某一行(列)乘以一个数$k$,则该行列式的值乘以$k$。

- 矩阵的某一行(列)加上另一行(列)的k倍,行列式不变将矩阵的某一行(列)加上另一行(列)的k倍,行列式的值不变。

- 方阵的行列式等于其转置矩阵的行列式$$\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn}\\\end{vmatrix}=\begin{vmatrix}a_{11} & a_{21} & \cdots & a_{n1} \\a_{12} & a_{22} & \cdots & a_{n2} \\\vdots & \vdots & \ddots & \vdots \\a_{1n} & a_{2n} & \cdots & a_{nn}\\\end{vmatrix}$$二、行列式的求解方法2.1 按定义计算法按照上述定义,计算行列式涉及到全排列的遍历与逆序数的计算,这种方法虽然理论上可行,但计算量较大,不适用于较大的矩阵。

线性代数行列式的计算与性质

线性代数行列式的计算与性质

线性代数行列式的计算与性质行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。

行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。

或者说,在 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。

无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。

行列式概念最早出现在解线性方程组的过程中。

十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。

十八世纪开始,行列式开始作为独立的数学概念被研究。

十九世纪以后,行列式理论进一步得到发展和完善。

矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。

行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。

矩阵 A 的行列式有时也记作 |A|。

绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。

不过矩阵范数通常以双垂直线来表示(如:),且可以使用下标。

此外,矩阵的绝对值是没有定义的。

因此,行列式经常使用垂直线记法(例如:克莱姆法则和子式)。

例如,一个矩阵:A=⎪⎪⎪⎭⎫ ⎝⎛i h g f e d c b a , 行列式也写作,或明确的写作: A=i h g f e dc b a,即把矩阵的方括号以细长的垂直线取代行列式的概念最初是伴随着方程组的求解而发展起来的。

行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

一、行列式的定义与计算一个n 阶方块矩阵 A 的行列式可直观地定义如下: 其中, 是集合{ 1, 2, ..., n }上置换的全体,即集合{ 1, 2, ..., n }到自身上的一一映射(双射)的全体;表示对 全部元素的求和,即对于每个 ,在加法算式中出现一次;对于每一对满足 的数对 , 是矩阵 A 的第 i 行第 j 列的元素。

线性代数知识点总结

线性代数知识点总结

大学线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j nija a a a ...)1(21212121)..(∑-=τ奇偶排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变;转置行列式T D D = ②行列式中某两行列互换,行列式变号;推论:若行列式中某两行列对应元素相等,则行列式等于零; ③常数k 乘以行列式的某一行列,等于k 乘以此行列式; 推论:若行列式中两行列成比例,则行列式值为零; 推论:行列式中某一行列元素全为零,行列式为零; ④行列式具有分行列可加性⑤将行列式某一行列的k 倍加到另一行列上,值不变 行列式依行列展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零; 克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,;;化为三角形行列式 ⑤上下三角形行列式:行列式运算常用方法主要行列式定义法二三阶或零元素多的 化零法比例化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵 矩阵的运算:加法同型矩阵---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA,不满足消去律;由AB=0,不能得A=0或B=0 转置A A TT =)( TT T B A B A +=+)( TTkA kA =)( TTTA B AB =)(反序定理 方幂:2121k k k kA AA +=2121)(k k k k A A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵数量矩阵:相当于一个数若…… 单位矩阵、上下三角形矩阵若…… 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置 注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A=-1非奇异矩阵、奇异矩阵|A|=0、伴随矩阵初等变换1、交换两行列 2.、非零k 乘某一行列3、将某行列的K 倍加到另一行列初等变换不改变矩阵的可逆性 初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到的对换阵 倍乘阵 倍加阵 等价标准形矩阵⎪⎪⎭⎫ ⎝⎛=O OO I D rr矩阵的秩rA :满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则rAB=rB 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n nij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的;矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置TA 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B A A 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵; 5、若A 可逆,则11--=A A伴随矩阵:A 为N 阶方阵,伴随矩阵:⎪⎪⎭⎫⎝⎛=22211211*A AA A A 代数余子式 特殊矩阵的逆矩阵:对1和2,前提是每个矩阵都可逆1、分块矩阵⎪⎪⎭⎫ ⎝⎛=C O B A D 则⎪⎪⎭⎫ ⎝⎛-=-----11111C O BC A AD 2、准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321A A A A A , 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----141312111A A A A A 3、 I A A A AA ==**4、1*-=A A A A 可逆5、1*-=n AA 6、()()A AA A1*11*==--A 可逆 7、()()**T TA A = 8、()***A B AB =判断矩阵是否可逆:充要条件是0≠A ,此时*11A AA =- 求逆矩阵的方法:定义法I AA =-1伴随矩阵法AA A *1=-初等变换法()()1||-=A II A nn只能是行变换初等矩阵与矩阵乘法的关系: 设()n m ij aA *=是mn 阶矩阵,则对A 的行实行一次初等变换得到的矩阵,等于用同等的m 阶初等矩阵左乘以A :对A 的列实行一次初等变换得到的矩阵,等于用同种n 阶初等矩阵右乘以A 行变左乘,列变右乘第三章 线性方程组消元法 非齐次线性方程组:增广矩阵→简化阶梯型矩阵rAB=rB=r 当r=n 时,有唯一解;当n r ≠时,有无穷多解 rAB ≠rB,无解齐次线性方程组:仅有零解充要rA=n 有非零解充要rA<n 当齐次线性方程组方程个数<未知量个数,一定有非零解当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0 齐次线性方程组若有零解,一定是无穷多个N 维向量:由n 个实数组成的n 元有序数组;希腊字母表示加法数乘 特殊的向量:行列向量,零向量θ,负向量,相等向量,转置向量 向量间的线性关系: 线性组合或线性表示向量组间的线性相关无:定义179P 向量组的秩:极大无关组定义P188定理:如果r j j j ααα,.....,21是向量组s ααα,.....,21的线性无关的部分组,则它是 极大无关组的充要条件是:s ααα,.....,21中的每一个向量都可由r j j j ααα,.....,21线性表出;秩:极大无关组中所含的向量个数;定理:设A 为mn 矩阵,则r A r =)(的充要条件是:A 的列行秩为r;现性方程组解的结构:齐次非齐次、基础解系线性组合或线性表示注:两个向量αβ,若βαk =则α是β线性组合 单位向量组任意向量都是单位向量组的线性组合 零向量是任意向量组的线性组合任意向量组中的一个都是他本身的线性组合 向量组间的线性相关无注: n 个n 维单位向量组一定是线性无关 一个非零向量是线性无关,零向量是线性相关 含有零向量的向量组一定是线性相关 若两个向量成比例,则他们一定线性相关向量β可由n ααα,..,21线性表示的充要条件是)...()...(2121T T n T T T n T Tr r βαααααα=判断是否为线性相关的方法:1、定义法:设n k k k ....21,求n k k k ....21适合维数低的2、向量间关系法183P :部分相关则整体相关,整体无关则部分无关3、分量法n 个m 维向量组180P :线性相关充要n r T n T T<⇒)....(21ααα线性无关充要n r T n T T=⇒)....(21ααα推论①当m=n 时,相关,则0321=TTTααα;无关,则0321≠TTTααα ②当m<n 时,线性相关推广:若向量s ααα,...,21组线性无关,则当s 为奇数时,向量组13221,...,αααααα+++s 也线性无关;当s 为偶数时,向量组也线性相关;定理:如果向量组βααα,,...,21s 线性相关,则向量β可由向量组s ααα,...,21线性表出,且 表示法唯一的充分必要条件是s ααα,...,21线性无关;极大无关组注:向量组的极大无关组不是唯一的,但他们所含向量的个数是确定的; 不全为零的向量组的极大无关组一定存在; 无关的向量组的极大无关组是其本身; 向量组与其极大无关组是等价的; 齐次线性方程组I 解的结构:解为...,21ααI 的两个解的和21αα+仍是它的解; I 解的任意倍数αk 还是它的解;I 解的线性组合s s c c c ααα+++....2211也是它的解,s c c c ,...,21是任意常数; 非齐次线性方程组II 解的结构:解为...,21μμ II 的两个解的差21μμ-仍是它的解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的一个解,则u+v 是II 的一个解; 定理:如果齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则该方程组的基础解系存在,且在每个基础解系中,恰含有n-r 个解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的全部解,则u+v 是II 的全部解;第四章 向量空间向量的内积 实向量定义:α,β=n n Tb a b a b a +++=....2211αβ性质:非负性、对称性、线性性 α,k β=k α,β; k α,k β=2k α,β;α+β,δγ+=α,γ+α,δ+β,γ+β,δ; ),(),(1111j i sj j r i i j sj jr i ii l k lk βαβα∑∑∑∑===== n R ∈δγβα,,,,向量的长度),(ααα=0=α的充要条件是α=0;α是单位向量的充要条件是α,α=1单位化 向量的夹角正交向量:αβ是正交向量的充要条件是α,β=0 正交的向量组必定线性无关 正交矩阵:n阶矩阵A I A A AA TT==性质:1、若A 为正交矩阵,则A可逆,且T A A =-1,且1-A 也是正交矩阵; 2、若A 为正交矩阵,则1±=A ;3、若A 、B为同阶正交矩阵,则AB也是正交矩阵;4、n阶矩阵A=ij a 是正交矩阵的充要条件是A的列行向量组是 标准正交向量;第五章 矩阵的特征值和特征向量特征值、特征向量A 是N 阶方阵,若数λ使AX=λX,即λI-A=0有非零解,则称λ为A 的一 个特征值,此时,非零解称为A 的属于特征值λ的特征向量; |A|=n λλλ...**21注: 1、AX=λX2、求特征值、特征向量的方法0=-A I λ 求i λ 将i λ代入λI-AX=0求出所有非零解3、对于不同的矩阵,有重根、单根、复根、实根主要学习的特殊:n I )(λ的特征向量为任意N 阶非零向量或)(21不全为零i n c c c c ⎪⎪⎪⎭⎫ ⎝⎛4、特征值: 若)0(≠λλ是A 的特征值 则1-A --------λ1 则m A --------mλ 则kA --------λk若2A =A 则-----------λ=0或1 若2A =I 则-----------λ=-1或1 若k A =O 则----------λ=0 迹trA :迹A=nn a a a +⋯⋯++2211性质:1、N 阶方阵可逆的充要条件是A 的特征值全是非零的2、A 与1-A 有相同的特征值3、N 阶方阵A 的不同特征值所对应的特征向量线性无关4、5、P281 相似矩阵定义P283:A 、B 是N 阶矩阵,若存在可逆矩阵P,满足B AP P =-1,则矩阵A 与B 相似,记作A~B性质1、自身性:A~A,P=I2、对称性:若A~B 则B~A B AP P =-1 1-=PBP A A BPP =---111)(3、传递性:若A~B 、B~C 则A~C B AP P =-111 C BP P =-212- --C P P A P P =-)()(211214、若AB,则A 与B 同不可逆5、若A~B,则11~--B A B AP P =-1两边同取逆,111---=B P A P 6、若A~B,则它们有相同的特征值; 特征值相同的矩阵不一定相似 7、若A~B,则)()(B r A r = 初等变换不改变矩阵的秩 例子:B AP P =-1则1100100-=P PB A O AP P =-1A=O I AP P =-1A=I I AP P λ=-1 A=I λ矩阵对角化 定理:N 阶矩阵A 与N 阶对角形矩阵相似的充要条件是A 有N 个线性无关的特征向量注:1、P 与^中的i i x λ与顺序一致2、A~^,则^与P 不是唯一的推论:若n 阶方阵A 有n 个互异的特征值,则~^A P281定理:n 阶方阵~^A 的充要条件是对于每一个i K 重特征根i λ,都有i i K n A I r -=-)(λ 注:三角形矩阵、数量矩阵I λ的特征值为主对角线;约当形矩阵约当块:形如⎪⎪⎪⎪⎪⎭⎫⎝⎛=λλλλ111J 的n 阶矩阵称为n 阶约当块; 约当形矩阵:由若干个约当块组成的对角分块矩阵⎪⎪⎪⎭⎫⎝⎛=n J J J J 21i J 是约当块称为约当形矩阵;定理:任何矩阵A 都相似于一个约当形矩阵,即存在n 阶可逆矩阵J AP P =-1;第六章 二次型二次型与对称矩阵只含有二次项的n 元多项式f 称为一个n 元二次型,简称二次型; 标准型:形如 的二次型,称为标准型; 规范型:形如 的二次型,称为规范型; 线性变换矩阵的合同:设AB 是n 阶方阵,若存在一个n 阶可逆矩阵C,使得 则称A 与B 是合同的,记作A B;合同的性质:反身性、对称性、传递性、秩、化二次型为标准型:配方法、做变换二次型中不含有平方项。

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结第一章 行列式一要点1、二阶、三阶行列式2、全排列和逆序数;奇偶排列可以不介绍对换及有关定理;n 阶行列式的定义3、行列式的性质4、n 阶行列式ij a D =;元素ij a 的余子式和代数余子式;行列式按行列展开定理5、克莱姆法则二基本要求1、理解n 阶行列式的定义2、掌握n 阶行列式的性质3、会用定义判定行列式中项的符号4、理解和掌握行列式按行列展开的计算方法;即+11j i A a +22j i A a ⎩⎨⎧≠==+j i j i D A a jn in 0 +j i A a 1122i j a A +⎩⎨⎧≠==+j i j i D A a nj ni0 5、会用行列式的性质简化行列式的计算;并掌握几个基本方法:归化为上三角或下三角行列式;各行列元素之和等于同一个常数的行列式;利用展开式计算6、掌握应用克莱姆法则的条件及结论会用克莱姆法则解低阶的线性方程组7、了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件第二章 矩阵一要点1、矩阵的概念n m ⨯矩阵n m ij a A ⨯=)(是一个矩阵表..当n m =时;称A 为n 阶矩阵;此时由A 的元素按原来排列的形式构成的n 阶行列式;称为矩阵A 的行列式;记为A .注:矩阵和行列式是两个完全不同的两个概念..2、几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法1矩阵的乘法不满足交换律和消去律;两个非零矩阵相乘可能是零矩阵..如果两矩阵A 与B 相乘;有BA AB =;则称矩阵A 与B 可换..注:矩阵乘积不一定符合交换2方阵的幂:对于n 阶矩阵A 及自然数k ;个k k A A A A ⋅⋅= 规定I A =0;其中I 为单位阵 .3 设多项式函数k k k k a a a a ++++=--λλλλϕ1110)( ;A 为方阵;矩阵A 的多项式I a A a A a A a A k k k k ++++=--1110)( ϕ;其中I 为单位阵..4n 阶矩阵A 和B ;则B A AB =.5n 阶矩阵A ;则A A nλλ=4、分块矩阵及其运算5、逆矩阵:可逆矩阵若矩阵A 可逆;则其逆矩阵是唯一的;矩阵A 的伴随矩阵记为*A ; E A A A AA ==**矩阵可逆的充要条件;逆矩阵的性质..6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价意义下的标准形;矩阵A 可逆的又一充分必要条件:A 可以表示成一些初等矩阵的乘积;用初等变换求逆矩阵..7、矩阵的秩:矩阵的k 阶子式;矩阵秩的概念;用初等变换求矩阵的秩8、矩阵的等价二要求1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等2、了解几种特殊的矩阵及其性质3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时;会用伴随矩阵求逆矩阵5、了解分块矩阵及其运算的方法1在对矩阵的分法符合分块矩阵运算规则的条件下;其分块矩阵的运算在形式上与不分块矩阵的运算是一致的..2特殊分法的分块矩阵的乘法;例如n m A ⨯;l n B ⨯;将矩阵B 分块为) (21l b b b B =;其中j b l j 2, ,1=是矩阵B 的第j 列;则=AB ) (21l b b b A ) (21l Ab Ab Ab =又如将n 阶矩阵P 分块为) (21n p p p P =;其中j p n j 2, ,1=是矩阵P 的第j 列.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n P λλλ 0 0 00 0 00 0 0 21 ) (21n p p p = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ 0 0 00 0 00 0 0 21) (2211n n p p p λλλ = 3设对角分块矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=SS A A A A 2211 ;),2,1(s P A PP =均为方阵; A 可逆的充要条件是PP A 均可逆;s P ,2,1=;且⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=----11221111 ss A A A A6、理解和掌握矩阵的初等变换和初等矩阵及其有关理论;掌握矩阵的初等变换;化矩阵为行最简形;会用初等变换求矩阵的秩、求逆矩阵7、理解矩阵的秩的概念以及初等变换不改变矩阵的秩等有关理论8、若矩阵A 经过有限次初等变换得到矩阵B ;则称矩阵A 和矩阵B 等价;记为B A ≅. n m ⨯矩阵A 和B 等价当且仅当)()(B r A r =;在等价意义下的标准型:若r A r =)(;则r D A ≅;⎥⎦⎤⎢⎣⎡=000 r r I D ;r I 为r 阶单位矩阵.. 因此n 阶矩阵A 可逆的充要条件为n I A ≅..第三章 线性方程组一要点1、n 维向量;向量的线性运算及其有关运算律记所有n 维向量的集合为n R ;n R 中定义了n 维向量的线性运算;则称nR 为 n 维向量空间..2、向量间的线性关系1线性组合与线性表示;线性表示的判定2线性相关与线性无关;向量组的线性相关与无关的判定3、向量组的等价;向量组的秩;向量组的极大无关组及其求法;向量组的秩及其求法 1设有两个向量组,1α,2αs α )(A,1β,2βt β )(B向量组)(A 和)(B 可以相互表示;称向量组)(A 和)(B 等价..向量组的等价具有传递性..2一个向量组的极大无关组不是惟一的;但其所含向量的个数相同;那么这个相同的个数定义为向量组的秩..4、矩阵的秩与向量组的秩的关系5、线性方程组的求解1线性方程组的消元解法2线性方程组解的存在性和唯一性的判定3线性方程组解的结构4齐次线性方程的基础解系与全部解的求法5非齐次方程组解的求法二要求1、理解n 维向量的概念;掌握向量的线性运算及有关的运算律2、掌握向量的线性组合、线性表示、线性相关、线性无关等概念3、掌握线性表示、线性相关、线性无关的有关定理4、理解并掌握向量组的等价极大无关组、向量组的秩等概念;及极大无关组、向量组秩的求法5、掌握线性方程组的矩阵形式、向量形式的表示方法6、会用消元法解线性方程组7、理解并掌握齐次方程组有非零解的充分条件及其判别方法8、理解并掌握齐次方程组的基础解系、全部解的概念及其求法9、理解非齐次方程组与其导出组解的关系;掌握非齐次方程组的求解方法第四章 矩阵的特征值与特征向量一要点1、矩阵的特征值与特征向量的定义;特征方程、特征值与特征向量的求法与性质2、相似矩阵的定义、性质;矩阵可对角化的条件3、实对称矩阵的特征值和特征向量向量内积的定义及其性质;正交向量组;施密特正交化方法;正交矩阵;实对称矩阵的特征值与特征向量的性质;实对称矩阵的对角化二要求1、理解矩阵的特征值、特征向量的概念及有关性质2、掌握特征值与特征向量的求法3、理解并掌握相似矩阵的概念与性质4、掌握判断矩阵与对角矩阵相似的条件及对角化的方法5、会将实对称矩阵正交相似变换化为对角矩阵..第五章二次型一要点1、二次型与对称矩阵:二次型的定义;二次型与对称矩阵的对应关系2、二次型与对称矩阵的标准形配方法;初等变换法;正交变换法;合同矩阵;二次型及对称矩阵的标准形与规范形 3、二次型与对称矩阵的有定性二次型与对称矩阵的正定、负定、半正定、半负定二要求1、理解并掌握二次型的定义及其矩阵的表示方法..2、会用三种非退化线性替换:即配方法、初等变换法、正交变换法化二次型为标准形及规范型3、掌握二次型的正定、负定、半正定、半负定的定义;会判定二次型的正定性..。

线性代数笔记

线性代数笔记

线性代数笔记(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--线性代数笔记第一章行列式 .................................................................................................. 错误!未定义书签。

第二章矩阵 ...................................................................................................... 错误!未定义书签。

第三章向量空间............................................................................................. 错误!未定义书签。

第四章线性方程组.......................................................................................... 错误!未定义书签。

第五章特征值与特征向量...................................... 错误!未定义书签。

第一章行列式行列式的性质给定行列式,将它的行列互换所得的新行列式称为D的转置行列式,记为或。

性质1 转置的行列式与原行列式相等。

即(这个性质表明:行列式对行成立的性质,对列也成立,反之亦然)性质2 用数k乘行列式D的某一行(列)的每个元素所得的新行列式等于kD。

推论1 若行列式中某一行(列)的元素有公因数,则可将公因数提到行列式之外。

推论2 若行列式中某一行(列)的元素全为零,则行列式的值为0。

可以证明:任意一个奇数阶反对称行列式必为零。

性质3行列式的两行(列)互换,行列式的值改变符号。

线性代数行列式的概念和性质

线性代数行列式的概念和性质
det A a11 a12
a11 a21
a21 a22

a12 a22
+
a11 1 11 det S11 a12 1 12 det S12
a11a22 a12a21
当前您浏览的位置是第六页,共三十二页。
1 3


A
2
4
3 7
a11 解 det A
an1
7 3 , 计算 det A 的值. 2
注 行列式的每个元素都分别对应一个余子式和一个代数余子
式.
根据该定义,可重新表达行列式的值
a11
det A
a1n def
n
1 k
a1k 1 det S1k
an1 ann
k 1
n
a1k A1k
k 1
其中 A1k 是元 a1k 对A 或 det A 的代数余子式.
相当于把行列式按第一行展开
cnk bn1
bnn
a1k
b11
, D2 det(bij )
akk
bn1
b1n ,
bnn
当前您浏览的位置是第二十三页,共三十二页。
内容总结
线性代数课件行列式的概念和性质。对 n = 2, 3,。项,每一项都是位于不同行,不同列的 三个元素的乘积, 其中三项为正, 三项为负.。个不同项的代数和,其中的每一项都是处于行 列式不同行又不同列的n 个元之乘积.。说明 行列式中行与列具有同等的地位,因此行列式的 性质凡是对行成立的对列也同样成立.。性质5 把行列式的某一列(行)元素的k倍加到另一列 (行)对应的元素上去,行列式的值不变.
AC
det U
det A det B
OB

行列式的性质及其运用

行列式的性质及其运用

1111
解: D 1
3
1
1 r1 r2 r3 r4
1
3
1
11 6
3
1
r2 r1
1 6 0 r3 r1
2
0
0
1131
1131
1 1 3 1 r4 r1 0 0 2 0
1113
1 1 1 3 1113
0002
6 23 48 .
1.2 行列式性质的运用
例题
ab
c
d
例 5 计算行列式 D a a b a b c
0 0 a 2a b
0 0 3a 7a 3b
00 0
a
1.2 行列式性质的运用
例题
方法二:
ab
c
a ab abc D
a 2a b 3a 2b c
d abcd 4a 3b 2c d
ab c
d
0 a r4 r3
r3 r2
ab
abc
r2 r1 0 a 2a b 3a 2b c
a 3a b 6a 3b c 10a 6b 3c d
a11 a12
a1n
a11
a12
a1n
ai1 ai2 D
a j1 a j2
ain
ai1 ka j1 ai2 ka j2
ri krj
a jn
a j1
aj2
ain ka jn a jn
an1 an2
ann
an1
an2
ann
1.1 行列式的性质
性质
性质 2、性质 3 和性质 5 常用来计算行列式,它们的标记如下. ① 互换 i,j 两行(列): ri rj (ci c j ) . ② 第 i 行(列)乘以某非零常数 k: kri (kci ) . ③ 将第 j 行(列)的 k 倍加到第 i 行(列)上: ri krj (ci kcj ) .

行列式性质及其计算方法

行列式性质及其计算方法
行列式性质及其计算方法
目录页
Contents Page
1. 行列式基本定义与性质 2. 行列式的基本运算规则 3. 行列式的展开定理证明 4. 特殊行列式的计算方法 5. 行列式与矩阵的关系 6. 行列式在线性方程组中的应用 7. 行列式的几何意义解释 8. 行列式计算实例与解析
行列式性质及其计算方法
行列式与矩阵的关系
▪ 行列式与矩阵在计算科学中的实现
1.在计算机中,可以通过编写程序来实现行列式和矩阵的计算 。 2.常用的计算行列式的方法包括:化三角形法、按行(列)展 开法等。 3.对于大型矩阵,可以采用一些高效算法来计算行列式,例如 LU分解法、QR分解法等。
行列式性质及其计算方法
行列式在线性方程组中的应用
行列式的基本运算规则
▪ 拉普拉斯定理
1.在n阶行列式中,取定k行(列),由这k行(列)的元素所 构成的一切k阶子式与其代数余子式的乘积的和等于行列式。 2.拉普拉斯定理亦称按k行展开定理,是行列式计算的重要工 具之一,可以用于化简和计算行列式。在使用拉普拉斯定理时 ,需要选择合适的k行(列)进行展开,并注意计算过程中的 符号变化。 以上内容仅供参考,建议查阅线性代数书籍或咨询专业人士获 取更全面和准确的信息。
行列式性质及其计算方法
行列式的基本运算规则
行列式的基本运算规则
▪ 行列式基本性质
1.行列式与其转置行列式相等。 2.互换行列式的两行(列),行列式变号。 3.行列式的某一行(列)的所有的元素都乘以同一数k,等于 用数k乘此行列式。 行列式的基本性质是行列式计算的基础,必须熟练掌握。这些 性质表明了行列式的一些基本特性和变化规律,为行列式的计 算和化简提供了重要的依据和方法。在利用性质进行计算时, 需要注意性质的适用条件和范围,以及计算过程中的符殊行列式的计算方法

线性代数-行列式(完整版)

线性代数-行列式(完整版)
由主对角线法有14????243122421??????????d411222324424312221??????????????????????????d4843264???????例5601504321????301120101???26?????321????110??????601?????152????043???051????642????103???????4810????58????101????????001?????121??????300????8???例6rba?满足什么条件时有10100abba??10100abba??解由题可得即使022????babarba??
321
213
132
3
1
1பைடு நூலகம்
a a a (1)N ( j1 j2 j3 ) j1 j2 j3取遍所有的
1 j1
2 j2
3 j3
三级排列
a11 a12 a11a22 a12a21
(1) N ( j1 j2 )a1 j1 a2 j2
a21 a22
12
21 j1 j2 取12
0
1 和21
2
返 回
第1.1节 n阶行列式的定义
本节从二、三阶行列式出发,给 出n阶行列式的概念. 基本内容: 二阶与三阶行列式 排列及其逆序数 n阶行列式定义 转置行列式
3
记号: a11 a12 a21 a22
称其为二阶行列式 .
它表示数:
a11a22 a12a21

a11 a12 a21 a22
16
(2)排列的逆序数 定义: 在一个n 级排列i1i2…in中,若某两数的前
后位置与大小顺序相反,即is>it(t>s),则称这两数构 成一个逆序.排列中逆序的总数,称为它的逆序数, 记为N (i1i2…in). 例1 N (2413)=3 N(312) =2 奇偶排列: 若排列i1i2…in的逆序数为奇(偶)数, 称它为奇(偶)排列.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)N( j1 js jt jn)b1j1 bsjs btjt bnjn (1)N( j1 js jt jn)a1j1 atjs asjt anjn (1)N( j1 js jt jn)a1j1 asjt atjs anjn
(1)N( j1 jt js jn)a1j1 asjt atjs anjn 它与D的一般项相差一个负号 所以D1D
因为由推论1 可将行列式中这两行(列)的比例系数提到 行列式外面 则余下的行列式有两行(列)对应元素相同 由性 质2可知此行列式的值等于零 所以原行列式的值等于零
性质4 如果行列式中的某一行(列)的每一个元素都是两 个数的和 则此行列式可以写成两个行列式的和 例如
a11 a12 a1n
a11 a12 a1n a11 a12 a1n
a11 a12 a1n
a11 a21 an1
D
a21
a22
a2n
则 DT
a12
a22
an2
an1 an2 ann
a1n a2n ann
显然 若D|aij| DT|bij| 则bijaji(i j1 2 n)
行列式的转置 将行列式D的行与列互换后得到的行列式称为D的转置
§1.4 行列式的性质
n阶行列式共有n!项 因此定义计算n阶行列式是较 为困难的 只有少数行列式用定义计算比较方便
我们已经知道三角行列式的值就是主对角线上各元 素的乘积 因此我们想到能否把一般的行列式化成三角 行列式来计算 这就需要研究行列式的性质
行列式的转置
将行列式D的行与列互换后得到的行列式称为D的转置 行列式 记为DT或D 即如果
a12 a1n
ai1 ai2 ain ai1 kas1 ai2 kas2 ains1
as2 asn
an1 an2 ann
an1
an2 ann
a11 a12 a1n a11 a12 a1n
ai1 ai2 ain kas1 kas2 kasn 这是因为 右边
性质4 如果行列式中的某一行(列)的每一个元素都是两 个数的和 则此行列式可以写成两个行列式的和 例如
a11 a12 a1n
a11 a12 a1n a11 a12 a1n
ai1bi1 ai2 bi2 ain bin ai1 ai2 ain bi1 bi2 bin
0 a12 a13 a1n a12 0 a23 a2n a13 a23 0 a3n
an1 an2 ann
an1 an2 ann an1 an2 ann
推论 如果将行列式某一行(列)的每个元素都写成m个数
的和 则此行列式可以写成m个行列式的和
性质5 将行列式的某一行(列)的所有元素同乘以数k后加 到另一行(列)对应位置的元素上 行列式的值不变 例如
a11 a12 a1n
a11
(1)N( j1 j2 jn) N(12n)a j11a j2 2 a jnn 这也是D的一般项 所以DDT
性质2 互换行列式的两行(列) 行列式的值变号 证 记D|aij| 交换D的第s行与第t(st)行得到的行列式为 D1|bij| 则bsjatj btjasj(j1 2 n) D1的一般项为
as1 as2 asn as1 as2 asn
an1 an2 ann an1 an2 ann
2 4 1 例 1 计算行列式 D 3 6 3
5 10 4
解 因为第一行与第二行对应元素成比例 根据性质3的
推论2 得
2 4 1 D 3 6 3 0
5 10 4
反对称行列式
反对称行列式为下列形式的行列式
行列式 记为DT或D 性质1 将行列式转置 行列式的值不变 即DDT 证 记D|aij| DT|bij| 则bijaji (i j1 2 n) 按定义及定
理13 DT的一般项为
(1)N( j1 j2 jn)b1j1b2 j2 bnjn (1)N( j1 j2 jn)a j11a j22 a jnn
性质2 互换行列式的两行(列) 行列式的值变号
推论 如果行列式中有两行(列)的对应元素相同 则此行 列式的值为零
性质3 用数k乘以行列式的某一行(列) 等于以数k乘此行 列式
推论1 如果行列式某行(列)的所有元素有公因子 则公因 子可以提到行列式外面
推论2 如果行列式有两行(列)的对应元素成比例 则此行 列式的值为零
性质3 用数k乘以行列式的某一行(列) 等于以数k乘此行 列式 即如果设D|aij| 则
a11 a12 a1n
a11 a12 a1n
D1 kai1 kai2 kain k ai1 ai2 ain kD
an1 an2 ann
an1 an2 ann
这是因为D1的一般项为 (1)N( j1 j2 jn)a1j1 (k aiji ) anjn k[(1)N( j1 j2 jn)a1j1 aiji anjn ] 上面等号右端方括号内是D的一般项 所以D1kD
性质2 互换行列式的两行(列) 行列式的值变号 推论 如果行列式中有两行(列)的对应元素相同 则此行 列式的值为零 这是因为 将行列式D中具有相同元素的两行互换后所得 的行列式仍为D 但由性质2可知其结果应为D 因此DD 所以D0
性质2 互换行列式的两行(列) 行列式的值变号
推论 如果行列式中有两行(列)的对应元素相同 则此行 列式的值为零
ai1bi1 ai2 bi2 ain bin ai1 ai2 ain bi1 bi2 bin
an1 an2 ann
an1 an2 ann an1 an2 ann
这是因为
(1)N( j1 j2 a jn) 1j1 (aiji biji )anjn (1)N( j1 j2 jn)[a1j1 aiji anjn a1j1 biji anjn ] (1)N( j1 j2 jn)a1j1 aiji anjn (1)N( j1 j2 jn)a1j1 biji anjn
相关文档
最新文档