中央空调节能自控管理系统

合集下载

中央空调节能控制系统控制原理

中央空调节能控制系统控制原理

中央空调节能控制系统控制原理
中央空调节能控制系统的控制原理主要包括以下几个方面:
1. 温度控制:系统通过感知室内温度,与设定的温度进行比较,调节制冷或制热设备的运行来维持室内温度在设定范围内。

2. 风速控制:根据室内需要,系统可以调节送风机的运行速度,以达到合适的风速和舒适度。

3. 时间控制:系统可以根据建筑物的使用情况,设定不同的工作时间和休息时间,控制空调的开关机时间,以实现节能的目的。

4. 空气质量控制:系统可以监测室内空气的质量,如CO2浓度、湿度等,通过控制新风和排风系统的运行来保证室内空气的新鲜度和质量。

5. 能耗监测:系统可以实时监测各个设备的功耗,以及整个空调系统的能耗情况,通过数据分析,提供节能建议和优化控制策略。

6. 故障诊断与报警:系统能够自动检测和诊断设备的工作状态,一旦出现故障或异常情况,系统会发送报警信息,提供故障排查和修复的指导。

总之,中央空调节能控制系统通过优化空调设备的运行参数、
精确控制设备的运行状态,以及监测室内环境的变化,实现对空调系统的精确控制和节能管理。

中央空调运行节能控制系统全

中央空调运行节能控制系统全

中央空调运行节能控制系统中央空调系统是具有系统强惯性、大滞后等特点,其过程要素之间存在着严重的非线性、大滞后及强耦合关系。

对这样的系统,无论用经典的PID控制,还是现代控制理论的各种算法,都很难实现较好的控制效果。

中央空调运行节能控制系统(KT-CCS),是针对各类中央空调系统而研发的综合节能治理系统。

该系统以计算机、P1C.变频器、传感器等硬件为核心,集成了闭环控制技术、PID运算、模糊技术和人机整合技术,以中央空调系统主机变负荷运行为基点,对冷冻水循环、冷却水循环、冷却塔及新风处理等系统进行全面的优化调节,使中央空调系统运行在***佳状态,从而节省大量电能。

一、中央空调运行节能控制系统(KT-CCS)的组成中央空调运行节能控制系统(KT-CCS)由中央空调主机调节、冷冻水调节、冷却水调节、新风调节、数据采集等子系统组成。

通过对中央空调系统运行参数的监测,结合室温和末端温度的变化,控制中央空调系统变负荷运行,达到保证制冷(热)质量、降低电能消耗的目的。

二、中央空调主机(冷水机组)调节子系统中央空调主机压缩机按照其额定制冷量和制冷效率,一般的额定输入功率从IOOkW到IOOOkW e冷水机组的目的是产生低温(7℃)的冷冻水,所以供(出)水温度的高低直接影响到机组的负荷。

而末端空气处理机启动的多少也会影响冷冻水的回水温度。

对于压缩机单机容量和台数已确定的中央空调机组,按照便于能量调节和适应制冷(热)对象的工况变化等因素进行制冷(热)功率输出调节,是中央空调主机节能的关键。

KT-CCS的空调主机调节,由下列方法实现:(1)在制冷(热)机组的冷量调节中,引入变频变容量调节技术。

(2)采用先进的制冷剂流量控制技术,精确控制蒸发温度。

(3)对于主机自身没有冷量调节功能的制冷(热)机组,采取多台压缩机分级制冷(热)和变频变容量调节技术。

(4)对于大型制冷(热)机组一般都具有冷量调节装置,制冷(热)机组的制冷(热)量可随冷负荷的要求而变化。

BKS系列中央空调能源管理系统

BKS系列中央空调能源管理系统

产品简介:BKS系列产品是汇通华城楼宇科技有限公司独立研制的、具有中国知识产权局发明专利的新一代高科技产品,是当今先进的计算机技术、模糊控制技术、系统集成技术和变频调速技术集合应用于中央空调系统节能控制的最新科技成果。

产品通过全面采集影响中央空调系统运行的各种变量,传送到模糊控制器,模糊控制器依据模糊推理规则及系统的历史运行数据,推算出系统该时刻所需的冷量(或热量)及系统有优化运行参数,并利用现代变频技术,自动控制水泵的转速,以调节空调水系统的循环流量,保证中央空调系统在各种负荷条件下,处于最佳的工作状态,从而实现综合优化节能。

公司先后开发了BKS777、BKS800、BKS2002、BKS2003、 BKS2006、BKS600和BKS2008七代中央空调节能控制产品,并已在全国八百多个大型项目中得到成功应用,实现中央空调主机节能10%~30%,水泵、风机节能60%~80%,中央空调总体节能达20%~40%,深受用户的广泛好评。

技术参考:产品设计执行标准GB 191 包装贮运图示标志GB/T 3797 2005? 电气控制设备GB 4208?? 外壳防护等级的分类GB 7251.1 2005 压低压成套开关设备和控制设备第1部分:型式试验和部分型式试验GB 12668? 交流电动机半导体变频器调速装置总技术条件GB/T 3047? 高度进制为20mm的面板、架和柜的基本尺寸系列产品安装执行标准JGJ/T16-92?? 民用建筑电气设计规范GB 50168-92?? 电缆线路施工及验收规范GB50019-2003? 中国采暖通风与空气调节设计规范GB 50015-2003? 中国室内给水排水热水供应设计规范设计参考:从已实施的八百多个项目的实践表明,BKS系统运行十分稳定,可靠性很高。

产品的可靠性涉及到产品的各个方面,包括产品研制、设计、生产、安装、调试、使用和维护的全过程:1 分布式的系统结构:控制层具有完全独立的控制功能,分散了系统故障的风险。

中央空调节能自控系统改造方案设计

中央空调节能自控系统改造方案设计

1.1空调自控系统改造方案1.1.1控制设备范围一套制冷系统中的制冷机组、冷冻水循环泵、冷却水循环泵、冷却塔、相关阀门、膨胀水箱、软化水箱等。

1.1.2空调自控系统1.1.2.1.监测功能信息采集优化A通过冷机通讯接口读取(包括但不限于)以下参数:冷水机组运行状态、故障报警状态冷冻水供/回水温度、冷却水供/回水温度冷冻水温度设定值运行时间、压缩机运行电流百分比、压缩机运行小时数、压缩机启动次数、蒸发温度、冷凝温度、蒸发压力、冷凝压力。

B冷冻水系统冷冻水泵运行状态、故障报警、手/自动模式反馈(DI)冷冻水补水泵运行状态、故障报警、手/自动模式反馈(DI)冷冻水供回水管温度、水流量反馈(AI)冷冻水泵进口、出口分支管压力(AI)冷冻水供回水环网压力、冷冻水供回水环网间压差反馈(AI)冷冻水泵变频器频率反馈(AI)最不利末端供回水压差C冷却水系统冷却水泵、冷却塔风机运行状态、故障报警、手/自动模式反馈(DI)冷却水供回水管温度、环网水流量反馈(AI)冷却水泵进口、出口分支管压力反馈(AI)冷却水泵、冷却塔风机变频器频率反馈(AI)冷却水补水泵运行状态、故障报警、手/自动模式反馈(DI) D电动蝶阀压差旁通阀开度反馈(AI)免费供冷管路上切换电动蝶阀开关状态反馈(DI)E液位监控膨胀水箱超高、超低水位监测(DI)软化水补水箱高、低水位监测(DI)F其他参数室外干球温度、相对湿度(AI)计算室外湿球温度、焓值免费供冷系统水泵运行、故障、手/自动状态(DI)免费供冷板换进出口压力监测(AI)1.1.2.2.控制功能1、冷水机组启/停控制、出水温度设定(通过冷机通讯接口控制)2、冷冻水系统:冷冻水泵启/停控制(DO)及反馈冷冻水泵变频器频率设定(AO)、频率调节及反馈3、冷却水系统:冷却水泵、冷却塔风机启/停控制(DO)及反馈冷却水泵、冷却塔风机变频器频率设定(AO)、频率调节及反馈4、电动蝶阀:分水器各供水支路电动蝶阀开/关控制(DO)冷冻水季节转换电动蝶阀开/关控制(DO)压差旁通阀开度调节(AO)免费供冷管路上切换电动蝶阀开/关控制(DO)5、其他设备控制免费供冷系统水泵启停控制(DO)1.1.2.3.报警功能1、当任何一台冷水机组、冷却塔风机、冷冻泵、冷却泵、补水泵组运行故障时,发出故障报警。

瑞福中央空调(楼宇)智慧节能系统简介

瑞福中央空调(楼宇)智慧节能系统简介

瑞福中央空调(楼宇)智慧节能系统简介空调节能不是不用,而是最舒服最科学的用!!!现状:1、公共空调没有人关闭2、公用空调无人打开3、办公室空调温度要么是热死要么是冻死(To be cold die or To be hot die)瑞福节能管理系统是一个集成了硬件、软件于一体的、根据用户反馈、对机器学习、智能传感器和楼宇管理系统(BMS)的综合。

系统聚合了楼宇中每一个使用者的对温度要求的反馈,结合室外气温进行智能决策,控制每一个空间的温度、气流,从而为用户创造一个最舒适温度空间。

通过调整每一个区域的温度,瑞福为你实现悄无声息的节能。

瑞福管理系统兼容性数据采集系统跨BAC网/IP, 集成宽泛的HVAC 和Modbus,自动采集和调节温度。

根据建筑内人数和多目标需求,进行大数据学习,提供管理模型。

HVAC系统兼容性瑞福可以良好的兼容市场上大多数空调变风量系统(Variable Air Volume, VAV)、直接数字控制(Direct Digital Control, DDC)、强制风或快速反应系统。

同时提供2个独特功能:∙十分钟实现冷暖调控∙自动控制偏好性学习产品与服务:1、数据采集器安装硬件安装2、软件安装与调试3、系统使用培训与服务监控界面:数据监控人员可以实时监控空调和楼宇用电信息,同时提供数据安全保护。

系统是怎么工作的?1数据采集器接入楼宇现有系统2用户通过APP选择需求,进行系统学习3根据综合参数,系统优化温度和风力优点:电能节省完美实现节能~20%运营成本节省热/冷管理降低>90%运维预算高效提升运维预算准确率>10%。

节能自控系统技术全参数

节能自控系统技术全参数

中央空调节能自控系统技术参数一、空调机组1、水冷冷水机组基本参数二、末端设备技术要求三、楼宇自控系统5.1 系统概述本系统主要监测和控制医院内各机电设备的运行状况、安全状况、能源使用状况等,实现综合自动监测、通讯、控制与管理,并使之达到最佳运行状态、起到节能作用。

系统管理工作站具备与其它系统通信联网和联动控制的硬件接口和软件接口,并提供简洁的图形化界面,并可以及时获取各种设备的运行状态、运行参数、故障及报警信息。

分布在现场各处的直接数字控制器采用对等型通讯方式,可独立运行,即使局部网络连接发生中断,也可以根据事先编制的程序自动进行操作,同时,仍与网络连接的控制器依然可以正常的交换数据。

5.2 系统设置1、系统架构系统采用集散控制方式的两层网络结构----管理层、控制层,1)管理层即管理工作站,管理工作站设置在一层消防控制室,实现对整个建筑内相关设备的集中控制和管理。

2)控制层主要为前端DDC控制器,主要设置在冷冻机房、送排风机房、新风机房等位置。

3)管理工作站通过网络控制器与各DDC控制器之间进行通讯。

管理工作站与网络控制器之间采用TCP/IP通讯方式(基于智能化控制网),网络控制器与DDC控制器之间则采用RS485总线实现点对点通讯,可在线增减设备,便于系统扩展。

2、监控内容本系统监控内容包括:冷热源系统、空调新风系统(净化空调系统及洁净排风系统的控制,由专业净化公司进行专项深化设计施工,不包含在本次设计范围内。

)、送排风机(其中,双速排烟风机只控低速;消防专用的正压送风机、排烟风机不纳入自控范围)、给排水系统等建筑机电设备。

1)冷热源系统系统检测冷冻水供、回水温度、流量等参数,计算空调系统的实际冷负荷,对冷源系统各机组、水泵进行顺序启停,并与单台机组制冷量进行比较,确定机组运行台数;同时监测各机组、水泵手自动状态、故障状态,并通过水流开关监测其运行状态;检测冷却水供回水温度,根据冷却水供回水温度对冷却塔风机运行台数风机频率控制,并监测其频率反馈状态。

中央空调智能节能控制系统设计与实现

中央空调智能节能控制系统设计与实现

中央空调智能节能控制系统设计与实现摘要:空调能耗正成为广大暖通设计者关注和研究的重要课题,本文分析了影响空调系统能源消耗的关键因素,并从系统的选择、设备的选配及系统的运行管理等方面提出了切实可行的空调节能方案,对空调系统的设计及运行管理中的节能具有一定参考价值。

关键词:中央空调;系统;设计;节能1.中央空调系统的构成1.1冷冻机组这是中央空调的“制冷源”,通往各个房间的循环水由冷冻机组进行“内部热交换”,降温为“冷冻水”。

1.2冷冻水循环系统由冷冻泵及冷冻水管道组成。

从冷冻机组流出的冷冻水由冷冻泵加压送入冷冻水管道,在各房间内进行热交换,带走房间热量,使房间内的温度下降。

从冷冻机组流出、进入房间的冷冻水简称为“出水”,流经所有的房间后回到冷冻机组的冷冻水简称为“回水”。

1.3冷却水循环系统由冷冻泵、冷却水管道及冷却塔组成。

冷冻机组进行热交换,使水温冷却的同时,必将释放大量的热量。

该热量被冷却水吸收,使冷却水温度升高。

冷却泵将升了温的冷却水压人冷却塔,使之在冷却塔与大气进行热交换,然后在将降了温的冷却水,送回到冷却机组。

如此不断循环,带走了冷冻机组释放的热量。

流进冷冻机组的冷却水简称为“进水”,从冷冻机组流回冷却塔的冷却水简称为“回水”。

1.4冷却风机冷却塔风机用于降低冷却塔中的水温,加速将“回水”带回的热量散发到大气中去。

可以看出,中央空调系统是工作过程室一个不断地进行热交换的能量转换过程。

在这里,冷冻水和冷却水循环系统是能量的主要传递者。

冷却水温度过高、过低都会影响冷冻机组使用寿命,因为温度过低影响机组润滑,但温度过高将导致制冷剂高压过高。

因此,对冷却风机的控制便是中央空调控制系统的重要组成部份。

变频控制冷却风机的转速使冷却水出水温度保持在28~30℃之间,既节能又延长冷冻机组使用寿命。

!中央空调系统的组成和控制思想中央空调与家用独立空调的温度传递方式不同:家用独立空调直接吹风到散热器上获得冷风或者热风。

中央空调自控系统基本原理

中央空调自控系统基本原理

中央空调自控系统基本原理中央空调自控系统是一种通过自动控制技术,实现对中央空调系统运行状态的监测、调节和控制的系统。

它是现代建筑中不可或缺的一部分,能够提供舒适的室内环境,并且具有节能、智能化的特点。

中央空调自控系统的基本原理是通过传感器、控制器和执行器等组成的硬件设备,以及相应的软件算法,实现对空调系统的自动控制。

首先,传感器会感知室内外的温度、湿度、风速等参数,并将这些数据传输给控制器。

控制器根据预设的温度、湿度等设定值,通过与传感器的数据对比,判断当前的环境状态,并做出相应的控制决策。

最后,控制器会通过执行器控制空调系统的运行,调节室内温度、湿度等参数,以达到预设的舒适目标。

中央空调自控系统的核心是控制器,它是整个系统的大脑。

控制器通常由微处理器、存储器、输入输出接口等组成,能够实现数据的处理、存储和通信等功能。

控制器通过与传感器和执行器的连接,实现对室内环境的监测和控制。

同时,控制器还可以与外部设备进行通信,如与计算机、手机等进行远程监控和控制。

在中央空调自控系统中,传感器起到了收集环境数据的作用。

常见的传感器有温度传感器、湿度传感器、CO2传感器等。

这些传感器能够实时感知室内外的环境参数,并将数据传输给控制器。

控制器通过对传感器数据的分析和处理,能够准确判断当前的环境状态,从而做出相应的控制策略。

执行器是中央空调自控系统中的另一个重要组成部分。

执行器通常包括电动阀门、风机、压缩机等。

控制器通过与执行器的连接,能够控制它们的开关、运行速度等,从而实现对空调系统的调节和控制。

例如,当室内温度过高时,控制器会通过执行器控制空调系统的运行,降低室内温度,使其达到预设的舒适范围。

除了硬件设备,中央空调自控系统还需要相应的软件算法来实现自动控制。

这些算法通常包括PID控制算法、模糊控制算法等。

PID控制算法是一种经典的控制算法,通过对误差、积分和微分的综合调节,实现对系统的稳定控制。

模糊控制算法则是一种基于模糊逻辑的控制方法,能够处理不确定性和模糊性的问题,提高系统的鲁棒性和适应性。

中央空调自动控制系统设计说明

中央空调自动控制系统设计说明

自控系统介绍一、概述随着科技的不断发展和进步,现代化的建筑物迅速崛起及发展,已成为国民经济迅速增长的必然条件。

而现代化建筑物的大型化、智能化和多功能化,必然导致建筑物内机电设备种类繁多,技术性能复杂,维修服务保养项目的不断增加,管理工作已非人工所能应付.因此,采用自动化监控系统技术及计算机管理已成为现代建筑最重要的管理手段。

它可以大量的节省人力、能源、降低设备故障率、提高设备运行效率、延长设备使用寿命、减少维护及营运成本,提高建筑物总体运作管理水平。

建筑自动化监控系统(Building Automation System,简称BAS),实质上是一套中央监控系统(Central Control Monitoring System, 简称CCMS),有时称为综合中央管理系统.现阶段已广泛应用于各类建筑领域,以提供对各类建筑物内设备进行高效率管理与控制的有效途径。

BA系统的主要功能是:对机电设备实现以最优控制为中心的过程控制自动化;以运行状态监视和计算为中心的设备管理自动化;以安全状态监视和灾害控制为中心的安全管理自动化;以节能运行为中心的能量管理自动化.机房集中监控系统是智能建筑系统中最重要的子系统之一,这可以从以下几方面看出:智能建筑设备控制中机房设备相对比例较大,控制流程和技术较复杂,涉及自动控制、通信、计算机、图形及显示技术等。

机房集中监控系统,它不仅涉及对大厦的电、风、水等设备进行控制,而且与大厦的IT(信息技术)应用了有紧密的联系。

机房集中监控系统技术发展十分迅速,控制网络技术的突破性进展给楼宇控制领域带来巨大的影响。

机房集中监控系统是智能化工程中投资较大的部分。

1、系统的必要性随着计算机技术的发展和普及,计算机系统数量与日俱增,其配套的环境设备也日益增多,计算机房已成为各大单位的重要组成部分。

机房的环境设备(供配电、 UPS、暖通设备、等)必须时时刻刻为计算机系统提供正常的运行环境。

一旦机房设备出现故障,就会影响到计算机系统的运行,对数据传输、存储及系统运行的可靠性构成威胁,如事故严重又不能及时处理,就可能损坏硬件设备,造成严重后果。

中央空调变频节能控制系统的设计

中央空调变频节能控制系统的设计
维普资讯
成为越 来越 多空调的经营 管理者 所关注 的
溺变频 繁
问题I I 。
Hale Waihona Puke 故采用变频调速技术节约低负荷时主 压 缩 机 系 统 和 水 泵 、 风 机 系 统 的 电 能 消 耗 ,具有极其重要的经济意义。寻找一种 节能效果明显 ,性能稳定可靠的控制 系统 成 为 当务 之 急 l 。 4 _ 本文所研究的基于 P oiu 网络的 中 rf s b 央空调变频节能控制 系统即是在这样的背 景下进行的 。其对冷冻和冷却水 系统实施 变频调速技术 ,可以根据 负荷 变化情况适
互连 , 实现远程集 中监控。 温度压 力信号的 采集由传感器采 集出的模 拟量 信号 通过远 程 I 0站转换并通过 P / R0F B I US发送到 P C。选用西门子的 P C及变频器系统_ L L 6 I 。 性 ,而在大 多数时 间里 ,用户负荷是较低 的,这样就造成很大的能源浪费 。近年来 控制系统由主控制柜和从控制柜组 成 ,网
为 基 础 。设 许 了 P O IU E FB S协 议 的 变频 控 制 系 统 ,给 出 控 制 系统 的 硬 件 配 置 、 网 络 结 构 和
们对 中央空调 系统提 出新的要求就是舒适 节能 ,要求在能耗更低的情况下保持室 内 合 适 的温 度 、湿度 ,让 使 用者 感觉 最舒 适 。新 建的 中央空调 系统在按 照舒适节能 的 目标设 计,而越来越 多的使用多年的中 央空调控制 系统在进 行改造 以实现节能 、 舒 适 的 目的 【 。 l I 传 统 的设 计 中 ,中央 空调 的制 冷机 组 、冷 冻循环水 系统 、冷 却循环水 系统 、 冷却塔风机系统、盘管风机系统等的容量
控 制系统的设 计

中央空调智能控制系统

中央空调智能控制系统

安全可靠
舒适环保
中央空调智能控制系统 是指通过智能化技术对 中央空调进行控制和管 理的系统,实现对空调 设备的高效、节能、安 全和舒适的使用。
通过传感器、控制器等 设备实现空调系统的自 动控制和调节。
根据室内外环境参数和 用户需求,智能调节空 调的运行状态,降低能 耗。
具备故障诊断和报警功 能,提高系统的安全性 和稳定性。
家庭环境案例
总结词:智能便捷
详细描述:家庭环境中,中央空调的使用越来越普遍 。通过智能控制系统,可以实现远程控制、语音控制 等功能,方便用户的使用。同时,智能控制系统还可 以根据室内外环境变化自动调节温度和湿度,提高居 住舒适度。例如,某家庭安装智能控制系统后,用户 可以通过手机随时随地控制空调运行,同时系统还能 自动检测室内空气质量,进行相应的调节。
节能控制
根据室内外环境参数和用户需 求,智能调节空调的运行状态, 降低能耗。
智能控制的优势
提高能效
智能控制系统能够根据实际需 求自动调节空调的运行状态, 减少不必要的能耗,降低运行
成本。
提高舒适度
通过智能化控制,能够更好地 满足用户对室内环境的需求, 提高居住和工作环境的舒适度 。
延长设备寿命
智能控制系统能够实时监测设 备的运行状态,及时发现并处 理故障,延长设备的使用寿命 。
提高管理效率
通过智能化管理,能够实现远 程监控和控制,方便对空调系
统的管理和维护。
02 中央空调智能控制系统的 工作原理
传感器的工作原理
01
02
03
温度传感器
温度传感器通过检测室内 外温度变化,将温度信号 转换为电信号,传输给控 制单元。
湿度传感器
湿度传感器通过检测空气 中的湿度,将湿度信号转 换为电信号,传输给控制 单元。

中央空调节能管理系统的设计与实现

中央空调节能管理系统的设计与实现

陈文
( 福建 邮科通信技术有限公 司 , 福州 3 0 0 50 5)
CHENW e n
(ui Y u e o mu ia o T cn lg C .i. u h u30 0 , hn ) Fj n o k C m nct n eh ooy o d, zo 5 0 5 C ia a i L F
o c nrl i c n i o ntr y t a d ea d eh o o yT e i ett nit d c s r es a e t l ic n io igmo i r g f f e t r o dt n aa i mo i s m n lt c n lg .h s r i r u e l g -c l c nr r o dt nn nti os e r et d s ao n o aa e aa i ono
【 bt c]h t saas hp s tt tnf na i odi i m no f e yans t ihb kr no eep g A s atTih i ny t re s aoo er acni n g oir e r s i ye n ea g udf voi r s es le e e n i i c tlr t n u o to n g v g sm t c o d ln
联、 互动和信息共享, 实现 中央空调与外界 的信息交换 。
文章首先介绍 了中央空调 管理 系统在 国内外发展 现状 , 结合 了 B n t AC e 的特点, 出了系统开发的基本设计原 提 则和开发 方法。设计和开发基 于 B n t 中央空调管理 系统 , AC e 的 不仅具有很 强的现 实意义 , 也具有广泛的市场前景 。
公用工程设计 I
Pb u船 5 1 I

中央空调系统节能控制系统设计方案

中央空调系统节能控制系统设计方案

KT仟亿中央空调系统节能控制系统设计方案 北京仟亿达科技有限公司1 概述国家“十一五”规划纲要中明确提出要把节约资源和保护环境基本国策,建设低投入、高产出,低消耗、少排放,能循环、可持续的国民经济体系和资源节约型、环境友好型社会。

提出了“十一五”期间单位国内生产总值能源消耗降低20%左右、主要污染物排放总量减少10%等目标。

这是针对资源环境压力日益加大的突出问题提出来的,体现了建设资源节约型、环境友好型社会的要求,是现实和长远利益的需要,具有明确的政策导向。

中央空调在各大中型民用、商用建筑中的普及,带来了严重的能耗问题。

中央空调系统的电耗一般占整座建筑电耗的50%~60%,建筑能耗则占全国总能耗的1/3左右,因此提高能源利用率是我国能源可持续发展的方向。

中央空调系统的设计通常按建筑物所在地的极端气候条件来计算其最大冷负荷,并由此确定空调主机的装机容量及空调水系统的供水流量。

然而,实际上每年只有极短时间出现最大冷负荷的情况。

因此,中央空调系统在绝大部分时间里,都是在部分负荷(远小于其额定容量)条件下运行的。

据统计,实际空调负荷平均只有设备能力的50%左右,这无疑造成了大量的能源白白浪费。

而且,空调水系统的水泵、风机等机电设备,长期处在工频额定状态下高速运行,机械磨损严重,导致设备故障增加和使用寿命缩短。

另一方面,空调负荷又具有变动性.由于季节交替、气候变幻、昼夜轮回、使用变化(如旅游旺、淡季)及人流量增减(如宾馆入住率的变化)等各种因素变化的影响,中央空调系统的负荷具有起伏变化和不恒定的特点,如果中央空调的运行方式不能根据负荷的变化而调节,始终在额定容量(即满负荷状态)下运行,也势必造成巨大的能源浪费.由北京仟亿达科技有限公司提供的中央空调分布式系统节能控制装置——KTC—2005系列、KTC-2005系列产品,以模糊控制理论为指导、以计算机技术、系统集成技术、变频调速技术为控制手段,以多年丰富的实践经验和数据为基础,科学地实现了中央空调能量供应按末端负荷需要提供,最大限度地减少了空调系统能源浪费,从而达到高效节约能耗的目的。

中央空调自控系统施工方案

中央空调自控系统施工方案

中央空调自控系统施工方案一、引言中央空调自控系统是一种利用先进的控制技术,实现对中央空调系统进行集中控制与管理的系统。

它能够自动调节空调的温度、湿度、风速等参数,实现室内舒适的环境条件。

本文将介绍中央空调自控系统的施工方案,包括系统组成、施工步骤、设备选型等内容,以期为工程实施提供一定的指导。

二、系统组成中央空调自控系统主要由以下几个组成部分构成:1. 控制器:负责接收传感器反馈的信号,并根据设定的参数进行控制。

2. 传感器:包括温度传感器、湿度传感器、CO2传感器等,用于实时监测室内环境参数。

3. 执行器:如电动阀门、风机等,用于执行控制命令,调节空调系统的运行状态。

4. 通信网络:用于实现传感器、控制器和执行器之间的信息交互和数据传输。

三、施工步骤中央空调自控系统的施工步骤主要分为系统设计、材料采购、布线安装、设备调试等阶段。

1. 系统设计根据不同的工程需求,进行中央空调自控系统的整体设计。

包括系统的布置图、电路图、通信网络方案等。

确保系统设计与实际工程的要求相符合。

2. 材料采购根据系统设计的需求清单,采购所需的控制器、传感器、执行器等设备,确保设备的质量和性能符合规定标准。

3. 布线安装根据设计图纸进行布线安装。

将控制器、传感器与执行器之间的连接线缆进行合理布置,并进行相关的接线工作。

确保布线的可靠性和安全性。

4. 设备调试安装完毕后,对系统进行调试。

包括控制器和传感器的正常工作状态检查、执行器的校准等工作。

确保系统运行的稳定性和效果。

四、设备选型设备选型是中央空调自控系统施工中的重要环节。

合理的设备选型能够确保系统的性能和可靠性。

1. 控制器选型根据系统的规模和功能需求,选择合适的控制器。

考虑控制器的品牌、型号、功能、扩展性等因素。

2. 传感器选型根据需要监测的参数和准确度要求,选择合适的传感器。

如温度传感器、湿度传感器、CO2传感器等。

3. 执行器选型根据系统的要求,选择合适的执行器,如电动阀门、风机等。

中央空调系统自控原理

中央空调系统自控原理

中央空调系统自控原理中央空调系统自控原理1. 介绍中央空调系统是一种能够为大型建筑物提供舒适室内环境的重要设备。

而自控原理是中央空调系统中的关键技术之一,它能够确保系统的正常运行和高效能的能源利用。

本文将从浅入深地介绍中央空调系统的自控原理。

2. 自控系统的基本组成控制器中央空调系统的自控系统主要由控制器组成,它是系统的大脑。

控制器能够监测和分析系统运行的各种参数,通过与其他设备的通信,实现对系统的控制和调节。

传感器传感器是自控系统中的重要组成部分,它能够测量和感知系统中的各种参数,如室内温度、湿度、压力等。

这些参数将用来判断当前的环境状态,从而采取相应的控制策略。

执行器执行器是根据控制器的指令,对系统进行相应操作的设备。

常见的执行器包括风机、阀门、压缩机等。

通过控制执行器的运行状态,可以实现对温度、湿度等参数的调节。

3. 自控原理的工作方式反馈控制自控原理的核心思想是反馈控制,也称闭环控制。

通过不断地对系统的状态进行测量和监测,并与目标值进行比较,控制器能够根据差异来调节执行器的运行状态,使系统逐渐趋向于理想状态。

这种控制策略能够实时地对系统进行修复和调整,确保系统的运行稳定性。

控制策略在自控原理中,常用的控制策略包括比例控制、积分控制和微分控制。

比例控制通过调节执行器的运行时间,使量的增减和目标值之间达到一个平衡。

积分控制通过累计误差来修正系统的偏差,使系统能够更快地达到稳定状态。

微分控制则通过预测系统变化趋势,对执行器的操作进行精细调节,提高系统的响应速度。

自学习能力现代中央空调系统的自控原理具备自学习能力,通过不断地学习和分析系统运行的历史数据,控制器能够逐渐形成一套适应当前环境的控制策略。

这种自适应性能够有效地提高系统的能源利用率和运行效率。

4. 自控原理在中央空调系统中的应用自控原理在中央空调系统中有着广泛的应用。

通过对温度、湿度等环境参数的实时监测和调节,系统能够根据不同的季节和使用需求,自动调整空调和送风设备的运行状态,提供舒适的室内环境。

高效中央空调节能控制系统原理

高效中央空调节能控制系统原理

高效中央空调节能控制系统原理随着社会对能源需求的日益增长,节能减排已成为当今社会发展的重要课题。

中央空调系统作为建筑能耗的主要部分,其节能控制系统的研究与应用具有重要意义。

本文将介绍高效中央空调节能控制系统的原理,主要包含控制策略原理、能源管理系统、负荷计算与预测、自动化控制系统、能效分析算法、智能化能源优化以及系统集成优化等方面。

一、控制策略原理高效中央空调节能控制系统的核心是控制策略。

通过设定合理的温度、湿度等控制参数,实现对空调系统运行状态的调节。

常用的控制策略包括PID控制、模糊控制、神经网络控制等。

这些控制策略可根据环境变化、负荷变化等情况实时调整空调的运行状态,实现高效节能。

二、能源管理系统能源管理系统是中央空调节能控制系统的关键组成部分。

该系统通过收集建筑物内各种能耗数据,进行统计和分析,为节能控制提供数据支持。

同时,能源管理系统还能根据能耗情况制定相应的节能措施,如优化运行时间、调整运行模式等,从而降低空调系统的能耗。

三、负荷计算与预测负荷计算与预测是实现中央空调节能控制的重要依据。

通过实时监测室内外温度、湿度等参数,以及建筑物的特性,可以对空调系统的负荷进行计算。

同时,利用历史数据和气象数据等,可以对未来一段时间内的负荷进行预测,为节能控制提供依据。

四、自动化控制系统自动化控制系统是实现中央空调节能控制的必要手段。

该系统通过传感器、执行器等设备,实现对空调系统运行状态的实时监测和自动调节。

当室内外温度、湿度等参数发生变化时,自动化控制系统能够自动调整空调的运行状态,确保室内环境的舒适度,同时实现节能。

五、能效分析算法能效分析算法是评估中央空调系统运行效率的重要工具。

通过建立数学模型,能效分析算法可以对空调系统的能耗进行定量分析,找出节能潜力。

在此基础上,制定相应的节能措施,提高空调系统的运行效率,降低能耗。

六、智能化能源优化智能化能源优化是中央空调节能控制系统的发展方向。

通过引入人工智能技术,如深度学习、机器学习等,可以对空调系统的运行状态进行智能分析和优化。

中央空调智能控制系统解决方案

中央空调智能控制系统解决方案
中央空调智能控制系统解决方案
目录
• 引言 • 中央空调智能控制系统的需求分析 • 中央空调智能控制系统的设计 • 中央空调智能控制系统的实施与部署 • 中央空调智能控制系统的效益分析 • 中央空调智能控制系统的未来发展展望
01 引言
目的和背景
随着现代建筑的不断发展,中央空调系统在建筑能耗中占据 了相当大的比例。为了实现节能减排,提高能源利用效率, 中央空调的智能化控制成为了研究的热点。
通过智能控制技术,优化空调系统的运行模式和参数,提高能源利用效率。
03 中央空调智能控制系统的 设计
系统架构设计
集中式架构
01
将所有设备集中在一个中心节点进行管理和控制,实现高效的
数据交换和集中管理。
分散式架构
02
将系统划分为多个子系统,每个子系统具有独立的控制和监测
功能,实现分布式管理和控制。
02 中央空调智能控制系统的 需求分析
能效管理需求
节能降耗
通过智能控制技术,实现空调系 统的节能运行,降低能源消耗和 运行成本。
温度控制
根据室内外温度变化,自动调节 空调系统的温度,保持室内舒适 度。
舒适度管理需求
湿度控制
根据室内湿度情况,自动调节空调系 统的湿度,保持室内湿度适宜。
空气质量监测
通过物联网技术,中央空调智能控制系统可以实现远程升级与维护,用户可以通过手机或电脑随时监测和控制系 统的运行状态,及时发现和解决问题。
定期保养与维护
为了确保系统的稳定性和可靠性,用户应定期对中央空调智能控制系统进行保养和维护,包括清洗滤网、检查线 路、更换磨损部件等。
THANKS FOR WATCHING
感谢您的观看
噪音控制

中央空调智能群控节能系统改造与设计

中央空调智能群控节能系统改造与设计

中央空调智能群控节能系统改造与设计目前,我国社会正处于高速发展阶段,人们的生活质量和生活水平迅速提升,中央空调已经广泛的应用到了现代建筑中。

但老式的中央空调不具备智能控制系统,能耗很高,造成了大量能源的浪费,这与现代人们提倡的环保节约理念不相符。

为了改变这种状况,文章针对老式中央空调能耗高以及非智能调控的缺陷,改造并设计出了中央空调智能群控节能系统。

本系统应用了变频设备,改造了线路,使温度传感器与电动阀能够智能的控制进出水,并且通过对人机交互界面的应用,实现了中央空调的远程智能控制。

通过对该系统的运行研究证明,中央空调智能群控节能系统可以有效的降低中央空调的能耗。

标签:中央空调;智能群控;节能系统;改造与设计现在,中央空调已经在人们的生活和工作中被广泛应用,通常情况下,其能耗大约能够占据建筑总能源消耗的百分之五十五。

但是,因为中央空调系统具有成本高、寿命长、维修费用低等特点,所以除了最新的建筑之外,目前大多数中央空调的控制系统使用的还是老式的系统。

老式中央空调的控制系统应用的是手动控制的,所以它无法根据环境、季节以及用户负荷的变化来进行相应的调整,导致系统中的设备长期处于工频状态,这种状态下浪费了非常多的电能,而且空调运行时会产生非常大的噪音,对周围造成严重的污染。

所以,对老式空调的系统进行智能化节能改造,降低中央空调的能耗,是符合当前可持续发展的理念的。

文章通过对老式中央空调系统的研究,设计出了相应的智能节能系统。

该控制系统内应用了变频变压技术以及人机交互技术,使操作人员能够通过触摸屏进行风机、主机与水泵的开启和关闭操作,并且能够根据用户的负荷来智能调整冷却泵的转速以及主机数量。

通过对该系统实际运行情况的研究,证明该系统可以满足实际需求,并且降低了能量消耗,达到了节约电能的目的。

1 中央空调系统进行变频改造的节能原理中央空调和家用小型空调的温度控制方式是不同的,家用空调是直接把风吹到散热器上面得到热风与冷风,而中央空调主要通过对循环水加热与降温,在循环水经过用户房间时,用户房间内设置的风机会将风吹向散热器,使风被制冷或者加热,从而使用户获得适宜的温度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中央空调节能自控管理系统
一、背景
长期以来,随着中央空调在公共建筑中的普及应用,所产生的“高能耗”带来的负担也日益加剧。

据统计,建筑能耗约占全社会总能耗的,其中最大的能耗就是由中央空调系统产生的。

这与国家所倡导的美丽中国、节能低碳、绿色环保等趋势显得格格不入。

以一座每天总耗电量高达数千度的商务大楼为例,其中有接近40%到50%的电量是被中央空调系统消耗掉的。

因此,如何实现中央空调的节能控制成为摆在我们面前的一个重要问题。

二、现状
目前市场上做空调节能自控的厂家多为机房自控,将末端与机房连接起来的只有郑州春泉暖通节能设备有限公司。

郑州春泉是“当量能量计费方法”的奠基人,空调末端的数据可实时采集,瘵末端需要的能量传递到机房中心,改变了从“送多少用多少”或是“送不出去了再不送”到“用多少送多少”的局面,有效地解决了能源的浪费问题。

三、原理
郑州春泉节能股份有限公司自主研发的“中央空调节能自控管理系统”就是针对传统中央空调系统运行中存在大量能耗问题而研发的高科技产品,由中央空调末端能耗监控系统和能源中心集中监控系统两个子系统组成,利用中央空调末端能耗检测系统的实时数据和能源中心设备的运行特性,采用负荷随动的专利技术,在确保中央空调系统安全和舒适的前提下,同步调节中央空调主机能量输出,实现运行能效最大化,降低系统能耗。

四、技术
中央空调节能自控管理系统采用了“实时监测”、“负荷随动”等优势技术,使用现场编辑和就地数字化方法,使产品在实际应用中安装方便,使用简单,最终达到节能环保、减少使用成本和延长中央空调系统使用寿命的效果。

其中采用的实时监测系统能进行全天候自动检测,实现高度实时的状态监测、能耗分析及故障报警等功能。

而“负荷随动”技术则是一种以中央空调系统为模型对
象,以中央空调主机为服务核心,以调整负荷为手段的中央空调节能技术。

中央空调节能自控管理系统能有效地根据末端能耗状态自动调节中央空调能量输出,明显节约中央空调能耗,并且通过对末端各风盘运行状态的实时监控,在保证系统安全人体舒适度的前提下达到节能的效果。

五、组成
中央空调节能自控管理系统主要由四部分组成:
管理平台、总控器、现场控制器和末端监测设备。

(一)节能自控的指挥部——管理平台
管理平台是中央空调节能自控管理系统最重要的组成部分,其中“负荷随动”就是在这个平台上实现的,平台采用B/S架构,管理人员只要有一台装有浏览器并能连接到服务器的电脑就可以访问平台,在平台上可以监测机房的表记数据信息以及远程控制空调主机。

平台根据末端负荷和管理员的设置来调节变频器的输出,从而达到“用户用多少,中央空调供多少”的节能效果。

不仅如此,管理平台还能帮助管理人员分析能耗,总结切实可行的节能办法,而且能生成报表或者曲线图供管理人员参考,这些数据对于节能减排非常重要,也是中央空调节能自控管理系统的提高经济效益的体现。

(二)承上启下的发令官——总控器
总控器担负着承上启下的重任,在整个系统的正常运转中起着关键作用。

总控器是管理平台命令的执行者,并可脱离管理平台独立工作。

总控器能完全胜任中央空调的日常管理工作,用户的电脑不需要24小时开机,总控器与管理平台相比,具有能耗更小和运行更稳定的特点,并且带有触摸功能的显示屏,以形象直观的动态图形方式显示设备的运行情况。

总控器还具有现场编辑功能,无论客户的中央空调的配置如何变化,总控器都能根据现场的实际情况在很短的时间内进行编辑,实现全中文图形化操作界面。

(三)现场指挥的负责人——现场控制器
现场控制器的功能是实时采集末端设备的监测数据,为管理平台和总控器提供最新、最有效的数据。

现场控制器的触摸屏直观的显示现场设备的运行情况,并提供了一些简单的操作。

现场控制器还肩负着开启和关闭中央空调的重任,并能通过调节变频器的输出,在满足用户舒适度的前提下,实现能效最大化。

(四)永不言累的巡逻兵——末端监测设备
末端监测设备是中央空调节能自控管理系统的最小单元,主要功能是进行现场监测和计量,可实现对各个设备的温度、压力、流量等数据和末端风盘运行状态的采集。

六、总结
在中央空调能源消耗量巨大的今天,春泉节能中央空调节能自控管理系统的出现为节能减排提供了有效的方式,承担了企业应有的社会责任,履行了春泉“致力于建筑环境与节能”的企业使命,响应了国家提倡的美丽中国、节能环保的号召。

空调节能,春泉先行!。

相关文档
最新文档