2019年人教版七年级数学下册学案全册
2019年最新人教版七年级数学下册全册教案(含教学反思)
5.1 相交线5.1.1 相交线1.理解对顶角和邻补角的概念,能在图形中辨认;(重点)2.掌握对顶角相等的性质和它的推证过程;(重点、难点)3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.一、情境导入同学们,你们看这座宏伟的大桥,它的两端有很多斜拉的平行钢索,桥的侧面有许多相交钢索组成的图案;围棋棋盘的纵线相互平行,横线相互平行,纵线和横线相交.这些都给我们以相交线、平行线的形象.在我们生活中,蕴涵着大量的相交线和平行线.那么两条直线相交形成哪些角?这些角又有什么特征?二、合作探究探究点一:对顶角和邻补角的概念【类型一】对顶角的识别下列图形中∠1与∠2互为对顶角的是( )解析:观察∠1与∠2的位置特征,只有C中∠1和∠2同时满足有公共顶点,且∠1的两边是∠2的两边的反向延长线.故选C.方法总结:判断对顶角只看两点:①有公共顶点;②一个角的两边分别是另一个角的两边的反向延长线.【类型二】 邻补角的识别如图所示,直线AB 和CD 相交所成的四个角中,∠1的邻补角是________.解析:根据邻补角的概念判断:有一个公共顶点、一条公共边,另一边互为延长线.∠1和∠2、∠1和∠4都满足有一个公共顶点和一条公共边,另一边互为延长线,故为邻补角.故答案为∠2和∠4.方法总结:邻补角的定义包含了两层含义:相邻且互补.但需要注意的是:互为邻补角的两个角一定互补,但互补的角不一定是邻补角.探究点二:对顶角的性质【类型一】 利用对顶角的性质求角的度数如图,直线AB 、CD 相交于点O ,若∠BOD =42°,OA 平分∠COE ,求∠DOE的度数.解析:根据对顶角的性质,可得∠AOC 与∠BOD 的关系,根据OA 平分∠COE ,可得∠COE 与∠AOC 的关系,根据邻补角的性质,可得答案.解:由对顶角相等得∠AOC =∠BOD =42°.∵OA 平分∠COE ,∴∠COE =2∠AOC =84°.由邻补角的性质得∠DOE =180°-∠COE =180°-84°=96°.方法总结:解决此类问题的关键是在图中找出对顶角和邻补角,根据两种角的性质找出已知角和未知角之间的数量关系.【类型二】 结合方程思想求角度如图,直线AC ,EF 相交于点O ,OD 是∠AOB 的平分线,OE 在∠BOC 内,∠BOE =12∠EOC ,∠DOE =72°,求∠AOF 的度数.解析:因为已知量与未知量的关系较复杂,所以想到列方程解答,根据观察可设∠BOE=x,则∠AOF=∠EOC=2x,然后根据对顶角和邻补角找到等量关系,列方程.解:设∠BOE=x,则∠AOF=∠EOC=2x.∵∠AOB与∠BOC互为邻补角,∴∠AOB=180°-3x.∵OD平分∠AOB,∴∠DOB=12∠AOB=90°-32x.∵∠DOE=72°,∴90°-32x+x=72°,解得x=36°.∴∠AOF=2x=72°.方法总结:在相交线中求角的度数时,就要考虑使用对顶角相等或邻补角互补.若已知关系较复杂,比如出现比例或倍分关系时,可列方程解决角度问题.【类型三】应用对顶角的性质解决实际问题如图,要测量两堵墙所形成的∠AOB的度数,但人不能进入围墙,如何测量?请你写出测量方法,并说明几何道理.解析:可以利用对顶角相等的性质,把∠AOB转化到另外一个角上.解:反向延长射线OB到E,反向延长射线OA到F,则∠EOF和∠AOB是对顶角,所以可以测量出∠EOF的度数,∠EOF的度数就是∠AOB的度数.方法总结:解决此类问题的关键是根据对顶角的性质把不能测量的角进行转化.探究点三:与对顶角有关的探究问题我们知道:两直线交于一点,对顶角有2对;三条直线交于一点,对顶角有6对;四条直线交于一点,对顶角有12对……(1)10条直线交于一点,对顶角有________对;(2)n (n ≥2)条直线交于一点,对顶角有________对.解析:(1)仔细观察计算对顶角对数的式子,发现式子不变的部分及变的部分的规律,得出结论,代入数据求解.如图①,两条直线交于一点,图中共有(4-2)×44=2对对顶角;如图②,三条直线交于一点,图中共有(6-2)×64=6对对顶角;如图③,四条直线交于一点,图中共有(8-2)×84=12对对顶角……按这样的规律,10条直线交于一点,那么对顶角共有(20-2)×204=90(对).故答案为90;(2)利用(1)中规律得出答案即可.由(1)得n (n ≥2)条直线交于一点,对顶角的对数为2n (2n -2)4=n (n -1).故答案为n (n -1). 方法总结:解决探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数据的变化特征.三、板书设计两条直线相交⎩⎨⎧⎭⎬⎫邻补角对顶角对顶角相等求角的大小本节课通过对学生身边熟悉的事物引入,让学生感受到生活中处处有数学,数学与我们的生活密不可分;学生经历合作探究过程获得新知,并能用所学的新知识来解决实际问题.这样教学更能激发学生学习数学的兴趣,提升学生的能力,促进学生的发展5.1.2 垂线1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线;(重点)2.掌握点到直线的距离的概念,并会度量点到直线的距离;3.掌握垂线的性质,并会利用所学知识进行简单的推理.(难点)一、情境导入大家都看到过跳水比赛,下面几幅图片中是几种不同的入水方式,你知道哪个图片中运动员获得的分数最高吗?在获得分数最高的图片中你知道运动员的身体和水面之间的关系吗?这节课我们将要学习有关这种关系的知识.二、合作探究探究点一:垂线的概念【类型一】利用垂直的定义求角的度数如图,已知点O在直线AB上,CO⊥DO于点O,若∠1=150°,则∠3的度数为( )A.30° B.40° C.50° D.60°解析:先根据邻补角关系求出∠2=180°-150°=30°,再由CO⊥DO得出∠COD=90°,最后由互余关系求出∠3=90°-∠2=90°-30°=60°.故选D.方法总结:两条直线垂直时,其夹角为90°;由一个角是90°也能得到这个角的两条边是互相垂直的.【类型二】垂直与对顶角、邻补角结合求角的度数如图,∠1=30°,AB⊥CD,垂足为O,EF经过点O.求∠2、∠3的度数.解析:首先根据垂直的概念得到∠BOD=90°,然后根据∠1与∠3是对顶角,∠2与∠3互为余角,从而求出角的度数.解:由题意得∠3=∠1=30°(对顶角相等).∵AB⊥CD(已知),∴∠BOD=90°,(垂直的定义),∴∠3+∠2=90°,即30°+∠2=90°,∴∠2=60°.方法总结:解决本题的关键是根据垂直的概念,得到度数为90°的角,然后根据对顶角、邻补角的性质解决.探究点二:垂线的画法(1)如图①,过点P画AB的垂线;(2)如图②,过点P分别画OA、OB的垂线;(3)如图③,过点A画BC的垂线.解析:分别根据垂线的定义作出相应的垂线即可.解:如图所示.方法总结:垂线的画法需要三步完成:一落:让三角板的一条直角边落在已知直线上,使其与已知直线重合;二移:沿直线移动三角板,使其另一直角边经过所给的点;三画:沿此直角边画直线,则这条直线就是已知直线的垂线.探究点三:垂线的性质(垂线段最短)如图,是一条河,C是河边AB外一点.现欲用水管从河边AB将水引到C处,请在图上画出应该如何铺设水管能让路线最短,并说明理由.解析:根据垂线的性质可解,即过C作CE⊥AB,根据“垂线段最短”可得CE最短.解:如图所示,沿CE铺设水管能让路线最短,因为垂线段最短.方法总结:在利用垂线的性质解决生活中最近、最短距离的问题时,要依据“两点之间,线段最短”和“垂线段最短”来解决.探究点四:点到直线的距离如图,在△ABC中,过点C作CD⊥AB,垂足为D,则点C到直线AB的距离是( )A.线段CA的长 B.线段CDC.线段AD的长 D.线段CD的长解析:根据点到直线的距离的定义:直线外一点到直线的垂线段的长度叫做点到直线的距离,可得点C到直线AB的距离是线段CD的长.故选D.方法总结:点到直线的距离是直线外一点到直线的垂线段的长度,而不是垂线段.三、板书设计垂线⎩⎪⎨⎪⎧垂线的定义 ⎭⎬⎫垂线的作法⎩⎨⎧一落二移三画垂线的性质:垂线段最短求最短距离本节课主要研究两条直线相交时的特殊情况——垂直,可类比前面两条直线相交时的一般情况学习新知识.经历合作探究过程获得新知,并能用所学的新知识来解决实际问题.这样教学更能激发学生学习数学的兴趣,使每个学生在数学的学习上都能得到不同的发展5.1.3 同位角、内错角、同旁内角1.理解“三线八角”中没有公共顶点的角的位置关系,知道什么是同位角、内错角、同旁内角;2.通过比较、观察、掌握同位角、内错角、同旁内角的特征;(重点)3.能在复杂图形中正确识别图形中的同位角、内错角和同旁内角.(重点、难点)一、情境导入上一节课中我们主要学习两条直线相交的情况,两条直线相交时,可以形成哪几种角?如果两条直线被第三条直线所截时,还能形成以上的角吗?是否还有其他类型的角呢?你能说出它们的名字吗?二、合作探究探究点一:识别同位角【类型一】 判断同位角及截线如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?解析:识别同位角要弄清哪两条直线被哪一条直线所截.也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线.解:∠1和∠2是直线EF、DC被直线AB所截形成的同位角,∠1和∠3是直线AB、CD被直线EF所截形成的同位角.方法总结:①同位角中的“同”字有两层含义:一同是指两角在截线的同旁,二同是指它们在被截两直线同方向;②在表述“三线八角”中某种位置关系的角时,可用以下方法:“∠×和∠×是直线×和直线×被直线×所截形成的×角”.【类型二】在图形中判断同位角下列图形中,∠1和∠2不是同位角的是( )解析:选项A、B、D中,∠1与∠2在截线的同侧,并且在被截线的同一方向,是同位角,即在图中可找到形如“F”的模型;选项C中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选C.方法总结:确定两个角的位置关系的有效方法——描图法:①把两个角在图中“描画”出来;②找到两个角的公共直线;③观察所描的角,判断所属“字母”类型,同位角为“F”型.【类型三】数同位角的对数如图,直线l1,l2被l3所截,则同位角共有( )A.1对 B.2对 C.3对 D.4对解析:图中同位角有:∠1和∠5,∠2和∠6,∠3和∠7,∠4和∠8,共4対.故选D.方法总结:数同位角的个数时,应从各个方向逐一观察,避免重复或漏数.探究点二:识别内错角、同旁内角如图,下列说法错误的是( )A.∠A与∠B是同旁内角B.∠3与∠1是同旁内角C.∠2与∠3是内错角D.∠1与∠2是同位角解析:根据同位角、内错角、同旁内角的基本模型判断.A中∠A与∠B形成“U”型,是同旁内角;B中∠3与∠1形成“U”型,是同旁内角;C中∠2与∠3形成“Z”型,是内错角;D中∠1与∠2是邻补角,该选项说法错误.故选D.方法总结:在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F”型,内错角的边构成“Z”型,同旁内角的边构成“U”型.如图所示,直线DE与∠O的两边相交,则∠O的同位角是________,∠8的同旁内角是________.解析:直线DE与∠O的两边相交,则∠O的同位角是∠5和∠2,∠8的同旁内角是∠1和∠O.故答案为∠5和∠2,∠1和∠O.易错点拨:找某角的同位角、同旁内角时,应从各个方位观察,避免漏数.三、板书设计三线八角⎩⎨⎧同位角 “F ”型内错角 “Z ”型同旁内角 “U ”型本节课以学生交流、合作、探究贯穿始终,在教学过程中,给学生的思考留下了足够的时间和空间,由学生自己去发现结论.学生在经历发现问题、探究问题、解决问题的过程中,对“三线八角”的概念准确理解并掌握.培养学生动手、合作、概括能力,同时也提高思维水平和探究能力5.2 平行线及其判定5.2.1 平行线1.了解平行线的概念及平面内两条直线相交或平行的两种位置关系;2.掌握平行公理以及平行公理的推论;(重点、难点)3.会用符号语言表示平行公理推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线.(重点)一、情境导入数学来源于生活,生活中处处有数学,观察下面的图片,你发现了什么?以上的图片都有两条相互平行的直线,这将是我们这节课学习的内容.二、合作探究探究点一:平行线的概念下列说法中正确的有:________.(1)在同一平面内不相交的两条线段必平行;(2)在同一平面内不相交的两条直线必平行;(3)在同一平面内不平行的两条线段必相交;(4)在同一平面内不平行的两条直线必相交;(5)在同一平面内,两条直线的位置关系有三种:平行、相交和垂直.解析:根据平行线的概念进行判断.线段不相交,延长后不一定不相交,(1)错误;同一平面内,直线只有平行和相交两种位置关系,(2)(4)正确,(5)错误;线段是有长度的,不平行也可以不相交,(3)错误.故答案为(2)(4).方法总结:同一平面内,两条直线的位置关系只有两种:平行和相交.两条线段平行、两条射线平行是指它们所在的直线平行,因此,两条线段不相交不意味着它们所在的直线不相交,也就无法判断它们是否平行.探究点二:过直线外一点画已知直线的平行线如图所示,在∠AOB内有一点P.(1)过点P画l1∥OA;(2)过点P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样的关系.解析:用两个三角板,根据“同位角相等,两直线平行”来画平行线,然后用量角器量一量l1与l2相交的角,该角与∠O的关系为相等或互补.解:(1)(2)如图所示;(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.易错点拨:注意∠2与∠O是互补关系,解答时容易漏掉.探究点三:平行公理及其推论【类型一】应用平行公理及其推论进行判断有下列四种说法:(1)过直线外一点有且只有一条直线与这条直线平行;(2)同一平面内,过一点能且只能作一条直线与已知直线垂直;(3)直线外一点与直线上各点连接的所有线段中,垂线段最短;(4)平行于同一条直线的两条直线互相平行.其中正确的个数是( )A.1个 B.2个 C.3个 D.4个解析:根据平行公理、垂线的性质进行判断.(1)过直线外一点有且只有一条直线与这条直线平行,正确;(2)同一平面内,过一点能且只能作一条直线与已知直线垂直,正确;(3)直线外一点与直线上各点连接的所有线段中,垂线段最短,正确;(4)平行于同一条直线的两条直线互相平行,正确;正确的有4个.故答案为D.方法总结:平行线公理和垂线的性质两者比较相近,两者区别在于:对于平行线公理中,必须是过直线外一点可以作已知直线的平行线,但过直线上一点不能作已知直线的平行线,垂线的性质中,无论点在何处都能作出已知直线的垂线.【类型二】应用平行公理的推论进行论证四条直线a,b,c,d互不重合,如果a∥b,b∥c,c∥d,那直线a,d的位置关系为________.解析:由于a∥b,b∥c,根据平行公理的推论得到a∥c,而c∥d,所以a∥d.故答案为a ∥d .方法总结:平行公理的推论是证明两条直线相互平行的理论依据.【类型三】 平行公理推论的实际应用将一张长方形的硬纸片ABCD 对折后打开,折痕为EF ,把长方形ABEF平摊在桌面上,另一面CDFE 无论怎样改变位置,总有CD ∥AB 存在,为什么?解析:根据平行公理的推论得出答案即可.解:∵CD ∥EF ,EF ∥AB ,∴CD ∥AB .方法总结:利用平行公理的推论进行证明时,关键是找到与要证的两边都平行的第三条边进行说明.三、板书设计平行线⎩⎨⎧概念两条直线的位置关系:平行或相交性质⎩⎨⎧平行公理平行公理的推论本节课以学生身边熟悉的事物引入,让学生感受到生活中处处有数学,数学与我们的生活密不可分.经历观察多媒体的演示和通过画图等操作,交流归纳与活动,进一步培养学生的空间想象能力5.2.2 平行线的判定第1课时平行线的判定1.掌握两直线平行的判定方法;(重点)2.了解两直线平行的判定方法的证明过程;3.灵活运用两直线平行的判定方法证明直线平行.(难点)一、情境导入怎样用一个三角板和一把直尺画平行线呢?动手画一画.二、合作探究探究点一:应用同位角相等,判断两直线平行如图,∠1=∠2=55°,∠3等于多少度?直线AB,CD平行吗?说明理由.解析:利用对顶角相等得到∠3=∠2,再由已知∠1=∠2,等量代换得到同位角相等,利用“同位角相等,两直线平行”即可得到AB与CD平行.解:∠3=55°,AB∥CD.理由如下:∵∠3=∠2,∠1=∠2=55°,∴∠1=∠3=55°,∴AB∥CD(同位角相等,两直线平行).方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同位角(“F”型)相等,从而可以应用“同位角相等,两直线平行”.探究点二:应用内错角相等,判断两直线平行如图,已知BC平分∠ACD,且∠1=∠2,AB与CD平行吗?为什么?解析:根据BC平分∠ACD,∠1=∠2,可得∠2=∠BCD,然后利用“内错角相等,两直线平行”即可得到AB∥CD.解:AB∥CD.理由如下:∵BC平分∠ACD,∴∠1=∠BCD.∵∠1=∠2,∴∠2=∠BCD,∴AB∥CD(内错角相等,两直线平行).方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到内错角(“Z”型)相等,从而可以应用“内错角相等,两直线平行”.探究点三:应用同旁内角互补,判断两直线平行如图,∠1=25°,∠B=65°,AB⊥AC.AD与BC有怎样的位置关系?为什么?解析:先根据∠1=25°,∠B=65°,AB⊥AC得出∠B与∠BAD的关系,进而得出结论.解:AD∥BC.理由如下:∵∠1=25°,∠B=65°,AB⊥AC,∴∠BAD=90°+25°=115°.∵∠BAD+∠B=115°+65°=180°,∴AD∥BC.方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同旁内角(“U”型)相等,从而可以应用“同旁内角互补,两直线平行”.探究点四:平行线的判定方法的运用【类型一】利用平行线判定方法的推理格式判断如图,下列说法错误的是( )A.若a∥b,b∥c,则a∥cB.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥cD.若∠3+∠4=180°,则a∥c解析:根据平行线的判定方法进行推理论证.A选项中,若a∥b,b∥c,则a ∥c ,利用了平行公理,正确;B 选项中,若∠1=∠2,则a ∥c ,利用了“内错角相等,两直线平行”,正确;C 选项中,∠3=∠2,不能判断b ∥c ,错误;D 选项中,若∠3+∠4=180°,则a ∥c ,利用了“同旁内角互补,两直线平行”,正确.故选C.方法总结:解决此类问题的关键是识别截线和被截线,找准同位角、内错角和同旁内角,从而判断出哪两条直线是平行的.【类型二】 根据平行线的判定方法,添加合适的条件如图所示,要想判断AB 是否与CD 平行,我们可以测量哪些角?请你写出三种方案,并说明理由.解析:判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此答题.解:(1)可以测量∠EAB 与∠D ,如果∠EAB =∠D ,那么根据“同位角相等,两直线平行”,得出AB 与CD 平行;(2)可以测量∠BAC 与∠C ,如果∠BAC =∠C ,那么根据“内错角相等,两直线平行”,得出AB 与CD 平行;(3)可以测量∠BAD 与∠D ,如果∠BAD +∠D =180°,那么根据“同旁内角互补,两直线平行”,得出AB 与CD 平行.方法总结:解决此类问题的关键是找准同位角、内错角和同旁内角.三、板书设计平行线的判定⎩⎨⎧⎭⎬⎫同位角相等内错角相等同旁内角互补两直线平行平行线的判定是平行线内容的进一步拓展,是进一步学习平行线的有力工具,为学习平行线的性质、三角形、四边形等知识打下基础,在整个初中几何中占有非常重要的地位.学生虽然已经学了平行线的定义、平行公理,具备了探究直线平行的基础,但学生在文字语言、符号语言和图形语言之间的转换能力比较薄弱,在逻辑思维和合作交流的意识方面发展不够均衡,还需逐渐提高第2课时平行线判定方法的综合运用1.灵活选用平行线的判定方法进行证明;(重点)2.掌握平行线的判定在实际生活中的应用.(难点)一、情境导入如图,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?要解决这个问题,就要弄清楚平行的判定.二、合作探究探究点一:平行线判定方法的综合运用【类型一】灵活选用判定方法判定平行如图,有以下四个条件:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,其中能判定AB∥CD的条件有( )A.1个 B.2个 C.3个 D.4个解析:根据平行线的判定定理即可求得答案.①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD.∴能得到AB∥CD的条件是①③④.故选C.方法总结:要判定两直线是否平行,首先要将题目给出的角转化为这两条直线被第三条直线所截得的同位角、内错角或同旁内角,再看这些角是否满足平行线的判定方法.【类型二】平行线的判定定理结合平行公理的推论进行证明如图,直线AB、CD、EF被直线GH所截,∠1=70°,∠2=110°,∠2+∠3=180°.求证:(1)EF∥AB;(2)CD∥AB(补全横线及括号的内容).证明:(1)∵∠2+∠3=180°,∠2=110°(已知),∴∠3=70°( ).又∵∠1=70°(已知),∴∠1=∠3(),∴EF∥AB( ).(2)∵∠2+∠3=180°,∴______∥______().又∵EF∥AB(已证),∴______∥______().解析:(1)先将∠2=110°代入∠2+∠3=180°,求出∠3=70°,根据等量代换得到∠1=∠3,再由“内错角相等,两直线平行”即可得到EF∥AB;(2)先由“同旁内角互补,两直线平行”得出CD∥EF,再根据“两条直线都和第三条直线平行,那么这两条直线平行”即可得到CD∥AB.答案分别为:(1)等量代换;等量代换;内错角相等,两直线平行;(2)CD;EF;同旁内角互补,两直线平行;CD;AB;平行于同一条直线的两直线平行.方法总结:判定两条直线平行的方法除了利用平行线的判定定理外,有时需要结合运用“平行于同一条直线的两条直线平行”.【类型三】添加辅助线证明平行如图,MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.解析:通过观察图可以猜想AB与CD互相平行.过点F向左作FQ,使∠MFQ =∠2=50°,则可得∠NFQ=40°,再运用两次平行线的判定定理可得出结果.解:过点F向左作FQ,使∠MFQ=∠2=50°,则∠NFQ=∠MFN-∠MFQ=90°-50°=40°,AB∥FQ.又因为∠1=140°,所以∠1+∠NFQ=180°,所以CD∥FQ,所以AB∥CD.方法总结:在解决与平行线相关问题时,有时需作出适当的辅助线.探究点二:平行线判定的实际应用一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上行驶,那么两次拐弯的角度可能为( )A.第一次右拐60°,第二次右拐120°B.第一次右拐60°,第二次右拐60°C.第一次右拐60°,第二次左拐120°D.第一次右拐60°,第二次左拐60°解析:汽车两次拐弯后,行驶的路线与原路线一定不在同一直线上,但方向相同,说明前后路线应该是平行的.如图,如果第一次向右拐,那么第二次应左拐,两次拐的方向是相反且角度相等的,两次拐的角度是同位角,所以前后路线平行且行驶方向不变.故选D.方法总结:利用数学知识解决实际问题,关键是将实际问题正确地转化为数学问题,即画出示意图或列式表示,然后再解决数学问题,最后回归实际.三、板书设计平行线的判定方法:1.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;2.平行于同一条直线的两直线平行.在教学设计中,突出学生是学习的主体,把问题尽量抛给学生解决,有意识地对学生渗透“转化”思想,并将数学学习与生活实际联系起来.本节课对七年级的学生而言,本是一个艰难的起步,应时时提醒学生应注意的地方,证明要严谨,步步有依据,并且依据只能是有关概念的定义、所规定的公理及已知证明的定理,防止学生不假思索地把以前学过的结论用来作为证明的依据5.3 平行线的性质5.3.1 平行线的性质第1课时平行线的性质1.理解平行线的性质;(重点)2.能运用平行线的性质进行推理证明.(重点、难点)一、情境导入窗户内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角∠1、∠2有什么数量关系?二、合作探究探究点一:平行线的性质如图,AB∥CD,BE∥DF,∠B=65°,求∠D的度数.。
人教版2019年春七年级数学下册全册配套教案设计含反思8.1 二元一次方程组 2
8.1二元一次方程组【教学目标】1.认识二元一次方程和二元一次方程组.2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.【教学重点与难点】1.理解二元一次方程组的解的意义.2.求二元一次方程的正整数解.【教学过程】篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?思考:这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?由问题知道,题中包含两个必须同时满足的条件:胜的场数+负的场数=总场数,胜场积分+负场积分=总积分.这两个条件可以用方程x+y=222x+y=40表示.上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.把两个方程合在一起,写成x+y=222x+y=40像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组.探究:满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中.上表中哪对x、y的值还满足方程②一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.例1 (1)方程(a +2)x +(b -1)y = 3是二元一次方程,试求a 、b 的取值范围. (2)方程x ∣a ∣ – 1+(a -2)y = 2是二元一次方程,试求a 的值.例2 若方程x 2 m –1 + 5y3n – 2= 7是二元一次方程.求m 、n 的值例3 已知下列三对值:x =-6 x =10 x =10 y =-9 y =-6 y =-1(1) 哪几对数值使方程21x -y =6的左、右两边的值相等? (2) 哪几对数值是方程组 的解?例4 求二元一次方程3x +2y =19的正整数解. 课堂小结 作业布置21x -y =62x +31y =-11。
2019春人教版数学七年级下册全册教案
备课本姓名学科年级学期长沙市天心区第一中学制天心区一中教师备课本课题5.1.1 相交线教学目标知识目标通过学习邻补角、对顶角等概念,进一步发展学生抽象概括能力.能力目标通过对相交线、邻补角、对顶角的研究,•体会它们在解决实际问题中的作用,并能用它们解释生活中的一些现象.情感目标通过分组讨论,培养学生合作交流的意识和探索精神.教材分析教学重点:邻补角、对顶角的性质.教学难点:发现两条直线相交时所形成的各类角的位置及数量关系.实施教学过程设计一、导入新课打开书欣赏第五章的章头图,雄伟壮丽的大桥上,有纵横交错的钢梁,以及像竖琴一样的钢索,能从中抽象出什么样的几何形象?有很多的相交线和平行线.能在身边再找一些相交线和平行线的实例吗?在生活中相交线、平行线的实例比比皆是,因此从这节课开始,我们将要在前面《图形认识初步》的基础上,继续遨游于几何世界,探究两条直线相交都能够形成哪些角?这些角有什么特征?什么样的两条直线互相垂直?垂线有什么性质?什么样的两条直线互相平行?互相平行的直线有什么特征?……更为重要的是它们在生活中的作用,学会用数学的眼光去欣赏我们生活所在的丰富多彩的世界.这节课,我们先来研究相交线.二、探究新课这里有一把剪刀,握紧剪子的把手,就能剪开物体,•你能说出其中的道理吗?握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角也相应变小,直到剪开物体.如果把剪子的构造抽象成一个几何图形,会是什么样的图形?剪子的构造可看作两条相交的直线,而剪刀两个把手之间的角,剪刀刃之间的角都是相交直线....所成角.组织学生活动活动1.(1)任意画两条相交的直线,在形成的四个角中(如图2)各个角存在怎样的位置关系?根据这种位置关系将它们分类.(2)分别量一下各个角的度数,各个角度数有什么关系?为什么?(3)在图1转动剪子把手的过程中,这个关系还保持吗?∠1和∠2、∠2和∠3、∠3和∠4、∠4和∠1它们属于同一种位置关系的角.它们共同的特点是每一对角都有一条公共边,而另一边互为反向延长线.以上四对角不仅有特殊的位置,而且它们的和都是180°,即它们互补.∠1和∠2、∠2和∠3、∠3和∠4、∠4和∠1不仅互补,而且“相邻”,把具有上述位置和大小关系的角叫做互为邻补角.∠1和∠3、∠2和∠4它们分别有相同的位置关系.每对角都有一个公共顶点O,并且每对角的两边都互为反向延长线.将具有这种位置关系的两个角叫做对顶角,每对对顶角都分别相等.能用刚才的结论解释本节开头提出的现象吗?可以.通过上面的讨论我们知道了,剪子两个把手之间的角与剪刀刃之间的角是对顶角.在转动剪子把手的过程中,这对对顶角始终保持相等,直到把物体剪开.下面我们共同填写下两直线相交所形成角分类位置关系大小关系1432CDOAB∠1、∠2∠3、∠4活动2.问题:(1)图3中∠1和∠2是对顶角吗?若不是,请说明理由.(1)中的∠1和∠2不是对顶角,是因为它们不是两条直线相交而成,•即它们既无公共顶点,每个角的两边只有一边是互为反向延长线;(2)中的∠1和∠2虽有公共点,但∠2的一边不是∠1两边中的一条反向延长线;(4)中的∠1和∠2也不是对顶角,只有(3)中的∠1和∠2是对顶角.判断一对角是不是对顶角,应注意什么?首先看它们是否是两条直线相交而成的角,再看它们是否有公共顶点,•两边是否互为反向延长线.(2)如图4,直线a、b相交,∠1=40°,求∠2、∠3、∠4的度数.解:如图4,由邻补角的定义,可得∠2=180°-40°=140°;由“对顶角相等”,可得∠3=∠1=40°,∠4=∠2=140°.三、应用举例(1)如图5(1),取两根木条a、b,将它们钉在一起,并把它们想象成两条直线,得到一个相交线的模型,能说出其中的邻补角与对顶角吗?如果其中一个角是35°,其他三个角各是多少度?这个角是90°、115°、m°呢?解:将两根木条抽象成相交直线,如图5(2),设直线a、b相交于点O.①当∠1=35°时,由邻补角的定义可得∠2=180°-35°=145°;由“对顶角相等”,可得∠3=∠1=35°,∠4=∠2=145°.②当∠1=90°,同(1)可得∠2=180°-90°=90°,∠3=∠1=90°,∠4=∠2=90°.③当∠1=115°时,∠2=180°-115°=65°,∠3=∠1=115°,∠4=∠2=65°.④当∠1=m°时,∠2=180°-m°,∠3=∠1=m°,∠4=∠2=180°-m°.(2)下列说法正确的是()A.有公共顶点的两个角是对顶角B.相等的两个角是对顶角C.有公共顶点并且相等的角是对顶角D.两条直线相交成的四个角中,有公共顶点且没有公共边的两个角是对顶角注:①只有两条直线相交时,才能产生对顶角,对顶角是成对出现的;②对顶角的本质特征是:两个角有公共顶点,其两边互为反向延长线.(3)已知直线AB、CD相交于O,∠AOC+∠BOD=240°,求∠BOC的度数.解:因为直线AB、CD相交于点O,所以∠AOC和∠BOC是邻补角(对顶角的定义),∠AOC和∠BOC是邻补角(邻补角的定义),所以∠AOC=∠BOD (对顶角相等).又因为∠AOC+∠BOD=240°(已知),所以∠AOC=∠BOD=120°.所以∠BOC=180°-∠AOC=60°(邻补角的定义).(4)如图7,AB与CD是直线,图中共有对顶角________对.() A.1 B.2 C.3 D.4 (5)图8中是对顶角量角器,你能说出用它测量角的原理吗?解:设量角器的底边所在的直线为AB,指针所在直线为CD.根据对顶角相等,可知∠BOD=∠AOC,因此只要读出∠AOC的度数,也就知道了∠BOD 的度数.四、课堂小结本节课讨论了两条直线相交所成的角的问题;重点研究了邻补角、对顶角的位置关系、大小关系,并用它们解决了生活和数学中的一些简单问题,相信同学们在今后的学习过程中,会进一步体会到邻补角和对顶角性质在解题中的作用.五、布置作业习题5.1 1、2.教学反思天心区一中教师备课本课题5.1.2 垂线(1)教学目标知识目标从实际问题中发现两条直线的垂直关系及垂直的第一个性质,•培养学生发现问题的能力.能力目标通过用三角板或量角器过一点画已知直线的垂线,•培养学生掌握画图的基本技能.情感目标通过学习垂直的表示方法,使学生建立初步的符号感.教材分析教学重点:垂线的意义、性质和画法.教学难点:垂线的画法.实施教学过程设计一、导入新课活动1.在相交线的模型(如图1)中,固定木条a,转动木条b.问题:(1)在相交直线所形成的四个角中,按照两个角的关系分类,有哪两种类型的角?(2)两条直线所夹角中,如果按照角的大小分类,又有哪几种?在两条相交直线所形成的四个角中,•按照两个角的关系分类有邻补角和对顶角两类.如果按照角的大小分类,两条直线所形成的角有锐角、直角、钝角.在转动木条b的过程中,当转动到木条b和木条a•有一个角是直角的位置时,其余三个角的大小如何?为什么?其余三个角都是直角(如图2),如果∠1=90°,∠2=180°-∠1=90°;∠3=∠1=90°,∠4=∠2=90°.不难发现,这种位置是两条直线的一种非常特殊的情况.它在生活、生产实际中应用比较广,例如书本相邻两条边所在的直线.我们今天就来研究这种特殊情况.二、讲授新课垂线的有关概念1.定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线是另一条直线的垂线,交点叫做垂足.2.符号:“⊥”读作“垂直于”,如图3,AB⊥CD于O,含义:直线AB•与直线CD垂直,垂足是O.3.对垂直定义的理解:(1)在垂直的定义中,强调只有一个角是直角就可以了,•不必说四个角都是直角,因为其他三个直角都可推出来.(2)两条直线互相垂直,指两条直线而言,因此,说到垂直,•一定是两条直线的位置关系.(3)定义具有双重性,既是垂直的判定定理,也是垂直的性质定理.•在具体应用时,要注意书写格式.如图3,因为AB⊥CD于O(已知),所以∠1=90°(垂直的定义或垂直性质);因为∠1=90°(已知),所以AB⊥CD于O(垂直的定义或垂直判定).活动2.问题:(1)用三角尺和量角器画已知直线L的垂线,这样的垂线能画出几条?(2)经过直线L上一点A画L的垂线,这样的垂线能画出几条?(3)经过直线L外一点B画L的垂线,这样的垂线能画出几条?用三角板画已知直线L的垂线,这样的垂线可以画出无数条.让三角板的一条直角边紧紧“贴”住已知直线L,沿着另一条边画直线a,就得到了直线L的垂线.换一个位置或贴着直线L平移三角板,又可以画出第二条、第三条……思考为什么画出的直线a和已知直线L垂直?因为三角板有一个角是直角,我们画已知直线的垂线时,正是用到了垂直的定义,两条直线相交所成的四个角中,有一个角是直角,那么这两条直线垂直.在图4(1)中,过点A作直线BD的垂线,在图4(2)中,过A点分别作BD和DE的垂线.总结用三角板画垂线的基本方法,强调用两条直角边“一贴”:贴住已知直线,“一靠”:靠住已知点再画直线过A点还能作出别的垂线吗?不会.过A点作BD或DE的垂线有一条;引导学生概括出:垂线的第一个性质:过一点有且只有一条直线与已知直线垂直.注:①“有且只有”中,“有”指“存在”,“只有”指“唯一”.②“过一点”的点在直线外,或在直线上都可以.三、应用举例,变式练习例:(1)画一条线段或射线的垂线,就是画它们所在直线的垂线.如图5(1),请你过点P画出线段AB或射线AB的垂线.(2)如图5(2),过A点作AB,BC和CA的垂线.练习1:如图6(1),∠B=90°,过B作AB、BC、CA的垂线.练习2:如图6(2),过B作AC的垂线,过A作BC的垂线,过C作AB的垂线.练习3:如图6(3),过P点作AB、BC、CD和DA的垂线.四、课堂小结1.理解垂线的意义;2.根据垂线的意义,过一点画一条直线的垂线;3.理解垂线的第一性质:过一点(直线上或直线外)有且只有一条直线与已知直线垂直.五、布置作业习题5.1 4、5.天心区一中教师备课本程设计BD为起跳线,A为跳远时脚落地点.体育老师是如何量出跳远的成绩的?过A作BD的垂线,垂足为O,AO的长度就是跳远的成绩. BD所在的直线上,除O点外,还有很多的点,如图2:•为什么测量跳远的成绩不去测量AC1、AC2、AC3、…的长度,而只测量AO的长度呢?线段OA有什么特点?通过比较,我们不难发现AO这条线段是线段AC1,AC2,AC3,…中最短的.体育比赛要求公平、公正.如果去随意测量AC1,AC2,AC3,…,就失去了统一的竞赛规则.AO⊥BD于O,我们称线段AO为垂线段.它是A与直线BD上各点连接的所有线段中最短的,因此,我们可以得出什么样的结论?归纳出垂线的第二条性质:连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.由第二条性质可知,我们跳远时,应沿着过A点与BD垂直的方向跳,•而不该跳成斜线方向.(特别强调:①垂线段是垂线上的一部分,它是线段,一端是一个点,另一端是垂足,垂线段是指线段本身,与其他无关.②垂线段与直线的夹角是90°)请同学们在自己的练习本上,画出一个直角三角形,用刻度尺度量哪一边最长,哪一边最短,得出结论.直角所对的边最长,如果两个锐角相等时,它们所对的边相等;较大的锐角所对的边较长,较小的锐角所对的边最短.如图3,把BC边看作一条线段,因为∠ACB=90°,所以AC⊥BC于C,而AB与BC不垂直,为什么?过直线外一点有一条且只有一条直线与已知直线垂直. AC<AB,AC是连接直线外一点A与直线BC上的点C的线段,AB是连接直线外一点A与直线BC上的点B的线段,为什么?线段AC是点A到直线BC的垂线段,由问题(1)可知垂线段最短,因此AC<AB.我们将AC叫做点A到直线BC的垂线段,而AB不是,也可以把线段AB•叫做斜线段,而这条垂线段AC的长度叫做点A到直线BC的距离.三、应用举例活动2.问题:(1)让学生举例说明垂线的第二个性质在实际中的应用;(2)指出两点间的距离和点到直线的距离的区别和联系.楼门与大路之间的小道都是与大路垂直的,如图4.从岸边向河对岸摆渡,都走与对岸垂直的路线.对于问题(2),两点间的距离是指连接两点的线段的长度,•点到直线的距离是直线外一点到这条直线的垂线段的长度.而它们的联系是点到直线的距离这个点到这条直线的垂线段的长度,即直线外一点到垂足之间的线段的长度,最终归结为两个特殊点之间的距离.活动3.问题:(1)要把水渠中的水引到农田P处(如图5),在渠岸AB的什么地方开沟,•才能使沟最短?画出图来,并说明根据什么道理.(2)如果图中的比例尺为1:100 000,水沟需要挖多长?解:(1)过P画直线AB的垂线,垂足为O,在O点开沟,可以使沟最短.根据垂线段最短,可知线段PO是P与直线上任一点连接成的所有线段中最短的.(2)用刻度尺测量出线段PO的长度为1.5cm,根据图中的比例尺可得水沟PO•的实际长度为1.5cm×100000=150000cm=1 500m,即水沟需挖1 500米.活动4.如图6,试用直尺或三角板量出:(1)城市A与城市B的距离,(2)城市A、B到大河L的距离.活动5.在图7中,分别过点P画直线AB、CD的垂线,并量出点P 到直线AB的距离.四、课堂小结1.教师让学生先回忆两条直线相交这部分知识,•并问:你们能够把它们画成一个知识结构图吗?2.教师加以指导结构图.3.请学生畅所欲言,叙述一节课的收获与体会.五、布置作业课本本节练习.教学反思天心区一中教师备课本课题5.1.3 同位角、内错角、同旁内角教学目标知识目标理解同位角、内错角、同旁内角的概念,能结合图形识别同位角、•内错角、同旁内角.能力目标通过图形的识别训练,培养学生的视图能力.情感目标在活动中培养学生乐于探索、合作学习的习惯,•培养学生“用数学”的意识和能力.教材教学重点:同位角、内错角、同旁内角的概念.教学难点:在较复杂的图形中辨认同位角、内错角、同旁内角.分析实施教学过程设计一、导入新课提出问题:(1)平面上的两条直线有相交和平行两种位置关系,两直线相交形成几个角?(2)在实际生活中,还存在着两条直线被第三条直线所截的情况,•你能举例说明吗?将这些事物抽象成几何图形(如图1所示的图形)(3)两条直线被第三条直线所截形成几个角?这些角中有什么样的关系?•如图1,∠2与∠4,∠5与∠7,∠6与∠8,∠1和∠3是对顶角,除了对顶角,还有没有其他新的关系的角呢?这就是我们上节课要来研究的内容.二、讲授新课(一)同位角、内错角、同旁内角的概念1.先看图1中∠1和∠5,这两个角分别在直线AB,CD的上方,并且都在直线EF的同侧(右侧),即具有这种位置的一对角叫做同位角.在图1中,像这样具有类似位置关系的角还有吗?如果你仔细观察,会发现∠2与∠6,∠3与∠7,∠4与∠8也是同位角.变式图形:图2中的∠1与∠2都是同位角.图形特征:在形如字母“F”的图形中有同位角.2.再看图1中,∠3与∠5,这两个角都在直线AB,CD之间,并且分别在直线EF两侧(∠3在直线EF左侧,∠5在直线EF右侧),具有这种位置关系的一对角叫做内错角.•同样,在图1中,∠4与∠6也具有类似的位置关系,∠4与∠6也是内错角.变式图形:图3中的∠1与∠2都是内错角.图形特征:在形如“Z”的图形中有内错角.3.在图1中,∠3和∠6也在直线AB,CD之间,但它们在直线EF 的同一旁(左侧),•具有这种位置关系的一对角叫做同旁内角.在图1中,具有类似的位置关系的还有∠4与∠5,因此它们也是同旁内角.变式图形:图4中的∠1与∠2都是同旁内角.图形特征:在形如“U”的图形中有同旁内角.4.辨一辨与两直线的位置关系与截线的位置关系同位角两直线同侧截线的同旁内错角两直线之间截线异侧同旁内角两直线之间截线同侧(二)例题:例1:如图5,直线DE截AB,AC,构成8个角.(1)指出所有的同位角、内错角、同旁内角;(2)∠A与∠8,∠A与∠5,∠A与∠6是哪两条直线被第三条直线所截的角?它们是什么关系的角?解:(1)两条直线是AB,AC,截线是DE,所以8个角中,同位角:∠2与∠5,∠4与∠7,∠1与∠8,∠6和∠3;内错角:∠4与∠5,∠3与∠8;同旁内角:∠3与∠5,∠4与∠8.(2)∠A与∠8是AB与DE被AC所截得的同位角;∠A与∠5是AB与DE被AC所截得的同旁内角;∠A与∠6是AB与DE被AC所截,是内错角.例2:如图6,直线DE、BC被直线AB所截.(1)∠1和∠2,∠1和∠3,∠1和∠4各是什么角?(2)如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?解:(1)∠1和∠2是内错角,∠1和∠3是同旁内角,∠1和∠4是同位角.(2)如果∠1=∠4,由对顶角相等,得∠2=∠4,那么∠1=∠2.因为∠4和∠3互补,即∠4+∠3=180°,又因为∠1=∠4,所以∠1+∠3=180°,•即∠1和∠3互补.例3:图7中,∠1与∠2,∠3与∠4各是哪一条直线截哪两条直线而成的?它们各是什么关系的角?解:图(7)中,∠1的边DA与∠2的边BD都在直线AB上,•这两个角的另一边分别是DE、BC.所以∠1和∠2是直线AB截DE、BC所成的一对同位角.∠3的边DE•和∠4•的边ED都在直线DE上,这两个角的另一边分别是DB、EC.所以∠3和∠4是直线DE截DB•、•EC所成的一对同旁内角.同理,(2)中,∠1和∠2是直线DB截直线DE、BC所成的一对内错角.∠3和∠4是直线AB截AE、BD所成的一对同旁内角.(3)中,∠1和∠2是直线AC截AB、CD所成的内错角.∠3和∠4是直线AC截AD、CB所成的内错角.三、课堂练习1.如图8,直线AB、CD被直线AE所截,∠A和______是同位角,∠A和______是内错角,∠A和______是同旁内角.2.如图9,∠1和∠5是直线_______,______被直线_______所截而成的______角;∠2和∠3是直线______,_______被直线_______所截而成的_______角;∠6和∠9是直线______,_______被直线______•所截而成的______•角;•∠ABC•和∠BCD•是直线______,______被直线_____所截得的________角.3.如图10,直线AF和AC被直线EB所截,∠EBC的同位角是_______,∠EBC的同旁内角是_____,∠EBC的内错角是______;直线DC、AC被直线AF所截,•∠FAC•的同位角是_______,内错角是______,同旁内角是学反思天心区一中教师备课本课题5.2.2 平行线的判定(1)教学目标知识目标理解并掌握两直线平行的条件──同位角相等,两直线平行.能力目标理解用三角板和直尺过直线外一点画已知直线的平行线的依据.情感目标经历观察、操作、想象、推理、交流等活动,进一步发展空间观念、•推理能力和有条理的表达能力;掌握直线平行的条件,并能解决一些简单问题.教材分析教学重点:掌握直线平行的条件,是“同位角相等,两直线平行”.教学难点:判断两直线平行的说理过程.实施教学过程设计一、导入新课活动1.如图1(1)所示,用活动木条相交成∠1,∠2,固定木条b、c,转动木条a.问题:(1)如图1(2),在木条a转动的过程中,观察∠2的变化以及它与∠1•的大小关系,你发现木条a与木条b的位置关系发生了什么变化?(2)改变图1(1)中∠1的大小,按照上面的方式,再做一做.∠1与∠2•的大小满足什么关系时,木条a与木条b平行?在转动木条a的过程中,看到∠1与∠2的大小关系为三种情况:大于、•等于、小于;木条a与木条b的位置关系有两种情况:相交与平行;当∠1=∠2时,•木条a与木条b平行.如果改变∠1的大小,按照上面的方法操作,我们也可以得到∠2与∠1•只要相等,那么木条a与木条b平行.木条a、b的位置与∠1、∠2的大小有密切关系.只要∠1=•∠2,木条a就平行木条b.二、讲授新课活动2.我们以前已学过用直尺和三角尺过直线外一点画已知直线的平行线.•如图2所示.问题:(1)三角尺起着什么作用?(2)什么量保持不变?你能得到什么结论?探索、归纳两直线平行的条件活动3.问题:(1)在图1(2)和图2中,∠1,∠2具有怎样的位置关系?(2)如图3,直线AB、CD与直线L相交,构成几个角?图1(2)和图2中,∠1,∠2在直线EF的同一侧,并且在AB、CD 的下方,•也有相同的位置关系,因此是同位角.想一想,我们在活动1、活动2中得到的“如果∠1=•∠2,则木条a 平行于木条b”;“如果∠1=∠2,过P点所画的直线CD平行于直线AB”.•一般情况下该怎样叙述?两直线被第三条直线所截,如果同位角相等,那么这两条直线平行.判定两直线平行的方法,简单地说:同位角相等,则两直线平行.三、应用举例活动4.问题:如图4,你能说出木工用图中,这种叫做角尺的工具画平行线的道理吗?木工师傅正是用了直尺在沿着直线AB移动的过程中,•角尺所形成的角的大小不变,如图4中,∠DCB=∠FEB,而∠DCB、∠FEB可看作直线CD、EF被直线AB•所截得的同位角,由“同位角相等,两直线平行”可得CD∥EF.用几何符号表示上述过程为:因为∠DCB=∠FEB,所以CD∥EF(同位角相等,两直线平行).活动5.问题:(1)找出图5点阵中互相平行的直线;(2)如图6,∠1=∠2=55°,∠3等于多少度?直线AB、CD平行吗?说明你的理由.在图5中,因为线段AB、CD与EF、GH相交所成的锐角是45°,因为∠1=∠2=45°,所以AB∥CD;因为∠2=∠3=45°,所以EF∥GH.在图6中,∠3是∠2的对顶角,所以∠3=55°(对顶角相等).因为∠1=∠2=55°,∠3=55°,所以∠1=∠3.又因为∠1,∠3构成同位角,由同位角相等,两直线平行,得AB∥CD.四、课堂小结三种判定两直线平行的方法:(1)定义(不常用);(2)如果两直线都与第三条直线平行,那么这两条直线互相平行;(3)两条直线被第三条直线所截,如果同位角相等,则两直线平行.五、布置作业习题5.2 2.教学反思天心区一中教师备课本课题5.2.2 平行线的判定(2)教学目标知识目标会判断内错角、同旁内角.能力目标掌握直线平行的第二种方法和第三种方法及其应用.情感目标创设情境,激发学生积极参与交流、学习,主动解决问题,•鼓励其创造精神,并从中获得成就感.教材分析教学重点:判定两条直线平行的第二种和第三种方法.教学难点:两条直线平行的条件的应用.实施教学过程设计一、导入新课活动1.小明有一块小画板,他想知道它的上下边缘是否平行,•于是他在两个边缘之间画了一条线段AB.(如图1所示)小明身边只有一个量角器,•他通过测量某些角的大小就能知道这个画板的上下边缘是否平行,你知道他是怎样做的吗?学生分组讨论、寻找解决问题的方法;教师可参与到学生的讨论中,或引导学生寻找解决问题的途径.我们说:两条线段平行是指这两条线段所在的直线平行.所以把这个图形中的上下边缘及线段AB都变成直线,则图形变为图2.在图2中可以看到:∠1与∠2是同位角,∠3与∠2是对顶角,并且相等,•所以只要∠1=∠3,即直线CD∥EF.实际上只需要把线段AB延长即可.只要量出如图3所示的∠1与∠3的度数,就可知画板的上下边缘是否平行.那这两个角是什么样的角呢?两直线平行还有哪些条件呢?•这节课我们来继续探讨:直线平行的条件.二、推理新课活动2.如图4,分别将木条a、b与木条c钉在一起,并把它们想象成直线.•在直线a、b被直线c所截成的角中,∠1和∠2是同位角.∠2和∠3有怎样的位置关系?•∠2和∠4呢?转动木条a或b,这些角之间还保持这种关系吗?如图4所示,∠2和∠3是内错角,“错”是交错的意思,•内错角在被截两直线之间,称为“内”,第三条直线即截线的两旁、交错,很形象地称为内错角.而∠2和∠4是同旁内角,我们不难发现,∠2和∠4在截线同旁,在被截两条直线之间(之内).转动a和b,这些角之间仍保持着这种关系.图中还有其他的同旁内角和内错角吗?例如∠3和∠6是同旁内角、∠4和∠6是内错角.活动3.思考:(1)如图5,如果∠2=∠3,能得出a∥b吗?(2)如果∠2+∠4=180°,能得出a∥b吗?由学生独立完成,然后小组交流、归纳、总结;教师可引导学生分析思路,寻求解决问题的一般途径.(1)因为∠1=∠3(对顶角相等),又∠2=∠3,所以∠1=∠2.所以a∥b(同位角相等,两直线平行).由此可得“内错角相等,两直线平行”即两直线平行的判定方法2.(2)因为∠1+∠4=180°,又∠2+∠4=180°,所以∠1=∠2(同角的补角相等).所以a∥b(同位角相等,两直线平行).得到“同旁内角互补,两直线平行”的第三种判定两直线平行的方法.到此为止,我们学习了判定两直线平行的三种方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.遇到一个新问题时,常常把它转化为已知的(或已经解决的)问题来解决.这一节中,我们是怎样利用“同位角相等,两直线平行”得到“内错角相等,两直线平行”的?能利用“内错角相等,两直线平行”得到“同旁内角互补,两直线平行”吗?即如图19,已知∠2+∠4=180°,能得出a∥b吗?可以.因为∠3+∠4=180°(邻补角定义),又∠2+∠4=180°(已知),所以∠2=∠3(同角的补角相等).所以a∥b(内错角相等,两直线平行).活动4.思考:这是小明同学自己制作的英语抄写纸的一部分(如图6),•其中的横格线互相平行吗?你有多少种判别方法?练习:在铺设铁轨时,两要直轨必须是互相平行的.如图7,已经知道∠2•是直角,那么再度量图7中哪个角(图中已标出的),就可以判断两条直轨是否平行?说出你的理由.由学生独立思考,然后小组交流;教师注重对不同层次学生给予指导.用一条直线截英语抄写纸上的横格线,就可得到同位角或内错角或同旁内角,再用量角器测量同位角或内错角或同旁内角的度数关系,。
人教版初中数学七年级下册教案全册
人教版初中数学七年级下册教案全册教案:人教版初中数学七年级下册一、教学内容1. 第1章:整式的加减2. 第2章:平行线与相交线3. 第3章:数据的收集与处理4. 第4章:概率初步5. 第5章:二元一次方程组6. 第6章:不等式与不等式组7. 第7章:函数的概念8. 第8章:平面图形的认识二、教学目标1. 学生能够掌握整式的加减运算方法,并能够灵活运用。
2. 学生能够理解平行线与相交线的性质,并能够运用到实际问题中。
3. 学生能够掌握数据的收集与处理方法,提高数据分析能力。
4. 学生能够理解概率的基本概念,并能够计算简单事件的概率。
5. 学生能够解决二元一次方程组的问题,并能够运用到实际问题中。
6. 学生能够理解不等式与不等式组的概念,并能够解决相关问题。
7. 学生能够理解函数的概念,并能够识别和运用函数解决实际问题。
8. 学生能够认识平面图形的基本性质,并能够运用到实际问题中。
三、教学难点与重点1. 教学难点:数据的收集与处理、概率的计算、函数的概念和平面图形的认识。
2. 教学重点:整式的加减运算、平行线与相交线的性质、二元一次方程组的解决方法、不等式与不等式组的解法。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。
2. 学具:笔记本、笔、尺子、量角器、剪刀、胶水。
五、教学过程1. 实践情景引入:通过实际问题引入整式的加减运算,让学生感受数学与生活的联系。
2. 例题讲解:讲解整式的加减运算的例题,让学生理解并掌握运算方法。
3. 随堂练习:布置随堂练习题,让学生巩固整式的加减运算。
4. 平行线与相交线的性质:通过实际问题引入平行线与相交线的性质,让学生理解并掌握。
5. 数据的收集与处理:讲解数据的收集与处理方法,让学生学会如何分析数据。
6. 概率初步:讲解概率的基本概念,让学生理解并能够计算简单事件的概率。
7. 二元一次方程组:讲解二元一次方程组的解决方法,让学生学会解决实际问题。
8. 不等式与不等式组:讲解不等式与不等式组的概念和解法,让学生理解并能够解决相关问题。
人教版七年级数学下册全册教案(完整版)教案
人教版七年级数学下册全册教案(完整版)教案一. 教材分析人教版七年级数学下册全册教案,主要包括了代数、几何、概率和统计等多个方面的内容。
这一册教材旨在让学生掌握基本的数学知识,培养学生的数学思维能力和解决问题的能力。
在学习过程中,学生需要逐步理解并掌握各个知识点,为今后的数学学习打下坚实的基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,但是个别学生在数学学习上还存在一定的困难。
因此,在教学过程中,教师需要关注学生的个体差异,针对不同学生的学习情况,进行有针对性的教学。
同时,要激发学生的学习兴趣,提高他们的学习积极性,帮助他们建立自信心。
三. 教学目标1.知识与技能:让学生掌握本册教材中的各个知识点,能够运用所学知识解决实际问题。
2.过程与方法:通过自主学习、合作学习、探究学习等方式,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,提高他们的学习积极性,培养他们具有良好的学习习惯和团队协作精神。
四. 教学重难点1.教学重点:教材中的各个知识点。
2.教学难点:理解并掌握各个知识点的应用,解决实际问题。
五. 教学方法1.情境教学法:通过创设生活情境,让学生在实际情境中感受数学知识的重要性。
2.启发式教学法:引导学生主动思考,发现问题的规律,培养学生的问题解决能力。
3.合作学习法:学生进行小组讨论,共同完成学习任务,培养学生的团队协作精神。
六. 教学准备1.教材:人教版七年级数学下册全册。
2.教具:黑板、粉笔、投影仪等。
3.课件:根据教学内容,制作相应的课件。
七. 教学过程1.导入(5分钟)利用课件或实物,创设生活情境,激发学生的学习兴趣,引导学生思考与本节课相关的问题。
2.呈现(10分钟)讲解本节课的知识点,通过举例、讲解、演示等方式,让学生理解并掌握各个知识点。
3.操练(10分钟)设计一些练习题,让学生在课堂上进行练习,巩固所学知识。
教师应及时给予反馈,指导学生纠正错误。
最全面新人教版七年级数学下册教案全册精华版
最全面新人教版七年级数学下册教案全册精华版一、教学内容第五章:相交线与平行线5.1:相交线5.2:平行线第六章:平面直角坐标系6.1:平面直角坐标系6.2:坐标与图形的性质第七章:三角形7.1:三角形的基本概念7.2:三角形的性质二、教学目标1. 理解并掌握相交线、平行线的性质和判定方法。
2. 学会使用平面直角坐标系表示点的位置,并分析坐标与图形的性质。
3. 掌握三角形的基本概念和性质,并能运用相关知识解决实际问题。
三、教学难点与重点1. 教学难点:相交线与平行线的判定方法、平面直角坐标系的应用、三角形性质的运用。
2. 教学重点:相交线与平行线的性质、平面直角坐标系的建立与运用、三角形的性质。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:直尺、圆规、量角器、练习本。
五、教学过程1. 实践情景引入:通过生活中的实例,如建筑物的平行线、地图上的坐标等,引出本节课的教学内容。
2. 例题讲解:(1) 举例讲解相交线与平行线的性质。
(2) 演示平面直角坐标系的建立方法,并分析坐标与图形的性质。
(3) 通过实际操作,引导学生发现三角形的性质。
3. 随堂练习:针对每个知识点,设计相应的练习题,让学生巩固所学知识。
六、板书设计1. 新人教版七年级数学下册教案精华版2. 内容:相交线与平行线的性质平面直角坐标系三角形的性质3. 例题及解答过程七、作业设计1. 作业题目:(3) 已知三角形ABC,其中∠A=60°,AB=AC,求证:三角形ABC是等边三角形。
2. 答案:(1) 正确。
(2) A(3, 4)、B(2, 1)、C(0, 3)。
(3) 证明过程略。
八、课后反思及拓展延伸1. 反思:本节课学生对相交线与平行线的性质、平面直角坐标系和三角形性质的理解程度,调整教学方法,提高教学效果。
2. 拓展延伸:(1) 研究在同一平面内,两条直线的关系,如垂直、斜交等。
(2) 探讨平面直角坐标系中,图形的对称性。
2019人教版七年级数学下册全册教案(最新全套)
5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
人教版七年级下册数学教案全册
人教版七年级下册数学教案全册教案:人教版七年级下册数学一、教学内容本节课为人教版七年级下册数学第五章《数据的收集与处理》第一节《数据的收集》。
本节内容主要介绍如何通过调查、实验等方法收集数据,并利用图表对数据进行整理和展示。
具体内容包括:1. 数据的收集方法:调查法、实验法等。
2. 数据的整理方法:列表法、画图法等。
3. 数据的展示方式:条形图、折线图、饼图等。
二、教学目标1. 了解数据的收集方法,学会通过调查、实验等方式收集数据。
2. 学会利用图表对数据进行整理和展示,培养学生的数据分析能力。
3. 培养学生的合作意识,提高学生的动手操作能力。
三、教学难点与重点1. 教学难点:数据的收集方法,图表的制作和解读。
2. 教学重点:数据的收集方法,条形图、折线图、饼图的绘制和分析。
四、教具与学具准备1. 教具:电脑、投影仪、黑板、粉笔。
2. 学具:笔记本、尺子、圆规、橡皮擦。
五、教学过程1. 实践情景引入:教师展示一份调查问卷,让学生思考如何通过这份问卷收集数据。
2. 讲解数据的收集方法:教师讲解调查法、实验法等数据的收集方法,并举例说明。
3. 讲解数据的整理方法:教师讲解列表法、画图法等数据的整理方法,并举例说明。
4. 讲解数据的展示方式:教师讲解条形图、折线图、饼图等数据的展示方式,并举例说明。
5. 随堂练习:学生分组讨论,每组选择一种数据的收集方法,绘制相应的图表,并进行解读。
六、板书设计1. 数据的收集方法:调查法、实验法2. 数据的整理方法:列表法、画图法3. 数据的展示方式:条形图、折线图、饼图七、作业设计1. 作业题目:(1)列举两种你曾经参与的数据收集活动,说明你是如何收集数据的。
(2)根据你收集的数据,绘制一张条形图或折线图,并解释图表所反映的信息。
2. 答案:(1)略(2)略八、课后反思及拓展延伸1. 课后反思:教师反思本节课的教学效果,是否存在不足之处,如何改进。
2. 拓展延伸:学生可以尝试利用网络资源,了解其他数据的收集和展示方法,如雷达图、散点图等。
最全面新人教版七年级数学下册教案全册精华版
最全面新人教版七年级数学下册教案全册精华版一、教学内容第五章:相交线与平行线5.1:相交线5.2:平行线第六章:平面几何初步6.1:三角形的特性6.2:全等三角形6.3:勾股定理第七章:一元一次不等式与不等式组7.1:不等式7.2:不等式组二、教学目标1. 理解并掌握相交线、平行线的性质及其应用。
2. 掌握三角形的特性、全等三角形的判定及勾股定理的应用。
3. 学会解一元一次不等式及不等式组,并能解决实际问题。
三、教学难点与重点教学难点:平行线的判定与性质全等三角形的判定一元一次不等式的解法教学重点:三角形的基本性质勾股定理的应用不等式组的解法四、教具与学具准备教具:多媒体教学设备、黑板、粉笔、直尺、量角器学具:练习本、铅笔、直尺、量角器五、教学过程1. 实践情景引入通过生活中常见的相交线、平行线现象引入新课,激发学生的学习兴趣。
通过实际测量活动,让学生直观感受三角形的特性。
2. 例题讲解讲解平行线的判定与性质,结合实际例题,让学生理解并掌握。
通过图形实例,讲解全等三角形的判定方法。
以实际问题为例,讲解勾股定理的应用。
以实际情景为背景,讲解一元一次不等式的解法。
3. 随堂练习让学生完成教材中的练习题,巩固所学知识。
对学生进行个别辅导,解答他们在练习中遇到的问题。
4. 课堂小结六、板书设计板书内容:相交线与平行线的性质三角形的特性、全等三角形的判定勾股定理一元一次不等式的解法板书要求:条理清晰,重点突出,字体工整。
七、作业设计1. 作业题目:5.1、5.2节练习题:相交线、平行线的性质与应用。
6.1、6.2、6.3节练习题:三角形的特性、全等三角形的判定、勾股定理的应用。
7.1、7.2节练习题:一元一次不等式的解法及不等式组的解法。
八、课后反思及拓展延伸2. 拓展延伸:引导学生思考生活中其他与数学相关的现象,激发他们的学习兴趣。
推荐相关阅读材料,拓展学生的知识面。
组织小组讨论,让学生在交流中提高自己的数学思维能力。
最全面新人教版七年级数学下册教案全册精华版
最全面新人教版七年级数学下册教案全册精华版一、教学内容第六章:数据的收集与整理6.1 数据的收集6.2 数据的整理与表示第七章:平面几何图形7.1 线段、射线和直线7.2 角的概念及分类7.3 三角形7.4 四边形二、教学目标1. 让学生掌握数据的收集与整理方法,并能应用于实际生活中。
2. 培养学生对平面几何图形的认识,提高其空间想象能力。
3. 通过几何图形的学习,培养学生的逻辑思维和分析解决问题的能力。
三、教学难点与重点教学难点:数据的整理与表示;角的计算及四边形的性质。
教学重点:掌握几何图形的基本概念和性质;熟练运用数据的收集与整理方法。
四、教具与学具准备教具:多媒体课件、黑板、粉笔、尺子、圆规等。
学具:直尺、圆规、量角器、三角板、练习本等。
五、教学过程1. 导入新课实践情景引入:通过生活中的实例,让学生了解数据收集与整理的重要性。
例题讲解:讲解数据的收集与整理方法,以及其在实际生活中的应用。
2. 自主探究例题讲解:通过例题,让学生掌握角的计算方法和四边形的性质。
3. 随堂练习设计有针对性的练习题,让学生巩固所学知识。
及时解答学生疑问,指导学生掌握解题方法。
4. 知识拓展引导学生了解更多的几何图形及其性质,拓展学生的知识面。
了解学生的学习情况,及时调整教学策略。
六、板书设计左侧:列出教学目标、重难点及知识点。
右侧:展示例题及解题过程,便于学生理解和记忆。
七、作业设计1. 作业题目:数据收集与整理:调查本班学生的身高、体重,绘制统计图表。
2. 答案:数据收集与整理:根据调查结果,绘制合适的统计图表。
几何图形:给出详细的解答过程和答案。
八、课后反思及拓展延伸2. 拓展延伸:鼓励学生参加数学竞赛、研究性学习等活动,提高数学素养。
重点和难点解析1. 教学内容的安排与衔接2. 教学目标的制定3. 教学难点与重点的确定4. 教学过程的实践情景引入5. 例题讲解的深度与广度6. 随堂练习的设计与反馈7. 知识拓展的深度与广度8. 板书设计的逻辑性与清晰度9. 作业设计的针对性与答案的详尽性10. 课后反思与拓展延伸的实际操作一、教学内容的安排与衔接教学内容应遵循由易到难、由浅入深的原则。
人教版七年级下册数学教案全册
人教版七年级下册数学教案全册一、教学内容1. 第五章:相交线与平行线详细内容:平行线的判定与性质,相交线的性质,平行线的应用。
2. 第六章:三角形详细内容:三角形的基本概念,三角形的判定,三角形的性质,全等三角形,相似三角形。
3. 第七章:实数详细内容:有理数的平方根,无理数,实数的性质,实数的运算。
4. 第八章:二次根式详细内容:二次根式的定义,二次根式的性质,二次根式的运算。
二、教学目标1. 理解并掌握相交线、平行线的判定与性质,能够运用这些知识解决实际问题。
2. 掌握三角形的基本概念、判定与性质,以及全等三角形和相似三角形的判定方法。
3. 理解实数的概念,掌握实数的运算,能够正确计算二次根式。
4. 培养学生的逻辑思维能力和空间想象力,提高解决问题的能力。
三、教学难点与重点1. 教学难点:(1)平行线的判定与性质的应用。
(2)全等三角形和相似三角形的判定方法。
(3)实数的概念及二次根式的运算。
2. 教学重点:(1)平行线、三角形的性质与判定。
(2)实数的概念、性质与运算。
四、教具与学具准备1. 教具:三角板、直尺、圆规、量角器。
2. 学具:练习本、草稿纸、铅笔、直尺、圆规。
五、教学过程1. 实践情景引入:通过生活中的实例,引导学生发现平行线、三角形等数学概念。
2. 例题讲解:(1)讲解平行线的判定与性质。
(2)讲解全等三角形和相似三角形的判定方法。
(3)讲解实数及二次根式的运算。
3. 随堂练习:(1)练习平行线、三角形的性质与判定。
(2)练习实数及二次根式的运算。
4. 学生自主探究:让学生通过自主探究,发现数学规律,提高解决问题的能力。
六、板书设计1. 知识点框架图。
2. 例题解答过程。
3. 关键性质与定理。
七、作业设计1. 作业题目:(2)已知三角形ABC中,AB=AC,∠B=∠C,求证:三角形ABC 是等腰三角形。
(3)计算:(√3+√2)²。
2. 答案:(1)错误。
两条不相交的直线可能平行,也可能重合。
【人教版】2019年春七年级数学下册优秀学案:6.3 第1课时 实数
第1课时 实 数【学习目标】1、了解立方根的概念,初步学会用根号表示一个数的立方根;2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根;3、体会一个数的立方根的惟一性, 分清一个数的立方根与平方根的区别。
【学习重点和难点】1.学习重点:立方根的概念和求法。
2.学习难点:立方根与平方根的区别。
【学习过程】一、自主探究1、填空:(有理数的两种分类)有理数 有理数2、使用计算器计算,把下列有理数写成小数的形式,你有什么发现? 3 , 35- ,478 ,911 ,119 ,59 二、探究新知1、归纳: 任何一个有理数都可以写成_______小数或________小数的形式。
反过来,任何______小数或____________小数也都是有理数观察 通过前面的探讨和学习,我们知道,很多数的_____根和______根都是____________小数, ____________小数又叫无理数, 3.14159265π=也是无理数结论: _______和_______统称为实数你能举出一些无理数吗?2、试一试 把实数分类像有理数一样,无理数也有正负之分。
例如,,π是____无理数,,,π-是____无理数。
由于非0有理数和无理数都有正负之分,所以实数也可以这样分类: 实数3、我们知道,每个有理数都可以用数轴上的点来表示。
无理数是否也可以用数轴上的点来表示呢?(1)如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少?从图中可以看出OO′的长时这个圆的周长______,点O′的坐标是_______这样,无理数可以用数轴上的点表示出来(2)总结:①事实上,每一个无理数都可以用数轴上的__________表示出来,这就是说,数轴上的点有些表示__________,有些表示__________ 当从有理数扩充到实数以后,实数与数轴上的点就是__________的,即每一个实数都可以用数轴上的__________来表示;反过来,数轴上的__________都是表示一个实数② 与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数______③ 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?总结 数a 的相反数是______,这里a 表示任意____________。
2019年新人教版七年级数学下册导学案全册
授课班级:姓名:七年级数学下册导学案目录第五章相交线与平行线 (1)课题:5.1.1 相交线 (1)课题:5.1.2 垂线 (2)课题:5.1.3 同位角、内错角、同旁内角 (5)课题:5.2.1 平行线 (7)课题:5.2.2 平行线的判定 (9)课题:5.3.1 平行线的性质 (11)课题:平行线的判定及性质习题课 (13)课题:5.3.2命题、定理 (15)课题:5.4平移 (17)课题:相交线与平行线全章复习 (19)第六章实数 (21)课题:6.1平方根(第1课时) (21)课题:6.1平方根(第2课时) (24)课题:6.1平方根(第3课时) (26)课题:6.2立方根(第1课时) (28)授课班级:姓名:课题:6.2立方根(第2课时) (31)课题:6.3 实数(第1课时) (33)课题:6.3 实数(第2课时) (35)课题:实数复习(一) (37)课题:实数复习(二) (39)第七章平面直角坐标系 (41)课题:7.1.1 有序数对 (41)课题:7.1.2 平面直角坐标系 (42)课题:7.1平面直角坐标系习题课 (44)课题:7.2.1用坐标表示地理位置 (47)课题:7.2.2用坐标表示平移 (48)课题:平面直角坐标系全章复习 (51)第八章二元一次方程组 (53)课题:8.1 二元一次方程组 (53)课题:8.2.1消元——解二元一次方程组(代入法) (56)课题:8.2.2消元——解二元一次方程组(代入法2) (57)课题:8.2.3消元——解二元一次方程组(加减法1) (59)课题:8.2.4消元——解二元一次方程组(加减法2) (61)课题:8.3.1实际问题与二元一次方程组(1) (62)课题:8.3.2实际问题与二元一次方程组(2) (64)课题:8.3.3实际问题与二元一次方程组(3) (65)课题:8.4.1三元一次方程组 (67)第九章不等式与不等式组 (69)课题:9.1.1不等式及其解集 (69)课题:9.1.2不等式的性质 (71)课题:9.2实际问题与一元一次不等式 (73)授课班级:姓名:课题:9.3一元一次不等式组(1) (75)课题:9.3一元一次不等式组(2) (77)章末复习 (79)第十章数据的收集、整理与描述 (84)课题:10.1 统计调查(第1课时) (84)课题:10.1 统计调查(第2课时) (85)课题:10.2 直方图(第1课时) (87)课题:10.2 直方图(第2课时) (88)授课班级:姓名:第五章相交线与平行线课题:5.1.1 相交线【学习目标】了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题.【学习重点】邻补角、对顶角的概念,对顶角性质与应用.【学习难点】理解对顶角相等的性质.【学习过程】一、学前准备各小组对七年级上学过的直线、射线、线段、角做总结.每人写一个总结小报告,并编写两道与它们相关的题目,在小组交流,并推出小组最好的两道题在班级汇报.二、探索思考探索一:完成课本P2页的探究,填在课本上.你能归纳出“邻补角”的定义吗?.“对顶角”的定义呢?.练习一:1.如图1所示,直线AB和CD相交于点O,OE是一条射线.(1)写出∠AOC的邻补角:____ _ ___ __;图1(2)写出∠COE的邻补角: __;(3)写出∠BOC的邻补角:____ _ ___ __;(4)写出∠BOD的对顶角:____ _.2.如图所示,∠1与∠2是对顶角的是()探索二:任意画一对对顶角,量一量,算一算,它们相等吗?如果相等,请说明理由.请归纳“对顶角的性质”:.练习二:1.如图,直线a,b相交,∠1=40°,则∠2=_______∠3=_______∠4=_______授课班级: 姓 名:2.如图直线AB 、CD 、EF 相交于点O ,∠BOE 的对顶角是______,∠COF 的邻补角是____,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______3.如图,直线AB 、CD 相交于点O ,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=_____. 三、当堂反馈 1.如图所示,∠1和∠2是对顶角的图形有( ) A.1个 B.2个 C.3个 D.4个 2.如图(1),三条直线AB,CD,EF 相交于一点O, ∠AOD 的对顶角是_____,∠AOC 的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____。
人教版2019年春七年级下册数学全册精品导学案10.1 第1课时 全面调查
课堂探究
一、要点探究 探究点 1:数据的收集与描述 问题 1:如果要了解全班同学对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情 况,你会怎样做?如何调查?
教学备注 配套 PPT 讲授 1.情景引入 (见幻灯片 3)
问题 2:除了问卷调查,数据的收集方式还有哪些?
2. 探究点 1 新 知讲授 (见幻灯片 6-24)
其中全班同学最感兴趣的课外活动项目是( ) A.体育运动 B.学科兴趣小组 C.音乐 D.舞蹈 四、我的疑惑 ___________________________________________________________________________ ___________________________________________________________________________
【自学指导 提示】 学生在课前 完成自主学 习部分
自主学习
一、知识链接 1.在小学我们学过哪些收集数据的方法?
2.收集的数据怎样分类、整理?
二、新知预习 1.收集数据常用的方法有 (答案不唯一,填一个即可). 2.整理数据常用的方法有 (填一个即可). 3.描述数据可以用 、 、 . 4.统计调查一般按如下顺序进行: → → → → . 三、自学自测 1.某同学调查了全班 50 名同学最感兴趣的课外活动项目,并绘制成下面的统计表: 课外活动项目 体育运动 学科兴趣小组 音乐 舞蹈 美术 划记 正正 正正 正正正 正 正正 人数 10 10 15 5 10
教学备注 配套 PPT 讲授 5.当堂检测 (见幻灯片 29-34)
2.下列调查中,适宜采用全面调查方式的是( ) A.了解一批圆珠笔的寿命 B.了解全国九年级学生身高的状况 C.调查人们保护海洋的意识 D.检查一枚用于发射卫星的运载火箭的各零部件 3.对某班 40 名同学的一次数学成绩进行统计, 适当分组后 80~90 分这个分数段的划 记人数为:"" 那么这个班这个分数段的人数占全班人数的百分比是( ) A. 20% B. 40% C. 15% D. 25% 4.下列调查不属于全面调查有( ) A. 在可疑区域搜马航失事飞机 MH370 残骸 B. 乘飞机时,机场对旅客的行李安全检查 C. 中央电视台 2016 年春节联欢晚会“您最喜 D. 调查我们班全体同学的体重情况 5. 某中学七年级共 100 人,为了了解这些学生的家庭经济情况,校长决定做一次调 查,每个同学发一张调查问卷,等同学们填好后再收起来统计整理,则在这次调查活 动中, (1)校长要调查的问题是__________________________; (2)校长的调查对象是________________________; (3)校长使用的调查方式是__________. 6.经调查,某班同学上学所用的交通工具中,自行车占有 60%,公交车占 30%,其他占 10%. (1)请画出扇形图描述以上统计数据; (2)如果这个班共有 50 名学生,那么坐公交车的学生有多少人? (3)如果我班同学有 50 人,步行同学部分在扇形中的圆心角为 72 度,那么步行有多少 人?
人教版数学七年级下册全册学案
5.1.1相交线[学习目标]1.理解邻补角、对顶角的定义.2.会根据邻补角、对顶角的性质进行有关角度的计算. [学习过程] 一、板书课题(一)讲述:同学们,今天我们来学习.5.1.1相交线(师板书) 二、出示目标(一)过渡语:要达到什么教学目标呢?请看投影 :(二)屏幕显示学习目标1.理解邻补角、对顶角的定义.2.会根据邻补角、对顶角的性质进行有关角度的计算. 三、自学指导(一)过渡语:怎样才能当堂达到学习目标呢?请同学们按照指导认真自学.] (二)出示自学指导自学指导认真看课本(P2-3练习前的内容.)○1回答“探究”中的问题并填空白; ②理解邻补角和对顶角的定义,思考对顶角为什么相等.; ○3注意例题的解题步骤和格式.; 如有疑问,可以小声问同学或举手问老师. 6分钟后比谁能做对与例题类似的检测题 四、先学(一)学生看书,教师巡视,师督促每一位学生认真、紧张的自学,鼓励学生质疑问难.(二)检测1.过渡语:同学们,看完的请举手?懂了的请举手?好,下面就比一比,看谁能正确运用2.检测题:如图所示,直线AB 、CD 相交于点O.(1)图中有几对对顶角?分别是哪些?(2)∠AOD 邻补角是 . (3)如果∠AOD=35°,则∠BOD 、∠BOC 、∠AOC 分别等于多少度? 分别让3位同学板演,其他同学在座位上做.3.学生练习,教师巡视.(收集错误进行二次备课)DBC A O(一)更正:请同学仔细看一看这3名同学的板演,发现错误并会更正的请举手.(指名更正)(二)讨论:评(1):对顶角找得对不对?为什么?引导学生说出对顶角满足的两个条件:○1有一个公共顶点.○2两个角的两边互为反向延长线(师板书). 评(2):邻补角找得对不对?为什么?引导学生回答邻补角满足的两个条件:○1有公共边○2一个角的一边是另一角一边的反向延长线(教师板书).【注意 ∠AOD 邻补角有两个,不要漏。
】评(3):∠BOD 求得对吗?引导学生说出:邻补角互补. ∠BOC 、∠AOC 求得对吗?引导学生说出:对顶角相等.再问对顶角为什么相等.引导学生说出:同角的补角相等.教师拓展引申: (1)∠1的对顶角是---------- (2)∠1的邻补角是----------(三)归纳:1分钟识记邻补角、对顶角的定义及性质. 六、课堂作业(一)讲述:同学们,能运用新知识做对作业吗?好,要注意解题格式,书写工整. (二)出示作业题: 必做题:P8 2 选做题:P9 7 思考题:P9 8(三)学生练习,教师巡视. 七、教学反思5.1.1垂线(1)学习目标:1.理解垂直、垂线的概念并会表示两条直线垂直.2.理解垂线的性质,会画一条直线的垂线.ABEF CD一、板书课题(一)讲述:同学们,今天我们来学习垂线(师板书),我们要达到两个目标,请看自学指导。
2019-七年级数学下册全一册综合教案(新版)新人教版
2019-2020 年七年级数学下册全一册综合授课设计(新版)新人教版知识点1、订交线与平行线2、实数的看法和计算3、平面直角坐标系4、二元一次方程组的计算和实质应用5、不等式与不等式组的应用6、数据的收集整理与描述授课目的熟练掌握各章节的重点知识而且做到灵便运用授课重点几何知识初步、实数的计算、二元一次方程组的计算,不等式和不等式组的计算授课难点二元一次方程组和不等式组的实质应用问题授课过程一、课堂导入两线邻补角 , 对顶角对顶角相等条相垂线及其性质点到直线的距离直交相两三平线条条交面的直直同位角 , 内错角 , 同旁内角内位线线两置被所条关第截性质直系平平行公义行判断平移二、复习预习一元一次方程的复习:只含有一个未知数(元),而且未知数的次数是 1 的方程叫做一元一次方程。
注意:(1)方程中的未知数只有一个(2)未知数的次数是 1(3)未知数不出现在分母里方程的解:使方程左右两边相等的未知数的值叫方程的解;求方程的解的过程叫解方程。
分别将木条 a,b 与木条 c 钉在一起,并把它们想象成在同一平面内两端能够无量延伸的三条直线,顺时针转动 a.(1)直线 a 与直线 b 的交点地址将发生什么变化 ?(2)在这个过程中,直线 a 与 b 有没有不订交的时候 ?三、知识讲解考点 / 易错点 11.对顶角和邻补角的看法对顶角:∠ 1 与∠ 3 是直线 AB、 CD订交获取的,它们有一个公共极点O,没有公共边,像这样的两个角叫做对顶角.邻补角:两条直线订交后所得的有一个公共极点且有一条公共边的两个角或两个角有一个公共定点而且一个角的两条边是另一个叫两条边的反向延伸线叫做邻补角,一个角的邻补角有两个。
紧扣对顶角定义重申以下两点:(1)辨别对顶角的要领:一看可否是两条直线订交所成的角,对顶角与订交线是唇齿相依,哪里有订交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有订交线;二看可否是有公共极点;三看可否是没有公共边.吻合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不能够.(2)对顶角是成对存在的,它们互为对顶角,如∠1 是∠ 3 的对顶角,同时,∠ 3 是∠ 1 的对顶角,也常说∠ 1 和∠ 3 是对顶角.平面直角坐标系:1、平面内有公共原点且互相垂直的两条数轴,组成平面直角坐标系. 平面直角坐标系,水平的数轴叫做x 轴或横轴( 正方向向右 ) ,铅直的数轴叫做y 轴或纵轴 ( 正方向向上 ) ,两轴交点O是原点.这个平面叫做坐标平面.x轴和 y 把坐标平面分成四个象限(每个象限都不包括坐标轴上的点) ,要注意象限的编号序次及各象限内点的坐标的符号:由坐标平面内一点向x 轴作垂线,垂足在x 轴上的坐标叫做这个点的横坐标,由这个点向y 轴作垂线,垂足在y 轴上的坐标叫做这个点的纵坐标,这个点的横坐标、纵坐标合在一起叫做这个点的坐标(横坐标在前,纵坐标在后) .一个点的坐标是一对有序实数,关于坐标平面内任意一点,都有唯一一对有序实数和它对应,关于任意一对有序实数,在坐标平面都有一点和它对应,也就是说,坐标平面内的点与有序实数对是一一对应的 .2、不相同地址点的坐标的特点:( 1)、各象限内点的坐标有以下特点:点 P( x, y )在第一象限x>0,y>0;点 P( x, y )在第二象限x < 0, y> 0;点 P( x, y )在第三象限x < 0, y< 0;点 P( x, y )在第四象限x > 0, y< 0.(2)、坐标轴上的点有以下特点:点P( x, y )在 x 轴上 y 为 0,x 为任意实数 .点P( x, y)在 y 轴上 x 为 0,y 为任意实数 .3 、点 P( x, y )坐标的几何意义:( 1)点 P(x, y)到 x 轴的距离是 | y |;( 2)点 P(x, y)到 y 袖的距离是 | x |;( 3)点 P(x, y)到原点的距离是4、关于坐标轴、原点对称的点的坐标的特点:( 1)点 P(a, b)关于 x 轴的对称点是;( 2)点 P(a, b)关于 x 轴的对称点是;( 3)点 P(a , b)关于原点的对称点是;小小取小;大大取大;大小小大取中间;大大小小取无聊。
【人教版】2019年春七年级数学下册:全册配套学案设计(43份打包)
34D CBA 1234D CBA 125.1.1 相交线【学习目标】1、经历观察、推理、交流等过程,了解邻补角和对顶角的概念,2、掌握邻补角、对顶角的性质; 【学习过程】环节一:复习引入1、复习提问:若∠1和∠2互余,则________________若∠1和∠2互补,则________________2、画图:作直线AB 、CD 相交于点O3、探究新知归纳:有一条公共边,而且另一边互为反向延长线的两个角叫做互为________。
如图中的______和_______如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫做互为_________。
如图中的_________和__________3、想一想:如果改变∠1的大小, ∠1和∠2还是邻补角吗?_______,它们的大小关系是____________。
∠1和∠3还是对顶角吗?_______,它们的大小关系是________结论:从数量上看,邻补角__________,对顶角都_______________ 环节二:例题例:如图,直线a ,b 相交,∠1=400,求∠2,∠3,∠4的度数 解:∵直线a ,b 相交∴∠1+∠2=1800(邻补角的定义) ∴ ∠2=__________________ =__________________ =__________∵直线a ,b 相交∴∠3=∠____=________∠4=∠____=_________( ) 环节三:练习 A 组1、如图所示,∠1和∠2是对顶角的图形是( )121212212、如图1,AB 与CD 相交所成的四个角中,∠1的邻补角是______, ∠1的对顶角___.3、如图2所示,直线AB 和CD 相交于点O ,OE 是一条射线. (1)写出∠AOC 的邻补角:________________; (2)写出∠COE 的邻补角:_________________. (3)写出与∠BOC 的邻补角:_______________.4、如图3所示,若∠1=25°,则∠2=_______,理由是____________a b1 23 4 图2A B C D图1图3OD C B A O FE D CBA OECB A O F E DCB A 12∠3=______,理由是__________________∠4=_______.,理由是_______________5、如图4所示,已知直线AB,CD 相交于O,OA 平分∠EOC, ∠EOC=70°,则∠AOC=_________,∠BOD=•______.6、如图5所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠AOD=________∠AOC •= ______________B 组7、下列说法正确的有( ) ①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等. A.1个 B.2个 C.3个 D.4个 8、如图6所示,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角是_________, ∠AOC 的邻补角是_________; 若∠AOC=50°,则∠BOD=______,∠COB=_______.9、如图6所示,三条直线AB,CD,EF 相交于一点O,则∠AOE+∠DOB+∠COF 等于( • )A.150°B.180°C.210°D.120°10、如图7,AB,CD,EF 交于点O,∠1=20°,∠BOC=80°,求∠2的度数.11、如图8,AB,CD 相交于点O,OE 平分∠AOD,∠AOC=120°, 求∠BOD,∠AOE •的 度数.C 组13、如图8所示,直线AB,CD 相交于点O,已知∠AOC=70°,OE 把∠BOD 分成两部分,• 且∠BOE:∠EOD=2:3,则∠EOD=________.5.1.1 相交线【学习目标】OED CB A 图4 O EDC B A 图8 图6图5 图7图81.了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。
新人教版七年级数学下册教案全册2019
七年级下数学七年级数学教学工作计划基本情况分析1、学生情况分析:学生进行了一个学期的学习,虽然期末考试成绩可以,但是发现两班学生尖子生少,中等生较多,差生出现,上课部分学生不认真,学习态度、学习习惯不是很好,学生整体基础参差不齐,没有养成良好的学习习惯,对多数学生来说,简单的基础知识还不能有效掌握,成绩稍差。
学生的逻辑推理、逻辑思维能力,计算能力要有待加强,还要提升整体成绩,适时补充课外知识,拓展学生的知识面,抽出一定的时间强化几何训练,培养学生良好的学习习惯。
全面提升学生的数学素质。
2、教材分析:第五章、相交线与平行线:本章主要在第四章“图形认识初步”的基础上,探索在同一平面内两条直线的位置关系:①、相交②、平行。
本章重点:垂线的概念和平行线的判定与性质。
本章难点:证明的思路、步骤、格式,以及平行线性质与判定的应用。
第六章、实数:了解算术平方根、平方根、立方根的概念,会用根号表示平方根与立方根.会求一个数的平方根与立方根. 2.了解无理数、实数的概念,实数与数轴一一对应的关系,能估计无理数的大小,能进行实数的计算.本章重点:平方根、立方根的概念,会用根号表示平方根与立方根.会求一个数的平方根与立方根.本章难点:实数的概念,实数与数轴一一对应的关系第七章、平面直角坐标系:本章主要内容是平面直角坐标系及其简单的应用。
有序实数对与平面直角坐标系的点一一对应的关系。
本章重点:平面直角坐标系的理解与建立及点的坐标的确定。
本章难点:平面直角坐标系中坐标及点的位置的确定。
第八章、二元一次方程组:本章主要学习二元一次议程(组)及其解的概念和解法与应用。
本章重点:二元一次方程组的解法及实际应用。
本章难点:列二元一次方程组解决实际问题。
第九章、不等式与不等式组:本章主要内容是一元一次不等式(组)的解法及简单应用。
本章重点:不等式的基本性质与一元一次不等式(组)的解法与简单应用。
本章难点:不等式基本性质的理解与应用、列一元一次不等式(组)解决简单的实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:5.1.1 相交线【学习目标】1.了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。
2.理解对顶角性质的推导过程,并会用这个性质进行简单的计算。
3.通过辨别对顶角与邻补角,培养识图的能力。
【学习重点】邻补角和对顶角的概念及对顶角相等的性质。
【学习难点】在较复杂的图形中准确辨认对顶角和邻补角。
【自主学习】1.阅读课本P 1图片及文字,了解本章要学习哪些知识?应学会哪些数学方法?培养哪些良好习惯? ,2.准备一张纸片和一把剪刀,用剪刀将纸片剪开,观察剪纸过程,握紧把手时, 随着两个把手之间的角逐渐变小,剪刀两刀刃之间的角引发了什么变化? . 如果改变用力方向,将两个把手之间的角逐渐变大,剪刀两刀刃之间的角又发生什么了变化? .3.如果把剪刀的构造看作是两条相交的直线, 剪纸过程就关系到两条相交直线所成的角的问题, 阅读课本P 2内容,探讨两条相交线所成的角有哪些?各有什么特征? 【合作探究】1.画直线AB 、CD 相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类? 例如:(1)∠AOC 和∠BOC 有一条公共边.....OC ,它们的另一边互为 ,称这两个角互为 。
用量角器量一量这两个角的度数,会发现它们的数量关系是 (2)∠AOC 和∠BOD (有或没有)公共边,但∠AOC 的两边分别是∠BOD 两边的 ,称这两个角互为 。
用量角器量一量这两个角的度数,会发现它们的数量关系是 。
3.用语言概括邻补角、对顶角概念.的两个角叫邻补角。
的两个角叫对顶角。
4.探究对顶角性质.在图1中,∠AOC 的邻补角有两个,是 和 ,根据“同角的补角相等”,可以得出 = ,而这两个角又是对顶角,由此得到对顶角性质:对顶角相等...... 注意:对顶角概念与对顶角性质不能混淆,对顶角的概念是确定两角的位置关系,对顶角_O_D_C _B _A性质是确定为对顶角的两角的数量关系.你能利用“对顶角相等”这条性质解释剪刀剪纸过程中所看到的现象吗? 【巩固运用】1.例题:如图,直线a,b 相交,∠1=40°,求∠2,∠3,∠4的度数.提示:未知角与已知角有什么关系?通过什么途径去求这些未知角的度数?,规范地写出求解过程.2.练习:完成课本P 3练习. 【反思总结】本节课你学到了什么?有什么收获和体会?还有什么困惑?(小组交流,互助解决) 【达标测评】1.如图所示,∠1和∠2是对顶角的图形有( )12121221A.1个B.2个C.3个D.4个2.如图(1),三条直线AB,CD,EF 相交于一点O, ∠AOD 的对顶角是_____,∠AOC 的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____。
OF E D CBA3.如图,直线AB,CD 相交于O,OE 平分∠AOC,若∠AOD-∠DOB=50°,•求∠EOB 的度数.OE D CBA4.如图,直线a,b,c 两两相交,∠1=2∠3,∠2=68°,求∠4的度数cba34125.若4条不同的直线相交于一点,图中共有几对对顶角?若n 条不同的直线相交于一点呢?b a4321OD CB A课题:5.1.2 垂线(1)【学习目标】1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。
2.掌握点到直线的距离的概念,并会度量点到直线的距离。
3.掌握垂线的性质,并会利用所学知识进行简单的推理。
【学习重点】垂线的定义及性质。
【学习难点】垂线的画法【学具准备】相交线模型,三角尺,量角器 【自主学习】1.如图,若∠1=60°,那么∠2=_______、∠3=_______、∠4=_______2.改变上图中∠1的大小,若∠1=90°,请画出这种图形,并求出此时∠2、∠3、∠4的大小。
【合作探究】1.阅读课本P 3的内容,回答上面所画图形中两条直线的关系是__________,知道两条直线互相________是两条直线相交的特殊情况。
2. 用语言概括垂直定义两条直线相交,所成四个角中有一个角是_____时,我们称这两条直线__________其中一条直线是另一条的_____,他们的交点叫做_____。
3.垂直的表示方法:垂直用符号“⊥”来表示,若“直线AB 垂直于直线CD , 垂足为O”,则记为__________________,并在图中任意一个角处作上直角记号,如下图。
4.垂直的推理应用:(1)∵∠AOD=90° ( )∴AB ⊥CD ( ) (2)∵ AB ⊥CD ( )∴ ∠AOD=90°( ) 5.垂直的生活应用观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线思考这些给大家什么印象?找一找:在你身边,还能发现哪些“垂直”的实例?【画图实践】1.用三角尺或量角器画已知直线L 的垂线.(1)已知直线L ,画出直线L 的垂线,能画几条? L小组内交流,明确直线L 的垂线有_________条,即存在,但位置有不______性。
(2)怎样才能确定直线L 的垂线位置呢?在直线L 上取一点A,过点A 画L 的垂线, 能画几条?再经过直线L 外一点B 画直线L 的垂线,这样的垂线能画出几条?B .A . L LE(3)O D CBA (2)O D CBA (1)ODC B从中你能得出什么结论? ____________________________________________2.变式训练,请完成课本P 5练习第2题的画图。
画完图后,归纳总结:画一条射线或线段的垂线, 就是画它们所在______的垂线. 【反思总结】本节课你你有那些收获?还有什么疑难需老师或同学帮助解决? 【达标测评】(有困难同学可以选做) (一)判断题.1.两条直线互相垂直,则所有的邻补角都相等.( )2.一条直线不可能与两条相交直线都垂直.( )3.两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直.( )4.两条直线相交有一组对顶角互补,那么这两条直线互相垂直.( ). (二)填空题.1.如图1,OA ⊥OB,OD ⊥OC,O 为垂足,若∠AOC=35°,则∠BOD=________.2.如图2,AO ⊥BO,O 为垂足,直线CD 过点O,且∠BOD=2∠AOC,则∠BOD=________.3.如图3,直线AB 、CD 相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB 的位置关系是_________.(三)解答题.1.已知钝角∠AOB,点D 在射线OB 上.(1)画直线DE ⊥OB (2)画直线DF ⊥OA,垂足为F.2.已知:如图,直线AB,射线OC 交于点O,OD 平分∠BOC,OE 平分∠AOC.试判断OD 与OE 的位置关系.3.你能用折纸方法过一点作已知直线的垂线吗?EODCBA课题:5.1.2 垂线(2)【学习目标】1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念, 培养学生用几何语言准确表达的能力。
2.了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义, 并会度量点到直线的距离。
【自主学习】1.上学期我们学习过“什么什么最短”的几何知识,还记得吗? 。
2.思考课本P 5图5.1-8中提出问题:要把河中的水引到农田P 处, 如何挖渠能使渠道最短?3.自学课本P 5-6页的内容后,你能解决2中提出的问题吗?若不能,有哪方面的困惑? 【合作探究】 1.问题转化如果把小河看成是直线L ,把要挖的渠道看成是一条线段,则该线段的一个端点自然是农田P ,另一个端点就是直线L 上的某个点。
那么最短渠道问题会变成是怎样的数学问题? (提示:用数学眼光思考:在连接直线L 外一点P 与直线L 上各点的线段中,哪一条最短?) 2.学具感受自制学具:在硬纸板上固定木条L ,L 外有一点P ,另一根可以转动的木条a 一端固定在点P ,使木条a 与L 相交,左右摆动木条a ,会发现它们的交点A 随之变化,线段PA 长度也随之变化.观察:当PA 最短时,直线a 与L 的位置关系如何?用三角尺检验一下。
3.画图验证(1)画直线L,在L 外取一点P; (2)过P 点出PO ⊥L,垂足为O;(3)点A 1,A 2,A 3……在L 上,连接PA 、PA 2、PA 3……;(4)用度量法比较线段PO 、PA 1、PA 2、PA 3……的大小,.得出线段 最小。
4.归纳结论.连接直线外一点与直线上各点的所有线段中, .简单说成: . 5.知识类比(1)垂线段与垂线有何区别联系? (2)垂线段与线段有何区别与联系?6.解决问题:此时你会解决课本P 5图5.1-8中提出的问题吗?在图形中画出“最短渠道”的位置。
7.探究“点到直线的距离”?定义:(1) 学习课本P 6第二段内容回答什么叫“点到直线的距离”?默写一遍: 叫做点到直线的距离.......。
._l_P _a_AE DC B A(2)对照课本P 5图5.1-9,回答线段PO 、PA 1、PA 2、PA 3、PA 4……中,哪一条或几条线段的长度是点P 到直线L 的距离?(3) 如果课本P 5图5.1-8中比例尺为1:100000,试计算农田P 到小河的距离有多远?【运用举例】例1:判断对错,并说明理由:.(1)直线外一点与直线上的一点间的线段的长度是这一点到这条直线的距离.(2)如图,线段AE 是点A 到直线BC 的距离.(3)如图,线段CD 的长是点C 到直线AB 的距离.例:2:已知直线a 、b,过点a 上一点A 作AB ⊥a,交b 于点B,过B 作BC ⊥b 交a 于点C.请说出哪一条线段的长是哪一点到哪一条直线的距离? 并且用刻度尺测量这个距离.baCBA【反思总结】本节课你学到了哪些知识或方法?还有什么困惑?相互交流一下。
【达标测评】1.如图,AC ⊥BC,C 为垂足,CD ⊥AB,D 为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C 到AB 的距离是_______,点A 到BC 的距离是________,点B 到CD 的距离是_____,A 、B 两点的距离是_________.DCBAFE D C B A2.如图,在线段AB 、AC 、AD 、AE 、AF 中AD 最短.小明说垂线段最短, 因此线段AD 的长是点A 到BF 的距离,对小明的说法,你认为对吗?3.用三角尺画一个是30°的∠AOB,在边OA 上任取一点P,过P 作PQ ⊥OB, 垂足为Q,量一量OP 的长,你发现点P 到OB 的距离与OP 长的关系吗?课题:5.1.3同位角、内错角、同旁内角【学习目标】1. 理解三线八角中没有公共顶点的角的位置关系,知道什么是同位角、内错角、同旁内角.2. 通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.【学习重点】同位角、内错角、同旁内角的识别。