工程弹塑性力学-第五章
工程弹塑性力学-第五章
在e=0处与s轴相切
s A 理想刚塑性模型
只有两个参数A和n,因而也不可能 准确地表示材料的所有特征。但由 于解析式比较简单,而且n可以在较 大范围内变化,所以也经常被采用。
5.2 应力应变简化模型
5. Ramberg-Osgood模型 (三参数模型)
s /s1
有三个参数,能较 好地代表真实材料, 数学表达式简单。
(1)小变形时,e E;变形程度越大, 误差越大。
ln ln
ln(1 ln
l0 ) ln(1 e ) e
e2
e3
e4
L
(5.22)
l0
l0
234
e
1.6 1.2 0.8 0.4
O -0.4 -0.8 -1.2 -1.6
E=lnl/l0
1.0 1.2 1.4 1.6 l/l0
当变形程度小于10% 时,两值比较接近。
(a) 理想刚塑性模型
s
(b) 线性强化刚塑性模型
s
ss
ss
e
O
s ss, 当e 0时
特别适宜于塑性极限载荷的分析。
e
O
s ss E1e , 当e 0时
5.2 应力应变简化模型
3. 一般加载规律
s (e ) Ee[1w(e )]
(5.12)
w(e ) 其中,w(e )
0,
Ee
(e ) , Ee
ss’’
’
B
B’
’
等向强化’:
OABB’’
随动强化: OABB’
5.2 应力应变简化模型
例题:已知一单向加载过程的应力路径为01.5ss 0 –ss 0,材料符
合线性随动强化规律,强化模量E’E/100,试求出对应的应变路径。
[工学]第五章 弹塑性模型理论
第五章 弹塑性模型理论5.1 概述弹塑性理论可以分为两种,塑性增量理论和塑性全量理论。
塑性增量理论又称塑性流动理论,塑性全量理论又称塑性形变理论。
在塑性增量理论中,将物体在弹塑性变形阶段的应变ij ε分为两部分:弹性应变e ij ε和塑性应变p ij ε。
塑性应变增量ij d ε的表达式为e p ij ij ij d d d εεε=+ (5.1.1)式中,弹性应变增量d e ij ε可以用广义虎克定律计算,塑性应变增量d p ij ε可以根据塑性增量理论计算。
塑性增量理论主要包括三部分:(1) 屈服面理论;(2) 流动规则理论;(3) 加工硬化(或软化)理论。
在塑性形变理论中是按全量来分析问题的。
它在盈利状态和相应的应变状态之间建立一一对应的关系。
塑性形变理论实质上是把弹塑性变形过程看成是非线性弹性变形过程。
严格说,在弹塑性变形理论的应用是有条件的。
严格讲,只有在等比例加载条件下,应用塑性变形理论可以得到精确解。
所谓等比例加载是指在加载过程中,各应力分量是按同一比例增加的。
严格的等比例加载是很难满足的,在土工问题中可以说是不可能的。
在简单加载条件下应用塑性形变理论分析有时也可以取得较好效果。
近些年来建立的土体弹塑性模型大部分是根据塑性增量理论建立的。
本章主要介绍塑性增量理论,在最后一节简要介绍塑性形变理论。
5.2 屈服面得概念首先讨论理想弹塑性材料。
理想弹塑性材料受力到什么程度才开始发生塑性变形呢?在简单拉伸时,问题是很明显的。
当应力等于屈服应力σs 时,塑性变形开始产生。
σs 值是可以在拉伸试验应力-应变曲线上找到的。
然而在复杂应力状态时,问题就不是这样简单了。
一点的应力状态由六个应力分量确定。
在复杂应力状态下,显然不能任意选取某一个应力分量的数值作为判断材料是否进入塑性状态的标准。
因此需要在应力空间或应变空间来考虑这一问题。
在土塑性力学中,常用的应力空间有三维主应力空间、p 、q (或σm ,σ1-σ3)应力平面、以及132σσ+,132σσ-应力平面等。
弹塑性力学 第05章弹性力学问题的建立和一般原理
应力分量
M O
τ xz = −αGy ,τ yz = αGx σ x = σ y = σ z = τ xy = 0
代入平衡微分方程
τ zy
ϕ
τ
x
τ zx
∂σ x ∂τ yx ∂τ zx + + + Fbx = 0 ∂x ∂y ∂z ∂τ xy ∂σ y ∂τ zy + + + Fby = 0 ∂x ∂y ∂z ∂τ xz ∂τ yz ∂σ z + + + Fbz = 0 ∂x ∂y ∂z
假设弹性体受已知体力作用,在物体的边界上,或者面 力已知,或者位移已知,或者一部分上面力已知,而另一部 分上位移已知,则弹性体平衡时,体内各点的应力分量与应 变分量是唯一的,对于后两种情形,位移也是唯一的。
这一定理以这样一个假设为依据:当物体不受外力作用 时,体内的应变能为零,应力分量和应变分量也全为零。当
∫∫τ
∫∫τ
zx
dxdy = 0
dxdy = 0
M O
τ zy
ϕ
τ
x
zy
M = ∫∫ (xτ zy − yτ zx )dxdy
将应力分量代入
τ zx
τ yz = αGx
y
τ xz = −αGy
σ x = σ y = σ z = τ xy = 0
∫∫τ zx dxdy = 0
∫∫τ
zy
τ xz = −αGy
1 ε ij = (1 +ν )σ ij −νσ kk δ ij E
或
[
]
σ ij = λε kk δ ij + 2Gε ij
弹性与塑性力学基础-第五章屈服准则与塑性应力应变关系
0
m
0 0 m
Uv
1 3 ( m m m m m m ) m m 2 2 1 m ( 1 2 3 ) 3
1 m ( 1 2 3 ) 3
弹性与塑性 力 学 基 础
第五章 屈服准则与塑性应力应变关系
积之和的一半(主坐标系中)
U
1 ( 1 1 2 2 3 3 ) 2
1 0 ij T 0 2 0 0
0 0 3
1 0 ij T 0 2 0 0
0 0 3
弹性与塑性 力 学 基 础
第五章 屈服准则与塑性应力应变关系
§5-2 米塞斯屈服准则
5.2.1 米塞斯屈服准的物理意义 米塞斯屈服准则 5.2.2
由广义虎克定律
1
1 2 [ 2 ( 1 3 )] E 1 3 [ 3 ( 1 2 )] E
式中, 为波桑系数,于是可得
弹性与塑性 力 学 基 础
第五章 屈服准则与塑性应力应变关系
§5-2 米塞斯屈服准则
5.2.1 米塞斯屈服准的物理意义 米塞斯屈服准则 5.2.2
单位体积变化位能Uv确定
取应力球张量及应变球张量
m T0
由此得
0
m
0 0 m
m T0
§5-10 全量理论
5.10.1 问题的背景及引出 5.10.2 亨盖理论(1924年) 5.10.3 那达依理论(1937年) 5.10.4 伊留申理论(1943年) 5.10.5 全量理论的问题与发展
弹性与塑性 力 学 基 础
弹塑性力学第5章—塑性本构关系
3 2
sij
−
Cdε
p ij
sij −
Cdε
p ij
−σs = 0
C表征材料强化的大小,来自单向拉伸
5.3 后继屈服条件
1、等向强化模型
单向拉伸实验曲线中三个方向的塑性主应变为
ε1p
= ε p,
ε
p 2
=
ε
p 3
= − 1ε p
2
其中ε p为单向拉伸方向的塑性应变,由此得到等效塑性应变
( ) ( ) ( ) ε p =
4 3
J
′
2
=
2 9
⎡ ⎢⎣
ε1p
−
ε
p 2
2+
ε
p 2
−
ε
p 3
2+
ε
p 3
最大畸变能是材料屈服的原因
J2 = k2
J 2反映了材料的畸变能( U0d
=
J2 2G
)
( ) J2
=
1 2
sij sij
=
1 6
(σ1 − σ2 )2 + (σ2 − σ3 )2 + (σ3 − σ1)2
k 由实验确定,根据简单拉伸实验,在材料屈服时
[ ] J2
=1 6
(σ 0 − 0)2 + 0 + (0 −σ 0 )2
−0.8
屈服条件类似,主要区别是
−1.0
混凝土的抗压强度比抗拉强
−1.2
度高得多。
5.2 常用的屈服条件
5.2.3 混凝土的莫尔-库仑屈服条件
在实验基础上,提出线性化的莫尔-库仑屈服条件,σ
′
0
,
σ
弹塑性力学5
u y
l
Y
考虑温度变化时
u x
v y
l
1
2
u y
v x
m
l1 T
1 2
E
X
v y
u x
m
1
2
v x
u y
l
m1
T
1 2
E
Y
如果体力、面力均考虑,在上述式子中应包含它们。
位移势函数的引用
位移势函数表示的温差
对于位移和温差表示的平衡方程,可解出位移的齐次微分 方程为一般解,再加上一个温差引起的位移特解。为求位 移特解,引入一个位移势函数ψ(x,y),令:
1 E
x y
T
y
1 E
y x
T
xy
21
E
xy
x
E
1 2
x y
ET 1
y
E
1 2
y x
ET 1
xy
E
21
xy
直角坐标系下的基本方程
几何方程
x
u x
y
v y
xy
u y
v x
位移表示的平衡方程
位移表示的应力方程
x
E
1
2
u x
v y
ET 1
令:
u r
r
u
1 r
类似于直角坐标系下的推导,位移势函数应满足:
2 1 T
T 1 2
1
在极坐标系下:
2 2 1 1 2
r2 r r r2 2
极坐标系下的基本方程
位移势函数表示的对应温度变化的应力特解
根据以前直角坐标系转换到极坐标系下的推导,应力特解 为:
第五章塑性理论
硬化材料:
加卸载准则
理想塑性材料:
5.3 流动法则
流动规则用以确定塑性应变增量的方向或塑性应变增量张量的各个分量间的比 例关系。塑性理论规定塑性应变增量的方向是由应力空间的塑性势面g决定。在应力 空间中,各应力状态点的塑性应变增量方向必须与通过该点的塑性势面相垂直。所 以流动规则也叫做正交定律。这一规则实质上是假设在应力空间中一点的塑性应变 增量的方向是惟一的,即只与该点的应力状态有关,与施加的 应力增量的方向无关,亦即
5.2 屈服准则
屈服面是应力空间内弹性状态与弹塑性状态之间的分界面。
f (ij , k) 0
k为状态参数,与硬化/软化参数有关
5.2 屈服准则
弹性 f (ij , k) 0 塑性 f (ij , k)=0 ? f (ij , k)>0
f f T f T k 0
k
5.2 屈服准则
➢压硬性 ➢等压屈服特性 ➢剪胀性 ➢应变软化特性 ➢与应力路径相关性
5.1 基本原理
塑性理论的基本概念:
1、屈服准则(Yield criterion ) 屈服面是应力空间内弹性状态与弹塑性状态之间的分界面。
2、硬化(软化)规律(Harding/Softening rule) 硬化规律是确定加载过程中屈服面位置和大小变化的规律。
3、流动准则(Flow rule) 流动准则用来确定塑性加载过程中塑性应变增量的方向。
不硬化
5.4 硬化规律
等向强化 是指屈服面以材料中所
作塑性功的大小为基础在尺寸上 扩张。
随动强化 假定屈服面的大小保持不变而仅 在屈服的方向上移动,当某个方向的屈服 应力升高时,其相反方向的屈服应力应该 降低。
在随动强化中,由于拉伸方向屈服应力的 增加导致压缩方向屈服应力的降低,所以在 对应的两个屈服应力之间总存 的差值,初 始各向同性的材料在屈服后将不再是各向同f (σ, Ro ) 0
第五章 弹性与塑性力学的基本解法
第五章 弹性与塑性 力学的基本解法
对于平面问题(以平面应力为例)
几何方程
u x x
物理方程
将几何方程代入物理方程
E u v x ( ) 2 1 x y E v u y ( ) 2 1 y x
E x ( x y ) 2 1 E y ( y x ) 2 1
d 3 d 2
p
五个方程 一个方程 一个方程
E d m 3k d m d m 1 2
Sij= eij
五个方程 一个方程 一个方程
李田军弹塑性力学课件
eij Sij
m=K
2 3
6
第五章 弹性与塑性 力学的基本解法
4、静力边界条件和位移边界条件: ijlj=Fi (在ST上) ui=ui (在Su上)
纯弹性区
加载区 卸载区
2011年4月13日星期三
在它们的分界面上,应 力和应变应满足一定的 连续条件和间断条件。
李田军弹塑性力学课件 12
第五章 弹性与塑性 力学的基本解法
§5-2
按位移求解弹性力学问题
由于塑性力学问题的复杂性和特殊性,需要专门进行 讨论。鉴于学时所限,这里仅讨论弹性力学问题的基 本求解方法。 弹性力学问题:就是分析各种结构物或其构件在弹性
弹塑性力学第五章分析解析
平衡方程
1
几何方程
2 1 3
2018/7/31
变形协调方程
22
第五章 简单弹塑性力学问题
二、考虑加载路径对桁架变形的影响——比例加载
P 3 2 1 A 2 2 P 2 2 A 2 2 P 1 2 3 A 2 2
塑性极限荷载
得
由于此时三根杆都已屈服,变形已不再受到任何约束,桁架进入 无限制塑性变形阶段 ,结构丧失进一步承载的能力,所以,又表示桁 架的 极限承载能力 。从上式可以发现, Ps 与材料的弹性模量无关。这 表明,如果采用理想刚塑性模型,则求出的 Ps 仍是一样的。这就为结 构的极限分析带来了极大的方便。
2018/7/31 5
第五章 简单弹塑性力学问题
【解】1、弹性阶段-弹性解和弹性极限荷载( 0<P≤ Pe )
N1 N3
N1 cos N 2 N3 cos P
平衡关系
N3 N1 N2 1 , 2 , 3 A A A
1 3 2 1 cos 2 P / A
第五章 简单弹塑性力学问题
福州大学土木工程学院 卓卫东 教授
第五章 简单弹塑性力学问题
引
言
简单桁架问题 梁的弹塑性弯曲问题 平面问题
2018/7/31
2
第五章 简单弹塑性力学问题
引 言
从本章开始,我们将应用前几章的基础理论和一般性原 理,解决工程实践中遇到的弹塑性力学问题。已经知道,经 过抽象化处理后,一个实际的弹塑性力学问题在数学上总是 归结为一个偏微分方程组的边值问题。因此,需要在严格的 边界条件下求解复杂的偏微分方程组。由于往往难以克服数 学上的困难,所以在一般情况下,很难求得问题的解析解或 精确解,而只有一些简单的问题,才存在解析解。 本章将通过几个简单的问题,说明弹塑性力学问题的理 论求解方法。
塑性力学第五章(2)-简单的弹塑性问题(二)
σs
E
不变, ,保持 ε s不变,再加扭矩至 γ s =
τs
G
γ 同时拉扭进入塑性状态, 不变, (3)同时拉扭进入塑性状态,保持 ε 不变,到
ε s ,γ s
求应力分量
σ ,τ = ?
τ σ
Mises条件: 条件: 条件
σ 2 + 3τ 2 = σ s2
τ
σ
3
s
B
C A
O
σ
σ
s
γ
ε = σs
E =
应变分量(体积不可压缩): 应变分量(体积不可压缩):
σ
1 de z = d ε , de r = deθ = − d ε 2
d γ zθ = d γ
γ θr = γ rz = 0
塑性功增量: 塑性功增量:
dW d = sij deij
= s z de z + s r de r + sθ deθ + τ θz d γ θz + τ θr d γ θr + τ rz d γ rz
th
σs
σs
σ =
ch
σs
3G γ
σs
γ =
σs
3G
⇒
σ = 0 .648 σ s , τ = 0 .439 σ s
(2)先扭后拉 )
γ
σs
3G
τ
B C
σ
3
A
s
B
C A
O
σs
3G
ε
O
σ
σ
s
dγ = 0
dW d = σ d ε + τd γ = σ d ε
3Gd ε = dσ 1−
第五章:屈服准则与塑性应力应变关系
2
OP (1, 2 , 3 )
P点向OE投影,投影点N,则OP:。
O
OP ON NP
1
ON ( m , m , m )
第五章:屈服准则和塑性应力应变关系 5.4 两屈服准则的几何图形
所以:
3
P
N
E
NP ( 1 , 2 , 3 ) ( m , m , m ) ( 1 m , 2 m , 3 m ) ( '1 , '2 , '3 )
f ( J 2 , J3 ) C
对拉压性能相同时,以f()是J3的偶函数。 注意:屈服准则方程也是进入塑性后应力需要准则。 因为塑性行为的复杂性,对材料的单向应力状态下,应力应变关系作以 下几种模型的假定,本教材主要用前两种:
第五章:屈服准则和塑性应力应变关系
5.1 屈服准则概念
屈服准则、屈服条件,描述材料从弹性进入塑性并使塑性变形继续的条 件。对于单向应力采用:
s
作为屈服准则。但是对于复合应力状态,屈服准则与应力状态有关,屈服准 则为:
f ( x , y , z , xy , yz , zx ) C
第五章:屈服准则和塑性应力应变关系 5.4 两屈服准则的几何图形
屈服函数表现出几何图形,对了解其性质和两种屈服准 则的比较有积极作用。 屈服函数是一曲面,首先看二维应力,即: 3 0
Mises屈服函数:
2 12 1 2 2 s2
为一椭圆。 Treasca屈服函数:
1 2 s 2 3 s 3 1 s
代表应力偏量。如果P应力状态代表塑 性变形,对于Mises屈服准则:
塑性力学 第五章 梁的弹塑性弯曲
M
S
yS
I e 2 S S P
yS
式中
I e 2 y 2 b y dy ,是截面弹性区对中性轴的惯性矩
0
SP
yS
y b y dy
2
h 2
是截面 y y s ~
轴的静矩。
h 一块塑性区对中性 2
如梁的横截面是高为h 、宽为b
b h2 2 SP yS 2 4
第五章
§5-1 §5-2
梁的弹塑性弯曲
弹塑性力学中的边值问题 梁的弯曲
1
§5-1
弹塑性力学中的边值问题
由于塑性本构关系有全量和增量两种理论,需要给出对 这两种理论的边值问题的提法及解法 全量理论的边值问题及解法 设在物体V 内给定体力 f i ,在应力边界 ST上给定面力 f i ,在 位移边界 Su上给定 u i ,要求物体内部各点的应力 ij 、应变 ij 、 位移 u i 。确定这些未知量的基本方程组有: 1) ij,i f j 0
这就是梁沿轴向的弹塑性区分界线方程。弹塑性区的分界线 为双曲线。 设梁在弹性时能承受的最大均布荷载为 qe,则 qe 即为
11
在弯矩最大的截面 ( 的值,它可由上式得: bh2 S
qe 3l 2
x0
处 )刚开始进入塑性即 yS h / 2 时
五、极限荷载 q P 当 x 0 处的整个截面进入塑性状态,梁成为一个机构, 进入自由塑性变形阶段,将发生“无限制”的塑性流动。这 q 称为极限荷载,用表示 qP 时的 。 qP bh2 S 1.5 。 qP 且 qe 2l 2 在极限设计的理论中,要求出使结构丧失承载能力时的 荷载,在目前的情形就是极限荷载 q P。在许用应力的设计中, 只要梁中任一处达到塑性状态,梁就不许可承受更多的荷载,
弹塑性力学-05厚壁圆筒ppt课件
u 3r 2 s
4Er
精选课件PPT
18
五、位移分量(平面应变状态)
2. 弹塑性阶段:
(2) 塑性区:a r r
ez 0 ,q 0 ,er eq 0
连续条件:
du u 0 dr r
u C r
ue rrup rr
C(1 2 E )r22 b s b2(12)r2
一内外半径比为一内外半径比为bbab的封闭厚壁圆筒受内压的封闭厚壁圆筒受内压p和扭矩和扭矩tt同时作用该材料服从同时作用该材料服从misesmises屈服条件求内外表面同时达到屈服条件求内外表面同时达到屈服时的屈服时的tp试比较内半径为试比较内半径为aa外半径为外半径为2a2a的单层两层四层八层的单层两层四层八层厚壁圆筒的弹性极限压力和塑性极限压力
3ei 2i
z
m
假设2
εz 0
zm1 3rqz
z m12r q
精选课件PPT
22
❖几何方程: (轴对称问题)
du
u
εr
, dr
εθ
r
εz 0
εr
εθ
ez
0,1
2
du u 0 dr r
du dr
u
r
lu n lr n C u C r
C ε r r2
C εq r2
εz 0
εq
r
q
s
2
rb22
12lnrr
精选课件PPT
11
三、全塑性分析
r =b
pl
s
lnb a
ps
2
1rb22
2lnra
塑性极限压力
弹塑性力学第五章线弹性力学问题的基本解法和一般性原理
*
§5-1 基本方程和边界条件的汇总
a. 几何方程
指标符号表示
衣凹啦修仪让洛莉攘擞沥庶利礼通谊耸跑观值帧淡敞商蹲注献蔑摔铀嘻针《弹塑性力学》第五章 线弹性力学问题的基本解法和一般性原理《弹塑性力学》第五章 线弹性力学问题的基本解法和一般性原理
*
*
b. 变形协调方程
指标符号表示
§5-1 基本方程和边界条件的汇总
*
*
§5-2 位移法
上式代入平衡微分方程,得到位移法的基本方程
在V上
或
在V上
(拉米-纳维叶方程)
及芽孰松茄桔甭稿窒刮录羌格累态赡傀眉守恐苟究屏巩掠冗课阿朴错卡吞《弹塑性力学》第五章 线弹性力学问题的基本解法和一般性原理《弹塑性力学》第五章 线弹性力学问题的基本解法和一般性原理
*
*
§5-2 位移法
1.3 本构(物理)方程(六个)
指标符号表示
上述所有方程为 ij 、 ij、ui在V上必须满足的方程,同时在S上(边界上)有边界力或边界位移。
必局洲斟死法广呆坞渤扣图审漓逆乓湾浩嗣废桥调擒卢贸违晶那舀乍汞跟《弹塑性力学》第五章 线弹性力学问题的基本解法和一般性原理《弹塑性力学》第五章 线弹性力学问题的基本解法和一般性原理
*
*
§5-2 位移法
力的边界条件转为用ui的偏微分表示的。这类边界条件从形式上看可以处理,但实际操作上有时较难处理。
撩末辰问苯接恒辙肾顿陶说马证以毕石钢编岗宿捷丹腮敖笆崖蒸司群戒俏《弹塑性力学》第五章 线弹性力学问题的基本解法和一般性原理《弹塑性力学》第五章 线弹性力学问题的基本解法和一般性原理
*
*
§5-2 位移法
位移法求解思想:
【弹塑性力学】5-屈服准则
(3Rt a 1) (3Rt a 1)
• 其中 R t 为单轴抗拉强度,a为系数
2
a 1
mm1
1 Rt
mRc /Rt
R c 为单轴抗压强度
32
双剪应力屈服准则(俞茂鋐,1961)
f
(13,12 )
13
12
1
1 2
( 2
3) kb
0
当12
23或 2
1 2
( 1
3 )时
f
(13, 23)
p 3st/R
对于Tresca屈服条件: 13 =k=2s p = 2st/R
39
(2)管段的两端是封闭的:
应力状态为,z= pR/2t, = pR/t,r=0, zr=r=z=0
1 J2 = +66([(2zrzr2r)2+(2rz)]=)162+23((pR/tz))22
13 = = pR/t
(1)单轴拉伸:屈服时 1 =s,2 =3 =0,代入屈 服条件
J23s2 k2,
ks
3
(2)剪切:屈服时 =s 1= s,2=0,3= s,,屈服条件
J2s2k2, ks
12
两种屈服条件比较
• 如假定单轴拉伸时
两个屈服面重合,则
Tresca六边形内接于
MisesБайду номын сангаас;
外 切 T resca六 边 形
• (1)圆外接于六边形
32 3ssin in ,k
6cco s 33sin
• (2)圆内接于六边形
32 3ssin in ,k
6cco s 33sin
29
Zienkiewicz-Pande条件:
弹塑性力学及有限元法_
写成矩阵形式
R11 cos 2 θ x 1 Ry1 EA cos θ sin θ 1 = Rx 2 l1 − cos 2 θ R1 2 − cos θ sin θ y cos θ sin θ sin 2 θ − cos θ sin θ − sin 2 θ − cos 2 θ − cos θ sin θ cos 2 θ cos θ sin θ
单元刚度矩阵的子矩阵 K ij 表示:当单元 e 中节点 j 取单 位位移,且其它节点位移为零时,对应于 i 节点的节点力。
第五章 有限元法简介
单元1的节点力和节点位移的关系可写成
R1 K11 = R2 K 21
1
K12 K 22
1
δ1 δ 2
1 θFx1(u1) 3 Fx3 (u3) Fy1(v1 ) Fy3 (v3) y 2 o x
1
Fy2 (v2) Fx2(u2)
2
图5-1 简例结构图
第五章
分析步骤:
有限元法简介
2
1
1 1 Ry2(v2) 1 1 Rx2(u2)
1. 离散结构物为有限个单元 分为2个单元,第一个单元的节点编号 为1和2,第二个单元的节点编号为2和3。 对于第一单元,在第1、2节点处的节点力 为 R 11 , R 11 , R 1 2 , R 1 2 ,表示节点施加在单元1上 x y x y
1 − cos θ sin θ u1 1 2 − sin θ v1 cos θ sin θ u1 2 1 si成
R11 k x 1 11 Ry1 k21 1 = Rx 2 k31 R1 k41 y2 k12 k22 k32 k42 k13 k23 k33 k43
弹塑性力学-05厚壁圆筒
σθ
r
r b2 p a2 1 + 2 σ s 1 + ln − 2 2 a b −a r = σ sρ 2 a 2 p b2 2b 2 − b 2 − a 2 1 + r 2
ρ =b
b p l = σ s ln a
r σ r = σ s ln b
σ θ = σ s 1 + ln
r b
p=
σs
ρ 1 − 2 + 2 ln 2 b a
ρ2
塑性极限压力
σθ
σs σr
p
a
b
12
讨论: 讨论:
Mises 条件 条件:
(σ r − σ θ )2 + (σ θ
14
四、残余应力
结构经历弹塑性变形历史后零外载对应的应力。 结构经历弹塑性变形历史后零外载对应的应力。 初次加载( 时的应力: 初次加载 p*>pe ) 时的应力:σij 卸除的应力: 卸除的应力:σij e 残余应力: 残余应力:σij r
σ ij = σ ij − σ
r
e ij
15
σr = −
2. 弹塑性分析
弹性区:ρ≤ r ≤ b 弹性区: σ r = C 1 + C 2 r −2 σ θ = C 1 − C 2 r −2
边界条件: σ 边界条件:
r r=b
ρ: 弹塑性分界面的半径。 弹塑性分界面的半径。 σs
σθ a b
σr
=0
p
屈服条件: 屈服条件: σθ – σr)r=ρ = σs (
a≤r≤ ρ
ρ ≤r≤b
塑性力学第五章本构关系ppt课件
(5-2)
将三个正应变相加,得:
kk
kk
2G
3
E
mkk
1 2
E
kk
记:平均正应变
m
1 3
kk
体积弹性模量 K E / 3(1 2 )
则平均正应力与平均正应变的关系:
m 3K m
(5-4)
(5-2)式用可用应力偏量 sij 和应变偏量 eij 表示为
1 eij 2G sij
(5-5)
包含5个独立方程
利用Mises屈服条件
J 2
2 s
2 s
3,
可以得到
本构关系
d dijdij d 3d
2 J 2
2 s 2 s
将(5-41)式代回(5-39)式,可求出
(5-41)
sij
d ij d
2 sdij d
2 sdij 3d
(5-44)
在(5-39)式中,给定 sij 后不能确定 dij ,但反之却可由 dij
确定 sij 如下:
J 2
1 2
sij sij
1
2(d)2
dijdij ,
将(5-38)式与(5-41)式加以比较就发现:
dW p s d s d
(5-45)
对于刚塑性材料 dW dW p
3、实验验证
本构关系
理想塑性材料与Mises条件相关连的流动法则:
d
p ij
d sij
对应于π平面上,d与p 二S 向量在由坐标原点发出的同一条射线上。
sij
(5-5)
We
1 2G
J 2
1
2
1 G 2
2
1
2
1
塑性力学05-球对称与轴对称问题
因为材料是理想弹塑性, 出口截面处的拉拔应力不能超过屈 服应力, 所以有 A1 A1 这样得到 s ln s e A2 A2 那么最大减缩率为
1 Rmax 1 0.63 e
5-3 理想弹塑性材料的厚壁圆筒 问题的描述: 分析内径为 a ,外径为 b 的厚壁圆筒,在其内表面受 内压为 q .假定是不可压缩的理想弹塑性材料, 并限定为平面应 变问题.取柱坐标,使 z 轴与筒轴线重合. 1)弹性状态 • 弹性应力解为(由于材料不可压缩 1/ 2 ): a 2 p1 b2 a 2 p1 b2 1 r 2 2 1 2 , 2 2 1 2 , z r b a r b a r 2 应力强度为 1 2 2 2 i 1 2 2 3 3 1 那么根据Mises屈 2 服条件得到弹性极 2 3 3b q 即 限压力为: i r 2 b 2 r2 2 s a 1 2 qe 1 2 a b 3 因此可见最大应力强度发生在内壁处.
这里常数B可以按照内壁的 半径条件 r r a q 来定.
2. 弹塑性状态 当压力 q qe 时,球壳内壁开始屈 服并向外扩展到半径 rs 处,如果材 料是理想弹塑性, 在塑性区应力仍 要满足平衡条件,此时考虑到屈服 条件 r s ,因此有 d r 2 s 0 dr r 积分得到 r 2 s ln r C 根据边界条件 r |r a q 得到积分常数 C q 2 s ln a 得到塑性区的应力为 r r 2 s ln q a r s 1 2ln q a
z
d
r
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)小变形时,e E;变形程度越大, 误差越大。
ln ln l0 e2 e3 e4 ln ln(1 ) ln(1 e ) e l0 l0 2 3 4
(5.22)
1.6 1.2 0.8 0.4 O -0.4 -0.8 -1.2 -1.6
有三个参数,能较 好地代表真实材料, 数学表达式简单。
(5.15)
s1,e1为0.7E(初始切 线模量)处的应力应变
例:钛合金钢
流动应力s1取(sbs0.2)/2。sb为抗拉 强度,s0.2为工程屈服应力;流动应 变e1 s1/E,E为弹性模量。
Ee / s 1
5.2 应力应变简化模型
s
6.反向加载应力-应变简化模型
sF 0:
s e F e E s 0. E
0.5s s eE eD 49e s 50e s e s E'
O es F 0.5s
C e
s
D
E
ss
应变路径为:051ss/E 49.5ss/E –ss/E 0
5.2 应力应变简化模型
例2:应力路径:01.5ss 0 –1.2ss 0
对线性强化弹性材料在加载时:
| e | e s
[s s E(e e s )]sign e Ee [1 w (e )]
[s s E (e e s )]sign e 1 w (e ) Ee
e s E' es w (e ) 1 (1 ) sign e e e E
e
e s / E
5.2 应力应变简化模型
2. 线性强化弹塑性模型
用应变表示的加载准则:
s ss
加载: s de 0, s [s s E(| e | e s )]sign e
E’
卸载:
s de 0, ds Ede
E O
es
| e | e s ,
e
s Ee
在许多实际工程问题中, 弹性应变<<塑性应变, 因而可以忽略弹性应变。
e
| e | e s
s Ee
5.2 应力应变简化模型
2. 线性强化弹塑性模型
(材料有显著强化率)
s ss
加载: s ds 0, e
s 1 1 (| s | s s )( )sign s E E E
E’
卸载:
s ds 0, de ds / E
E
O
es
| s | s s ,
e ee e p s
E e p
拉伸试验和静水压力试验是塑性力学 中的两个基本试验,塑性应力应变关 系的建立是以这些实验资料为基础。
s ss sa
O
s
P A0
屈服应力
屈服应力
s
3
e
B
C
A
1 2
B
s0.2 A
l l l0 l0 l0
ep ee
如:低碳钢,铸铁,合金钢等
D
D
e
O 0.2%
5.1 基本实验资料
二、静水压力(各向均匀受压)试验
(2)、静水压力对屈服极限的影响 Bridgman对镍、铌的拉伸试验表明,静水压力增大,塑性 强化效应增加不明显,但颈缩和破坏时的塑性变形增加了。
静水压力对屈服极限的影响常可忽略。
5.2 应力应变简化模型
1、必须符合材料的实际性质
选取模型的标准:
应变强化(或加工硬化)。
材料在塑性阶段的一个重要特点:在加载和卸载的过程中应力和应变服从
不同的规律:
加载
简单拉伸试验 的塑性阶段:
s ds 0 s ds 0
ds Et d e
卸载
ds Ede
5.1 基本实验资料
一、应力--应变曲线
(2)拉伸与压缩曲线的差异(一般金属材料)
• 应变<10%时,基本一致;
区域的分界面也会产生变化。
5.1 基本实验资料
二、静水压力(各向均匀受压)试验
(1)、体积变化 体积应变与压力的关系 (bridgman实验公式)
V 1 1 em p(1 p) V0 K K1
体积压缩模量 派生模量
V 或 ap bp 2 V0
铜:当p=1000MPa时,ap=
各阶段的相应应变为:
(5.23)
l1 l0 l3 l2 l2 l1 e1 ; e2 ; e3 l0 l1 l2
例如: l0 1.5l0 1.8l0 2l0
7.31×10-4,而bp2=2.7×10-6。说明 第二项远小于第一项,可以略去不 计。因此根据上述试验结果,在塑 性理论中常认为体积变形是弹性的。
铜 a b 7.31x10-7 2.7x10-12
铝 13.34x10-7 3.5x10-12
铅 23.73x10-7 17.25x10-12
因而对钢、铜等金属材料,可以认为塑性变形不受静水压力 的影响。但对于铸铁、岩石、土壤等材料,静水压力对屈服 应力和塑性变形的大小都有明显的影响,不能忽略。
• 应变10%时,较大差异。
用简单拉伸试验代替简单压缩试 验进行塑性分析是偏于安全的。
s
压 拉
O
一般金属的拉伸与压缩曲线比较
e
5.1 基本实验资料
一、应力--应变曲线
(3)反向加载 卸载后反向加载,ss’’< ss’——Bauschinger效应
s
B A
拉伸塑性变形后使 压缩屈服极限降低 的现象。即正向强 化时反向弱化。
e E=lnl/l0
1.0 1.2 1.4 1.6
当变形程度小于10% 时,两值比较接近。
l/l0
小变形与大变 形界限的由来
5.3 应变的表示法
• 工程应变与自然应变的关系:
(2)自然应变为可加应变,工程应变为不可加应变
假设某物体原长l0 ,经历l1,l2变为l3,总相对应变为:
l3 l0 e l0
5.2 应力应变简化模型
* 刚塑性模型(忽略弹性变形)
e 总应变较大, e = e p
(a) 理想刚塑性模型
(b) 线性强化刚塑性模型
s ss e
s ss,
当e 0时
s ss
O
O
e
s s s E1e ,
当e 0时
特别适宜于塑性极限载荷的分析。
5.2 应力应变简化模型
3. 一般加载规律
颈缩阶段: 应变;应力
不符合材料的实际情况
l1 l0 l2 l1 ln ln 1 n 1 li 1 li e i 0 l0 l1 ln 1 li ln dl ln l l0
ln l0
(5.20)
适用于大变形
(5.21)
5.3 应变的表示法
在e=0处与s轴相切
只有两个参数A和n,因而也不可能 准确地表示材料的所有特征。但由 于解析式比较简单,而且n可以在较 大范围内变化,所以也经常被采用。
5.2 应力应变简化模型
5. Ramberg-Osgood模型 (三参数模型)
s / s1
强化系数 强化指数
e s 3 s m ( ) e1 s 1 7 s 1
s
ss
用应变表示的加载准则:
加载:
s d e 0,
s s s sign e
s de 0,
ds Ed e
优点: 理想弹塑性模型抓住了韧 性材料的主要特征,因而 与实际情况符合得较好。
E O
es
符号函数: 1, s 0 sign e 0, s 0 1, s 0
2、数学上必须是足够地简单
• 一般应力-应变曲线:
s =Ee , e < es (屈服前:线弹性) s =(e) ,e > es (屈服后)
5.2 应力应变简化模型
1. 理想弹塑性模型
(软钢或强化率较低的材料)
s
ss
加载:
s ds 0, e s / E sign s
等于零的参数
为一个大于或
卸载:
s ds 0, de ds / E
符号函数:
E O
e es
| s | s s ,
1, s 0 sign s 0, s 0 1, s 0
e s / E
5.2 应力应变简化模型
1. 理想弹塑性模型
缺点:
公式只包括了材料常数E 和s,故不能描述应力应 变曲线的全部特征; 在e=es处解析式有变化, 给具体计算带来困难; 卸载:
s D 0.5s s :
e O s O / E 0; s s 0.5s s eB 51e s ; E E' 1.5s s e C 51e s 49.5e s E 0.5s s e D eC 49e s ;
E
1.5ss
s
B A
ss
s E s s :
ep ee
(b)无明显屈服流动阶段
如:中碳钢,高强度合金钢, 有色金属等
D
e
(a)有明显屈服流动阶段
5.1 基本实验资料
一、应力--应变曲线
经过屈服阶段后,材料又恢复了抵抗变形的能力。在第二次加载过程中, 弹性系数仍保持不变,但弹性极限及屈服极限有升高现象,其升高程度与 塑性变形的历史有关,决定与前面塑性变形的程度。这种现象称为材料的
工程弹塑性力学
浙江大学
建筑工程学院
第五章 简单应力状态的弹塑性问题
5.1 基本实验资料 5.2 应力-应变的简化模型 5.3 应变的表示法
5.4 理想弹塑性材料的简单桁架