经典Mean Shift算法介绍
均值偏移算法
均值偏移算法1. 概述均值偏移算法(Mean Shift algorithm)是一种非参数化的聚类算法,能够对数据进行自动的聚类分析。
该算法的原理基于密度估计和梯度下降,通过不断迭代的方式找到数据的局部最大密度区域,从而将数据划分成不同的簇。
均值偏移算法在计算机视觉、图像处理以及模式识别等领域都有应用。
2. 均值偏移原理均值偏移算法的核心思想是通过计算样本点与其邻近点之间的距离来寻找密度最大的区域,并将距离小于某个阈值的样本点划分到同一簇中。
具体步骤如下:2.1. 初始化首先,需要初始化聚类中心点。
可以选择从样本中随机选择一些点作为初始的聚类中心。
2.2. 密度估计对于每个聚类中心点,计算它与所有样本点的距离。
可以使用欧氏距离或者其他距离度量方法。
根据距离大小,将样本点按照距离聚类中心点的远近分别分为不同的簇。
2.3. 均值迁移对于每个样本点,计算它距离所属簇其他样本点的中心的平均距离,并将该样本点迁移到距离最近的中心。
重复这一过程,直到所有样本点不再发生迁移。
2.4. 聚类结果经过迭代的均值偏移过程之后,每个样本点都会被分配到一个簇中。
最终的聚类结果即为各个样本点所属的簇。
3. 实例详解下面通过一个实例来详细解释均值偏移算法的工作原理。
假设我们有一组二维数据点,如下所示:[(1, 2), (1.5, 1.8), (5, 8), (8, 8), (1, 0.6), (9, 11)]3.1. 初始化我们随机选择两个点作为初始的聚类中心,比如选择(1, 2)和(9, 11)。
3.2. 密度估计计算每个样本点与聚类中心的距离:距离中心点(1, 2)的距离:[0, 0.2828, 10.8167, 10.8167, 1.412, 13.6015]距离中心点(9, 11)的距离:[13.6015, 13.193, 4.4721, 1.4142, 11.6619, 0]根据距离的大小,可以将数据分为两个初始簇:初始簇1: [(1, 2), (1.5, 1.8), (1, 0.6)]初始簇2: [(5, 8), (8, 8), (9, 11)]3.3. 均值迁移对于簇1中的样本点(1, 2),计算其与其他样本点的平均距离,并将其迁移到距离最近的中心点。
meanshift算法简介
怎样找到数据集合中数据最密集的地方呢?
数据最密集的地方,对应于概率密度最大的地方。我们可 以对概率密度求梯度,梯度的方向就是概率密度增加最大 的方向,从而也就是数据最密集的方向。
令
,假设除了有限个点,轮廓函数 的梯度对所
有
均存在 。将 作为轮廓函数,核函数 为:
fh,K
x
2ck ,d n nhd 2 i1
Meanshift算法的概述及其应用
Meanshift的背景
Mean Shift 这个概念最早是由Fukunaga等人于 1975年在一篇关于概率密度梯度函数的估计中提出 来的,其最初含义正如其名,就是偏移的均值向量。
直到20年以后,也就是1995年,,Yizong Cheng发 表了一篇对均值漂移算法里程碑意义的文章。对基 本的Mean Shift算法在以下两个方面做了改进,首先 Yizong Cheng定义了一族核函数,使得随着样本与 被偏移点的距离不同,其偏移量对均值偏移向量的贡 献也不同,其次Yizong Cheng还设定了一个权重系 数,使得不同的样本点重要性不一样,这大大扩大了 Mean Shift的适用范围.另外Yizong Cheng指出了 Mean Shift可能应用的领域,并给出了具体的例子。
• 一维下的无参数估计 设X1,X2, …Xn是从总体中抽出的独立同分布
的样本,X具有未知的密度函数f(x),则f (x)的核估计为:
h为核函数的带宽。常用的核函数如下:
分别是单位均匀核函数 和单位高斯核函数
多维空间下的无参密度估计:
在d维欧式空间X中,x表示该空间中的一个点, 表示该空间中的
核函数,
(5)若
,则停止;否则y0←y1转步骤②。
限制条件:新目标中心需位于原目标中 心附近。
mean-shift算法公式
mean-shift算法公式Mean-shift算法是一种无参聚类算法,常用于图像分割、目标跟踪和模式识别等领域。
本文将详细介绍mean-shift算法的原理、公式和实际应用场景。
一、原理Mean-shift算法的核心思想是密度估计和质心漂移。
它基于高斯核函数,通过不断更新质心,最终将数据点分为不同的簇。
具体而言,我们要对每个数据点x_i进行密度估计,将其周围的点加权后求和得到密度估计值f(x_i)。
给定一个初始质心x_c,我们通过以下公式计算新质心x_c’:x_c' = \frac{\sum_{x_i \in B(x_c,r)} w(x_i) \times x_i}{\sum_{x_i \in B(x_c,r)} w(x_i)}B(x_c,r)表示以x_c为圆心,半径为r的区域,w(x_i)为高斯权重系数,可以写作w(x_i) = e ^ {-\frac{(x_i - x_c)^2}{2 \times \sigma^2}}\sigma是高斯核函数的标准差,控制窗口大小和权重降低的速度。
在计算新质心后,我们将其移动到新位置,即x_c = x_c’,然后重复以上步骤,直到质心不再改变或者达到预定的迭代次数为止。
最终,所有距离相近的数据点被归为同一簇。
算法的时间复杂度为O(nr^2),其中n为数据点数量,r为窗口半径。
可以通过调整r和\sigma来平衡速度和准确率。
二、公式1. 高斯核函数w(x_i) = e ^ {-\frac{(x_i - x_c)^2}{2 \times \sigma^2}}其中x_i和x_c是数据点和质心的位置向量,\sigma是高斯核函数的标准差。
该函数表示距离越大的数据点的权重越小,与质心距离越近的数据点的权重越大,因此可以有效估计密度。
2. 新质心计算公式x_c' = \frac{\sum_{x_i \in B(x_c,r)} w(x_i) \times x_i}{\sum_{x_i \in B(x_c,r)} w(x_i)}B(x_c,r)表示以x_c为圆心,半径为r的区域,w(x_i)为高斯权重系数。
MSA计算公式范文
MSA计算公式范文
MSA(Mean Shift Algorithm)是一种无参数的非监督学习算法,用
于对数据进行聚类。
该算法采用核密度估计的方法,通过不断移动数据点
的位置来寻找数据点密度最大的位置,最终将密度相近的数据点聚集在一起。
MSA的计算公式可以分为两个部分:核密度估计和均值漂移。
下面将
详细介绍这两个部分的计算公式。
1.核密度估计
核密度估计用于估计数据点周围的密度。
常用的核函数有高斯核函数、Epanechnikov核函数等。
核密度估计的计算公式如下:
其中,x是待估计密度的点,xi是数据点集中的其中一个点,K是核
函数,h是带宽参数,·,表示绝对值。
2.均值漂移
均值漂移是通过迭代计算来不断移动数据点的位置,直到达到最大密
度位置为止。
每次迭代时,计算数据点在核密度估计函数上的梯度,然后
根据梯度方向移动数据点。
均值漂移的计算公式如下:
其中,x表示当前数据点,qi表示移动后的数据点,N(x)表示以x为
中心,半径为h的所有数据点。
在每次迭代中,移动数据点的位置可以通过以下公式计算:
其中,x表示当前数据点,q(x)表示数据点在当前位置的均值漂移位置,n表示数据点的个数。
通过不断迭代计算,均值漂移算法会将密度相近的数据点聚集在一起。
总结起来,MSA的计算公式包括核密度估计和均值漂移两个部分,前
者用于估计数据点的密度,后者用于不断移动数据点的位置,直到达到最
大密度位置。
这种迭代的方式能够有效地将密度相近的数据点聚集在一起,实现聚类效果。
meanshift算法原理
meanshift算法原理
MeanShift(均值漂移)是一种非参数化的聚类算法,用于在数据集中发现数据点的密集区域。
它基于密度估计的原理,通过计算数据点的局部密度梯度来寻找数据点的聚集中心。
MeanShift 算法的原理如下:
1. 初始化:为每个数据点选择一个随机的聚集中心。
2. 密度估计:对于每个数据点,计算其与其他数据点之间的距离,并将距离定义为核函数的参数。
常用的核函数是高斯核函数。
3. 均值漂移:对于每个数据点,计算其局部密度梯度向量。
梯度向量的方向是从当前数据点指向密度更高的方向,梯度的大小代表密度的变化程度。
使用梯度向量来更新当前数据点的位置。
4. 更新聚集中心:将数据点移动到更新后的位置,并将其作为新的聚集中心。
5. 重复步骤2-4 直到满足停止条件(例如,聚集中心的移动小于某个阈值)。
MeanShift 算法的特点是不需要事先指定聚类的数量,它能够自动确定聚类的形状和数量。
它具有较好的收敛性和适应性,对于非凸形状的聚类问题也能有效地处理。
在应用中,MeanShift 算法可以用于图像分割、目标跟踪、图像压缩等领域。
它在计算复杂度上较高,但在一些特定的数据集和问题中表现出良好的效果。
Mean_Shift_算法概述
Mean Shift 概述Mean Shift 简介Mean Shift 这个概念最早是由Fukunaga 等人[1]于1975年在一篇关于概率密度梯度函数的估计中提出来的,其最初含义正如其名,就是偏移的均值向量,在这里Mean Shift 是一个名词,它指代的是一个向量,但随着Mean Shift 理论的发展,Mean Shift 的含义也发生了变化,如果我们说Mean Shift 算法,一般是指一个迭代的步骤,即先算出当前点的偏移均值,移动该点到其偏移均值,然后以此为新的起始点,继续移动,直到满足一定的条件结束.然而在以后的很长一段时间Mean Shift 并没有引起人们的注意,直到20年以后,也就是1995年,另外一篇关于Mean Shift 的重要文献[2]才发表.在这篇重要的文献中,Yizong Cheng 对基本的Mean Shift 算法在以下两个方面做了推广,首先Yizong Cheng 定义了一族核函数,使得随着样本与被偏移点的距离不同,其偏移量对均值偏移向量的贡献也不同,其次Yizong Cheng 还设定了一个权重系数,使得不同的样本点重要性不一样,这大大扩大了Mean Shift 的适用围.另外Yizong Cheng 指出了Mean Shift 可能应用的领域,并给出了具体的例子.Comaniciu 等人[3][4]把Mean Shift 成功的运用的特征空间的分析,在图像平滑和图像分割中Mean Shift 都得到了很好的应用.Comaniciu 等在文章中证明了,Mean Shift 算法在满足一定条件下,一定可以收敛到最近的一个概率密度函数的稳态点,因此Mean Shift 算法可以用来检测概率密度函数中存在的模态.Comaniciu 等人[5]还把非刚体的跟踪问题近似为一个Mean Shift 最优化问题,使得跟踪可以实时的进行.在后面的几节,本文将详细的说明Mean Shift 的基本思想及其扩展,其背后的物理含义,以及算法步骤,并给出理论证明.最后本文还将给出Mean Shift 在聚类,图像平滑,图像分割,物体实时跟踪这几个方面的具体应用.Mean Shift 的基本思想及其扩展基本Mean Shift给定d 维空间dR 中的n 个样本点i x ,i=1,…,n,在x 点的Mean Shift 向量的基本形式定义为:()()1i hh i x S M x x x k ∈≡-∑ (1)其中,h S 是一个半径为h 的高维球区域,满足以下关系的y 点的集合,()()(){}2:Th S x y y x y x h ≡--≤ (2)k 表示在这n 个样本点i x 中,有k 个点落入h S 区域中.我们可以看到()i x x -是样本点i x 相对于点x 的偏移向量,(1)式定义的Mean Shift 向量()h M x 就是对落入区域h S 中的k 个样本点相对于点x 的偏移向量求和然后再平均.从直观上看,如果样本点i x 从一个概率密度函数()f x 中采样得到,由于非零的概率密度梯度指向概率密度增加最大的方向,因此从平均上来说,h S 区域的样本点更多的落在沿着概率密度梯度的方向.因此,对应的, Mean Shift 向量()h M x 应该指向概率密度梯度的方向图1,Mean Shift 示意图如上图所示, 大圆圈所圈定的围就是h S ,小圆圈代表落入h S 区域的样本点i h x S ∈,黑点就是Mean Shift 的基准点x ,箭头表示样本点相对于基准点x 的偏移向量,很明显的,我们可以看出,平均的偏移向量()h M x 会指向样本分布最多的区域,也就是概率密度函数的梯度方向.扩展的Mean Shift 核函数首先我们引进核函数的概念.定义:X 代表一个d 维的欧氏空间,x 是该空间中的一个点,用一列向量表示.x 的模2Tx x x=.R表示实数域.如果一个函数:K X R→存在一个剖面函数[]:0,k R∞→,即()2()K x k x=(3)并且满足:(1)k是非负的.(2)k是非增的,即如果a b<那么()()k a k b≥.(3)k是分段连续的,并且()k r dr∞<∞⎰那么,函数()K x就被称为核函数.举例:在Mean Shift中,有两类核函数经常用到,他们分别是,单位均匀核函数:1 if 1()0 if 1xF xx⎧<⎪=⎨≥⎪⎩(4)单位高斯核函数:2()xN x e-= (5)这两类核函数如下图所示.图2, (a)单位均匀核函数 (b)单位高斯核函数一个核函数可以与一个均匀核函数相乘而截尾,如一个截尾的高斯核函数为,()2 if()0 ifxe xN F xxββλλλ-⎧<⎪=⎨≥⎪⎩(6)图 3 显示了不同的,βλ值所对应的截尾高斯核函数的示意图.图3 截尾高斯核函数 (a) 11N F (b) 0.11N FMean Shift 扩展形式从(1)式我们可以看出,只要是落入h S 的采样点,无论其离x 远近,对最终的()h M x 计算的贡献是一样的,然而我们知道,一般的说来,离x 越近的采样点对估计x 周围的统计特性越有效,因此我们引进核函数的概念,在计算()h M x 时可以考虑距离的影响;同时我们也可以认为在这所有的样本点i x 中,重要性并不一样,因此我们对每个样本都引入一个权重系数.如此以来我们就可以把基本的Mean Shift 形式扩展为:()11()()()()()nHi i i i nHi i i Gx x w x x x M x Gx x w x ==--≡-∑∑ (7)其中:()()1/21/2()H i i G x x HG H x x ---=-()G x 是一个单位核函数H 是一个正定的对称d d ⨯矩阵,我们一般称之为带宽矩阵()0i w x ≥是一个赋给采样点i x 的权重在实际应用的过程中,带宽矩阵H 一般被限定为一个对角矩阵221diag ,...,d H h h ⎡⎤=⎣⎦,甚至更简单的被取为正比于单位矩阵,即2H h I =.由于后一形式只需要确定一个系数h ,在Mean Shift 中常常被采用,在本文的后面部分我们也采用这种形式,因此(7)式又可以被写为:()11()()()()()ni i i i h ni i i x xG w x x x hM x x x G w x h ==--≡-∑∑ (8)我们可以看到,如果对所有的采样点i x 满足(1)()1i w x =(2) 1 if 1()0 if 1x G x x ⎧<⎪=⎨≥⎪⎩则(8)式完全退化为(1)式,也就是说,我们所给出的扩展的Mean Shift 形式在某些情况下会退化为最基本的Mean Shift 形式.Mean Shift 的物理含义正如上一节直观性的指出,Mean Shift 指向概率密度梯度方向,这一节将证明Mean Shift 向量()h M x 是归一化的概率密度梯度.在本节我们还给出了迭代Mean Shift 算法的详细描述,并证明,该算法会收敛到概率密度函数的一个稳态点.概率密度梯度对一个概率密度函数()f x ,已知d 维空间中n 个采样点i x ,i=1,…,n,()f x 的核函数估计(也称为Parzen 窗估计)为,11()ˆ()()ni i i n di i x x K w x h f x h w x ==-⎛⎫⎪⎝⎭=∑∑ (9)其中()0i w x ≥是一个赋给采样点i x 的权重()K x 是一个核函数,并且满足()1k x dx =⎰我们另外定义:核函数()K x 的剖面函数()k x ,使得()2()K x kx=(10);()k x 的负导函数()g x ,即'()()g x k x =-,其对应的核函数()2()G x g x= (11)概率密度函数()f x 的梯度()f x ∇的估计为:()2'1212()ˆˆ()()()ni i i i nd i i x xx x k w x h f x f x h w x =+=⎛⎫--⎪ ⎪⎝⎭∇=∇=∑∑(12)由上面的定义,'()()g x k x =-,()2()G x gx =,上式可以重写为()()21212112112()ˆ()()()()2 ()()nii i i nd i i n i n i i i i i i n d n i i i i i x xx x G w x h f x h w x x x x x x x G w x G w x h h x x h h w x G w x h =+=====⎛⎫-- ⎪ ⎪⎝⎭∇=⎡⎤⎛⎫-⎡-⎤⎛⎫-⎢⎥ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎢⎥=⎢⎥-⎛⎫⎢⎥⎢⎥ ⎪⎢⎥⎝⎭⎢⎥⎣⎦⎣⎦∑∑∑∑∑∑ (13)上式右边的第二个中括号的那一部分就是(8)式定义的Mean Shift 向量,第一个中括号的那一部分是以()G x 为核函数对概率密度函数()f x 的估计,我们记做ˆ()Gf x ,而(9)式定义的ˆ()f x 我们重新记做ˆ()Kf x ,因此(11)式可以重新写为: ˆ()f x ∇=ˆ()K f x ∇=()22ˆ()G h f x M x h(14) 由(12)式我们可以得出,()2ˆ()1ˆ2()Kh G f x M x h f x ∇= (15)(15)式表明,用核函数G 在x 点计算得到的Mean Shift 向量()h M x 正比于归一化的用核函数K 估计的概率密度的函数ˆ()Kf x 的梯度,归一化因子为用核函数G 估计的x 点的概率密度.因此Mean Shift 向量()h M x 总是指向概率密度增加最大的方向.Mean Shift 算法 算法步骤我们在前面已经指出,我们在提及Mean Shift 向量和Mean Shift 算法的时候指代不同的概念,Mean Shift 向量是名词,指的是一个向量;而Mean Shift 算法是动词,指的是一个迭代的步骤.我们把(8)式的x 提到求和号的外面来,可以得到下式,()11()()()()ni i i i h n i i i x xG w x x hM x x x x G w x h ==-=--∑∑(16)我们把上式右边的第一项记为()h m x ,即11()()()()()ni i i i h n i i i x xG w x x hm x x x G w x h ==-=-∑∑ (17)给定一个初始点x ,核函数()G X , 容许误差ε,Mean Shift 算法循环的执行下面三步,直至结束条件满足, (1).计算()h m x (2).把()h m x 赋给x(3).如果()h m x x ε-<,结束循环;若不然,继续执行(1).由(16)式我们知道,()()h h m x x M x =+,因此上面的步骤也就是不断的沿着概率密度的梯度方向移动,同时步长不仅与梯度的大小有关,也与该点的概率密度有关,在密度大的地方,更接近我们要找的概率密度的峰值,Mean Shift 算法使得移动的步长小一些,相反,在密度小的地方,移动的步长就大一些.在满足一定条件下,Mean Shift 算法一定会收敛到该点附近的峰值,这一收敛性由下面一小节给出证明.算法的收敛性证明我们用{}j y ,1,2,...j =来表示Mean Shift 算法中移动点的痕迹,由(17)式我们可写为,111()()()()ni ji ii j n i ji i x y G w x x h y x y G w x h=+=-=-∑∑,1,2,...j = (18)与j y 对应的概率密度函数估计值ˆ()jf y 可表示为, 11()ˆ()()ni j i i K j n di i x y K w x h f y h w x ==-⎛⎫⎪⎝⎭=∑∑ (19)下面的定理将证明序列{}j y 和{}ˆ()jf y 的收敛性. 定理:如果核函数()K x 有一个凸的,单调递增的剖面函数,核函数()G x 由式(10)和(11)定义,则序列{}j y 和{}ˆ()jf y 是收敛的. 证明:由于n 是有限的,核函数()(0)K x K ≤,因此序列{}ˆ()jf y 是有界的,所以我们只需要证明{}ˆ()jf y 是严格递增的的,即要证明,对所有j=1,2,…如果1j j y y +≠,那么 ˆ()j f y 1ˆ()j f y +< (20)不失一般性,我们可以假设0j y =,由(19)式和(10)式,我们可以得到1ˆ()j f y +ˆ()j f y -=221111 ()()n i j i ji ni d i i x y x y k k w x h h h w x +==⎡⎤⎛⎫⎛⎫--⎢⎥ ⎪ ⎪- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∑∑ (21) 由于剖面函数()k x 的凸性意味着对所有12,[0,)x x ∈∞且12x x ≠,有'2121()()()()k x k x k x x x ≥+-(22)因为'()()g x k x =-,上式可以写为,2112()()()()k x k x g x x x -≥-(23)结合(21)与(23)式,可以得到,1ˆ()j f y +ˆ()jf y - 222111211 ()()ni j i j i i n i d i i x y g x y x w x h h w x ++=+=⎛⎫-⎡⎤⎪≥--⎢⎥⎣⎦ ⎪⎝⎭∑∑ 2211112112()()ni j T j i j i n i d i i x y g y x y w x h h w x +++=+=⎛⎫-⎡⎤⎪=-⎢⎥⎣⎦ ⎪⎝⎭∑∑ 12221211112()()()j n nT ii i i j i n d i i i i x x y x g w x y g w x h h h w x +++===⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∑∑∑(24)由(18)式我们可以得出,1ˆ()j f y +ˆ()jf y -2211211()n ij n i d i i x y g hhw x +=+=⎛⎫≥ ⎪ ⎪⎝⎭∑∑(25)由于剖面函数()k x 是单调递减的,所以求和项210nii x g h =⎛⎫>⎪ ⎪⎝⎭∑,因此,只要10j j y y +≠= (25)式的右边项严格大于零,即1ˆ()j f y +ˆ()jf y >.由此可证得,序列{}ˆ()j f y 收敛 为了证明序列{}j y 的收敛性,对于0j y ≠,(25)式可以写为1ˆ()j f y +ˆ()jf y -2211211()ni jj jn i d i i x y y y g hhw x +=+=⎛⎫- ⎪≥- ⎪⎝⎭∑∑(26) 现在对于标号j,j+1,…,j+m -1,对(26)式的左右两边分别求和,得到ˆ()j m f y +ˆ()jf y - 22111211...()ni j m j m j m ni d i i x y y y g h h w x +-++-=+=⎛⎫- ⎪≥-+ ⎪⎝⎭∑∑ 2211211()ni jj jn i d i i x y y y g hhw x +=+=⎛⎫- ⎪+- ⎪⎝⎭∑∑2211211...()j m j m j j n d i i y y y y M h w x ++--+=⎡⎤≥-++-⎢⎥⎣⎦∑ 2211()j m j n d i i y y M hw x ++=≥-∑(27)其中M 表示对应序列{}j y 的所有求和项21n i ji x y g h =⎛⎫-⎪ ⎪⎝⎭∑的最小值.由于{}ˆ()j f y 收敛,它是一个Cauchy 序列,(27)式意味着{}jy 也是一个Cauchy 序列,因此,序列{}j y 收敛.Mean Shift 的应用从前面关于Mean Shift 和概率密度梯度的关系的论述,我们可以清楚的看到,MeanShift 算法本质上是一个自适应的梯度上升搜索峰值的方法,如下图所示,如果数据集{},1,...i x i n =服从概率密度函数f(x),给定一个如图初始点x ,Mean Shift 算法就会一步步的移动,最终收敛到第一个峰值点.从这图上,我们可以看到Mean Shift 至少有如下三方面的应用:(1)聚类,数据集{},1,...i x i n =中的每一点都可以作为初始点,分别执行Mean Shift 算法,收敛到同一个点算作一类;(2)模态的检测,概率密度函数中的一个峰值就是一个模态,Mean Shift 在峰值处收敛,自然可以找到该模态.(3)最优化,Mean Shift 可以找到峰值,自然可以作为最优化的方法,Mean Shift 算法进行最优化的关键是要把最优化的目标转化成Mean Shift 隐含估计的概率密度函数.图4.Mean Shift 算法示意图Mean Shift 算法在许多领域获得了非常成功的应用,下面简要的介绍一下其在图像平滑,图像分割以及物体跟踪中的应用,一来说明其强大的生命力,二来使对上文描述的算法有一个直观的了解.图像平滑与分割一幅图像可以表示成一个二维网格点上p 维向量,每一个网格点代表一个象素,1p =表示这是一个灰度图,3p =表示彩色图,3p >表示一个多谱图,网格点的坐标表示图像的空间信息.我们统一考虑图像的空间信息和色彩(或灰度等)信息,组成一个2p +维的向量(,)s r x x x =,其中s x 表示网格点的坐标,r x 表示该网格点上p 维向量特征.我们用核函数,s r h h K 来估计x 的分布,,s r h h K 具有如下形式,22,2s rs r h h p s r sr C x x K k k h h h h ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭⎝⎭ (28)其中,s r h h 控制着平滑的解析度,C 是一个归一化常数.我们分别用i x 和i z ,i =1,…,n 表示原始和平滑后的图像.用Mean Shift 算法进行图像平滑的具体步骤如下, 对每一个象素点, 1,初始化1j =,并且使,1i i y x =2,运用Mean Shift 算法计算,1i j y +,直到收敛.记收敛后的值为,i c y3.赋值(),,s ri i i c z x y =图5是原始图像,图中40 20白框区域被选中来更好的显示基于Mean Shift的图像平滑步骤,图6显示了这一区域的平滑步骤,x,y表示这一区域的象素点的坐标,图6(a)在一个三维空间显示了各个象素点的灰度值,图6(b)显示各点的移动痕迹,黑点是最终收敛值,图6(c)显示了平滑后的各象素点的灰度值,图6(d)是继续分割后的结果.图5.原始图像图6.(a)原始图像的各象素点灰度值.(b)各象素点的Mean Shift移动路径.(c)平滑后的各象素点的灰度值.(d)分割后的结果图7显示了图5经过平滑后的结果,我们可以看到,草地上的草地纹理被平滑掉了,而图像中边缘仍然很好的保持着..图7平滑后的结果h h是非常重要的参数,人们可以根据解析在基于Mean Shift的图像平滑中,式(28)中的,s rh h会对最终的平滑结果有一定的影响,图7显示了这两个参数度的要求而直接给定,不同,s rh影响更大一些.对平滑结果的影响,我们可以看出,s图8,原始图和平滑后的图基于Mean Shift的图像分割与图像平滑非常类似,只需要把收敛到同一点的起始点归为一类,然后把这一类的标号赋给这些起始点,在图像分割中有时还需要把包含象素点太少类去掉,图6(d)显示分割后的灰度值.图8,显示了图5经过分隔后的结果图8,分割后的结果物体跟踪我们用一个物体的灰度或色彩分布来描述这个物体,假设物体中心位于0x ,则该物体可以表示为()21ˆi i s ns u i x xqC k b x u h δ=⎛⎫- ⎪⎡⎤=-⎣⎦ ⎪⎝⎭∑(29)候选的位于y 的物体可以描述为()21ˆ()hn s s i u h i i x ypy C k b x u h δ=⎛⎫-⎡⎤ ⎪=-⎣⎦ ⎪⎝⎭∑(30)因此物体跟踪可以简化为寻找最优的y ,使得ˆ()u py 与ˆu q 最相似. ˆ()u py 与ˆu q 的最相似性用Bhattacharrya 系数ˆ()y ρ来度量分布,即 []ˆ()(),mu y p y q ρρ=≡= (31)式(31)在ˆu p()0ˆy 点泰勒展开可得, []1111(),(22m mu u u p y q p y ρ==≈∑(32)把式(30)带入式,整理可得,[]2111(),22mnhii u i C y x p y q w k h ρ==⎛⎫-≈ ⎪ ⎪⎝⎭∑ (33)其中,1[()mi i u w b x u δ==-∑对式(33)右边的第二项,我们可以利用Mean Shift 算法进行最优化.在Comaniciu 等人的文章中,他们只用平均每帧图像只用4.19次Mean Shift 迭代就可以收敛,他们的结果很显示在600MHz 的PC 机上,他们的程序可以每秒处理30帧352⨯240象素的图像.下图显示了各帧需要的Mean Shift 迭代次数.图9,各帧需要的Mean Shift迭代次数下图显示了Comaniciu等人的跟踪结果图10,基于Mean Shift的物体跟踪结果结论本文回顾了Mean Shift的发展历史,介绍了它的基本思想,给出了具体的算法步骤,详细证明了它与梯度上升搜索法的联系,并给出Mean Shift算法的收敛性证明,最后给出了Mean Shift在图像平滑,图像分割以及实时物体跟踪中的具体应用,显示Mean Shift强大的生命力.参考文献[1]The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition (1975)[2]Mean shift, mode seeking, and clustering (1995)[3]Mean Shift: a robust approach toward feature space analysis (2002)[4]Real-time tracking of non-rigid objects using mean shift (2000)[5]Mean-shift Blob Tracking through Scale Space (2003)[6]An algorithm for data-driven bandwidth selection(2003)。
meanshift算法简介
基于核函数G(x)的 概率密度估计
•
用核函数G在 x点计算得到的Mean Shift 向量 正比于归一化的用核函数K估计的概率 密度的函数 的梯度,归一化因子为用核函数 G估计的x点的概率密度.因此Mean Shift向量 总是指向概率密度增加最大的方向.
Mean shift向量的物理意义的什么呢?
2ck ,d
n
2
2ck ,d cg ,d 2 d h cg ,d nh
g i 1
n
n x xi 2 xi g 2 h x xi i 1 x n x x 2 h i g h i 1
为了更好地理解这个式子的物理意义,假设上式中g(x)=1
平均的偏移量会指向样本点最密的方向,也 就是概率密度函数梯度方向
下面我们看一下mean shift算法的步骤
mh x
给定一个初始点x,核函数G(x), 容许误差 ,Mean Shift算法 循环的执行下面三步,直至结束条件满足, •计算mh ( x) •把 mh ( x)赋给 x. •如果 mh ( x) x ,结束循环;若不然,继续执行(1)
0 =1,2…..m i=1,2…..m
(5)若
,则停止;否则y ←y1转步骤②。
0
限制条件:新目标中心需位于原目标中 心附近。
Meanshift跟踪结果
• 转word文档。
• Meanshift优缺点: 优点 ①算法复杂度小; ②是无参数算法,易于与其它算法集 成; ③采用加权直方图建模,对目标小角 度旋转、轻微变形和部分遮挡不敏感等。
MeanShift
§5-1Mean Shift 算法Mean Shift 算法是由Fukunaga 和Hosteler 于1975年提出的一种无监督聚类方法[109],Mean Shift 的含义是均值偏移向量,它使每一个点“漂移”到密度函数的局部极大值点。
但是再提出之初,Mean Shift 算法并没有得到广泛的重视,直到1995年,Cheng 等人对该算法进行了进一步的研究[110],提出了一般的表达形式并定义了一族核函数,从而扩展了该算法的应用领域,此后Mean Shift 算法逐步得到了人们的重视。
目前,Mean Shift 算法已广泛应用于目标跟踪[111~114]、图像分割与平滑[115~118]等领域,同时由于该算法具有简洁、能够处理目标变形等优点,也是目前目标跟踪领域的一个重要研究热点。
5-1-1 Mean Shift 算法原理Mean Shift 算法是一种基于密度梯度的无参数估计方法,从空间任意一点,沿核密度的梯度上升方向,以自适应的步长进行搜索,最终可以收敛于核密度估计函数的局部极大值处。
基本的Mean Shift 算法可以描述为:设{}()1,,i x i n = 为d 维空间R d 中含有n 个样本点的集合,在点x 处的均值偏移向量的基本形式可以由式(5.1)表示:1()()hh ix S M x xx k∈=-∑ (5.1)其中,S h 是R d 中满足式(5.2)的所有y 点集合,其形状为一个半径为h 的高维球区域。
k 为所有n 个样本点中属于高维球区域的点的数目。
(x i -x )为样本点相对于点x 的偏移向量。
根据式(5.1)的定义可知,点x 的均值偏移向量就是所有属于S h 区域中的样本点与点x 的偏移向量均值,而S h 区域中的样本点大多数是沿着概率密度梯度的方向,所以均值漂移向量的方向与概率密度梯度方向一致,图5.1为具体的示意图。
{}2():()()Th S x y y x y x h=--≤ (5.2)图5.1 Mean Shift 示意图 Fig.5.1 Mean Shift sketch map根据式(5.1)和图5.1可以看出,所有属于区域S h 中的样本点对于点x 的均值漂移向量贡献度相同,而与这些点与点x 间的距离无关。
MeanShift算法
核函数也称“窗口函数”。
一维空间用到的核函数有高斯(Gaussian)、余弦弧(Cosinus arch)、双指数(Double Exponential)、均匀(Uniform)、三角(Trangle)、依潘涅契科夫(Epanechikov)、双依潘涅契科夫(DoubleEpanechnikov)、及双权(Biweight)函数。
图2.1给出了最常用的几个核函数给定一组一维空间的n个数据点集合令该数据集合的概率密度函数假设为f (x),核函数取值为,那么在数据点x处的密度估计可以按下式计算:上式就是核密度估计的定义。
其中,x为核函数要处理的数据的中心点,即数据集合相对于点x几何图形对称。
核密度估计的含义可以理解为:核估计器在被估计点为中心的窗口内计算数据点加权的局部平均。
或者:将在每个采样点为中心的局部函数的平均效果作为该采样点概率密度函数的估计值。
MeanShift实现:1.选择窗的大小和初始位置.2.计算此时窗口内的Mass Center.3.调整窗口的中心到Mass Center.4.重复2和3,直到窗口中心"会聚",即每次窗口移动的距离小于一定的阈值,或者迭代次数达到设定值。
meanshift算法思想其实很简单:利用概率密度的梯度爬升来寻找局部最优。
它要做的就是输入一个在图像的范围,然后一直迭代(朝着重心迭代)直到满足你的要求为止。
但是他是怎么用于做图像跟踪的呢?这是我自从学习meanshift以来,一直的困惑。
而且网上也没有合理的解释。
经过这几天的思考,和对反向投影的理解使得我对它的原理有了大致的认识。
在opencv中,进行meanshift其实很简单,输入一张图像(imgProb),再输入一个开始迭代的方框(windowIn)和一个迭代条件(criteria),输出的是迭代完成的位置(comp )。
这是函数原型:int cvMeanShift( const void* imgProb, CvRect windowIn,CvTermCriteria criteria, CvConnectedComp* comp )但是当它用于跟踪时,这张输入的图像就必须是反向投影图了。
MSA_计算公式
MSA_计算公式MSA(Mean Shift Algorithm)是一种非参数的聚类算法,主要用于数据点的聚类和密度估计。
它的计算公式是基于核密度估计和梯度上升的思想,通过迭代寻找数据点的局部最大密度区域,从而得到聚类结果。
1.数据点密度估计:对于给定的数据集,首先需要进行数据点的密度估计。
常用的方法是使用高斯核函数,计算每个数据点与其邻域内其他数据点的距离,并将距离作为权重计算密度。
具体公式如下:\[k(x_i, x_j) = \exp \left( -\frac{{\,x_i - x_j\,^2}}{{2h^2}} \right)\]其中,\(x_i\)和\(x_j\)是数据集中的两个数据点,\(h\)是高斯核函数的带宽。
2.梯度上升迭代:在数据点的密度估计完成后,需要进行梯度上升的迭代过程,找到局部最大密度区域。
具体公式如下:\[m(x) = \frac{\sum_{i=1}^{n} k(x, x_i) \cdotx_i}{\sum_{i=1}^{n} k(x, x_i)} - x\]其中,\(m(x)\)表示数据点\(x\)的梯度向量,\(k(x,x_i)\)表示数据点\(x\)与数据点\(x_i\)之间的权重,\(n\)表示数据集中的数据点数量。
3.密度最大化:通过迭代计算梯度向量,将数据点移动到局部最大密度区域。
具体公式如下:\[x_{t+1}=m(x_t)+x_t\]其中,\(x_{t+1}\)表示迭代后的数据点位置,\(x_t\)表示迭代前的数据点位置。
4.聚类结果:在迭代过程中,如果两个数据点的位置足够接近,则认为它们属于同一个聚类。
可以使用距离阈值来判断两个数据点是否属于同一个聚类。
MSA算法的优点是不需要预先指定聚类数量,且对于数据集的分布形状没有假设。
但是,该算法的计算复杂度较高,对数据点的数量和维度敏感。
因此,在实际应用中需要考虑算法的效率和可扩展性。
总结起来,MSA算法的计算公式主要包括数据点密度估计、梯度上升迭代、密度最大化和聚类结果。
mean shift
Mean Shift,我们翻译为“均值飘移”。
其在聚类,图像平滑。
图像分割和跟踪方面得到了比较广泛的应用。
由于本人目前研究跟踪方面的东西,故此主要介绍利用Mean Shift方法进行目标跟踪,从而对MeanShift有一个比较全面的介绍。
(以下某些部分转载常峰学长的“Mean Shift概述”)Mean Shift 这个概念最早是由Fukunaga等人于1975年在一篇关于概率密度梯度函数的估计(The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition )中提出来的,其最初含义正如其名,就是偏移的均值向量,在这里Mean Shift是一个名词,它指代的是一个向量,但随着Mean Shift理论的发展,Mean Shift的含义也发生了变化,如果我们说Mean Shift算法,一般是指一个迭代的步骤,即先算出当前点的偏移均值,移动该点到其偏移均值,然后以此为新的起始点,继续移动,直到满足一定的条件结束.然而在以后的很长一段时间内Mean Shift并没有引起人们的注意,直到20年以后,也就是1995年,另外一篇关于Mean Shift的重要文献(Mean shift, mode seeking, and clustering )才发表.在这篇重要的文献中,Yizong Cheng对基本的Mean Shift算法在以下两个方面做了推广,首先Yizong Cheng定义了一族核函数,使得随着样本与被偏移点的距离不同,其偏移量对均值偏移向量的贡献也不同,其次Yizong Cheng还设定了一个权重系数,使得不同的样本点重要性不一样,这大大扩大了Mean Shift的适用范围.另外Yizong Cheng指出了Mean Shift可能应用的领域,并给出了具体的例子。
Comaniciu等人在还(Mean-shift Blob Tracking through Scale Space)中把非刚体的跟踪问题近似为一个Mean Shift最优化问题,使得跟踪可以实时的进行。
均值移位算法
均值移位算法
均值移位算法(Mean Shift Algorithm)是一种非参数密度估计方法,主要用于聚类分析、图像分割等领域。
它的原理是通过不断的平移移
动中心点,使得样本点向密度最大的区域聚集,分析其核密度分布,
进而得出数据分割的结果。
均值移位算法具有以下优点:
1.不需要预先设定簇数目,能够自动进行聚类。
2.不受数据分布情况的影响。
3.不需要迭代,运算速度快。
但是,随着数据量增大,计算复杂度也会增大,因此需要合理设置核
函数的大小。
均值移位算法的应用范围广泛,包括:
1.图像分割:对图像进行聚类,得到图像中的颜色群体。
2.物体跟踪:通过对物体进行追踪,实现对物体的自动检测、跟踪等功能。
3.模式分类:将数据划分为不同的分类,识别数据中的模式。
4.聚类分析:对数据进行聚类,发现数据的内在规律。
5.异常检测:发现数据中的异常点,排除错误数据。
均值移位算法的实现包括以下步骤:
1.选择核函数和带宽。
2.初始化中心点和权值。
3.计算移动向量和权值更新。
4.重复步骤3,直到中心点不再发生明显变化,或达到设定的迭代次数。
在使用均值移位算法时,需要合理设置核函数的大小,以避免计算复
杂度过高。
同时,也要注意数据是否存在离群点,以及需要设置合理
的停止条件。
总之,均值移位算法是一种非常有用的聚类分析方法,可以应用于各
种领域。
尤其是在图像分割、物体跟踪等领域,均值移位算法具有突
出的优势,有着广泛的应用前景。
mean shift算法讲解
mean shift算法讲解Mean shift算法是一种无监督的聚类算法,它的主要思想是通过不断迭代寻找数据点的概率分布密度的众数,从而实现数据的聚类。
本文将详细介绍Mean shift算法的具体步骤和实现流程,并深入解析其原理和应用场景。
一、算法背景和基本原理Mean shift算法最初由Comaniciu和Meer于1992年提出,它是一种基于密度估计的聚类方法。
其核心思想是通过计算每个数据点周围的概率密度分布,不断调整数据点的位置直到达到局部极大值点(众数),从而实现数据点的聚集。
Mean shift算法的基本原理如下:1.初始化:选择一个合适的核函数和带宽,然后从数据集中选择一个数据点作为初始中心点。
2.密度估计:计算每个数据点周围的概率密度分布,以核函数和带宽作为参数。
3.均值偏移:根据密度估计结果,通过计算梯度的方向,将当前中心点移动到密度分布的局部极大值点。
4.收敛判断:判断当前中心点和移动后的中心点之间的距离,如果小于某个阈值,则认为算法收敛,结束迭代。
否则,将移动后的中心点作为新的中心点,重复步骤2-4直到收敛。
二、算法步骤详解下面将详细解释Mean shift算法的每一步骤。
1.初始化为了实现Mean shift算法,我们首先需要选择一个适当的核函数和带宽。
核函数可以是高斯核函数或者其他类型的核函数。
带宽决定了数据点的搜索半径,即计算密度估计的范围。
一个较小的带宽会导致聚类过于散乱,而一个较大的带宽会导致聚类过于集中。
因此,合适的带宽选择是非常重要的。
2.密度估计在第二步中,我们需要计算每个数据点周围的概率密度分布。
这可以通过核函数和带宽来实现。
对于给定的数据点xi,其密度估计可以表示为:f(xi)=1/N*ΣK(xi-xj)/h其中,N是数据点的总数,K是核函数,h是带宽。
该公式意味着每个数据点的密度估计值是通过计算该数据点和所有其他数据点之间的核函数和的平均值得到的。
3.均值偏移在第三步中,我们通过计算梯度的方向来将当前中心点移动到密度分布的局部极大值点。
mean-shift算法matlab代码
一、介绍Mean-shift算法Mean-shift算法是一种基于密度估计的非参数聚类算法,它可以根据数据点的密度分布自动寻找最优的聚类中心。
该算法最早由Dorin Comaniciu和Peter Meer在1999年提出,并被广泛应用于图像分割、目标跟踪等领域。
其原理是通过不断地将数据点向局部密度最大的方向移动,直到达到局部密度的最大值点,即收敛到聚类中心。
二、 Mean-shift算法的优势1. 无需事先确定聚类数量:Mean-shift算法不需要事先确定聚类数量,能够根据数据点的密度自动确定聚类数量。
2. 对初始值不敏感:Mean-shift算法对初始值不敏感,能够自动找到全局最优的聚类中心。
3. 适用于高维数据:Mean-shift算法在高维数据中仍然能够有效地进行聚类。
三、 Mean-shift算法的实现步骤1. 初始化:选择每个数据点作为初始的聚类中心。
2. 计算密度:对于每个数据点,计算其密度,并将其向密度增加的方向移动。
3. 更新聚类中心:不断重复步骤2,直至收敛到局部密度的最大值点,得到最终的聚类中心。
四、 Mean-shift算法的Matlab代码实现以下是一个简单的Matlab代码实现Mean-shift算法的示例:```matlab数据初始化X = randn(500, 2); 生成500个二维随机数据点Mean-shift算法bandwidth = 1; 设置带宽参数ms = MeanShift(X, bandwidth); 初始化Mean-shift对象[clustCent, memberships] = ms.cluster(); 执行聚类聚类结果可视化figure;scatter(X(:,1), X(:,2), 10, memberships, 'filled');hold on;plot(clustCent(:,1), clustCent(:,2), 'kx', 'MarkerSize',15,'LineWidth',3);title('Mean-shift聚类结果');```在代码中,我们首先初始化500个二维随机数据点X,然后设置带宽参数并初始化Mean-shift对象。
均值平移算法
均值平移算法均值平移算法(Mean Shift Algorithm)是一种用于数据聚类和图像分割的非参数方法。
它的基本思想是通过迭代计算数据点的均值平移向量,将数据点移动到局部密度最大的区域,从而实现聚类的目的。
在介绍均值平移算法之前,先来了解一下聚类的概念。
聚类是指将具有相似特征的数据点分组到一起的过程。
在实际应用中,聚类可以用于图像分割、目标跟踪、无监督学习等领域。
而均值平移算法作为一种常用的聚类算法,具有以下特点:1. 非参数化:均值平移算法不需要事先指定聚类的个数,而是通过迭代计算数据点的均值平移向量,从而确定聚类的个数和位置。
2. 局部搜索:均值平移算法是一种局部搜索算法,它通过计算数据点的均值平移向量,将数据点移动到局部密度最大的区域。
这样可以保证聚类的准确性,并且能够处理非凸形状的聚类。
下面我们来详细介绍均值平移算法的原理和步骤:1. 初始化:首先选择一个合适的窗口大小和数据点的初始位置。
窗口大小决定了局部搜索的范围,而初始位置可以是随机选择的或者根据先验知识进行选择。
2. 计算均值平移向量:对于窗口内的每个数据点,计算它与其他数据点的距离,并将距离加权后的向量相加。
这个加权和即为均值平移向量。
3. 移动数据点:根据计算得到的均值平移向量,将数据点移动到局部密度最大的区域。
具体做法是将数据点沿着均值平移向量的方向移动一定的距离。
4. 更新窗口:更新窗口的位置,使其包含移动后的数据点。
然后回到第2步,继续计算均值平移向量,并移动数据点,直到满足停止条件。
均值平移算法的停止条件可以是迭代次数达到一定的阈值,或者数据点的移动距离小于一定的阈值。
在实际应用中,可以根据具体的情况选择合适的停止条件。
均值平移算法的优点是可以自动发现数据中的聚类,并且对于非凸形状的聚类效果好。
然而,它也有一些缺点,比如对于大规模数据的处理速度较慢,并且对于窗口大小的选择比较敏感。
总结一下,均值平移算法是一种常用的聚类算法,它通过迭代计算数据点的均值平移向量,将数据点移动到局部密度最大的区域,从而实现聚类的目的。
MSA计算方法
MSA计算方法MSA(Mean Shift Algorithm)是一种非参数无监督学习算法,广泛应用于数据聚类和图像分割等领域。
它的基本思想是寻找数据点的概率密度最大值,从而确定类别或划分区域。
MSA的计算过程主要包括以下几个步骤:1.数据点选择:从给定的数据集中选择一个数据点作为初始点。
2.窗口大小选择:选择一个合适的窗口大小。
窗口大小可以决定概率密度的计算范围。
如果窗口过小,可能导致过多的小尺度模式;如果窗口过大,可能导致尺度较大的模式被忽略。
3.密度计算:计算窗口内每个数据点的概率密度。
一种常用的计算方法是采用核函数,如高斯核函数,来确定每个数据点与初始点之间的距离。
4.密度最大值寻找:选择密度最大的数据点作为新的初始点。
5.迭代:重复步骤3和步骤4,直到初始点不再变化或达到预先设定的迭代次数。
6.数据点分类:将每个数据点分类到其最近的初始点。
分配完所有数据点后,完成一个聚类过程。
MSA的计算方法有一些优点和应用范围:1.无需预设类别:MSA是一个无监督学习算法,不需要预设数据类别,能自动进行聚类。
2.鲁棒性较强:MSA不受初始点的选择和窗口大小的变化影响,算法具有较好的鲁棒性。
3.适用于多种数据类型:MSA不仅适用于数值型数据,也适用于字符串型、图像型等多种数据类型。
4.可扩展性好:MSA可以通过调整参数实现不同的聚类要求,如聚类数目、分类精度等。
MSA算法的应用非常广泛,主要集中在以下几个领域:1.数据聚类:MSA可以用于将数据点划分为不同的类别,找出数据集中隐藏的结构和模式。
2.图像分割:MSA可以将图像划分为不同的区域,使得同一区域内的像素具有相似的特性。
3.移动目标跟踪:MSA可以根据目标的外观特征,实现对移动目标的实时跟踪。
4.目标识别:MSA可以用于在复杂背景下,区分目标和背景,提取目标的特征。
总之,MSA是一种非常有用的聚类算法,它通过寻找数据点的概率密度最大值,能够实现数据聚类、图像分割以及目标跟踪等应用。
(数据科学学习手札14)Mean-Shift聚类法简单介绍及Python实现
(数据科学学习⼿札14)Mean-Shift聚类法简单介绍及Python实现不管之前介绍的K-means还是K-medoids聚类,都得事先确定聚类簇的个数,⽽且肘部法则也并不是万能的,总会遇到难以抉择的情况,⽽本篇将要介绍的Mean-Shift聚类法就可以⾃动确定k的个数,下⾯简要介绍⼀下其算法流程: 1.随机确定样本空间内⼀个半径确定的⾼维球及其球⼼; 2.求该⾼维球内质⼼,并将⾼维球的球⼼移动⾄该质⼼处; 3.重复2,直到⾼维球内的密度随着继续的球⼼滑动变化低于设定的阈值,算法结束具体的原理可以参考下⾯的地址,笔者读完觉得说的⽐较明了易懂:/google19890102/article/details/51030884⽽在Python中,机器学习包sklearn中封装有该算法,下⾯⽤⼀个简单的⽰例来演⽰如何在Python中使⽤Mean-Shift聚类:⼀、低维from sklearn.cluster import MeanShiftimport matplotlib.pyplot as pltfrom sklearn.manifold import TSNEfrom matplotlib.pyplot import styleimport numpy as np'''设置绘图风格'''e('ggplot')'''⽣成演⽰⽤样本数据'''data1 = np.random.normal(0,0.3,(1000,2))data2 = np.random.normal(1,0.2,(1000,2))data3 = np.random.normal(2,0.3,(1000,2))data = np.concatenate((data1,data2,data3))# data_tsne = TSNE(learning_rate=100).fit_transform(data)'''搭建Mean-Shift聚类器'''clf=MeanShift()'''对样本数据进⾏聚类'''predicted=clf.fit_predict(data)colors = [['red','green','blue','grey'][i] for i in predicted]'''绘制聚类图'''plt.scatter(data[:,0],data[:,1],c=colors,s=10)plt.title('Mean Shift')⼆、⾼维from sklearn.cluster import MeanShiftimport matplotlib.pyplot as pltfrom sklearn.manifold import TSNEfrom matplotlib.pyplot import styleimport numpy as np'''设置绘图风格'''e('ggplot')'''⽣成演⽰⽤样本数据'''data1 = np.random.normal(0,0.3,(1000,6))data2 = np.random.normal(1,0.2,(1000,6))data3 = np.random.normal(2,0.3,(1000,6))data = np.concatenate((data1,data2,data3))data_tsne = TSNE(learning_rate=100).fit_transform(data) '''搭建Mean-Shift聚类器'''clf=MeanShift()'''对样本数据进⾏聚类'''predicted=clf.fit_predict(data)colors = [['red','green','blue','grey'][i] for i in predicted]'''绘制聚类图'''plt.scatter(data_tsne[:,0],data_tsne[:,1],c=colors,s=10)plt.title('Mean Shift')三、实际⽣活中的复杂数据我们以之前⼀篇关于K-means聚类的实战中使⽤到的重庆美团商户数据为例,进⾏Mean-Shift聚类:import matplotlib.pyplot as pltfrom sklearn.cluster import MeanShiftfrom sklearn.manifold import TSNEimport pandas as pdimport numpy as npfrom matplotlib.pyplot import stylee('ggplot')data = pd.read_excel(r'C:\Users\windows\Desktop\重庆美团商家信息.xlsx')input = pd.DataFrame({'score':data['商家评分'][data['数据所属期'] == data.iloc[0,0]],'comment':data['商家评论数'][data['数据所属期'] == data.iloc[0,0]],'sales':data['本⽉销售额'][data['数据所属期'] == data.iloc[0,0]]})'''去缺省值'''input = input.dropna()input_tsne = TSNE(learning_rate=100).fit_transform(input)'''创造⾊彩列表'''with open(r'C:\Users\windows\Desktop\colors.txt','r') as cc:col = cc.readlines()col = [col[i][:7] for i in range(len(col)) if col[i][0] == '#']'''进⾏Mean-Shift聚类'''clf = MeanShift()cl = clf.fit_predict(input)'''绘制聚类结果'''np.random.shuffle(col)plt.scatter(input_tsne[:,0],input_tsne[:,1],c=[col[i] for i in cl],s=8)plt.title('Mean-Shift Cluster of {}'.format(str(len(set(cl)))))可见在实际⼯作中的复杂数据⽤Mean-Shift来聚类因为⽆法控制k个值,可能会产⽣过多的类⽽导致聚类失去意义,但Mean-Shift在图像分割上⽤处很⼤。
高斯核函数mean-shift matlab
高斯核函数mean-shift matlab高斯核函数是一种常用的核函数,它广泛应用于图像处理、模式识别、机器学习等领域。
平均漂移(mean-shift)算法是一种基于高斯核函数的非参数密度估计方法,具有较强的适应性和鲁棒性。
平均漂移算法基于传统的核密度估计方法,但它不需要指定数据的概率分布函数。
相反,它使用核函数来估计密度函数。
核函数通常采用高斯核函数,如下所示:$$K(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^2}{2\sigma^2}}$$$x$表示一个样本点,$\sigma$表示高斯分布的标准差。
平均漂移算法通过迭代来寻找样本点的密度中心,即最高密度的点。
为了找到密度中心,要先选择一个起始点,并使用核函数来计算该点周围所有点的权值。
然后,根据所有点的权值计算权重平均值,以此平移当前点的位置。
不断迭代此过程,直到找到密度中心为止。
1. 选择一个起始点$x_0$。
2. 计算权重$w_i = K(||x_i-x_0||)$,其中$||\cdot||$表示欧几里得距离。
3. 计算权重平均值:$m(x_0) =\frac{\sum_{i=1}^n w_ix_i}{\sum_{i=1}^n w_i}$。
4. 将$x_0$平移到$m(x_0)$,即$x_0 = m(x_0)$。
5. 重复2~4步,直到$m(x_0)$与$x_0$之间的距离小于某个阈值或达到预定的最大迭代次数。
```matlabfunction [center, idx] = mean_shift(data, bandwidth, eps)[n, d] = size(data); % 数据维度center = zeros(n, d); % 每个数据点的密度中心converged = false(n, 1); % 每个数据点是否已经收敛idx = zeros(n, 1); % 数据点所属簇的标签for i = 1:nx = data(i, :); % 取出一个数据点cnt = 0;while ~converged(i) && cnt < 100 % 最多迭代100次cnt = cnt + 1;w = exp(-sum((data-repmat(x, n, 1)).^2, 2)/(2*bandwidth^2)); % 计算所有点的权重x_new = sum(repmat(w, 1, d).*data, 1) / sum(w); % 根据权重计算新的位置if norm(x_new - x) < eps % 如果位置变化很小,认为已经收敛center(i, :) = x_new;idx(i) = find(abs(w-max(w))<eps, 1); % 选择权重最大的簇作为标签converged(i) = true;elsex = x_new;endendend````data`表示数据样本,`bandwidth`表示高斯核函数的标准差,`eps`表示收敛判定的阈值。
均值漂移算法 权重
均值漂移算法权重
均值漂移算法(Mean Shift Algorithm)是一种无参数的非监督学习算法,主要用于聚类和图像分割。
该算法通过在数据空间中寻找数据点密度的局部最大值来发现聚类中心。
均值漂移算法中没有显式的权重参数。
其核心思想是通过计算数据点周围的核密度估计,将每个点移动到其所在区域的密度最大值,直到收敛到局部极值。
这个过程会将数据点聚集在密度最大的区域,形成聚类中心。
在均值漂移算法中,数据点的移动是根据核密度估计的梯度进行的。
可以通过以下步骤来进行均值漂移:
1. 选择核函数:选择一个核函数,通常使用高斯核函数。
2. 确定带宽:确定用于估计核密度的带宽参数。
带宽的选择对算法的性能有很大影响。
3. 初始化数据点:将每个数据点初始化为数据空间中的某个位置。
4. 迭代更新:对于每个数据点,计算其周围数据点的加权平均,根据密度梯度更新数据点的位置,直到收敛为止。
需要注意的是,在均值漂移算法中,所有数据点对于密度估计的贡献是相等的,因此没有显式的权重。
带宽的选择对算法的性能和聚类结果有很大的影响,通常需要通过交叉验证等方法进行调整。
总体而言,均值漂移算法是一种灵活而强大的聚类算法,但在实际应用中需要仔细调整参数以获得最佳结果。
1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典Mean Shift算法介绍1无参数密度估计 (1)2核密度梯度估计过程 (3)3算法收敛性分析 (4)均值漂移(Mean Shift)是Fukunaga等提出的一种非参数概率密度梯度估计算法,在统计相似性计算与连续优化方法之间建立了一座桥梁,尽管它效率非常高,但最初并未得到人们的关注。
直到1995年,Cheng改进了Mean Shift算法中的核函数和权重函数,并将其应用于聚类和全局优化,才扩大了该算法的适用范围。
1997年到2003年,Comaniciu等将该方法应用到图像特征空间的分析,对图像进行平滑和分割处理,随后他又将非刚体的跟踪问题近似为一个Mean Shift最优化问题,使得跟踪可以实时进行。
由于Mean Shift算法完全依靠特征空间中的样本点进行分析,不需要任何先验知识,收敛速度快,近年来被广泛应用于模式分类、图像分割、以及目标跟踪等诸多计算机视觉研究领域。
均值漂移方法[4]是一种最优的寻找概率密度极大值的梯度上升法,提供了一种新的目标描述与定位的框架,其基本思想是:通过反复迭代搜索特征空间中样本点最密集的区域,搜索点沿着样本点密度增加的方向“漂移”到局部密度极大点。
基于Mean Shift方法的目标跟踪技术采用核概率密度来描述目标的特征,由于目标的直方图具有特征稳定、抗部分遮挡、计算方法简单和计算量小的特点,因此基于Mean Shift的跟踪一般采用直方图对目标进行建模;然后通过相似性度量,利用Mean Shift搜寻目标位置,最终实现目标的匹配和跟踪。
均值漂移方法将目标特征与空间信息有效地结合起来,避免了使用复杂模型描述目标的形状、外观及其运动,具有很高的稳定性,能够适应目标的形状、大小的连续变换,而且计算速度很快,抗干扰能力强,在解决计算机视觉底层任务过程中表现出了良好的鲁棒性和较高的实时处理能力。
1无参数密度估计目标检测与跟踪过程中,必须用到一定的手段对检测与跟踪的方法进行优化,将目标的表象信息映射到一个特征空间,其中的特征值就是特征空间的随机变量。
假定特征值服从已知函数类型的概率密度函数,由目标区域内的数据估计密度函数的参数,通过估计的参数得到整个特征空间的概率密度分布。
参数密度估计通过这个方法得到视觉处理中的某些参数,但要求特征空间服从已知的概率密度函数,且一般为典型单峰函数;对于实际研究中涉及到的概率密度函数大部分为多量多峰的,无参密度估计理论能很好解决这些问题。
参数概率密度估计的目的是寻找一个已知函数类型的概率密度函数,它的分 布近似于真实的数据分布。
给定一组数据点X ,这组数据服从一个已知的概率密度函数()•|f θ,θ是该函数的参数。
参数概率密度估计的目的是找到参数θ的最优估计ˆθ,这样通过ˆθ就可以计算()•|f θ而得到整个数据的密度函数的估计ˆf 。
参数密度估计可以将大量的数据压缩为简洁的参数形式,几个参数就可以准确描述数据的分布。
但事先须知道数据分布函数的形式,在视觉处理中这种要求是不现实的,数据模型往往是未知的。
如果指定的密度模型不正确,估计就会有偏差,而且并不一定是最优的,有可能收敛到一些局部点。
通常的无参密度估计方法包括:直方图法、最近邻域法及核密度估计法。
直 方图法是最早的无参密度估计方法,只适用于维数低的数据分布;最近邻域法容 易受到局部噪声的影响,难以准确稳定地估计模型;而核密度方法能较快产生一 个渐进无偏的密度估计,具有良好的概率统计性质,核密度估计方法较直方图法 多了一个用于数据平滑的核函数,是目前最通用的无参密度估计法。
均值漂移算 法是从核密度函数梯度的非参数估计中推导获得,而非参数估计则是从样本集出 发对密度函数进行估计,它不需要任何先验知识,对任意形状的分布都有效。
定义1:d R 代表一个d 维的欧氏空间,x 是该空间中的一个点,用列向量表示。
x 的模为2T x x x =,R 表示实数域。
如果一个函数K :d R R →存在一个轮廓函数(也称剖面函数)k :[0,∞]→R ,即:()()2k K x c k x=(1)其中0k c >为标准化常数,并且满足:1)k 是非负的;2)k 是非增的,即如果a b <,则k(a)≥k(b);3)k 是分段连续的,且()k r dr <∞⎰。
那么函数()K x 就被称为核函数。
核函数在核估计中起到平滑的作用,也称为“窗函数”,一维空间中的常用核包括:均匀核、三角核、Epanechnikov 核、双权(Biweight )核、高斯(Gaussian )核、Double Epanechnikov 核函数等。
给定d R 空间中的n 个采样点{},1i x i n ≤≤,利用核函数()K x 及正定的d×d 带宽矩阵i H ,密度函数的核密度估计公式为:()()()()111222211ˆinn i ii i k i i iH i i f x w x H K H x x c w H k x x ---==⎛⎫=-=- ⎪⎝⎭∑∑ (2)其中,x 为核函数中心点,()0i w x ≥是采样点i x 的权重,满足()1i w x =∑,简记为i w 。
核函数()K x 决定了采样点i x 与核中心点x 之间的相似性度量,带宽矩阵i H 决定了核函数的影响范围。
()()21iTii i i H x x x x H x x --=--称作Mahalanobis 距离。
客观地说,密度估计()ˆf x 是每个采样点处的核函数加权求和的结果。
2 核密度梯度估计过程核密度梯度估计过程实质上就是均值漂移算法的迭代过程。
密度函数梯度估 计等价于密度函数估计的梯度,即:()()()()()1/22'111/2211ˆ2...2ii ink i iiii H i nk i ii iH H i f x c w H k x x Hx x c w H H g x x m x x --=--=∇=--⎡⎤⎡⎤=--⎢⎥⎣⎦⎢⎥⎣⎦∑∑(3)其中,()()'g x k x =-,()()2g G x c g x=,核函数()G x 称为()K x 的阴影函数。
第二个等式中的第二个括号记为:()()i i H H M x m x x =-,称为均值漂移向量。
()i H m x 为x 处的样本均值,即:()()()1/22111/2211i i ini ii iiH i H ni ii iH i w H H g x x x m x w H H g x x --=--=-=-∑∑(4)它表示采样点的加权平均值,类似于“重心”的概念。
一般()i H m x 处的密度大于x 处的密度,因此均值漂移向量()i H M x 总是指向密度大的方向,即密度梯度增加的方向,均值漂移算法的收敛点为局部密度极大值点。
带宽矩阵H 为一个正定对称的d×d 矩阵,实际应用过程中一般被限定为一个对角矩阵221,...,d H diag h h ⎡⎤=⎣⎦,甚至更简单的取为正比于单位矩阵2H h I =。
采用2H h I =一个明显的优点是只要带宽参数h >0即可,采用对角阵必须知道d 个带宽参数,而比例矩阵只用一个窗宽参数h ,在Mean Shift 中常被采用,从而可将均值漂移向量和迭代公式写为以下常用形式:()()h h M x m x x=-(5)()2121ni i i i h n i i i x x w g x h m x x x w g h ==⎛⎫- ⎪ ⎪⎝⎭=⎛⎫- ⎪ ⎪⎝⎭∑∑(6)给定一个初始点x ,核函数G(x),容许误差ε,Mean Shift 算法循环执行下面三步,直至结束条件满足:①计算()h m x ;②如果()h m x x ε-<,结束循环, 否则继续;③把()h m x 赋给x ,继续执行步骤①。
由式(3.5),()()h h m x M x x =+,可见上面的步骤就是不断地沿着概率密度的梯度方向、即密度变化最大的方向移动,因此Mean Shift 向量总是指向密度最大增长的方向。
同时,迭代过程中的搜索步长不仅与梯度大小有关,也与该点的概率密度有关,Mean Shift 算法可以自适应地调整迭代步长,在密度大的地方,更接近要找的概率密度的峰值,Mean Shift 算法使得移动的步长小一些,相反,在密度小的地方,移动的步长就大一些。
在满足一定条件下,Mean Shift 算法一定会收敛到该点附近的局部峰值处。
3 算法收敛性分析均值漂移算法本质上是一种统计迭代算法,它使每一个点“漂移”到密度函 数的局部极大值点。
众所周知,迭代点的收敛性是任何迭代算法都必须具有的基 本性质。
在Mean Shift 的迭代过程中,核函数的中心由一个初始位置不断逼近到一个密度最大的位置,以序列{}1,2,...j j y =表示核函数的中心点在连续迭代中的位置,1y 是起始位置,将这些连续位置点上相应的密度估计记作序列(){}1,2,...,ˆj h kf j =如果Mean Shift 算法能够收敛,那么序列{}1,2,...j j y =会收敛,其对应的密度估计序列(){}1,2,...,ˆj h kf j =也不断变大,直到收敛到最大密度处。
如果能够证明Mean Shift 算法中这两个序列的收敛特性,也就证明了Mean Shift 算法的收敛性。
均值漂移算法的收敛条件如下:如果核函数()K x 有一个凸的、单调减的剖面函数,那么序列{}1,2,...j j y =和序列(){}1,2,...,ˆj h kf j =单调增加,且迭代过程是收敛的。
也就是说,均值漂移算法的收敛性只与核函数有关,只要选取的核函数具有凸的、单调减的剖面函数,就能保证Mean Shift 算法是收敛的,能迅速有效地收敛到目标的密度极值点。