公路桥涵水文计算基本方法共52页文档
桥涵水文计算基本方法 PPT
Y-786=0.96×416/629×(X-1092)
整理得: Y= 0.63X+98.04 (本题为直线相关)
其中自变量 X为参证站(流量x)系列流量;y为分析站(流量y)系 列流量。上表括号内(流量y)为插补后分析站流量y的系列流量,插补
延长所得资料不宜用于第三站,可能引起较大误差。
4400 4000
6)过程线叠加法:利用两支流洪水过程线叠加得到合流后桥位处的设计流量。 示例 1, 两系列的相关分析法算例: 例:某河有甲、乙两相邻水文站,甲站(参证站:流量X)有24年观测资料,乙站 (分析
站:流量Y)有14年,试应用甲站资料延长乙程式:
本次培训着重于以下内容:
一般情况水文分析计算
桥孔长度和桥孔布设
桥涵水文设计注意几点问题及探讨
第一节 水文勘测分析计算基本途径
桥涵水文计算、分析基本途径如下:
1、有水文观测资料—— —— 水文统计法 2、无水文观测资料—— --- 形态断面法 3、无水文观测资料(无居民)—经验公式法
有水文系列观测资料时水文统计法 (1)资料搜集和准备
其中:L---洪水传播距离(m) VS--洪水传播速度(m/s) ,根据实测资料选其出现次数最多者
支流1
支流2
流 量
Q11 Q22 Q13,Q23
合 流
QQ2112
支流1
支流2
桥位
t1
t2
试比较:Q11+Q21,Q12+Q22,Q13+Q23组合结果的大小
洪水传播时间 t
3、历史洪水情况的调查、考证和排序
(1)历史洪水的调查与流量计算(与形态断面法相同) 1)调查河段的选择原则
✓ 最好靠近所选断面附近 ✓ 选择有居民、易于指认洪痕的河段 ✓ 所选河段顺直,断面规整,基线与桥位间无支流汇入
桥梁水文基础资料计算
3.1流域概况 桥址两端桥台地处山地丘陵,跨越水田和小路,沿丘陵坡角展布,地势起伏 不大,桥位区地面标高约291.6~309.1m,经计算水文断面汇水面积为0.993km2。 3.2 流量计算 3.2.1 全国水文分区经验公式 (1)、确定全国水文分区、计算参数: 本桥位通过查阅全国水文分区流量参数计算表,确定本桥位于全国水文分区
—洪水传播影响洪峰流量的折减系数,可查附录B表B-11;
—流域内降雨不均匀影响洪峰流量的折减系数,可查附录B表B-12; —湖泊或小水库调节作用影响洪峰流量的折减系数,可查附录B表B-13。 2.2 水位计算方法
式中: R —水力半径(m);
n —糙率; i —洪水比降; Q 、Q —河槽与河滩的流量(m3/s); A 、A —河槽与河滩过水断面面积(m2); V 、V —河槽与河滩断面平均流速(m/s)。 2.3 桥长计算方法
式中: L —桥孔最小净长(m); Q —设计流量(m3/s); Q —河槽流量(m3/s); B —河槽宽度(m); K 、n —系数及指数根据规范取值。 2.4 冲刷计算方法 1、一般冲刷 对于河床,
对于河滩,
式中: h —桥下一般冲刷后的最大水深(m); Q —河槽部分通过的设计流量(m3/s); Q —天然状态下桥下河滩部分的设计流量(m3/s); B —河槽部分桥孔过水净宽(m),当桥下河槽能扩宽至全桥时,即为全桥 桥孔过水净宽; B —造床流量下的河槽宽度(m),对复式河床可取平滩水位时河槽宽度; —水流侧向压缩系数,应按表7.3.1-1 确定; h —桥下河槽最大水深(m); h —桥下河槽平均水深(m); A —单宽流量集中系数;当A >1.8 时,可采用 1.8; H —造床流量下河槽的平均水深(m),对复式河床可取平滩水位时河槽 平均水深; E —与汛期含沙量有关的系数; d —河槽泥沙平均粒径(mm); B —河滩部分桥孔净长(m); h —桥下河滩最大水深(m); h —桥下河滩平均水深(m); v —河滩水深1m 时非黏性土不冲刷流速(m/s); 2、墩台局部 利用65-2 公式计算墩台局部冲刷,公式介绍如下: 对于河床,
桥涵水文
一、用桥下过水面积计算桥孔长度(冲刷系数法)冲刷系数法原理:利用桥位断面的设计流量Qs和设计水位Hs,根据水力学的连续性原理(Q=Av),求出桥下顺利宣泄设计洪水时所需要的最小过水面积,用以确定桥孔的最小长度。
计算桥孔长度时,常采用天然河槽平均流速作为设计流速(即一般冲刷?完成后的桥下平均流速)。
一般冲刷:建桥后桥孔压缩了水流,桥下流速增大到一定数值时,桥下河槽开始冲刷即称为一般冲刷总过水面积:设计水位下过水总面积之和。
有效过水面积:扣除桥墩面积设计流速:天然河槽平均流速(不冲刷流速)冲刷系数定义p:桥下河床冲刷后过水面积与冲刷前过水面积之比值p。
冲刷的类型桥梁墩台冲刷是一个综合冲刷过程,可分为三部分:桥位河段因河床自然演变而引起河床的自然演变冲刷;因建桥压缩水流而引起桥下整个河床断面普遍存在的一般冲刷;由于桥墩台阻水而引起的河床局部冲刷。
其实桥梁墩台冲刷是受多种因素同时交叉影响产生的,但是为了便于研究和计算,我们把墩台周围总的冲刷深度,假定为这三种冲刷先后进行,分别计算,然后叠加。
二、绘制最大冲刷线1、全部冲刷完成后,墩柱最大冲刷水深包括三个部分,桥墩最低冲刷线高程为Hmin:Hmin=Hs-h-hp-hb-△h式中:Hmin——最低冲刷线高程(m);Hs ——设计水位(m)h——计算墩柱处水深(m)hp——一般冲刷深度(m);hb——局部冲刷深度(m);△h——自然演变冲刷深度(m);2、桥台最低冲刷线的标高:Hmin=Hs-hs-h -△h式中:Hs——桥位断面的设计水位(m);hs—桥台所在位置的冲刷深度(m)。
h—桥台所在位置的平均水深(m)。
△h——自然演变冲刷深度(m);2、桥梁各墩台基底最浅埋置标高HJM=Hmin-△(m)式中:HJM—墩台基底最浅埋置标高(m);Hmin—墩台最大冲刷时的标高(m);△—基底埋深安全值(m)。
小桥的孔径计算与大中桥的区别:大中桥:以冲刷系数作控制条件,容许桥下河床发生一定的冲刷,采用天然河槽断面平均流速作为桥孔设计流速,并按自由出流条件,由计算的过水面积推求桥孔长度。
桥梁工程水文计算
2、水文计算基本资料:桥位于此稳定河段,设计流量31%5500/S Q Q m s ==,设计水位457.00S H m =,河槽流速 3.11/s c v m =,河槽流量3C Q =4722m /s ,河槽宽度c B 159.98m =,河槽平均水深c h 9.49m =,自然桥下平均流速0 3.00/M v m s =,断面平均流速=2.61m/s υ,水面宽度B=180m ,河岸凹凸岸曲率半径的平均值R=430m ,桥下河槽最大水深12.39mc h m =。
2.1桥孔长度依据我国公路桥梁最小桥孔净长度Lj 公式计算。
该桥在稳定河段,查表知K=0.84,n=0.90。
有明显的河槽宽度Bc ,则有:n 0.90j s c c L =K (Q /Q )B =0.84(55004722)159.98=154.16m ⨯÷⨯ 换算成平面半径R=1500的圆曲线上最小桥孔净长度为154.23m 。
2.2桥孔布置图依据河床断面形态,将左岸桥台桩号布置在K52+325.00。
取4孔40m 预应力混凝土T 形梁为上部结构;钻孔灌注桩双柱式桥墩,桩径为1.6m ,墩径取1.4m ;各墩位置和桩号如图1所示;右桥台桩号为K52+485.00;该桥孔布置方案的桥孔净长度为155.80m 大于桥孔净长度154.23m ,故此桥孔布置方案是合理的。
2.3桥面最低高程河槽弗汝德系数Fr=223.119.809.49=0.104c cv gh ⨯=<1.0。
即,设计流量为缓流。
桥前出现壅水而不出现桥墩迎水面的急流冲击高度。
2.3.1桥前壅水高度∆Z 和桥下壅水高度∆Zq冲刷前桥下流速'm υ=55003.72/1609.493 1.49.49Qs m s Aj ==⨯-⨯⨯ 自然桥下平均流速v om =3.00m/s自然淤积孔隙率n 为0.4,则自然空隙比e 取0.67,查表知d 50=3mm 冲刷前桥下流速:m υ=0.250.2550' 3.723.29' 3.7210.5(1)10.53(1)3.11mmcv v d v -==+-+⨯⨯-m/s系数Ky=0.50.50.533.290.10.1v ==- 桥前最大壅水高度:∆Z=22226.430.53()(3.29 3.00)0.32229.8m om KnKy v v g ⨯-=-=⨯m 桥下壅水高度取洪水和河床条件为一般状况,则:∆Zq=12∆Z=0.16m 浪高∆h 2计算风速为21.53m/s ,浪程内平均水深取河床平均水深8.60m ,汛期顺风向到达桥位断面形成的最大水面风距为1450m 。
关于公路桥涵水文分析与计算方法的
关于公路桥涵水文分析与计算方法的汇报人:日期:•引言•水文基础知识•公路桥涵水文分析方法•水文计算方法与应用目•水文分析与计算中的不确定性及处理方法•结论与展望录引言01提高设计效率水文分析可为桥梁和涵洞的设计提供科学依据,减少不必要的设计迭代。
节约建设成本合理的水文分析有助于优化设计方案,降低建设成本。
确保桥梁和涵洞的安全性通过水文分析,可以了解水流特性,预防洪水等自然灾害对桥梁和涵洞的破坏。
公路桥涵水文分析的意义03评估河床演变预测河床在长时间水流作用下的变形和演变,为桥梁和涵洞的设计使用年限提供依据。
01确定设计洪水峰值流量通过历史洪水数据和统计分析,预测未来可能发生的最大洪水流量。
02计算水流冲刷力分析水流对桥墩、桥台和涵洞基础的冲刷作用,确保结构的稳定性。
水文分析与计算的目的通过以上内容的学习,读者可以全面了解公路桥涵水文分析与计算方法的基本原理和应用,为实际工程提供有力支持。
工程实例分析:结合具体公路桥梁和涵洞工程实例,展示水文分析和计算方法的实际应用。
桥涵水文计算:讲解如何计算设计洪水峰值流量、水流冲刷力、河床演变等关键参数。
水文基础知识:介绍水文循环、河流类型、洪水频率等基本概念。
水文分析方法:阐述如何收集和处理水文数据,进行洪水频率分析、径流计算等。
本讲义的内容概述水文基础知识02描述的是地球上水从海洋、陆地和大气之间循环的过程,包括蒸发、降水、地表径流和地下渗透等环节。
在公路桥涵设计中,需要充分考虑到水文循环的影响,以防止水患并确保桥涵的稳定性。
水文循环指的是在任意时段内,一个流域或水体的输入水量(如降水、入渗等)与输出水量(如蒸发、径流等)应保持平衡。
在公路桥涵设计中,水量平衡原理可用于确定桥涵的过水能力,以确保在极端水文事件下桥涵的安全。
水量平衡水文循环与水量平衡大气中的水分以雨、雪等形式降落到地面的过程。
降水是公路桥涵设计中的重要参数,影响桥涵的排水设计和洪水频率分析。
桥梁工程水文计算
2、水文计算基本资料:桥位于此稳定河段,设计流量31%5500/S Q Q m s ==,设计水位457.00S H m =,河槽流速 3.11/s c v m =,河槽流量3C Q =4722m /s ,河槽宽度c B 159.98m =,河槽平均水深c h 9.49m =,天然桥下平均流速0 3.00/M v m s =,断面平均流速=2.61m/s υ,水面宽度B=180m ,河岸凹凸岸曲率半径的平均值R=430m ,桥下河槽最大水深12.39mc h m =。
2.1桥孔长度根据我国公路桥梁最小桥孔净长度Lj 公式计算。
该桥在稳定河段,查表知K=0.84,n=0.90。
有明显的河槽宽度Bc ,则有:n0.90j s c c L =K (Q /Q )B =0.84(55004722)159.98=154.16m ⨯÷⨯换算成平面半径R=1500的圆曲线上最小桥孔净长度为154.23m 。
2.2桥孔布置图根据河床断面形态,将左岸桥台桩号布置在K52+325.00。
取4孔40m 预应力混凝土T 形梁为上部结构;钻孔灌注桩双柱式桥墩,桩径为1.6m ,墩径取1.4m ;各墩位置和桩号如图1所示;右桥台桩号为K52+485.00;该桥孔布置方案的桥孔净长度为155.80m 大于桥孔净长度154.23m ,故此桥孔布置方案是合理的。
2.3桥面最低高程河槽弗汝德系数Fr= 223.119.809.49=0.104c c vgh ⨯=<1.0。
即,设计流量为缓流。
桥前出现壅水而不出现桥墩迎水面的急流冲击高度。
2.3.1桥前壅水高度∆Z 和桥下壅水高度∆Zq冲刷前桥下流速'm υ=55003.72/1609.493 1.49.49Q s m s Aj==⨯-⨯⨯天然桥下平均流速v om =3.00m/s自然淤积孔隙率n 为0.4,则天然空隙比e 取0.67,查表知d 50=3mm 冲刷前桥下流速:mυ=0.250.2550' 3.723.29' 3.7210.5(1)10.53(1)3.11mm cv v d v -==+-+⨯⨯-m/s系数6.43Ky=0.50.50.530.10.1==-桥前最大壅水高度:∆Z=22226.430.53()(3.29 3.00)0.32229.8momK nK y vvg⨯-=-=⨯m桥下壅水高度取洪水和河床条件为一般情况,则:∆Zq=12∆Z=0.16m2.3.2浪高∆h 2计算风速为21.53m/s ,浪程内平均水深取河床平均水深8.60m ,汛期顺风向到达桥位断面形成的最大水面风距为1450m 。
桥梁工程水文计算
2、水文计算基本资料:桥位于此稳定河段,设计流量31%5500/S Q Q m s ==,设计水位457.00S H m =,河槽流速 3.11/s c v m =,河槽流量3C Q =4722m /s ,河槽宽度c B 159.98m =,河槽平均水深c h 9.49m =,天然桥下平均流速0 3.00/M v m s =,断面平均流速=2.61m/s υ,水面宽度B=180m ,河岸凹凸岸曲率半径的平均值R=430m ,桥下河槽最大水深12.39mc h m =。
2。
1桥孔长度根据我国公路桥梁最小桥孔净长度Lj 公式计算.该桥在稳定河段,查表知K=0.84,n=0。
90。
有明显的河槽宽度Bc,则有:n 0.90j s c c L =K (Q /Q )B =0.84(55004722)159.98=154.16m ⨯÷⨯ 换算成平面半径R=1500的圆曲线上最小桥孔净长度为154。
23m.2.2桥孔布置图根据河床断面形态,将左岸桥台桩号布置在K52+325.00。
取4孔40m 预应力混凝土T 形梁为上部结构;钻孔灌注桩双柱式桥墩,桩径为1.6m,墩径取1。
4m ;各墩位置和桩号如图1所示;右桥台桩号为K52+485。
00;该桥孔布置方案的桥孔净长度为155。
80m 大于桥孔净长度154.23m ,故此桥孔布置方案是合理的。
2。
3桥面最低高程河槽弗汝德系数Fr= 223.119.809.49=0.104c cv gh ⨯=<1.0。
即,设计流量为缓流。
桥前出现壅水而不出现桥墩迎水面的急流冲击高度. 2.3。
1桥前壅水高度∆Z 和桥下壅水高度∆Zq冲刷前桥下流速'm υ=55003.72/1609.493 1.49.49Qs m s Aj ==⨯-⨯⨯ 天然桥下平均流速v om =3。
00m/s自然淤积孔隙率n 为0。
4,则天然空隙比e 取0.67,查表知d 50=3mm 冲刷前桥下流速:m υ=0.250.2550' 3.723.29' 3.7210.5(1)10.53(1)3.11mmcv v d v -==+-+⨯⨯-m/s系数Ky=0.50.50.533.290.10.1v ==--桥前最大壅水高度:∆Z=22226.430.53()(3.29 3.00)0.32229.8m om KnKy v v g ⨯-=-=⨯m 桥下壅水高度取洪水和河床条件为一般情况,则:∆Zq=12∆Z=0.16m 2.3.2浪高∆h 2计算风速为21.53m/s ,浪程内平均水深取河床平均水深8。
桥涵水文分析与计算
桥涵水文分析与计算(技术讲座稿)一、概述桥涵水文分析与计算,包括河流水文资料的调查搜集整理与计算,推求出我们桥涵所需要的设计水位和流量,拟定出桥长孔径、桥高和基础埋设深度。
由于桥位所处的地理位置不同以及其它复杂因素,包括天然的和人为因素如潮汐、泥石流、修水库、开挖渠道等。
我们调查搜集洪水流量的计算方法各有不同。
水文计算从大的方面来分:有水文(雨量)观测资料和无水文观测资料的水文计算。
从各河段特殊情况的不同又可分为,有水库的水文计算,倒灌河流的水文计算,平原或者山丘区的水文计算,还有潮汐河段、岩溶河段、泥石流河段等。
不同情况的河流我们要有针对性的调查,搜集有关资料调查搜集资料很辛苦,跑路多收效有时还很小,但工作必需要做,要有耐心。
需要调查搜集的资料综合起来有:水系图,县志和水利志、地形图、形态断面、水文站(气象站)资料水库资料,倒灌资料、河道演度、河床淤积、雨力资料、洪水调查及比降的测量,原有桥涵的调查等,通过调查为下步洪水设计流量提供有关参数。
另外还要进行地质地貌调查,有些设计流量的计算参数也和土的颗粒组成、土壤的分类、密实度吸水率熔洞泥石流等有关,有的与设计流量无关,但与桥的安全性有关如土体稳定性、山体滑坡、湿陷性黄土软土地基等,一般野外采用看挖钻的方法,下面介绍一下土壤分类的一般常识,分为三类:1.粘性土:塑性指数p I >1 亚砂土或轻亚粘土1<p I ≤7; 亚粘土 7<I ≤17; 粘土 p I ≥17;塑性指数p I =l W (液限)-p W (塑限);而粘性土壤的状态用液性指数(即稠度系数)l I 分为四级,l I =pl p o w w w w --;o W —天然含水量;l I <0为坚硬半坚硬 标贯>3.5;0≤l I <0.5为硬塑 标贯>-3.5; 0.5≤l I <1为软塑 标贯<-7;l I ≥1 为极软 标贯<2;淤泥是极软状态的粘性土,其含水量接近或大于液限,对于孔隙比大于1的轻亚粘土或亚粘土和孔隙比大于1.5的粘土均称淤泥。
桥涵水文分析与计算资料
亚粘土粘土7< I < 17;I p > 17;桥涵水文分析与计算(技术讲座稿)一、概述桥涵水文分析与计算,包括河流水文资料的调查搜集整理与计算,推求出我们桥涵所需要的设计水位和流量,拟定出桥长孔径、桥高和基础埋设深度。
由于桥位所处的地理位置不同以及其它复杂因素,包括天然的和人为因素如潮汐、泥石流、修水库、开挖渠道等。
我们调查搜集洪水流量的计算方法各有不同。
水文计算从大的方面来分:有水文(雨量)观测资料和无水文观测资料的水文计算。
从各河段特殊情况的不同又可分为,有水库的水文计算,倒灌河流的水文计算,平原或者山丘区的水文计算,还有潮汐河段、岩溶河段、泥石流河段等。
不同情况的河流我们要有针对性的调查,搜集有关资料调查搜集资料很辛苦,跑路多收效有时还很小,但工作必需要做,要有耐心。
需要调查搜集的资料综合起来有:水系图,县志和水利志、地形图、形态断面、水文站(气象站)资料水库资料,倒灌资料、河道演度、河床淤积、雨力资料、洪水调查及比降的测量,原有桥涵的调查等,通过调查为下步洪水设计流量提供有关参数。
另外还要进行地质地貌调查,有些设计流量的计算参数也和土的颗粒组成、土壤的分类、密实度吸水率熔洞泥石流等有关,有的与设计流量无关,但与桥的安全性有关如土体稳定性、山体滑坡、湿陷性黄土软土地基等,一般野外采用看挖钻的方法,下面介绍一下土壤分类的一般常识,分为三类:1. 粘性土:塑性指数I p >1亚砂土或轻亚粘土1< I p< 7;塑性指数I p =W i (液限)—W p (塑限);w — Wc 而粘性土壤的状态用液性指数(即稠度系数)I l分为四级,I l =」-W i _W p W o —天然含水量;11 <0为坚硬半坚硬标贯>3.5;0 < 11 <0.5为硬塑标贯> —3.5 ;0.5 < 11 <1为软塑标贯< —7;I i > 1 为极软标贯<2;L—主河沟长J—主河沟比降由地形图量取;由地形图量取,加权平均计算%。
桥梁工程水文计算
2、水文计算基本资料:桥位于此稳定河段,设计流量31%5500/S Q Q m s ==,设计水位457.00S H m =,河槽流速 3.11/s c v m =,河槽流量3C Q =4722m /s ,河槽宽度c B 159.98m =,河槽平均水深c h 9.49m =,天然桥下平均流速0 3.00/M v m s =,断面平均流速=2.61m/s υ,水面宽度B=180m ,河岸凹凸岸曲率半径的平均值R=430m ,桥下河槽最大水深12.39mc h m =。
2.1桥孔长度根据我国公路桥梁最小桥孔净长度Lj 公式计算。
该桥在稳定河段,查表知K=0.84,n=0.90。
有明显的河槽宽度Bc ,则有:n0.90j s c c L =K (Q /Q )B =0.84(55004722)159.98=154.16m ⨯÷⨯换算成平面半径R=1500的圆曲线上最小桥孔净长度为154.23m 。
2.2桥孔布置图根据河床断面形态,将左岸桥台桩号布置在K52+325.00。
取4孔40m 预应力混凝土T 形梁为上部结构;钻孔灌注桩双柱式桥墩,桩径为1.6m ,墩径取1.4m ;各墩位置和桩号如图1所示;右桥台桩号为K52+485.00;该桥孔布置方案的桥孔净长度为155.80m 大于桥孔净长度154.23m ,故此桥孔布置方案是合理的。
2.3桥面最低高程河槽弗汝德系数Fr= 223.119.809.49=0.104c c vgh ⨯=<1.0。
即,设计流量为缓流。
桥前出现壅水而不出现桥墩迎水面的急流冲击高度。
2.3.1桥前壅水高度∆Z 和桥下壅水高度∆Zq冲刷前桥下流速'm υ=55003.72/1609.493 1.49.49Q s m s Aj==⨯-⨯⨯天然桥下平均流速v om =3.00m/s自然淤积孔隙率n 为0.4,则天然空隙比e 取0.67,查表知d 50=3mm 冲刷前桥下流速:mυ=0.250.2550' 3.723.29' 3.7210.5(1)10.53(1)3.11mm cv v d v -==+-+⨯⨯-m/s系数6.43Ky=0.50.50.530.10.1==-桥前最大壅水高度:∆Z=22226.430.53()(3.29 3.00)0.32229.8momK nK y vvg⨯-=-=⨯m桥下壅水高度取洪水和河床条件为一般情况,则:∆Zq=12∆Z=0.16m2.3.2浪高∆h 2计算风速为21.53m/s ,浪程内平均水深取河床平均水深8.60m ,汛期顺风向到达桥位断面形成的最大水面风距为1450m 。
公路桥梁的水文计算
Ci w e noea o : ha eT h li nPd nN c ogs d rus c t
公路桥 梁的水文计算
许 家 源 张 鑫
( 宁乾成工程设计咨询有 限公 司 , 宁 沈阳 1 00 ) 辽 辽 0 0 1
摘 要: 水文计 算是 公路 桥 梁设 计 中的一项 重要 内容 , 形 态断面计 算、 包括 设计 洪水流 量及 洪水位计 算、 桥孔设 计计 算及 冲刷 计算等 。 关键 词 : 水文 计算 ; 桥 梁 ; 公路 经验公 式 ; 水文 断 面 ; 计流 量 ; 计 洪水位 设 设
, ~
j 8 一
#
I 形态 断面的选择 . I I. .I处于近似均匀流的河段上, I 一般要求 河道顺 直 , 水流通畅 , 稳定 , 河床 河滩较 小 , 河滩 与 河槽 的洪水 流向一致 , 并且 无河 湾 、 汊 、 河 沙 洲等阻塞 水流的现象。 12 尽量 靠近调 查的历史洪 水位 , 距桥 . 1 但 位也不宜 过远。 态断面与桥位断面之 间, 形 应无 支流汇入 , 又无分流或壅水现象 。 13 形态 断面必须垂 直 于洪水流 向 , 态 . 1 形 断 面 的形 状应 尽 量符 合 洪水 发 生时 的 实际 情
中 图分类 号 :U4 3 4 文献标 识 码: A
众 所周知 , 国山河壮 美 、 色秀丽 , 我 景 同时 也 为公 路桥梁 的建 设增加 了难度 。为保证公路 桥梁能发挥预期的经济效益 , 就必须保证其安 全性和适用性,因此 , 水文计算就显得特别重 要。 进行水文分析和计算首先要收集水文资料。 水文 资料 记录着河流 水情的变化 ,为水 文i ̄ -t K: 提供了基本的计算数据。水文资料主要来源于 三个方面, 即水文站的观测资料、 洪水调查资料 和文献 考证资料 。通过水 文资料 加上河床 断面 资料 , 水文计算方法 , 以进 行桥涵水 文 结合 就可 水力计算了。 水文计算包括形态断面计算、 设计 洪水流量及 洪水位计算 、 桥孔设 计计算 、 床的 河 冲刷深度计算等方 面。 1形态 断面的计算 根据给定的水文计算断 面的基本 计算数 据 计算 出相应 水文断面的一些水 力因素称为形 态 断面的计算 。形 态断面计算首 先要收集水文 计 算断面地形资料,计算出河槽河滩的宽度、 深 度、 水流速度进而计算出河槽流量河滩流量等。 由历史 洪水位推算 相应的洪水 流量 的计算步骤
关于公路桥涵水文分析与计算方法的研究
研究内容与方法
研究内容
开展公路桥涵水文分析与计算方法的研究,包括水文数据的 采集和处理、水文分析、水文计算模型的建立和验证、模型 参数的确定等。
研究方法
对于某些计算方法和模型,需要进一步探讨其理论 基础和适用条件,以提高其精度和可靠性。
需要加强不同地区、不同水文情势下的公路桥涵 水文分析与计算方法的研究,以满足实际工程的
需要。
发展方向与建议
建议在今后的研究中,注重实际工程应用,加强理论与 实践的结合。
鼓励跨学科、跨领域合作,加强与相关领域专家学者的 交流与合作。
工程概况
01
02
03
地点
某地区高速公路桥梁工程
建设规模
桥长120米,桥宽12米, 设计速度100公里/小时
工程地质条件
地形起伏,地质条件复杂 ,存在不良地质问题
分析计算过程
水文资料收集
收集该地区多年的水文资料,包括 降雨量、蒸发量、径流量等。
洪水计算
根据当地水文资料,计算出设计洪 水流量及水位。
分析径流系数
通过实地观测或经验公式,计算径流系数,了解桥面径流量与降雨量之间的 关系。
桥涵水文计算模型
经验公式法
根据桥涵所在地的实际水文资 料,利用经验公式进行计算。
水力学模型法
通过建立水力学模型,模拟桥 涵水流运动状态,根据模型计
算桥涵水文数据。
数值模拟法
利用计算机数值模拟技术,建 立桥涵水文数值模型,进行桥
涵水文数据的计算。
水文计算参数确定
确定桥涵孔径
01
公路桥涵水文计算基本的方法PPT共52页
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
桥梁工程水文计算
桥梁工程水文计算本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March2、水文计算基本资料:桥位于此稳定河段,设计流量31%5500/S Q Q m s ==,设计水位457.00S H m =,河槽流速 3.11/s c v m =,河槽流量3C Q =4722m /s ,河槽宽度c B 159.98m =,河槽平均水深c h 9.49m =,天然桥下平均流速0 3.00/M v m s =,断面平均流速=2.61m/s υ,水面宽度B=180m ,河岸凹凸岸曲率半径的平均值R=430m ,桥下河槽最大水深12.39mc h m =。
桥孔长度根据我国公路桥梁最小桥孔净长度Lj 公式计算。
该桥在稳定河段,查表知K=,n=。
有明显的河槽宽度Bc ,则有:n 0.90j s c c L =K (Q /Q )B =0.84(55004722)159.98=154.16m ⨯÷⨯ 换算成平面半径R=1500的圆曲线上最小桥孔净长度为154.23m 。
桥孔布置图根据河床断面形态,将左岸桥台桩号布置在K52+。
取4孔40m 预应力混凝土T 形梁为上部结构;钻孔灌注桩双柱式桥墩,桩径为1.6m ,墩径取1.4m ;各墩位置和桩号如图1所示;右桥台桩号为K52+;该桥孔布置方案的桥孔净长度为155.80m 大于桥孔净长度154.23m ,故此桥孔布置方案是合理的。
桥面最低高程河槽弗汝德系数Fr= 223.119.809.49=0.104ccvgh ⨯=<1.0。
即,设计流量为缓流。
桥前出现壅水而不出现桥墩迎水面的急流冲击高度。
2.3.1桥前壅水高度∆Z 和桥下壅水高度∆Zq冲刷前桥下流速'm υ=55003.72/1609.493 1.49.49Qs m s Aj ==⨯-⨯⨯ 天然桥下平均流速v om =3.00m/s自然淤积孔隙率n 为,则天然空隙比e 取,查表知d 50=3mm 冲刷前桥下流速:m υ=0.250.2550' 3.723.29' 3.7210.5(1)10.53(1)3.11mmcv v d v -==+-+⨯⨯-m/s系数=6.43Ky=0.50.50.533.290.10.1v ==- 桥前最大壅水高度:∆Z=22226.430.53()(3.29 3.00)0.32229.8m om KnKy v v g ⨯-=-=⨯m 桥下壅水高度取洪水和河床条件为一般情况,则:∆Zq=12∆Z=0.16m 2.3.2浪高∆h 2计算风速为21.53m/s ,浪程内平均水深取河床平均水深8.60m ,汛期顺风向到达桥位断面形成的最大水面风距为1450m 。