8.4 因式分解-分组分解法 5
小专题( 六 ) 因式分解的几种常见方法
小专题(六) 因式分解的几种常见方法 -3-
4.十字相乘法:x2+( p+q )x+pq型的多项式的因式分解.这类二次三项式的特点是:二次项的 系数是1,常数项是两个数的积,一次项系数是常数项的两个因数的和.因此,可以直接将某些二 次项的系数是1的二次三项式因式分解:x2+( p+q )x+pq=( x+p )( x+q ).mx2+px+q型的多项
( 1 )1.992+1.99×0.01; 解:原式=1.99×( 1.99+0.01 )=3.98.
( 2 )20162+2016-20172.
解:原式=2016×[( 2016+1 )]-20172=2016×2017-20172=2017×( 2016-2017 )=-2017.
小专题(六) 因式分解的几种常见方法 -5-
m+n )2( m-n )2. 当 m=-3,n=2 时,原式 =( -3+2 )2×( -3-2 )2=( -1 )2×( -5 )2=1×25=25.
5.已知 x=156,y=144,求代数式12x2+xy+12y2 的值. 解:12x2+xy+12y2=12( x2+2xy+y2 )=12( x+y )2, 当 x=156,y=144 时, 原式=12×( 156+144 )2=45000.
小专题(六) 因式分解的几种常见方法 -10-
根据上述论法和解法,思考并解决下列问题: ( 1 )分解因式:x3+x2-2; ( 2 )分解因式:x3-7x+6; ( 3 )分解因式:x4+x2+1. 解:( 1 )原式=( x3-1 )+( x2-1 )=( x-1 )( x2+x+1 )+( x-1 )·( x+1 )=( x-1 )( x2+2x+2 ). ( 2 )原式=x3-1-7x+7=( x-1 )( x2+x+1 )-7( x-1 )=( x-1 )( x2+x-6 )=( x-1 )( x-2 )( x+3 ). ( 3 )原式=x4+2x2+1-x2=( x2+1 )2-x2=( x2+1+x )·( x2+1-x ).
八年级数学-8.4.3_分组分解法
3.分组分解法1.理解并掌握运用分组分解法分解因式的一般步骤;(重点)2.能熟练运用分组分解法进行因式分解并解决问题.(难点)一、情境导入1.因式分解:(1)a4-18a2+81;(2)a3+6a2+9a;2.根据1中得到的式子尝试因式分解:a4-a3-12a2+9a+81.二、合作探究探究点:分组分解法分解因式【类型一】运用分组法分解因式因式分解:(1)a2+4ab+4b2-2a-4b;(2)x3+6x2+11x+6.解析:(1)前三项是完全平方形式,与-2(a+2b)再提取公因式,分解因式即可;(2)把式子化成x3+6x2+9x+2x+6的形式,前三项首先提公因式x,即可利用完全平方公式分解,后边的两项可以提公因式,然后利用提公因式法分解,最后利用十字分解法分解即可.解:(1)原式=(a+2b)2-2(a+2b)=(a+2b)(a+2b-2);(2)原式=x3+6x2+9x+2x+6=x(x+3)2+2(x+3)=(x+3)[x(x+3)+2]=(x+3)(x2+3x+2)=(x+3)(x+1)(x+2).方法总结:本题考查了分组分解法分解因式,此题因式分解方法灵活,注意认真观察各项之间的联系.【类型二】运用分组法分解因式判定三角形的形状已知a,b,c分别是△ABC三边的长,且a2+2b2+c2-2b(a+c)=0,请判断△ABC的形状,并说明理由.解析:首先利用完全平方公式分组进行因式分解,进一步分析探讨三边关系得出结论即可.解:由a2+2b2+c2-2b(a+c)=0,得a2-2ab+b2+b2-2bc+c2=0,即(a-b)2+(b-c)2=0,∴a-b =0,b-c=0,∴a=b=c,∴△ABC是等边三角形.方法总结:通过分组并利用完全平方式将原式转化为非负数的和的形式,然后利用非负数性质解答,这是解决此类问题一般的思路.【类型三】整体代入求值已知x+y=7,x-y=5,求x2-y2-2y+2x的值.解析:首先将前两项分组利用平方差公式分解因式,进而再提取公因式得出即可.解:x2-y2-2y+2x=(x+y)(x-y)-2(y-x)=(x+y)(x-y)+2(x-y)=(x-y)(x+y+2),将x+y=7,x-y=5代入上式得原式=(x-y)(x+y+2)=5×9=45.方法总结:若多项式有四项,且不能直接提公因式时,可考虑分组分解,常用的分组方法有两、两分组,一、三分组,分组应满足各组有公因式或符合公式,且各组之间有公因式或符合公式.【类型四】分组分解法的综合应用若m、n满足m+2+(n-4)2=0,分解因式:(x2+y2)-(mxy+n).解析:、n的值,代入式子,然后利用分组分解法进行分解.解:由题意,得m+2=0,n-4=0,解得m=-2,n=4.∴(x2+y2)-(mxy+n)=x2+y2-(-2xy+4)=x2+y2+2xy-4=(x+y)2-4=(x+y+2)(x+y-2).方法总结:本题考查用分组分解法进行因式分解.难点是采用两两分组还是三一分组.三、板书设计1.分组分解法分解因式某些多项式整体没有公式,也不符合公式,可将多项式进行分组,使各组符合提公因式或可以使用公式分解因式,且各组之间有公因式或符合公式从而将多项式因式分解.2.分组分解法分解因式的应用本节课学生的探究活动比较多,教师既要全局把握,又要顺其自然,千万不可拔苗助长,为了后面多做几道练习而主观裁断时间安排.其实公式的探究活动本身既是对学生能力的培养,又是对公式的识记过程,而且还可以提高他们应用公式的本领。
初中中考数学因式分解的九种方法解析
初中中考数学因式分解的九种方法解析初中中考数学因式分解的九种方法解析把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。
xx小编整理了初中中考数学因式分解的九种方法,希望能帮助到您。
一、运用公式法我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a^2-b^2=(a+b)(a-b)a^2+2ab+b^2=(a+b)^2a^2-2ab+b^2=(a-b)^2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
二、平方差公式1、式子:a^2-b^2=(a+b)(a-b)2、语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
三、因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
四、完全平方公式1、把乘法公式(a+b)^2=a^2+2ab+b^2 和(a-b)^2=a^2-2ab+b^2反过来,就可以得到:a^2+2ab+b^2=(a+b)^2 和 a^2-2ab+b^2=(a-b)^2,这两个公式叫完全平方公式。
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a^2+2ab+b^2和a^2-2ab+b^2这样的式子叫完全平方式。
2、完全平方式的形式和特点:①项数:三项;②有两项是两个数的的平方和,这两项的符号相同;③有一项是这两个数的积的两倍。
3、当多项式中有公因式时,应该先提出公因式,再用公式分解。
4、完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
5、分解因式,必须分解到每一个多项式因式都不能再分解为止。
五、分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。
因式分解-分组分解法
总结与归纳
(1) a2+2ab+b2-c2 (2) x2-y2+ax+ay
(2)利用分组分解法进行因式分解时,应该怎样 进行分解?
若多项式有四项,且不能直接提公因式时,可考虑用 分组分解法,常用分组方法有一、三分组,二、二分组; 一、三分组的前提是可以运用完全平方公式,然后再和 剩下的一项用平方差公式来分解;二、二分组的前提是 可以运用提公因式法或平方差公式,然后再用提公因式 法来分解.
②提取公因式后, 如果是三项的则考虑用完全平方 公式来分解因式如;果是二项的则考虑用平方差公式来分 解因式.
③最后检查式子是不是分解彻底了.
探究新知 例 把下列各式因式分解:
(1) a2+2ab+b2-c2 解:原式=( a2+2ab+b2 ) -c2
=(a+b)2-c2 =(a+b+c)(a+b-c)
同步练习 把下列各式因式分解:
(1) 4a2-b2+4a-2b
解:原式=(4a2-b2 ) +( 4a-2b) =[(2a)2-b2]+(4a-2b) =(2a+b)(2a-b)+2(2a-b) =(2a-b)(2a+b+2)
同步练习 把下列各式因式分解:
(2) x2-2xy+y2 Nhomakorabea1解:原式=( x2-2xy+y2 ) -1
拓展提升
已知a2+b2-6a+2b+10=0,求a,b的值.
解:因为 a2+b2-6a+2b+10=0 所以 a2-6a+9+b2+2b+1=0 所以 (a-3)2+(b+1)2=0 所以 a-3=0,b+1=0 解得 a=3,b=-1
(完整)因式分解的16种方法
因式分解的16种方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。
而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。
注意三原则1 分解要彻底2 最后结果只有小括号3 最后结果中多项式首项系数为正(例如:()1332--=+-x x x x )分解因式技巧1.分解因式与整式乘法是互为逆变形。
2.分解因式技巧掌握:①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示;③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;④分解因式必须分解到每个多项式因式都不能再分解为止。
注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。
基本方法⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。
如果多项式的第一项是负的,一般要提出“—”号,使括号内的第一项的系数成为正数.提出“—”号时,多项式的各项都要变号.提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同.口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。
例如:—am+bm+cm=—m(a-b-c );a (x —y )+b(y —x )=a (x-y )-b (x —y)=(x —y)(a-b )。
初中数学因式分解-分组分解法
3 分组分解整式ax by bx ay --+的四项没有公因式可以提取,也无法直接应用公式,这样的式子需要分组分解.3.1 三步曲我们用上面的整式来说明如何分组分解.例1 分解因式:ax by bx ay --+.解 ax by bx ay --+=()()ax bx ay by -+- [分为两组]=()()x a b y a b -+- [“提”]=()()x y a b +- [再“提”]一般地,分组分解大致分为三步:1.将原式的项适当分组;2.对每一组进行适当分组;3.将经过处理后的每一组当作一项,再采用“提”或“代”进行分解.一位高明的棋手,在下棋时,决不会只看一步,同样,在进行分组时,不仅要看到第二步,而且要看到三步.一个整式的项有许多种分组的方法,初学者往往需要经过尝试才能找到适当的分组方法,但是只要努力实践,多加练习,就会成为有经验,多加练习,就会成为有经验的“行家”.3.2 殊途同归分组的方法并不是唯一的,对于上面的整式ax by bx ay --+,也可以采用下面的做法: ax by bx ay --+=()()ax ay ax by +-+=()()a x y b x y +-+=()()x y a b +-.两种做法的效果是一样的,殊途同归!可以说,一种是按照x 与y 来分组(含x 的项在一组,含y 的项在另一组);另一种是按a 与b 来分组.例2 分解因式:221x ax x ax a +++--.解法一 按字母x 的幂来分组.221x ax x ax a +++--=()()()221x ax x ax a +++-+=()()()2111x a x a a +++-+=()()211a x x ++-解法二 按字母a 的幂来分组.221x ax x ax a +++--=()()221ax ax a x x +-++-=()()2211a x x x x +-++-=()()211a x x ++-.3.3 平均分配在例2中,原式的6项是平均分配的,或都要分成三组,每组两项;或者分成两组,每组三项.如果分组的目的是使第二步与第三步都有公因式可提,那么就必须平均分配. 例3 分解因式:3254222x x x x x --++-.解 6项可以分成三组,每组两项.我们把幂次相近的项放在一起,即3254222x x x x x --++-=()()()5432222x x x x x -+---=()()()42222x x x x x x -+---=()()4221x x x -+-.本例也可以将6项分为两组,每组三项,即将系数为1的放在一组,系数为-2的放在另一组,详细过程请读者自己完成.例4 分解因式:2222ac bd ad bc +--.解 2222ac bd ad bc +--整式ax by bx ay --+的四项没有公因式可以提取,也无法直接应用公式,这样的式子需要分组分解.3.4瞄准公式如果在第二步或第三步中需要应用乘法公式,那么各组中的项数不一定相等,应当根据公式的特点来确定。
北师大版八年级数学下册分组分解法分解因式[精选五篇][修改版]
第一篇:北师大版八年级数学下册分组分解法分解因式因式分解——分组分解法一、分组分解法分解因式如果一个多项式适当分组,使分组后各组之间有公因式或可应用公式,那么这个多项式就可以用分组的方法分解因式。
分组分解法适用于不能直接使用提取公因式法,公式法和十字相乘法的多项式。
分组分解法并不是一种独立的因式分解的方法。
通过对多项式进行适当的分组,把多项式转化为可以应用基本方法分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用基本方法进行分解因式的目的。
二、例题分析例1、分解因式:(1)2x2+2xy-3x-3y(2)a(3)4x2-9y2-24yz-16z2例2、分解因式:(1)m2+n2-2mn+n-m2-b2+4a-4b第二篇:八年级数学下册《2.1 分解因式》教学设计北师大版第二章分解因式1.分解因式总体说明因式分解是进行代数恒等变形的重要手段之一,它在以后的代数学习中有着重要的应用,如:多项式除法的简便运算,分式的运算,解方程(组)以及二次函数的恒等变形等,因此学好因式分解对于代数知识的后继学习具有相当重要的意义.本节是因式分解的第1小节,占一个课时,它主要让学生经历从分解因数到分解因式的过程,让学生体会数学思想——类比思想,让学生了解分解因式与整式的乘法运算之间的互逆关系,感受分解因式在解决相关问题中的作用.一、学生知识状况分析学生的技能基础:学生已经熟悉乘法的分配律及其逆运算,并且学习了整式的乘法运算,因此,对于因式分解的引入,学生不会感到陌生,它为今天学习分解因式打下了良好基础.学生活动经验基础:由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对于八年级学生还比较生疏,接受起来还有一定的困难,再者本节还没有涉及因式分解的具体方法,所以对于学生来说,寻求因式分解的方法是一个难点.二、教学任务分析基于学生在小学已经接触过因数分解的经验,但对于因式分解的概念还完全陌生,因此,本课时在让学生重点理解因式分解概念的基础上,应有意识地培养学生知识迁移的数学能力,如:类比思想,逆向运算能力等。
因式分解的常用方法(方法最全最详细)
因式分解的常用方法第一部分:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等 因式分解的一般步骤是:(1)通常采用一“提”、二“公"、三“分”、四“变"的步骤。
即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;。
注意:将一个多项式进行因式分解应分解到不能再分解为止。
一、提公因式法.:ma+mb+mc=m (a+b+c )二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) (a+b )(a —b) = a 2-b 2 —-------—-—a 2—b 2=(a+b)(a-b);(2) (a ±b )2 = a 2±2ab+b 2 —-—---—-—a 2±2ab+b 2=(a ±b)2;(3) (a+b )(a 2—ab+b 2) =a 3+b 3——---—---a 3+b 3=(a+b )(a 2—ab+b 2);(4) (a-b )(a 2+ab+b 2) = a 3-b 3 —-——-—--a 3—b 3=(a —b)(a 2+ab+b 2). 下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab —bc —ca ); 例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++, 则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系.解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式! =))((b a n m ++ 例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组. 第二、三项为一组.解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+- =)5()5(2y x b y x a --- =)2(5)2(b a y b a x --- =)2)(5(b a y x -- =)5)(2(y x b a --练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。
沪科版数学七年级下册8.4《因式分解-分组分解法》 教案设计
因式分解——分组分解法
高四琴
教学设计说明:
本节课的设计以减轻学生负担,全面实施素质教育为指导思想。
在这节课中,学生广泛参与,积极主动投入学习活动,学生的主体性得到了培养和发展,在教学过程中,我始终以在目标的引领下,引导学生通过小组内的互相讨论、合作学习,来暴露各层次学生的思维过程及特点,对所学内容的不同层次,不同侧面的理解,从而建构起学生自己的知识体系。
同时,在教学过程中充分调动学生学习主动性,对每一个新的发现,每一个问题的解决,每一个知识的获得给予足够的肯定,始终让学生保持心情愉悦,精神振奋,处于学习的最佳状态。
八年级数学(上册)-因式分解的方法汇总
(3)原式=
x4 2x2 1 2x(x2 1) x2 (x2 1)2 2x(x2 1) x2 (x2 x 1)2
方法八:待定系数法
对所给的数学问题,根据已知条件和要求,先设出问题 的多项式表达形式(含待定的字母系数),然后利用已 知条件,确定或消去所设待定系数,使问题获解的这种 方法叫待定系数法,用待定系数法解题目的一般步骤是:
解法三:将三次项 x3 拆成 9x3 8x3
解法四:添加两项 x2 x2
对应练习
分解因式:
(1)x9 x6 x 3 3
(2)(m2 1)(n2 1) 4mn
方法七:配方法
把一个式子或一个式子的部分写成完全 平方式或几个完全平方式的和的形式, 这种方法叫配方法。配方法的关键是通 过拆项或添项,将原多项式配上某些需 要的项,以便得到完全平方式 ,然后在 此基础上分解因式。
(1999x 1)(x 1999)
(5)原式= (x y)2 2(x y) 2xy(x y) 4xy (xy)2 2xy 1
(x y xy)2 2(x y xy) 1 (x y xy 1)2 (x 1)2 ( y 1)2
因式分解的方法
一、提公因式法; 二、公式法; 三、十字相乘法; 四、换元法; 五、分组分解法; 六、拆项、添项法; 七、配方法; 八、待定系数法。
方法一:提分因式法
这是因式分解的首选方法。也是最基本 的方法。在分解因式时一定要首先认真 观察等分解的代数式,尽可能地找出它 们的分因数(式)
方法二:公式法
=a(m+n)+b(m+n)
=(a+b)(m+n)
因式分解——分组分解法
北京四中撰稿:史卫红编审:谷丹责编:赵云洁因式分解——分组分解法一、分组分解法分解因式的意义我们把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运用公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果。
这种分解因式的方法叫做分组分解法。
二、学习指导:如果一个多项式适当分组,使分组后各组之间有公因式或可应用公式,那么这个多项式就可以用分组的方法分解因式。
分组分解法适用于不能直接使用提取公因式法,公式法和十字相乘法的多项式。
分组分解法并不是一种独立的因式分解的方法。
通过对多项式进行适当的分组,把多项式转化为可以应用基本方法分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用基本方法进行分解因式的目的。
我们有目的地将多项式的某些项组成一组,从局部考虑,使每组能够分解,从而达到整个多项式因式分解的目的,至于如何恰当地分组,需要具体问题具体分析,但分组时要有预见性,要统筹思考,减少盲目性,分组的好坏直接影响到因式分解能否顺利进行。
通过适当的练习,不断总结规律,便能掌握分组的技巧。
三、例题分析例1、分解因式:(1)2x2+2xy-3x-3y (2)a2-b2+4a-4b(3)4x2-9y2-24yz-16z2 (4)x3-x2-x+1分析:首先注意到前两项的公因式2x和后两项的公因式-3,分别把它们提出来,剩下的是相同因式(x+y),可以继续用提公因式法分解。
此题也可以考虑含有y的项分在一组。
如下面法(二)解法。
解(一)2x2+2xy-3x-3y=(2x2+2xy)-(3x+3y)=2x(x+y)-3(x+y)=(x+y) (2x-3)解(二)2x2+2xy-3x-3y=(2x2-3x)+(2xy-3y)=x(2x-3)+y(2x-3)=(2x-3)(x+y)说明:解法1和解法2虽然是不同的分组方式,但却有着相同的内在联系,即两组中的对应项系数成比例,分别为1:1和2:(-3)。
初二数学因式分解分组分解法
初二数学因式分解分组分解法一、分组分解法分解因式的意义我们把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运用公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果。
这种分解因式的方法叫做分组分解法。
二、学习指导:如果一个多项式适当分组,使分组后各组之间有公因式或可应用公式,那么这个多项式就可以用分组的方法分解因式。
分组分解法适用于不能直接使用提取公因式法,公式法和十字相乘法的多项式。
分组分解法并不是一种独立的因式分解的方法。
通过对多项式进行适当的分组,把多项式转化为可以应用基本方法分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用基本方法进行分解因式的目的。
我们有目的地将多项式的某些项组成一组,从局部考虑,使每组能够分解,从而达到整个多项式因式分解的目的,至于如何恰当地分组,需要具体问题具体分析,但分组时要有预见性,要统筹思考,减少盲目性,分组的好坏直接影响到因式分解能否顺利进行。
通过适当的练习,不断总结规律,便能掌握分组的技巧。
三、例题分析例1、分解因式:(1)2x2+2xy-3x-3y(2)a2-b2+4a-4b(3)4x2-9y2-24yz-16z2(4)x3-x2-x+1分析(1):解①,首先注意到前两项的公因式(2x)和后两项的公因式(-3),分别把它们提出来,剩下的是相同因式(x+y),可以继续用提公因式法分解。
解②,此题也可以考虑含有y的项分在一组。
如下面解2的解法。
解①: 2x2+2xy-3x-3y=(2x2+2xy)-(3x+3y)=2x(x+y)-3(x+y)=(x+y)(2x-3)解②: 2x2+2xy-3x-3y=(2x2-3x)+(2xy-3y)=x(2x-3)+y(2x-3)=(2x-3)(x+y)说明:解①和解②虽然是不同的分组方式,但却有着相同的内在联系,即两组中的对应项系数成比例,分别为1:1和2:(-3)。
因式分解(分组分解法)精选教学PPT课件
(2)p-q+k(p-q) 解:=(p-q)+k(p-q)
=(p-q)(1+k)
(3)5m(a+b)-a-b 解:=5m(a+b)-(a+b)
=(a+b)(5m-1)
(4)2m-2n-4x(m-n) 解:=2(m-n)-4x(m-n)
=(m-n)(2-4x)
(5)ax+2by+cx-2ay-bx-2cy 解: =(2by-2ay-2cy)+(ax+cx-bx)
两组,并使两组的项都按x的降幂排列,然后从两
组分别提出公因式2a与-b,这时,另一个因式正好
都是x-5y,这样全式就可以提出公因式x-5y。
解: 2ax-10ay+5by-bx
=(2ax-10ay)+(5by-bx)
=(2ax-10ay)+(-bx +5by)
=2a(x-5y)-b(x- 5y)
=(x-5y)(2a-b)
=a(m+n)+b(m+n)
式 乘
=a(m+n)+b(m+n)
式 分
=am+an+bm+bn 法 =(a+b)(m+n)
解
定义:
这种把多项式分成几组来分解因式的方法叫分组 分解法 注意:如果把一个多项式的项分组并提出公因式后,
它们的另一个因式正好相同,那么这个多项式就可 以用分组分解法来分解因式。
例1把a2-ab+ac-bc分解因式
= (a+c)(a-b)
=x(2a-b)-5y(2a-b)
= (2a-b)(x-5y)
因式分解常用方法(方法最全最详细)
因式分解的常用方法第一部分:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。
即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;。
注意:将一个多项式进行因式分解应分解到不能再分解为止。
一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法. 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因2-b 2=(a+b)(a-b) ;3 (a+b)(a 2-ab+b 2) =a 3+b 34 (a-b)(a 2+ab+b 2) = a 3-b 32±2ab+b 2=(a ±b) 2;a 3 4+b 3=(a+b)(a 2-ab+b 2) ; a 3-b 3=(a-b)(a 2+ab+b 2).式分解中常用的公式,例如:(1) (a+b)(a-b) = a 2-b 2 ----------- a(2) (a ±b) 2= a 2±2ab+b 2 -------------- a面再补充两个常用的公式:(5) a 2+b 2+c2+2ab+2bc+2ca=(a+b+c) 2;(6) a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca) ;ab bc ca ,例.已知a,b,c是ABC 的三边,且a2 b2 c2则ABC 的形状是( )A.直角三角形B等腰三角形 C 等边三角形 D 等腰直角三角形2 2 2 2 2 2解:a2b2 c2ab bc ca 2a22b22c22ab 2bc 2ca(a b)2 (b c)2 (c a)2 0 a b c三、分组分解法.(一)分组后能直接提公因式例 1 、分解因式:am an bm bn 分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
(完整版)因式分解的常用方法(方法最全最详细)
因式分解的常用方法第一部分:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。
即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;。
注意:将一个多项式进行因式分解应分解到不能再分解为止。
一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) (a+b)(a-b) = a 2-b 2 -----------a 2-b 2=(a+b)(a-b);(2) (a ±b)2 = a 2±2ab+b 2 ---------a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3---------a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a-b)(a 2+ab+b 2) = a 3-b 3 --------a 3-b 3=(a-b)(a 2+ab+b 2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a bc ,,是ABC ∆的三边,且222a b c ab bc ca ++=++, 则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
因式分解16种方法
因式分解的16种方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。
而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。
注意三原则1分解要彻底2最后结果只有小括号3最后结果中多项式首项系数为正(例如:—3x2• x=-x3x —1)分解因式技巧1•分解因式与整式乘法是互为逆变形。
2. 分解因式技巧掌握:①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示;③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;④分解因式必须分解到每个多项式因式都不能再分解为止。
注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。
基本方法⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。
如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。
提出“ ”号时,多项式的各项都要变号。
提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同。
口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。
例如:-am+bm+cm=-m(a-b-c);a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。
8.4.4因式分解-分组分解法
? (4) 3x2-5xy-12y2
(5) am+an+bm+bn =(m+n)(a+b)
这个一次四项式没有公因式,它 是如何进行因式分解的呢?
分解因式am+an+bm+bn am+an+bm+bn =(aamm++bamn+)+a(nb+mb+nbn) =(aa(m+bnm)+)+b((man++nb) n) =m(m(a++nb)()a++nb(a) +b) =(a+b)(m+n)
因此,分组分解因式要有预见性;
(2)分组的方法不唯一,而合理的选择分组方 案,会使分解过程简单;
(3)分组时要用到添括号法则,注意在添加带 有负号的括号时,括号内每项的符号都要改变;
(4)实际上,分组只是为实际分解创造了条 件,并没有直接达到分解的目的。
(1)(2ab a2 ) (c2 b2 ) (2)xy x y 1
方法 分类 分组方法
特点
①按字母分组②按
二项、二项 系数分组③符合公
分 四项
式的两项分组
组 分 解
五项
三项、一项 三项、二项
先完全平方公式后 平方差公式
各组之间有公因式
法
三项、三项
各组之间有公因式
六项 二项、二项、二项
Hale Waihona Puke 三项、二项、一项 可化为二次三项式
(1)把有公因式的各项归为一组,并使组之间 产生新的公因式,这是正确分组的关键所在;
因式分解——分组分解法
=(x-3y-5)2
(3)分析此题还是六项式,但都不具备上述两题的特征,可将这六项式二项、二项、二项分成三组,各自提取公因式,再提取三组间的公因式。
解:a2-a2b+ab2-a+b-b2
=(a2-b2)-(a2b-ab2)-(a-b)
=(a+b)(a-b)-ab(a-b)-(a-b)
=(x-1)(x+1)(x-1)
=(x+1)(x-1)2
法(二)原式=(x3-x)-(x2-1)
=x(x2-1)-(x2-1)
=(x2-1)(x-1)
=(x+1)(x-1)(x-1)
=(x+1)(x-1)2
说明:分组时,不仅要注意各项的系数,还要注意到各项系数间的关系,这样可以启示我们对下一步分解的预测,如下一步是提公因式还是应用公式等。
=a2x2+b2y2+b2x2+a2y2
=(a2x2+b2x2)+(b2y2+a2y2)
=x2(a2+b2)+y2(a2+b2)
=(a2+b2)(x2+y2)
(4)分析:将3b2变形为4b2-b2再分组进行。
解:a2-4ab+3b2+2bc-c2
=a2-4ab+4b2-b2+2bc-c2
=(a2-4ab+4b2)-(b2-2bc+c2)
=(a+b)(a-b)+4(a-b)
=(a-b) (a+b+4)
(3)若将此题应用(2)题方法分组将4x2-9y2一组应用平方差公式,或者将4x2-16z2一组应用平方差公式后再没有公因式可提,分组失败。观察题中特点,后三项符合完全平方公式,将此题二、三、四项分组先用完全平方公式,再用平方差公式完成分解。
数学北师大版八年级下册因式分解——分组分解法
“翻转课堂”导学案9.将44+a 因式分解结果正确的是( )A .)2)(2(22-+a aB .)22)(22(22-++-a a a aC .)22)(22(22--++a a a aD .)22)(22(22+-++a a a a10.四个连续自然数的积再加上1的和一定是( )A .2的倍数B .3的倍数C .4的倍数D .a 2(a 是自然数) 课堂学 习一、梳理知识二、聚焦问题三、合作学习正确率80%以下的,采用问题聚焦,做错的同学提出错误点,做对的同学进行讲解;正确率80%以上的,老师留给大家时间,以小组长为首,组织大家交流,合作解决所有问题。
四、综合练习1.对于多项式5321x x x -+-有如下四种分组方法,其中分组合理的是( ) ①532()(1)x x x -+- ②532()1x x x -+-③523()(1)x x x +-+ ④532(1)x x x --+ A .①② B .①③ C .②④ D .③④ 2.下列各式分解因式中,错误的有( ) A . )3)(2(623b a b a ab --=+-- B .)3)(2(623--=+--b a b a abC . )3)(2(623---=+--b a b a abD .)3)(2(623b a b a ab ---=+-- 3. 分解因式92234-+-a a a 结果正确的是 ( )A .)3)(3(22-++-a a a aB .)3)(3(22--+-a a a aC .)3)(3(22-+++a a a aD . )3)(3(22---+a a a a4.值为的一个因式,则)是(若m m b a ab b a ---+-2223 ( )A .3B .-3C .9D .-95. 分解因式mn n m 4)1)(1(22+-- ,结果正确的是( )A .)1)(1(n m mn n m mn +-++++B .)1)(1(n m mn n m mn +---+-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
③ x y a b 2ax 2by
2 2 2 2
解:原式=
④m n 2mn 4n 4m 4
2 2
解:原式=
例5:若x y 2 y 4 x 5 0
2 2
,求x和y的值.
解:
小结 这节课学习了利用分组分解法 分解因式,你有哪些体会?
1.我们学习了哪几种分解因式的方法? 2.什么样的多项式适合运用平方差公式进行分 解因式?
3.什么样的多项式适合运用完全平方公式进行 分解因式? 4.分解因式要注意什么?
分组分解法
一.四项式的二二分组
例1:分解因式: ①a ab ac bc
2
解:原式=
②4a b 4a 2b
x 4 y 12 yz 9 z a 2ab b c 解:原式=
2 2 2
2
2
2
解:原式=
一.五项及以上的分组分解举例
例4:分解因式: ①x 6 y 9 y 2 x 6 xy
2 2
解:原式=
②ax bx bx ax a b
2 2
解:原式=
4x y 6x 3 y
2 2
解:原式=
二.四项式的三一分组
例3:分解因式
解:原式=
x 1 2 xy y
2
解:原式=
2
a 2ab b c
2 2
2
练习2 分解因式
2 2
解:原式=
2ab a b 9 解:原式=
4a 9b c 4ac
2 2 2
2 2
解:原式=
例2:分解因式:
解:原式=
②x ax y ay
2 2
解:原式=
①2ax 10ay 5by bx
练习1 分解因式
3ax 4by 4ay 3bx 9 x 6 x 2 y y
2
解:原式= 解:原式=
2
m 5n m n 5m
2
解:原式=