四年级奥数讲义-数列与数表一通用版
小学四年级奥数全册精品讲义
7.把一条长 15cm 的线段截为三段,使每条线段的长度是整数,用这三条线 段可以组成多少个不同的三角形?(当且仅当两三角形的三条边可以对应相等 时,我们称这两个三角形是相同的.)
如果 M 位上放置标有数码“3”的纸片,一共有_____种不同的放置方法.
M
4.如下图,在 2×2 方格中,画一条直线最多可穿过 3 个方格,在 3×3 方格中, 画一条直线最多可穿过 5 个方格.那么 10×10 方格中,画一条直线最多可穿过 _____个方格.
5. 有一批长度分别为 1,2,3,4,5,6,7,8,9,10 和 11 厘米的细木条,它们的 数量都足够多,从中适当选取 3 根木条作为三条边.可围成一个三角形,如果规定 底边是 11 厘米长,你能围成多少个不同的三角形?
第一讲 加乘原理
加法原理:完成一件工作共有 N 类方法。在第一类方法中有 m1种不同的方法,在第二 类方法中有 m2种不同的方法,……,在第 N 类方法中有 mn 种不同的方法,那么完成这件工 作共有 N=m1+m2+m3+…+mn 种不同方法。
运用加法原理计数,关键在于合理分类,不重不漏。要求每一类中的每一种方法都可以 独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任 何一种方法,都属于某一类(即分类不漏)。合理分类也是运用加法原理解决问题的难点,不 同的问题,分类的标准往往不同,需要积累一定的解题经验。
这两个基本原理是排列和组合的基础,教学时要先通过生活中浅显的实例,如购物问题、 行程问题、搭配问题等,帮助孩子理解两个原理,再让孩子学习运用原理解决问题。
四年级数学竞赛奥数讲义,例题
计算:999999999×111111111计算:66666×133332求算式200982009920096999888666⨯÷个个个的计算结果的各位数字之和。
计算:222010120108888111-个个计算:22222×99999+33333×33334第一讲:多位数计算(★★★)(★★★★)(★★★★)(★★★★)(★★★)计算1009100910099999991999⨯+个个个结果末尾有多少个零?201032010420102201053335556444222⨯+⨯⨯个个个个【你还记得吗】 (★★★)计算:2010×20112011-2011×20102010计算:333×332332333-332×333333332(★★★★)(★★★★★) (★★★★)测试题1.计算222222×999999A .222222217880B .222222788888C .222221777778D .2222221777882.计算6666×13332A .88871112B .88881112C .88872222D .888822223.计算:3001300229931111222233334 个个个A .3013333个3B .2003333个3C .3003333个3D .3063333个34.计算100×100-99×99+98×98-97×97+…+2×2-1×1A .4950B .5050C .5150D .52505.计算 99999×26+33333×24A .3996366B .6933669C .3399966D .36699666.计算:899×899+1799A .819000B .810000C .900000D .9810007.计算111111×777777+444444×555555A .333332666667B .333333666667C .333332777777D .3333337777778.计算2009×20072008-2007×20092008A .2B .4016C .4017D .0网校老师共50人报名参加了羽毛球或乒乓球的训练,其中参加羽毛球训练的有30人,参加乒乓球训练的有35人,请问:两个项目都参加的有多少人?一个班30人,完成作业的情况有三种:一种是完成语文作业没完成数学作业;一种是完成数学作业没完成语文作业;一种是语文、数学作业都完成了。
四年级下册数学讲义-奥数导引 1-2 数列与数表(无答案PDF)人教版
【例2】 桌子上有一堆球,如果球的总数量是 10 的倍数,就平均分成 10 堆并拿走其中 9 堆;如 果球的总数量不是 10 的倍数,就添加不多于 9 个球,使球数变为 10 的倍数,再平均分 成 10 堆并拿走其中 9 堆.这个过程称为一次“操作”.若球仅为一个,则不做“操作”.如 果最初有 194919481947……54321 个球,那么经过多少次“操作”后仅余下一个球?
【例3】 在下图所示的数阵中,将满足下面条件的两个数分为一组:它们上下相邻,且和为 391.问:在所有这样的数组中,哪一组内的两个数乘积最小?
第1行 1 2 3 第 2 行 30 29 28 第 3 行 31 32 33
14 15 17 16 44 45
【例4】 如下图中的数是按一定规律排列的,那么第 6 行第 23 列的数字是多少?
【习题2】(拓展篇第 14 题)如下图所示,把自然数按规律排列起来.如果用“土”字型阴影覆盖 出 8 个数并求和,且和为 798.这 8 个数中最大的数是多少?(“土”字不能旋转或翻 转) 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
大的顺序组成数列an .求 a100 .
17 ← 16 ← 15 ← 14 ← 13
30
↓
↑
↑
18
5←4←3
12
29
↓
↓
↑
↑
↑
19
6
1→2
11
28
↓
↓
↑
↑
20
7 → 8 → 9 → 10
27
↓
小学四年级奥数精品讲义(1-20)
世纪教育内部资料奥数四年级目录第1讲找规律(一) 1 第2讲找规律(二) 4第3讲简单推理 6第4讲应用题(一) 8第5讲算式谜(一) 10第6讲算式谜(二) 12第7讲最优化问题 15第8讲巧妙求和(一) 16第9讲变化规律(一) 18第10讲变化规律(二) 19第11讲错中求解 21第12讲简单列举 23第13讲和倍问题 25第14讲植树问题 27第15讲图形问题 29第16讲巧妙求和(二) 32第17讲数图形(一) 34第18讲数数图形(二) 35第19讲应用题(二) 37第20讲速算与巧算 402013小学四年级奥数暑期精品讲义第1讲找规律(一)一、知识要点观察是解决问题的根据。
通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。
二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。
1,4,7,10,( ),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。
根据这一规律,括号里应填的数为:10+3=13或16-3=13。
像上面按照一定的顺序排列的一串数叫做数列。
练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。
(1)2,6,10,14,( ),22,26(2)3,6,9,12,( ),18,21(3)33,28,23,( ),13,( ),3(4)55,49,43,( ),31,( ),19(5)3,6,12,( ),48,( ),192(6)2,6,18,( ),162,( )(7)128,64,32,( ),8,( ),2(8)19,3,17,3,15,3,( ),( ),11,3..【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。
数列与数表知识点总结
数列与数表知识点总结一、数列的概念和性质数列是指一系列有顺序排列的数所构成的集合。
数列中的每个数称为数列的项。
数列可以有限个项,也可以有无穷个项。
数列一般用a1, a2, a3, …表示,其中ai表示数列的第i项。
数列的性质包括:公差、前n项和、通项公式等。
(一)公差对于数列{an},如果相邻两项之间的差d是一个常数,即an+1 - an = d,则称数列{an}为等差数列,其中d称为等差数列的公差。
如果数列{an}是一个等差数列,那么第n项可以表示为an = a1 + (n-1)d。
对于等差数列,前n项和Sn可以表示为Sn = (a1 + an) * n / 2。
(二)通项公式对于数列{an},如果能找到一个与n有关的表达式f(n),使得an = f(n),那么f(n)称为数列{an}的通项公式。
通项公式可以帮助我们求出任意项的值,也能够帮助我们计算数列的前n项和、求出第n项等。
(三)基本性质1. 数列的第n项可以用通项公式表示;2. 等差数列的通项公式为an = a1 + (n-1)d;3. 前n项和的计算公式为Sn = (a1 + an) * n / 2;4. 等差数列的通项公式可以通过求出前n项和公式和第n项公式进行推导。
二、数列的类型数列根据项之间的关系和性质的不同,可以分为等差数列、等比数列、斐波那契数列和等等。
(一)等差数列等差数列是指数列中相邻的两项之间的差是一个常数。
等差数列的通项公式为an = a1 + (n-1)d,其中d为等差公差。
等差数列有以下特点:1. 相邻两项之间的差是一个常数;2. 前n项和的公式为Sn = (a1 + an) * n / 2;3. 通项公式可由前n项和的公式和第n项公式进行推导;4. 等差数列的和可以表示为最大项和最小项之和乘以项数除以2,即Sn = (a1 + an) * n / 2。
(二)等比数列等比数列是指数列中相邻的两项之间的比是一个常数。
四年级高思奥数之数列与数表含答案
四年级高思奥数之数列与数表含答案第17讲数列与数表内容概述通过观察数列或数表中的已知数据,发现规律并进行填补与计算的问题,注意数表形式的多样性,计算时常常考虑周期性,或进行合理估算.典型问题兴趣篇1.1,1,4,2,7,3,10,1,13,2,16,3,19,1,22,2,25,3,…,100.请观察上面数列的规律,问:(1)这个数列一共有多少项?(2)这个数列所有数的总和是多少?2.观察数组(1,2,3),(3,4,5),(5,6,7),(7,8,9)的规律,求:(1)第20组中三个数的和;(2)前20组中所有数的和.3.一个数列的第一项是l,之后的每一项是这样得到的:如果前一项是一位数,接着的一项就等于前一项的两倍;如果前一项是两位数,接着的一项就等于前一项个位数字的两倍.请问:(1)第100项是多少?(2)前100项的和是多少?4.如图17-1,方格表中的数是按照一定规律填人的.请观察方格表,并填出“?”处的数.5.如图17-2,数阵中的数是按一定规律排列的,请问:(1)100在第几行、第几列?(2)第20行第3列的数是多少?6.如图17-3,从4开始的自然数是按某种规律排列的,请问:(1)100在第几行,第几列?(2)第5行第20列的数是多少?7.如图17-4所示,把偶数2、4、6、8,排成5列.各列从左到右依次为第1列、第2列、第3列、第4列和第5列,请问:(1)100在第几行,第几列?(2)第20行第2列的数是几何?8.如图17-5,从1入手下手的自然数按某种体式格局布列起来,请问:(1)100在第几行?100是这一行左起第几个数?(2)第25行左起第5个数是多少?9.如图17-6,把从1入手下手的自然数排成数阵.试问:能否在数阵中放人一个3×3的方框,使得它围住的九个数之和等于:(1)1997;(2)2016;(3)2349.如果可以,请写出方框中最大的数.10.如图17-7,将1至400这400个自然数顺次填人20 x20的方格表中,请问:(1)246在第几行,第几列?(2)第14行第13列的数是多少?(3)所有阴影方格中数的总和是多少?拓展篇1.1,100,2,98,3,96,2,94,1,92,2,90,3,88,2,86,l,84,…,.请观察上面数列的规律,请问:(1)这个数列中有多少项是2?(2)这个数列所有项的总和是几何?2.一列由两个数组成的数组:(1,1),(1,2),(2,2),(1,3),(2,3),(3,3),(1,4),(2,4),(3,4),(4,4),(1,5),…,请问:(1)第100组内的两数之和是多少?(2)前55组中“5”这个数出现了几何次?3.有一列数,第一个数是3,第二个数是4,从第三个数开始,每个数都是它前面两个数的和的个位数.从这列数中取出连续的50个数,并求出它们的和,所得的和最大是多少?如果从中取出连续的500个数,500个数的和最大又是多少?4.如图17-8,把从1开始的自然数填在图上,1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OG上,8在射线OH上,9又回到射线OA上,如此循环下去,问:78在哪条射线上?射线OE上的第30个数是多少?5.如图17-9,将从5开始的连续自然数按规律填人数阵中,请问:(1)123应该排在第几列?(2)第2行第20列的数是几何?6.如图17-10所示,将自然数有纪律地填入方格表中,请问:(1)500在第几行,第几列?(2)第100行第2列是几何?7.如图17-11所示,数阵中的数字是按一定规律排列的.这个数阵中第60行左起第4个数字是多少?8.中国现代的纪年办法叫“干支纪年”,是在“十天干”和“十二地支”的根蒂根基上树立起来的.天干共十个,其布列顺序为:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;地十二个,其布列顺序为:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.以一个天干和一个地支相配,天干在前,地支在后,每对干支透露表现一年.在干支纪年中,每六十年龄年体式格局循环一次.公元纪年则是国际通行的纪年方式.图17-12是1911年到1926年的公元纪年与干支纪年的对照表.请问:(1)中国近代史上的“辛亥革命”发生在公元1911年,是干支纪年的辛亥年,请问公元2049年是干支纪年的什么年?(2)21世纪的甲子年是公元纪年的哪一年?(3)“戊戌变法”发生在19世纪末的戊戌年,这一年是公元纪年的哪一年?9.如图17-13所示,将1至400这400个自然数填入下面的小三角形中,每个小三角形内填有一个数.“l”所处的位置为第1行;“2,3,4”所处的位置为第2行;………请问:(1)第15行正中央的数是几何?(2)第12行中所有空缺三角形内的数之和是几何?(3)前8行中阴影三角形内的各数之和比空缺三角形内的各数之和大几何?10.如图17-14,把从1入手下手的自然数按某种体式格局布列起来.请问:(1)150在第几行,第几列?(2)第5行第10列的数是多少?11.如图17-15,把从l开始的自然数按某种方式排列起来.请问:(1)200排在第几行,第几列?(2)第18行第22列的数是多少?12.如图17-16所示,把自然数按纪律布列起来.假如用“土”字型阴影掩盖出8个数并求和,且和为798.这8个数中最大的数是几何?(“土”字不能扭转或翻转)超越篇1.下面的数组是按一定顺序排列的:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),….请问:(1)其中第70个括号内的数划分是几何?(2)前50个括号内各数之和是多少?2.桌子上有一堆球,如果球的总数量是10的倍数,就平均分成10堆并拿走其中9堆;如果球的总数量不是10的倍数,就添加不多于9个球,使球数变为10的倍数,再平均分成10堆并拿走其中9堆.这个过程称为一次“操作”.若球仅为一个,则不做“操作”.如果最初有…个球,那么经过多少次“操作”后仅余下一个球?3.在图17-17所示的数阵中,将满足下面条件的两个数分为一组:它们上下相邻,且和为391.问:在所有这样的数组中,哪一组内的两个数乘积最小?4.图17-18中的数是按一定规律排列的,郡么XXX第23列的数字是多少?5.将“白、旦、田、由、甲、申”这六个字按如图17-19所示的体式格局布列.请问:(1)第1行从左往右数的第15个字是几何?(2)第1列从上往下数的第25个字是多少?(3)第25行的第15个字是多少?6.将自然数从1入手下手,顺次排成如图17-20所示的螺旋形,其中2,3,5,7,…处为拐点,请问:(1)第30个拐点处的数是多少?(2)前30个拐点处的各数之和是多少?7.如图17-2l,把从1入手下手继续的自然数按照一定的顺序排成数表,假如这个数表有40行,请经由进程计算回覆以下问题:(1)第1行的数是多少?(2)第20行中的最大数与最小数之和是多少?(3)第35行中的最大数与最小数之和是几何?8.如图17-22,25个同样大小的等边三角形拼成了一个大等边三角形.在每个小三角形的顶点处都标有一个数,使得任何两个相邻小等边三角形所构成的菱形的两组相对的顶点上所放置的数的和都相等.已知在大等边三角形的三个顶点放置的数分别是100、200、300.求所有顶点上数的总和.第17讲数列与数表内容概述经由进程观察数列或数表中的数据,发现纪律并举行填补与计算的问题,留意数表体式格局的多样性,计算经常常斟酌周期性,或举行公道估算.典型问题兴趣篇1.1,1,4,2,7,3,10,1,13,2,16,3,19,1,22,2,25,3,…,100.请观察上面数列的纪律,问:(1)这个数列一共有几何项?(2)这个数列所稀有的总和是几何?答案:67;1783解析:距离是是等差数列。
《小学奥数》小学四年级奥数讲义之精讲精练第1讲寻找规律
《⼩学奥数》⼩学四年级奥数讲义之精讲精练第1讲寻找规律第1讲找规律⼀、知识要点按照⼀定的顺序排列的⼀串数叫做数列。
观察是解决问题的根据。
通过观察,得以揭⽰出事物的发展和变化规律,在⼀般情况下,我们可以从以下⼏个⽅⾯来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从⽽很快找出规律;4.数之间的联系往往可以从不同的⾓度来理解,只要⾔之有理,所得出的规律都可以认为是正确的。
⼆、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号⾥填上适当的数。
1,4,7,10,(),16,19练习1:先找出下列各列数的排列规律,然后在括号⾥填上适当的数。
(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3.【例题2】先找出下列数排列的规律,然后在括号⾥填上适当的数。
1,2,4,7,(),16,22练习2:先找出下列数排列的规律,然后在括号⾥填上适当的数。
(1)10,11,13,16,20,(),31(2)1,4,9,16,25,(),49,64(3)3,2,5,2,7,2,(),(),11,2(4)53,44,36,29,(),18,(),11,9,8 (5)81,64,49,36,(),16,(),4,1,0(6)28,1,26,1,24,1,(),(),20,1 (7)30,2,26,2,22,2,(),(),14,2(8)1,6,4,8,7,10,(),(),13,14【例题3】先找出规律,然后在括号⾥填上适当的数。
四年级奥数:数列与数表
四年级奥数:数列与数表经过观察与归纳找出数与图的规律。
观察是寻找规律不可少的手段,是发现本质、归纳规律的先导,有些问题解答不出来,究其原因,与其说是“想不出”,不如说是“看不出”。
在寻找规律的过程中,必须要高度重视对数、形、式等现象的观察,善于抓住问题的本质特征进行归纳,从而得出规律。
只有经过观察、思考和试算,发现数与数、图形与图形相互之间的关系,才能得到题目的答案。
同学们,通过学习,希望你在平时多积累,多归纳,善于发现、总结一些规律,因为学会发现往往比学会几道题目重要得多。
名师点题例1知识概述1、数列:主要包括⑴递增数列(等差数列,等比数列),等差数列为重点考察对象。
⑵周期数列;例如:1,2,4,7,1,2,4,7,1,2,4,7,…⑶复合数列;例如:1,3,2,6,3,9,4,12,5,15…⑷特殊数列;例如:斐波那契数列1,1,2,3,5,8,13,21…2、等差数列通用公式:通项公式:第n项=首项 +(项数– 1)×公差项数公式:项数=(末项–首项)÷公差 + 1求和公式:总和=(首项+末项)×项数÷23、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。
4、数表规律给出几个具体的、特殊的图形,要求找出其中的变化规律,从而猜想出一般性的结论。
具体方法和步骤是:⑴通过对几个特例的分析,寻找规律并且归纳;⑵猜想符合规律的一般性结论;⑶验证或证明结论是否正确。
在杯赛考试中主要将图形规律与等差数列结合到一起来考察。
(1)在数列3、6、9……,201中共有多少数? (2)在数列3、6、9……,201和是多少? (3)如果继续写下去,第201个数是多少? 【解析】(1)因为在这个等差数列中,首项=3,末项=201,公差=3,所以根据公式: 项数=(末项-首项)÷公差+1,便可求出。
全国通用四年级上册奥数培训精品课件等差数列求和共35张PPT
解:(1)第10项: (2)第98项:
2+3 ×(10-1)=29 2+3 ×(98-1)=293
例2 已知数列2、5、8、11、14、 17,......122,这个数列有多少项。
规律:末项比首项多的公差的个数,再加上1,就得到 这个数列的项数。
等差数列的项数= 公差个数 + 1 =(末项-首项)÷公差 + 1
这个数列的项数= (122-2)÷3+1=41
小结:
等差数列项的有关规律
等差数列的某一项=首项+公差×(项数-1) 等差数列的每1项除以它的公差,余数相同。 等差数列的项数=(末项-首项)÷公差+1
练习
1、一串数:1、3、5、7、9、……49。 (1)它的第21项是多少? (2)这串数共有多少个?
解:原数列之和=(6+38)×9÷2 =44×9÷2 =198
等差数列的和=(首项+末项)×项数÷2
例2:计算1 + 6+ 11 + 16 + 21+ 26 +......+ 276
等差数列的和=(首项+末项)×项数÷2 ?
等差数列的项数=(末项-首项)÷公差+1
解:等差数列的项数: (276-1)÷5+1=56(项)
原数列之和=(1+276)×56÷2 = 277×28 =7756
等差数列二
复习
1、计算
(1)7+10+13+16+...+37 (2)7+11+15+19+......+403 (3)9+19+29+39+......+99 (4)1+3+5+7+......+99
4年级奥数第三讲:数列
四年级奥数第三讲:数列1. 下面是一串有规律的数:9,20,33,48,65,84,…这串数中的第41个数是2.下面是一串有规律的数:1,,,,,…这串数中的第7个数是3.1+3=2×2;1+3+5=3×3;1+3+5+7=4×4;请问:1+3+5+7+…+2011= ×4.有一串正整数1、2、3、4、…、9、10、11、12、…顺次排成123456789101112…,第11个数字是0,第15个数字是2,从第一位到第207位上的所有的数字和是。
5.2008年在中国北京举办奥运会,已知第一届现代奥运会于1896年在雅典举行,其后每四年举行一次,这样北京奥运会是第届。
6.一群小朋友分一堆糖,第1个小朋友拿了1块,第2个小朋友拿了2块,第3个小朋友拿了3块…以此类推,后拿糖的小朋友都比他前面的小朋友多拿1块。
这群小朋友刚好把这堆糖分光。
如果平均分配,每个小朋友刚好分到10块糖,这堆糖共有快。
7.在啤酒节上,六个好朋友A、B、C、D、E和F要比赛喝啤酒,比赛规则很简单,那就是每一个人都必须不断地、尽量地喝,直到不省人事为止,看看在倒下之前谁喝的最多。
A首先退出了这场比赛…他昏睡过去,成为另外无人的笑料,没人喝了3升后,B也倒在了桌子下。
每人又喝了3升,C终于无法站立…,直到F 也昏睡过去。
一旁的店主替他们计算了一下,这六个人一共喝了63升啤酒。
那么,每个人喝了几升?8.将连续正整数依下列方式分组:(1),(2,3),(4,5,6),(7,8,9,10),…其中第一组有1个数,第二组有2个数,第三组有3个数,…以此类推,请问在第30组内所有数的总和是多少?9.书店里有一套漫画共9册,第一册需24元,第二册需23元,第三册需22元,以此类推,每一册的售价都比它前面的一册少1元,如果哆啦A 梦用200元去买这套漫画书,老板应找她元。
10.甲乙两人同时从A地出发,其中甲每天走7公里,乙第一天走1公里,第二天走2公里,第三天走3公里,以后每天都比前一天多走1公里,请问,二人经过天走的路程相同。
四年级奥数:数列与数表
四年级奥数:数列与数表经过观察与归纳找出数与图的规律。
观察是寻找规律不可少的手段,是发现本质、归纳规律的先导,有些问题解答不出来,究其原因,与其说是“想不出”,不如说是“看不出”。
在寻找规律的过程中,必须要高度重视对数、形、式等现象的观察,善于抓住问题的本质特征进行归纳,从而得出规律。
只有经过观察、思考和试算,发现数与数、图形与图形相互之间的关系,才能得到题目的答案。
同学们,通过学习,希望你在平时多积累,多归纳,善于发现、总结一些规律,因为学会发现往往比学会几道题目重要得多。
名师点题例1知识概述1、数列:主要包括⑴递增数列(等差数列,等比数列),等差数列为重点考察对象。
⑵周期数列;例如:1,2,4,7,1,2,4,7,1,2,4,7,…⑶复合数列;例如:1,3,2,6,3,9,4,12,5,15…⑷特殊数列;例如:斐波那契数列1,1,2,3,5,8,13,21…2、等差数列通用公式:通项公式:第n项=首项 +(项数– 1)×公差项数公式:项数=(末项–首项)÷公差 + 1求和公式:总和=(首项+末项)×项数÷23、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。
4、数表规律给出几个具体的、特殊的图形,要求找出其中的变化规律,从而猜想出一般性的结论。
具体方法和步骤是:⑴通过对几个特例的分析,寻找规律并且归纳;⑵猜想符合规律的一般性结论;⑶验证或证明结论是否正确。
在杯赛考试中主要将图形规律与等差数列结合到一起来考察。
(1)在数列3、6、9……,201中共有多少数? (2)在数列3、6、9……,201和是多少? (3)如果继续写下去,第201个数是多少? 【解析】(1)因为在这个等差数列中,首项=3,末项=201,公差=3,所以根据公式: 项数=(末项-首项)÷公差+1,便可求出。
四年级奥数训练第第17讲数列与数表
四年级奥数训练第17讲数列与数表内容概述通过观察数列或数表中的已知数据,发现规律并进行填补与计算的问题,注意数表形式的多样性,计算时常常考虑周期性,或进行合理估算.典型问题兴趣篇1.1,1,4,2,7,3,10,1,13,2,16,3,19,1,22,2,25,3,…,100.请观察上面数列的规律,问:(1)这个数列一共有多少项? (2)这个数列所有数的总和是多少?2.观察数组(1,2,3),(3,4,5),(5,6,7),(7,8,9)的规律,求:(1)第20组中三个数的和;(2)前20组中所有数的和.3.一个数列的第一项是l,之后的每一项是这样得到的:如果前一项是一位数,接着的一项就等于前一项的两倍;如果前一项是两位数,接着的一项就等于前一项个位数字的两倍.请问:(1)第100项是多少?(2)前100项的和是多少?4. 如图17-1,方格表中的数是按照一定规律填人的.请观察方格表,并填出“?”处的数.5.如图17-2,数阵中的数是按一定规律排列的,请问:(1)100在第几行、第几列?(2)第20行第3列的数是多少?6.如图17-3,从4开始的自然数是按某种规律排列的,请问:(1)100在第几行,第几列?(2)第5行第20列的数是多少?7. 如图17-4所示,把偶数2、4、6、8,排成5列.各列从左到右依次为第1列、第2列、第3列、第4列和第5列,请问:(1)100在第几行,第几列?(2)第20行第2列的数是多少?8.如图17-5,从1开始的自然数按某种方式排列起来,请问:(1)100在第几行?100是这一行左起第几个数?(2)第25行左起第5个数是多少?9. 如图17-6,把从1开始的自然数排成数阵.试问:能否在数阵中放人一个3×3的方框,使得它围住的九个数之和等于:(1)1997;(2)2016;(3)2349.如果可以,请写出方框中最大的数.10. 如图17-7,将1至400这400个自然数顺次填人20 x20的方格表中,请问:(1)246在第几行,第几列?(2)第14行第13列的数是多少?(3)所有阴影方格中数的总和是多少?拓展篇1.1,100,2,98,3,96,2,94,1,92,2,90,3,88,2,86,l,84,…,0.请观察上面数列的规律,请问:(1)这个数列中有多少项是2?(2)这个数列所有项的总和是多少?2.一列由两个数组成的数组: (1,1), (1,2), (2,2), (1,3), (2,3),(3,3),(1,4),(2,4),(3,4),(4,4),(1,5),…,请问:(1)第100组内的两数之和是多少?(2)前55组中“5”这个数出现了多少次?3.有一列数,第一个数是3,第二个数是4,从第三个数开始,每个数都是它前面两个数的和的个位数.从这列数中取出连续的50个数,并求出它们的和,所得的和最大是多少?如果从中取出连续的500个数,500个数的和最大又是多少?4.如图17-8,把从1开始的自然数填在图上,1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OG上,8在射线OH上,9又回到射线OA上,如此循环下去,问:78在哪条射线上?射线OE上的第30个数是多少?5.如图17-9,将从5开始的连续自然数按规律填人数阵中,请问:(1)123应该排在第几列?(2)第2行第20列的数是多少?6.如图17-10所示,将自然数有规律地填入方格表中,请问:(1)500在第几行,第几列?(2)第100行第2列是多少?7.如图17-11所示,数阵中的数字是按一定规律排列的.这个数阵中第60行左起第4个数字是多少?。
最新四年级数学思维训练导引(奥数)第17讲--数列与数表
第十七讲数列与数表1.1,1,4,2,7,3,10,1,13,2,16,3,19,l,22,2,25,3, (100)请观察上面数列的规律,问:(1)这个数列一共有多少项?(2)这个数列所有数的总和是多少?2.观察数组(1,2,3),(3,4,5),(5,6,7),(7,8,9)的规律,求:(1)第20组中三个数的和;(2)前20组中所有数的和.3.一个数列的第一项是1,之后的每一项是这样得到的:如果前一项是一位数,接着的一项就等于前一项的两倍;如果前一项是两位数,接着的一项就等于前一项个位数字的两倍.请问:(1)第100项是多少?(2)前100项的和是多少?4.如图17-1,方格表中的数是按照一定规律填入的,请观察方格表,并填出“?”处的数.5.如图17-2,数阵中的数是按一定规律排列的,请问:(1) 100在第几行、第几列?(2)第20行第3列的数是多少?6.如图17-3,从4开始的自然数是按某种规律排列的,请问:(1) 100在第几行,第几列?(2)第5行第20列的数是多少?7.如图174所示,把偶数2、4、6、8,排成5列.各列从左到右依次为第1列、第2列、第3列、第4列和第5列,请问:(1) l00在第几行,第几列?(2)第20行第2列的数是多少?8.如图17-5,从1开始的自然数按某种方式排列起来,请问:(1) 100在第几行?100是这一行左起第几个数?(2)第25行左起第5个数是多少?9.如图17-6,把从1开始的自然数排成数阵,试问:能否在数阵中放人一个3×3的方框,使得它围住的九个数之和等于:(1) 1997; (2) 2016; (3) 2349.如果可以,请写出方框中最大的数.10.如图17-7,将1至400这400个自然数顺次填入20×20的方格表中,请问:(1)246在第几行,第几列?(2)第14行第13列的数是多少?(3)所有阴影方格中数的总和是多少?1.1,100,2,98,3,96,2,94,1,92,2,90,3,88,2,86,1,84, 0请观察上面数列的规律,请问:(1)这个数列中有多少项是27(2)这个数列所有项的总和是多少?2.一列由两个数组成的数组: (1,1),(1,2),(2,2),(1,3),(2,3),(3,3),(1,4),(2,4),(3,4),(4,4),(1,5),…,请问:(1)第100组内的两数之和是多少?(2)前55组中“5”这个数出现了多少次?3.有一列数,第一个数是3,第二个数是4,从第三个数开始,每个数都是它前面两个数的和的个位数.从这列数中取出连续的50个数,并求出它们的和,所得的和最大是多少?如果从中取出连续的500个数,500个数的和最大又是多少?4.如图17。
小学四年级奥数竞赛班作业第34讲:数列与数表(一)
9. ①最下面一横行为1 、 3 、 6 、10 、 ,相邻两个数的差为等差数列,所以继续写下 去为1 、 3 、 6 、10 、15 、 21 、 28 、 36 、 45 、 55 、 66 ,所以最下面一横行从 左到右第十个数是 55 . ②每一行相邻两个数的差都是等差数列,而且每一列相邻两个数的差也是等差数列,所
11. 先来看这九个数的和有什么规律.仔细观察,容易发现:12 28 2 20 ,13 27 2 20 , 14 26 2 20 ,19 21 2 20 ,即:20 是框中九个数的平均数.因此,框中九个数 的和等于 20 与 9 的乘积.事实上,由于数表排列的规律性,对于任意由这样的平行四边 形框出的九个数来说,都有这样的规律,即这九个数的和等于平行四边形正中间的数乘 以 9. ⑴ 因为 2008 不是 9 的倍数,所以不可能找到这样的平行四边形,使其中九个数的和等 于 2008. ⑵ 2007 9 223 , 223 8 27 7 .这就是说,如果 2007 是符合条件的九个数的和, 则正中间的数一定是 223,而 223 位于数表中从右边数的第 2 列.但从题中的图容易看 出,平行四边形正中间的数不能位于第 1 行,也不能位于从左数的第 1 列、第 2 列、第 7 列和第 8 列,因此,不可能构成以 223 为中心的平行四边形. ⑶1989 9 221, 221 8 27 5 ,即 1989 是 9 的倍数,且数 221 位于数表中从左起 的第 5 列,故可以找到九个数之和为 1989 的平行四边形,如上图.其中最大的数是 229, 最小的数是 213.
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
第10讲 数列与数表-完整版
第10讲数列与数表内容概述通过观察数列或数表中的已知数据,发现规律并进行填补与计算的问题。
注意数表形式的多样性,许算时常常考虑周期性,或进行合理估算.典型例题兴趣篇1.观察数组(1,2,3),(2,3,4),(3,4,5),…的规律,求:(l)第10组中三个数的和;(2)前10组中所有数的和.答案:(1) 33 (2) 195解析:发现每组都有三个数,而且这三个数是连续的.第1组三个数中,中间的那个数是2,第2组中间的数是3,第3组中间的数是4……第几组中间那个数就是几加1.又每组三个数是连续的,所以这三个数的平均数就是中间那个数,这三个数的和就是中间那个数的3倍.(1)第10组的三个数中,中间那个数是10+1= 11.所以第10组就是(1O,11,12),那么这三个数的和为11×3=33.(2)可以分析出每组三个数的和是这组中间数的3倍,那么前:O组的所有数的和是2×3+3×3+4×3+…+1l×3=3×(2+3+…+11)=195.2.请观察下列数列的规律:1,1,4,2,7,3, 10,1,13,2,16,3,19,1,22,2,25,3,…,100.问:(1)这个数列一共有多少项?(2)这个数列所有数的总和是多少?答案:(1)67项(2) 1783解析:观察发现数列中两种规律交替出现,也就是说,题中数列的第2项、第4项、第6项……即偶数项是:1,2,3,1,2,3,…,以“1,2,3”为一个周期,循环出现,周期的长度为3.再来看奇数项,把第1、3、5、7……项列出来是:1,4,7,10,13,16,…,显然,这是一个首项为1、公差为3的等差数列.(1)数列最后一项是100,这肯定不是“1,2,3”周期数列中的一项,而是等差数列中的一项.等差数列的项数是(100-1)÷3+1= 34,由于是等差开头,等差结尾,所以周期数列的项数比等差数列的步1,原数列的项数是34×2-1= 67.因此这个数列一共有67项.(2)在这个数列的67项中,周期数列有33项,每个周期内3个数的和是1+2+3=6,共有33÷3=11个周期,所以周期数列的总和就是11×6=66.等差数列有34项,首项为1,末项为100,项数是34,各项的和为(1+ 100)×34÷2=1717.综上,题中数列各项的总和是66+1717=1783.3.一个数列的第一项是1,之后的每一项是这样得到的:如果前一项是一位数,接着的一项就等于前一项的两倍;如果前一项是两位数,接着的一项就等于前一项个位数字的两倍.请问:(l)第100项是多少?(2)前100项的和是多少?答案:(1)8 (2) 975解析:(1)根据题意写出数列:1,2,4,8,16,12,4,8, 16, 12,4,8,16, 12,4,…可以看出,此数列是从第3项起,以“4,8,16,12”这4个数为一个周期的周期数列.前100项中,除去前2项还有98项,98÷4=24……2,这意味着98项里有24个周期,最后还多出来2项,如图所示:所以数列的第100项是8.(2)前100项的和是1+2+(4+8T16+12)×24+4+8=975.4.如图10-1,方格表中的数是按照一定规律填入的.请观察方格表,并填出“?”处的数.答案:105解析:观察表中的数,发现最小的数是1,其次是3,6,10,15,…,把这些数从小到大连接起来,可以看出,这些数从小到大按照螺旋的形状排列.“?”处的数就是91之后,120之前的数,这些数从小到大依次是1,3,6,10,15,21,28,36,…,可以看出:每两个数的差依次加1.从图上的“66”开始看,从小到大,按照“螺旋”的排列规律,由于所以“?”就是105.5.如图10 -2,数阵中的数是按一定规律排列的,请问:(1) 100在第几行第几列?(2)第20行第3列的数是多少?答案:(1)第25行,第6列(2) 79解析:每一个奇数行都有4个数,在右面的第3、4、5、6列;每一个偶数行也有4个数,在左面的第1、2、3、4列.所有的数从1开始,由小到大按自然数的顺序从左向右排列.可以看到,如果把每一个奇数行和它下面的偶数行看作一个“奇偶组”,那么一个“奇偶组”有8个数,每个“奇偶组”中8个数对应的排列方式是相同的.(1)首先,100就是从小到大的第100个数,每个“奇偶组”有8个数,100÷8=12……4,于是100之前有12个“奇倡组”,100是这12个“奇偶组”后的第4个数.12个“奇偶组”就占24行,第24行为偶数行,100就在从第25行开始数第4个数的位置,如图1所示:所以100在第25行,第6列.(2) 20行有2C÷2—10个“奇偶组”,每个“奇偶组”有8个数,一共有8×10=80个数,第80个数就是80,它是隽20行最后一个数.第20行为偶数行,偶数行都有4个数,在左面的第1、2、3、4列.如图2所示:所以第20行第3列的数就是79.6.如图10 -3,从4开始的自然数是按某种规律排列的.请问:(1) 100在第几行第几列?(2)第5行第20列的数是多少?答案:(1)第1行,第25列(2) 81解析:数阵中的数是从4开始,由小到大排列的.从左边第一列开始,奇数列都有5个数,是从上到下排列的;偶数列都有3个数,是从下到上排列的,每个奇数列和它后面相邻的偶数列组成一个“奇偶组”,每个“奇偶组”有8个数.(1)方法一:100是数列中第100-3=97个数,每个“奇偶组”有8个数,97÷8=12……1.所以前100个数中有12个“奇偶组”,还多出1个数.每个“奇偶组”包含一奇一偶两列,12个“奇偶组”有12×2=24列.于是第97个数就是第25列的第1个数,也就是说100在第1行,第25列.方法二:第1列第1行的数是4,第3列第1行的数是12,第5列第1行是20……可以发现,第奇数列第1行的数是这个奇数的4倍.因为100÷4=25,所以100就是第25列第1行上的数.(2)方法一:前20列有20÷2=10个“奇偶组”.每个“奇偶组”有8个数,一共有8×10=80个数,第80个数是前20列最后一个数.20是偶数,第20列最后一个数在第1衍.因此第20列第5行上的数是第80-2=78个数.第78个数就是78+3=81.方法二:找规律,第2列第5行是9,2×4+1=9.第4列第5行是17,4×4+1=17.第6列第5行是25,6×4+1=25.于是第20列第5行是20×4+1=81.7.如图10 -4所示,把偶数2,4,6,8,…排成5列,各列从左到右依次为第1列、第2列、第3列、第4列和第5列.请问:(1) 100在第几行第几列?(2)第20行第2列的数是多少?答案:(1)第15行,第2列(2) 138解析:先观察数阵中数的排列规律,发现数阵中的数是从2开始的连续的偶数,奇数行有4个数,在右面的第2、3、4、5列,从左向右排列;偶数行有3个数,在左面的第1、2、3列,从右向左排列,把一个奇数行和它相邻的偶数行看作一个周期,那么一个周期包含7个数.(1) 100是从2开始的第100÷2=50个数.每7个数为一个周期,50÷7=7……1. 50个数包含7个周期,并多出来一个数.7个周期就占据7×2—14行.所以数100是第15行的第!个数.第:5行是奇数行,奇数行第1个数是在第2列.因此100在第15行,第2列.(2)两行为一个周期,前20行有20÷2=10个周期,每个周期7个数,前20行共有10×7=70个数.所以第20行最后一个数就是第70个数,即第20行第1列是第70个数,那么第20行第2列的数是第69个数,第69个数是69×2=138.8.如图10 -5,从1开始的连续奇数按某种方式排列起来,请问:(l)第10行左起3个数是多少?(2) 99在第几行左起第几个数?答案:(1)167(2)第8行左起第1个数解析:(1)前9行有1+3+5+…+17=81个数,因此第10行第3个数是表中的第81+3=84个数,表中的数都是奇数,第84个奇数是84×2-1=167.(2) 99是第50个奇数,前7行有1+3+5+-+13=49个数,因此表中第50个数是第8行左起第1个数.9.如图10 -6,从1开始的自然数按某种方式排列起来.请问:(1) 100在第几行?100是这一行左起第几个数?(2)第25行左起第5个数是多少?答案:(1)第14行,左起第9个数(2) 321解析:从图中可看出,自然数排成了“S”形,且第1行有1个数,第2行有2个数……第几行就有几个数;奇数行是从右向左排列,偶数行则是从左向右排列.(1)数100是第100个数,因为1+2+3+…+13=91,前13行有91个数;1+2+3+…+14=105,前14行有105个数,所以100在第14行,第14行是偶数行,是从左向右排列的,100是第14行的第100-91=9个数.于是,100在第14行,是这一行左起第9个数.(2)前25行有1-l-2+3+-+25=(1+20)×25÷2=325个数,奇数行是从右向左排列的,所以第25行最后一个数即是左起第1个数,为325.那么第25行左起第5个数就是325-4=321.10.如图10-7,把从1开始的自然数排成数阵.试问:能否在数阵中放入一个3×3的方框,使得它围住的九个数之和等于:(1)1997; (2)2016; (3)2349.如果可以,请写出方框中最大的数.答案:只有2349是可以的,最大的数为269解析:可以看到,数阵中的行和列为等差数列,数列排列非常规律.然后可以观察到方框中9个数的平均数就是正中间的数,因此方框中的9个数之和必为正中间数字的9倍.1997÷9=221……8(不符合题意);2016÷9=224(暂时符合题意);2349÷9=261(暂时符合题意).又由于每行都是7个数,而224÷7=32, 261÷7=37……2.于是224是第32行最后一个数,224不可能是方框正中间的数.而261是第38行的第2个数,261可以作为方框正中间的数.因此只有2349是可能的,其中方框中的最大数比中间数大8,是261+8=269.拓展篇1.请观察下列数列的规律:1, 100,2,98,3,96,2,94,1,92,2,90,3,88,2,86,1,84, 0请问:(l)这个数列中有多少项是2?(2)这个数列所有项的总和是多少?答案:(l) 26项(2) 2652解析:题中的数列是由两个数列合成的,它的奇数项是以“1,2,3,2”为周期的周期数列,偶数项是首项为100、公差为2的递减的等差数列!数列最后一项为O,因周期数列中没有O,所以它是等差数列中的一项.(1)只要分别找出奇数项和偶数项中的2,把它们的项数相加就是数列中2的项数.在从100递减到O的等差数列中,项数为(100 -O)÷2+1= 51.由于是周期开始,等差结束,所以周期数列的项数也是51.由51÷4=12…3可知,51项里共有12个完整的周期,除此以外还剩3项:1,2,3.每个周期有两项是2,所以周期数列里有2×12+1= 25项是2,等差数列中只有一项是2,所以数列里一共有25+1=26项是2.(2)可以分别算出奇数项之和与偶数项之和,把它们相加就是数列所有项的总和.周期数列51项之和为(1+2+3+2)×12+1+2+3 =102,等差数列51项之和为(O +100)×51÷2=2550.所以数列的所有项之和为2550+102=2652.2.观察数组(1,2,3),(3,4,5),(j,6,7),(7,8,9),…的规律,求:(1)第20组中三个数的和;(2)前20组中所有数的和.答案:(1) 120 (2) 1260解析:(1)笫20组的三个数中,中间那个数是20×2=40.所以第20组就是(39,40,41),三个数的和为40×3=120.(2)可以分析出每组三个数的和是组数的6倍,那么前20组的所有数的和是6×1+6×2+6×3+…+6×20=6×(1+2+3+…+20)=6×(1+20)×20÷2 = 1260.3.一列由两个数组成的数组:(1,1),(1,2),(2,2),(1,3),(2,3),(3,3),(1,4),(2,4),(3,4),(4,4),(1,5),…,请问:(1)第100组内的两数之和是多少?(2)前55组中“5”这个数出现了多少次?答案:(l) 23 (2) 11次解析:观察数组可以发现,如果有某些组括号里的第2个数相同,那这些组都紧挨着.如果按从左到右的顺序,把各组括号里的第2个数写成一行:1,2,2,3,3,3,…,可发现各组的第2个数排列得很有规律,从1开始逐渐变大,所以可以把数组按括号中的第2个数分成若干大组:观察这些大组可发现,第1大组有1个括号,第2大组有2个括号……第几大组就有几个括号,在每一组里,括号中的第1个数排成了从1开始递增的连续自然数数列.(1)1+2+3+…+13=91<100,1+2+…+14=105>100,所以第100个括号在第14大组.前13大组有91个括号,由100-91=9知,第100个括号是第14大组中的第9个.根据组的特点可知,第100个括号内的数为(9,14),它们的和是14+9=23.(2)方法一:因为1+2+-+10=55,所以前55个括号恰好被分为l0大组.前4大组没有出现5,从第5大组起,括号中的第1个数出现5的次数是每大组1次,所以第1个数中出现5的次数为104=6次.因为只有在第5组里,括号里的第2个数才能是5,所以括号中的第2个数出现5的次数是5次.综上,前55个括号中出现5的次数为6+5=11(次).方法二:观察前3个括号(也就是前2个大组)可发现,括号里正好一共有3个1,3个2.再看前6个括号(也就是前3个大组),类似地列出1、2、3,可发现正好一共有4个1,4个2,4个3.如图所示:也就是说,在前咒个完整的大组中,每个数都出现了n+l次,那么按照这种写法依次写下去可发现,前10个完整的大组中1,2,…,10出现的次数相同,都是10+1=11次,所以5出现的次数也是11次.4.有一列数,第一个数是3,第二个数是4,从第三个数开始,每个数都是它前面两个数的和的个位数.从这列数中取出连续的50个数,并求出它们的和,所得的和最大是多少?如果从中取出连续的500个数,这500个数的和最大又是多少?答案:257;2510解析:根据题意,把数列的前面若干项写出来就是:3,4,7,1,8,9,7,6,3,9,2,1,3,4,7,1,8,9,7,6,3,9,2,1,3,4,7,1,…容易发现这是一个周期数列,每连续12个数为一个周期,每个周期的和是60.50÷12=4……2,即取4个周期和连续的2个数.连续4个周期的数,无论从数列中哪个数开始,它们的和是一定的:60×4=240.让多出来的2个连续的数的和尽量大就可以了.数列中,连续2个数的和最大是8+9=17,取法如图1:和最大就是60×4+17=257.500÷12=41……8,取41个周期和连续的8个数.要选8个连续的数,让它们的和最大.因为每连续12个数的和是一定的,所以选4个连续的数,使他们的和最小,剩下的8个数的和一定最大.如果取连续的4个数,使其和最小,很明显是“2,1,3,4”这4个,余下的8个数的和一定最大,是60-3-4-2-1=50.取法如图2:这样连续的500个数,其和就是最大的,是60×41+50=2510.5.如图10-8,把从l开始的自然数填在图上,1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OG 上,8在射线OH上,9又回到射线OA上……如此循环下去.问:78在哪条射线上?射线OE上的第30个数是多少?答案:射线OF上;237解析:如图所示标出了自然数从1开始在射线上排列的规律:可以发现,排成的是从里到外逆时针的螺旋形.从射线OA开始,排8个数之后,第9个数又排到OA上,所以我们可以把8个数看做一个周期,而且在同一条射线上,相邻的两数相差8,也就是说落在同一条射线上昀数形成一个以8为公差的等差数列.(l)由78÷8=9……6可知,78落在从OA开始4逆时针数的第6条射线OF 上.(2)射线OE上的数形成了以8为公差的等差数列,第1个数是5,第30个数和第1个数相差29个公差,所以0E上第30个数是5+8×29=237.6.如图10 -9,将从5开始的连续自然数按规律填人数阵中,请问:(1) 123应该排在第几列?(2)第2行第20列的数是多少?答案:(1)第24列(2) 101解析:数列5,6,7,8,9,10,…是从5开始的自然数数列,按从小到大的顺序观察这个数阵中的自然数,可以发现它们是竖着排的,每一列的顺序都是从上至下,如果把每一列看作1个周期,一个周期里有5个数.(1)方法一:数阵中的数构成一个以5为首项的果把数阵中的一列看作一周期,那窟泣该是以5个数为一个周期.由119÷5=23……4可知,119个数包含23个周期,还多出4个数来. 23个周期就占据23列,所以数列的第119个数在第24列,也即123在第24列.方法二:注意到每一列第1行的数都是5的倍数,在第几列就是5的几倍.和123最接近的5的倍数是5×25=125,它在第25列第1行,123比它少2.所以在它的前一列,也就是第24列.(2)方法一:一个周期包含5个数,所以前19个周期共有19×5=95个数,第20列第2行的数也就是数列的第95+2=97个数.所以这个数是97+4=101.方法二:第20列第1行的数是5的20倍,也就是5×20=100.所以第2行的数是100+1=101.7.如图10 - 10所示,将自然数有规律地填入方格表中.请问:(1) 500在第几行第几列?(2)第100行第2列是多少?答案: (l)第111行,第5列(2) 448解析:(1)数表中的数构成一个从1~999的自然数数列,500是这个数列的第500个数,每一个奇数行和它下面的偶数行可看成一个周期.由500÷9=55……5可知,前500个数里包含了55个周期,还余下5个数.因为每个周期有2行,所以55个周期共占据55×2=110行,所以第500个数在数表的第11O+1=111衍,500在第111行的第5列.(2)方法一:前100行共有100÷2=50个周期,所以排到第100行第2列时,已经排了49个周期,还多出了7个数,所以,第100行第2列的数是数列的第49×9+7=448个数,也就是448.方法二:经仔细观察,每个周期的最后一个数都是9的倍数,在第几个周期就是9的几倍,前100行一共有100÷2=50个周期,那么第100行的最后一个数为9×50=450.450是第100行第6列的数,所以第100行第2列的数是450-2=448.8.如图10-11所示,数阵中的数字是按一定规律排列的.这个数阵中第60行左起第4个数字是多少?答案:9解析:横着看数阵,数阵的第1行是从1开始排到8,的连续自然数,第2行排了9后,接下来的数字是“1”,“0”,“1”,“1”,“1”,“2”,….观察发现,是把从1开始连续的自然数的各位数字依次排到了数阵中.在数阵中,自然数的每位数字都占一个位置.一位数每个占1个位置,两位数每个占2个位置,三位数每个占3个位置,所以我们先要确定排到第60行数列的第48餐59+4=476个数字,因为在自然数中,一位数有9个,两位数有90个,所以一位数和两位数共有9+90×2=189个数字.那么肯定是排到三位数了.由(476-189)÷3=95…2可知,数阵排到60行第4个数字时,已经排了95个三位数,并且还多排了2个数字.于是第63行第4个数字属于隽96个三位数,也就是195,并且是195的第2位数字,所以它是9.9.中国古代的纪年方法叫“干支纪年”,是在“十天干”和“十二地支”的基础上建立起来的.天干共十个,其排列顺序为:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;地支共十二个,其排列顺序为:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.以一个天干和一个地支相配,天干在前,地支在后,每对干支表示一年.在干支纪年中,每六十年纪年方式循环一次.公元纪年则是国际通行的纪年方式.图10 - 12是1911年到1926年的公元纪年与干支纪年的对照表,请问: (l)中国近代史上的“辛亥革命”发生在公元1911年,是于支纪年的辛亥年,公元2049年是干支纪年的什么年?(2) 21世纪的甲子年是公元纪年的哪一年?(3)“戍戌变法”发生在19世纪末的戊戌年,这一年是公元纪年的哪一年?答案:(l)己已年(2) 2044年(3) 1898年解析:(1)注意到2049–1919=10×13,所以2049年和1919年的天干相同,都为“己”,又因为2049-1917=12×11,所以2049年和1917年的地支相同,都为“巳”.综上所述,得2049年为“己已”年.(2) 60年为一个大周期,因为它是10和12的公倍数,所以相隔60年的整数倍数的年份,天干和地支的名称都不变,只要知道20世纪的甲子年,就很容易求出21世纪的甲子年了.因为1924年是甲子年,所以21世纪的甲子年的公元纪年年份和1924之差是60的倍数.由1924+60=1984<2000, 1924+60×2=2044可知,21世纪的甲子年是204/年.又因为2044+60=2104,已经到了22世纪,所以21世纪只有一个甲子年.(3)由1918年是戊年可知,1898、1888、1878、1868、1858年都是戊年.由1922年是戌年可知,1898、1886年都是戌年.所以“戊戌变法”发生在1898年,10.如图10 - 13,将1~400这400个自然数顺次填入20×20的方格表中,请问:(1) 246在第几行第几列?(2)第14行第13列的数是多少?(3)所有阴影方格中数的总和是多少?答案:(1)第13行,第6列(2) 273 (3) 8020解析:数表是从1开始,依次写下去.每行20个数,一共400个数.(1)因为第1个数是1,所以246就是第246个数.246÷20=12…6,于是246前面有12行,它是第13行的第6个数,也就是在第13行,第6列.(2)前13行有13×20=260个数,于是第14行的第13个数就是第260+13=273个数.因为第1个数是1,所以第273个数就是273.(3)把数表旋转180。
四年级数学竞赛奥数讲义,例题
精心整理×求算式999888666⨯÷的计算结果的各位数字之和。
计算:22888111-计算:22222×99999+33333×33334计算1009100910099999991999⨯+个个个结果末尾有多少个零?【你还记得吗】计算:2010××计算:333×× 测试题第一讲:多位数计算(★★★)(★★★★)(★★★★)(★★★★)(★★★)(★★★★)(★★★★★)(★★★★)1.计算222222×999999A .B .C .D .2.计算6666×13332A .B .C .D . 3.计算:3001300229931111222233334 个个个.3063333个3.计算100×10099×99+98-97×97+…+2×2-网校老师共50人报名参加了羽毛球或乒乓球的训练,其中参加羽毛球训练的有30人,参加乒乓球训练的有35人,请问:两个项目都参加的有多少人?(★★)(★★★)一个班30人,完成作业的情况有三种:一种是完成语文作业没完成数学作业;一种是完成数学作业没完成语文作业;一种是语文、数学作业都完成了。
已知做完语文作业的有20人;做完数学作业的有23人。
这些人只完成数学作业的有多少人?(★★★)网校老师组织理财培训,报名股票培训的有23人,报名基金培训的(★★★)网校组织40名老师参加趣味运动会,参加同心协力项目的有26人,(★★★)网校老师60人组织春游。
报名去香山的有37人,报名去鸟巢的有(★★★)1~100中是2或5的倍数的数有多少个?(★★★)1~100中既不是3的倍数,也不是4的倍数的数有多少个?(★★★★)写有1到100编号的灯100盏,亮着排成一排,第一次把编号是3的倍数的灯拉一次开关,第二次把编号是5的倍数的灯拉一次开关,那么亮着的灯还有多少盏?本讲总结巧用文氏图,找准每一样。
四年级奥数讲义教案库9数表规律和数列综合
基础知识:一、 掌握好等差数列的基本知识:一个规律,一个公式,一个定理。
二、 仔细观察数表中的规律,注意从横行,竖列,斜线以及螺旋线排列中去寻找规律。
三、 利用循环分组的思想解题。
基础例题:1. 添在图中的三个正方形内的数具有相同的规律,请你根据这个规律,确定出A= B= C= ;2. 如图所示的数阵中的数字是按一定规律排列的,那么这个数阵中第100行左起第3个数字是 ;3. 非零的自然数列按照右图的方式排列,求66在第 行,第 列,第100行,第100列的那个数是 ;现学现用: 1. 添在图中的三个五边形内的数具有相同的规律,请你根据这个规律,确定出A= B= C=D= ;2. 如图所示的数阵中的数字是按一定规律排列的,那么这个数阵中第100行左起第6个数字是 ;9 1 2 3 20 2 3 4 A 3 B C1题1 2 3 4 5 6 7 8 9 1 0 1 1 1 21 3 1 4 1… … … … … 2题 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 13 14 15 16 17 1 8 1 9 2 0 2 1 2 2 2 3 2 4 25 26 27 28 2 … … … … … … … …1 3 4 10 11 21 …2 5 9 12 20 …6 8 13 19 …7 14 18 …15 17 … 16 … …3. 有一张写着自然数1至100的数表,可以在表中相邻三行内各取连续的3个数,然后用长方框围起来,如右图所示的长方框中的9个数的和是162。
如果某个按上述方式形成的长方框所围出的9个数之和是1683,那么其中最小的数应该是 ;家庭作业:1. 把下面的等差数列按一项、两项、三项循环的方式进行分组:(3),(7,11),(15,19,23),(27),(31,35),(39,43,47),…,那么,第2007组中有 个数;第2008组中各数之和是 ;2. 将偶数2、4、6、8、…按右图中格式排列,那么2006出现在表格中第 行,第 列,那么第2006行第3列的数是 ;1 26 78 9 13 14 15 16 20 21 22 23 27 28 29 30 31 32 33 34 35 … … …。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例1】(★★★)
2,100,3,98,5,96,4,94,1,92,2,90,3,88,5,86,4,84,1, 0
请观察上面数列的规律,请问: ⑴这个数列有多少项是2?
⑵这个数列所有项的总和是多少?
数列与数表(一)
【例2】(★★★)
下面的算式是按规律排列的:5+1,3+4,1+7,5+10,3+13,1+16,…,请观察上面数列的规律。
请问:是否存在算式的运算结果是2012?是第几个?
【例3】(★★★)
下面是按规律排列的三角形数阵:那么此数阵第2012行左起第三个数是多少?
【例4】(★★★★)
把正整数依次排成以下数阵:求 ⑴第20行第10列是哪个数? ⑵第10行第20列是哪个数?
【例5】(★★★★)
从1开始的自然数按图所示的规则排列,并用一个正方形框出九个数,能否使这九个数的和等于:2012⑴;2007⑵;2160⑶。
若能,请写出正方形的中心数;若不能,说明理由。
本讲总结
多重数列——拧麻花
数表——行列联合,从问题入手 等差数列家族——差等差 整体考虑;快速判断
时刻要谨慎;细节定成败
重点例题:例1;例3;例5。