电路实验报告材料参考直流
直流电路测量实验报告
竭诚为您提供优质文档/双击可除直流电路测量实验报告篇一:直流电路的基本测量(完整版)直流电路的基本测量1.实验目的(1)学习万用表的使用(2)学习电阻,电流,电压和电位的测量(3)验证基尔霍夫电流定律和电压定律3.(1)电压与电位在电路中,某一点的电位是指该点到参考点之间的电压值。
各点电位的高低视所选的电位参考点的不同而变的,参考点的电位为零,比参考点电位高者为正,低者为负。
电位是相对的,参考点选取的不同,同一点的电位值不同。
但电压是任意两点的电位差,它是绝对的。
(2)基尔霍夫定律基尔霍夫定律分为电流定律(KcL)和电压定律(KVL)。
KcL应用于节点,KVL应用于回路。
KcL内容:对于电路的任意一个节点,任意时刻,流入节点的电流的代数和等于零。
其表达式为∑I=0KVL内容:对于电路中的任意一个回路,任意时刻,沿回路循环方向各部分电压的代数和等于零。
其表达式为∑u=04.实验内容(1)电阻的测量1)将万用表红表笔插入标有“+”的孔中,“—”的孔中;2)采用数字万用表2kΩ档进行测量,无需调零,测量后直接在显示屏上读数;3)将结果填入下表中(2)电流的测量按图1-38所示连接电路。
测量电流可以用指针式万用表,也可以用数字式万用表。
为保证测量读数的精确,选用数字式万用表测量,将量程转换开关转到DcA位置20mA档位,断开被测支路,将万用表串联进相应的支路,将测量结果记入表1-3中Fu1u2b+e1-R4510ΩR5330Ωc图1-38直流电路基本测量实验电路e2(3)电压的测量电路如图1-38所示,测量电压可以用指针式万用表,也可以用数字式万用表。
为保证测量读数的精确,选用数字式万用表,将量程转换开关转到DCV位置20V档位,断开被测支路。
将万用表并联在被测元件两端进行测量,将测量结果记入表1-4中(4)电位的测量选取A为参考点,分别测量B,C,D,e,F各点的电位,计算两点之间的电压值,将测量结果记入表1-5中,再以D为参考点,重复上述实验的内容,将测量结果记入表1-5中公式:?当电位参考点为A点:uAD=VA-VD=0-(-4.04)=4.04ubF=Vb-VF=6.04-1.0=5.04uce=Vc-Ve=(-6.05)-(-5.04)=-1.01?当电位参考点为D点:uAD=VA-VD=4.04-0=4.04ubF=Vb-VF=10.10-5.05=5.05uce=V c-Ve=(-2.0)-(-0.99)=-1.01总结:分析实验中得出的数据。
模电实验报告直流稳压电源
模电实验报告直流稳压电源
您好,关于模拟电路实验报告中的直流稳压电源部分,我们可以提供一些参考内容:
1. 实验目的:
掌握直流稳压电源的基本原理,设计并制作一个稳压电源电路,使用万用表测量电压稳定度及负载调节率,并记录实验数据。
2. 实验原理:
直流稳压电源电路由变压器、整流滤波电路、稳压电路三部分组成。
变压器主要作用是将市电电压(一般为220V)降压为电路需要的低电压,同时也起到隔离交流电源的作用。
整流滤波电路主要作用是将交流电压转换为直流电压,并通过电容滤波去除交流信号中的纹波。
稳压电路主要作用是稳定输出电压,防止由于负载变化等原因导致输出电压波动。
3. 实验步骤:
a. 按照电路图自行设计一份直流稳压电源电路,并将电路图附在报告中;
b. 根据电路图,选好相应的电器件并进行焊接;
c. 将稳压电路的输出接到万用表上,测量输出电压稳定度及负载调节率;
d. 记录实验数据,并进行分析。
4. 实验数据:
在不同负载下,测得的输出电压及电压稳定度数据如下表所示:
负载电流(mA)输出电压(V)电压稳定度
10 5.00 ±0.01V
50 5.02 ±0.02V
100 5.05 ±0.03V
500 5.01 ±0.04V
由上表数据可以看出,随着负载电流增加,电压略有波动,但稳定度很高,波动范围较小。
5. 实验结论:
本次实验,我们成功设计并制作了一份直流稳压电源电路,并通过测量实验验证了输出电压稳定度较高,波动范围很小的结论。
这对于电子电路的实验和应用有很大的参考价值。
电工实验直流电路实验报告
电工实验直流电路实验报告篇一:电工与电子技术实验报告XX实验一电位、电压的测量及基尔霍夫定律的验证一、实验目的1、用实验证明电路中电位的相对性、电压的绝对性。
2、验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。
3、掌握直流电工仪表的使用方法,学会使用电流插头、插座测量支路电流的方法。
二、实验线路实验线路如图1-1所示。
DAE12BC图1-1三、实验步骤将两路直流稳压电源接入电路,令E1=12V,E2=6V(以直流数字电压表读数为准)。
1、电压、电位的测量。
1)以图中的A点作为电位的参考点,分别测量B、C、D各点的电位值U及相邻两点之间的电压值UAB、UCD、UAC、UBD,数据记入表1-1中。
2)以C点作为电位的参考点,重复实验内容1)的步骤。
2、基尔霍夫定律的验证。
1)实验前先任意设定三条支路的电流参考方向,如图中的I1,I2,I3所示,熟悉电流插头的结构,注意直流毫安表读出电流值的正、负情况。
2)用直流毫安表分别测出三条支路的电流值并记入表1-2中,验证?I=0。
3)用直流电压表分别测量两路电源及电阻元件上的电压值并记入表1-2中,验证?U=0。
四、实验数据表1-1表1-2五、思考题 1、用万用表的直流电压档测量电位时,用负表棒(黑色)接参考电位点,用正表棒(红色)接被测各点,若指针正偏或显示正值,则表明该点电位参考点电位;若指针反向偏转,此时应调换万用表的表棒,表明该点电位参考点电位。
A、高于B、低于 2、若以F点作为参考电位点,R1电阻上的电压 ()A、增大B、减小C、不变六、其他实验线路及数据表格图1-2表1-3 电压、电位的测量实验二叠加原理和戴维南定理一、实验目的1、牢固掌握叠加原理的基本概念,进一步验证叠加原理的正确性。
2、验证戴维南定理。
3、掌握测量等效电动势与等效内阻的方法。
二(转载自:小草范文网:电工实验直流电路实验报告)、实验线路1、叠加原理实验线路如下图所示DE1IAIB2C图2-12、戴维南定理实验线路如下图所示ALB图2-2三、实验步骤1、叠加原理实验实验前,先将两路直流稳压电源接入电路,令E1=12V,E2=6V。
直流电路的测量实验报告
直流电路的测量实验报告实验目的1.熟悉直流电路的测量和分析方法。
2.熟悉直流电源、电压表、电流表的使用法及其特性。
实验仪器和器材1.实验仪器直流稳压电源型号:IT6302台式多用表型号:UT805A2.实验(箱)器材电路实验箱元器件:电阻(功率1/2W:100,330,470,510x3,1k);二极管(1N4148)3.实验预习的虚拟实验平台NIMultisim3.实验内容1.测量电阻串联分压电路和并联分流电路。
分析:串联电路总电压为器件分压电压之和,并联电路总电流为支路电流之和。
2.测量直流电源开路电压VS和带负载电压VR。
分析:直流电源可等效为一个理想电压源串联内阻r的电路。
3.测量3回路2激励源电阻线性电路。
分析:节点电流之和为零;回路电压之和为零,测量2激励源分别单独作用电路时的电压或电流。
分析:与2激励源— 1 —共同作用时值的关系:线性电路可叠加。
4.实验原理1.电阻串联与并联电路串联电路电流相同,具有分压作用U=U1+U2并联电路电压相同,具有分流作用I=I1+I22.仪器仪表内阻的影响及激励源内阻的测量a.激励源等效内阻激励源可等效为一个理想电压源VS(电流源)和内阻r串联(并联)电路。
当外加负载输出电流时,激励源端口电压会下降,内阻大下降多,电流大下降多。
等效内阻r的测量:先测开路电压:US=VS再测短路电流(内阻大时):ISr=US/IS或测量外加负载电阻R时的电压(内阻小时):URr=(US-UR)R/UR差值法由于直流电压源等效内阻较小,空载与加负载时的电压变化较小,为了减小测量误差常采用差值法测量△U(US-UR)。
测量电压时电压表的正极接被测电压源正极,电压表的负极接另外一个比较电压源的正极(两电压源负极相连),将比较电压源的电压调整到被测电压源空载时相同,这时电压表为0,被测电压源接负载时,电压表为△U— 2 —r=△UR/URb.仪器仪表内阻:电压表内阻大,电流表内阻小。
直流电路实验报告
直流电路实验报告直流电路实验报告一、实验目的:1. 了解直流电路的基本组成和工作原理;2. 掌握直流电路中的电流、电压的测量方法;3. 学习使用电路元件进行电路搭建;4. 通过实验验证欧姆定律和基尔霍夫定律。
二、实验仪器和材料:实验仪器:直流电源、万用表、电阻箱、导线等。
实验材料:电阻、电流表、电压表等。
三、实验原理:1. 欧姆定律:欧姆定律指出,在一个导体上的电流I与其两端的电压V成正比,即I = V/R,其中R为导体的电阻。
2. 基尔霍夫定律:基尔霍夫定律包括两条定律:(1)电流定律:在任意一个电路节点中,流入该节点的电流等于流出该节点的电流之和。
(2)电压定律:沿着闭合电路的任意一条闭合回路,电压源电压之和等于电阻器电压之和。
四、实验步骤:1. 连接电路:使用导线连接直流电源的正、负极,接入一个电流表。
再将电流表的另一端分别接入不同大小的电阻。
2. 测量电压:使用导线连接直流电源的正、负极,接入一个电压表。
分别在不同的位置测量电路中的电压。
3. 设置电阻值:通过拧动电阻箱上的旋钮,设置不同大小的电阻值。
4. 记录实验数据:分别记录电流表的示数和电压表的示数,以便后续分析计算。
五、实验结果和分析:根据实验测量数据计算得到的电阻值与设置的电阻箱值之间存在一定的误差。
这可能是由于电阻箱本身的精度问题,或者是测量仪器的误差所致。
不过整体来说,实验结果与理论值比较接近,验证了欧姆定律和基尔霍夫定律。
六、实验心得:通过本次实验,我更加深入地了解了直流电路的基本原理和测量方法。
实验过程中,我学会了正确连接电路、测量电流电压,并且熟悉了使用电阻箱调节电阻值。
在实验中,我还注意到了测量仪器的精度对于实验结果的影响,并且学会了如何减小误差。
这次实验对我来说是一次很有意义的学习经历,增强了我的实验操作能力和实验数据处理能力。
直流的测量实验报告
直流的测量实验报告实验目的本实验旨在探究直流电路中电压、电流、电阻以及电功率的测量方法,并加深对直流电路的了解。
实验器材- 直流电源- 万用表- 电阻- 电流表实验原理直流电路是电流方向不变的电路,电流和电压的大小相对稳定。
所使用的电源为直流电源,电流表为直流电流表。
- 电压测量方法:将万用表设为电压档位,将其正负极分别接触待测电路两端,并读取测量结果。
- 电流测量方法:将电流表接入待测电路中,读取测量结果。
- 电阻测量方法:将电阻连接在电路中,再将电阻两端用万用表测量电压,根据欧姆定律计算电阻值。
- 电功率测量方法:通过测量电压和电流,利用公式P = U \times I 计算电功率值。
实验步骤1. 准备实验器材,并确认电路连线无误。
2. 打开直流电源,调节电压到设定值。
3. 通过万用表测量电压,记录数据。
4. 通过电流表测量电流,记录数据。
5. 将电阻连接在电路中,测量电压,计算电阻值。
6. 利用测量的电压和电流值,计算电功率。
实验数据与结果在3V的电压下,电流表测量结果为0.5A。
连接电阻后测得电压为2V,根据欧姆定律可得电阻值为4Ω。
根据公式P = U \times I,计算得电功率为3V * 0.5A = 1.5W。
分析与讨论实验结果表明,在直流电路中,电流和电压的关系符合欧姆定律,电阻值可以通过电压和电流求得。
实验中测量的电功率与计算值相符,说明实验方法可行。
实验总结通过本次实验,我了解了直流电路的测量方法,并通过计算、测量确认了测量方法的准确性。
同时,我也进一步理解了电流、电压、电阻以及电功率在直流电路中的相互作用。
参考文献。
直流基本实验报告
直流基本实验报告实验名称:直流基本实验实验目的:通过实验了解直流电路的基本原理和实验技能,熟悉直流电源的使用方法,掌握测量电压和电流的方法。
实验器材:直流电源、电流表、电压表、电阻、导线等。
实验原理:直流电路是指电荷流动的方向保持不变的电路。
直流电路的主要特点是电荷只能单向流动,电流大小恒定不变。
在直流电路中,电流沿着电路先从正极流向负极,再由负极流向正极。
熟悉直流电路的组成和特点十分重要,能够为日常生活和工作中电器电路的使用提供基础。
实验步骤:1. 连接电路:首先将直流电源的正极和负极依次与电路中的元件连接好,确保电路连接正确。
2. 测量电压:将电压表的正极和负极分别连接到需要测量电压的两个点上,并读取电压表上的示数。
注意,示数是指电压表上的数字显示,单位是伏特(V)。
3. 测量电流:将电流表连接到电路中需要测量电流的位置上,并读取电流表上的示数。
注意,示数是指电流表上的数字显示,单位是安培(A)。
4. 改变电路:可以通过改变电路中的元件,如改变电阻的大小,来观察电路中电压和电流的变化规律。
5. 做记录:根据实际测量结果,记录电压和电流的大小,并对电路的各种变化进行分析。
数据处理与结果分析:根据实际测量结果,我们可以计算出电路中电的功率、电阻和电压的关系等。
通过对实验数据进行分析,我们可以得出一些结论,如电流大小与电压成正比,电阻大小和电流成反比等。
实验结论:通过本次实验,我了解了直流电路的基本原理和实验技能。
通过测量电压和电流,我对电路中电压和电流的变化规律有了更深入的了解。
另外,我还学会了使用直流电源和测量仪器,为以后实验和工作中的电路测试打下了基础。
实验心得:通过本次实验,我对直流电路的基本原理和实验技能有了更深入的了解。
实验中我遇到了一些问题,比如如何正确连接电路,如何使用电压表和电流表进行测量等,但通过仔细阅读实验指导书和老师的指导,我逐渐掌握了这些操作技巧。
同时,实验过程中,我还发现了一些实验数据与理论计算结果存在一定的差距,通过思考和讨论,我认识到这可能是由于实验中存在测量误差或电路组成的不完善等原因。
电工直流电路实验报告
电工直流电路实验报告实验目的:通过搭建直流电路,探究电阻、电流、电压和电功率的关系,加深对直流电路的理解。
实验器材和材料:1. 直流电源2. 电阻3. 万用表4. 连接导线实验步骤:1. 搭建直流电路,电源正极连接电阻的一端,负极连接电阻的另一端。
2. 用万用表分别测量电阻两端电压和电流,记录数据。
3. 分别更换不同阻值的电阻,按照同样的方法测量电压和电流,记录数据。
4. 分析实验结果,绘制电流、电压、电功率随电阻变化的曲线图。
实验结果及分析:在搭建的实验电路中,随着电阻阻值的增加,电阻两端的电压也随之增加,而电路中的电流却随之减小。
这说明在直流电路中,电流和电压是成反比例关系的,即如果电压增大,则电流减小;如果电压减小,则电流增大。
同时,根据计算公式P=UI,可以得出电功率也随着电阻的变化而变化。
当电阻阻值越大时,通过电路的电流越小,因此在实验结果图中,电功率随电阻值的增大而逐渐减小。
实验结论:通过本次实验,我们得出了以下结论:1. 直流电路中,电流和电压呈反比例关系。
2. 直流电路中,电阻越大,电路中的电流越小,电功率也随之减小。
实验反思:在本次实验过程中,我们遇到的主要问题是电源电压不稳定,导致实验结果有一定误差。
在今后的实验中,我们需要更加注意实验器材的选用和使用,保证实验结果的准确性和可靠性。
总结:本次实验通过实际的搭建直流电路以及实验数据的记录和分析,深入探究了电阻、电流、电压和电功率之间的关系。
通过本次实验,我们对直流电路的运作原理有了更加深入的了解。
电路实验报告参考直流
+-U2U 1R 2R I +-VR V图 2-1AR A串入A R AmI IRI AI R图 2-2S可调恒流源实验报告参考〔直流局部〕实验一根本实验技术一、 实验目的:1. 熟悉电路实验的各类仪器仪表的使用方法。
2. 掌握指针式电压表、电流表内阻的测量方法及仪表误测量误差的计算。
3. 掌握线性、非线性电阻元件伏安特性的测绘。
4. 验证电路中电位的相对性、电压的绝对性。
二、需用器件与单元: 序号 名称型号、规格 数量 备注 1 多路可调直流电源 LPS323D12 直流电流表 IEC60092–504 13 直流电压表 GB/T7676–1998 14 电路实验箱 YYDG-*A1 15数字万用表VCTOR VC9807A+ 1三、实验内容:(一) 电工仪表的使用与测量误差及减小误差的方法 A 、根本原理:通常,用电压表和电流表测量电路中的电压和电流,而电压表和电流表都具有一定的内阻,分别用R V 和R A 表示。
如图2-1所示,测量电阻R 2两端电压U 2时,电压表与R 2并联,只有电压表内阻R V无穷大,才不会改变电路原来的状态。
如果测量电路的电流I ,电流表串入电路,要想不改变电路原来的状态,电流表的内阻R A 必须等于零,。
但实际使用的电压表和电流表一般都不能满足上述要求,即它们的内阻不可能为无穷大或者为零,因此,当仪表接入电路时都会使电路原来的状态产生变化,使被测的读数值与电路原来的实际值之间产生误差,这种由于仪表内阻引入的测量误差,称之为方法误差。
显然,方法误差值的大小与仪表本身内阻值的大小密切相关,我们总是希望电压表的内阻越接近无穷大越好,而电流表的内阻越接近零越好。
可见,仪表的内阻是一个十分关注的参数。
通常用以下方法测量仪表的内阻: 1.用‘分流法’测量电流表的内阻设被测电流表的内阻为R A ,满量程电流为I m,测试电路如图2-2所示,首先断开开关S,调节恒流源的输出电流I,使电流表指针到达满偏转,即I =I A =I m。
直流充放电实验报告(3篇)
第1篇一、实验目的1. 了解直流充放电的基本原理和过程。
2. 掌握直流电源、电压表、电流表的使用方法及其特性。
3. 熟悉直流电路的测量和分析方法。
4. 通过实验验证直流电路中电压、电流、电阻之间的关系。
二、实验原理直流充放电实验是研究直流电路中电能储存、转换和释放过程的基本实验。
在实验中,通过向蓄电池组充电和放电,观察和分析电路中的电压、电流、电阻等参数的变化规律。
三、实验仪器与器材1. 直流稳压电源2. 电压表3. 电流表4. 电阻5. 电容器6. 蓄电池组7. 导线8. 连接器9. 实验台四、实验步骤1. 连接电路按照实验电路图连接好直流电源、电压表、电流表、电阻、电容器和蓄电池组等器材。
2. 充电过程将蓄电池组接入电路,观察并记录充电过程中电压、电流、电阻等参数的变化。
3. 放电过程将蓄电池组从电路中断开,观察并记录放电过程中电压、电流、电阻等参数的变化。
4. 数据分析根据实验数据,分析充电和放电过程中电压、电流、电阻等参数的变化规律,验证直流电路中电压、电流、电阻之间的关系。
五、实验结果与分析1. 充电过程在充电过程中,电压逐渐升高,电流逐渐减小,电阻逐渐增大。
这是因为在充电过程中,电能被储存到蓄电池组中,电压升高,电流减小,电阻增大。
2. 放电过程在放电过程中,电压逐渐降低,电流逐渐增大,电阻逐渐减小。
这是因为在放电过程中,蓄电池组释放储存的电能,电压降低,电流增大,电阻减小。
3. 数据分析根据实验数据,可以得出以下结论:(1)在充电过程中,电压与电流成反比,电阻与电流成正比。
(2)在放电过程中,电压与电流成反比,电阻与电流成反比。
(3)直流电路中,电压、电流、电阻之间的关系符合欧姆定律。
六、实验总结通过本次实验,我们了解了直流充放电的基本原理和过程,掌握了直流电源、电压表、电流表的使用方法及其特性,熟悉了直流电路的测量和分析方法。
同时,通过实验验证了直流电路中电压、电流、电阻之间的关系,加深了对直流电路的理解。
直流电路测量实验报告
一、实验目的1. 熟悉直流电路的基本测量方法和步骤;2. 掌握电压表、电流表的使用方法;3. 了解电阻、电容、电感等基本元件的伏安特性;4. 分析电路中电压、电流、电阻等参数之间的关系。
二、实验原理直流电路是指电路中电流的方向和大小始终保持不变的电路。
在直流电路中,电压、电流、电阻等参数之间存在一定的关系。
根据欧姆定律,电路中的电流I与电压U、电阻R之间的关系为:I = U/R。
此外,基尔霍夫定律指出,电路中任意节点处电流之和为零,任意回路中电压之和为零。
三、实验仪器与器材1. 实验箱:直流稳压电源、万用表、电流表、电压表、电阻、电容、电感、导线等;2. 虚拟实验平台:Multisim软件。
四、实验内容1. 测量电阻元件伏安特性;2. 测量电容元件伏安特性;3. 测量电感元件伏安特性;4. 测量直流电路中的电压、电流、电阻等参数;5. 分析电路中电压、电流、电阻等参数之间的关系。
五、实验步骤1. 测量电阻元件伏安特性:(1)将电阻元件接入电路,连接好电压表和电流表;(2)调节稳压电源输出电压,记录不同电压下电阻元件的电流值;(3)根据实验数据,绘制电阻元件的伏安特性曲线。
2. 测量电容元件伏安特性:(1)将电容元件接入电路,连接好电压表和电流表;(2)调节稳压电源输出电压,记录不同电压下电容元件的电流值;(3)根据实验数据,绘制电容元件的伏安特性曲线。
3. 测量电感元件伏安特性:(1)将电感元件接入电路,连接好电压表和电流表;(2)调节稳压电源输出电压,记录不同电压下电感元件的电流值;(3)根据实验数据,绘制电感元件的伏安特性曲线。
4. 测量直流电路中的电压、电流、电阻等参数:(1)搭建直流电路,连接好电压表、电流表和电阻元件;(2)调节稳压电源输出电压,记录电路中的电压、电流和电阻值;(3)分析电路中电压、电流、电阻等参数之间的关系。
六、实验结果与分析1. 电阻元件伏安特性曲线:通过实验,绘制出电阻元件的伏安特性曲线,发现电阻元件的伏安特性为线性关系。
电工实验直流电路实验报告
竭诚为您提供优质文档/双击可除电工实验直流电路实验报告篇一:电工实验报告电工学、电子技术实验报告课程名称:高级电工电子实验实验名称:高级电子实验一、二、三姓名:蒋坤耘学号:班级:安全指导老师:20XXA20XX0920XX01刘泾年12月23日实验一晶体管单管放大电路的测试一、实验目的:1.学会放大器静态工作点的测量和测试方法,分析静态工作点对放大器性能的影响2.掌握放大器电压放大倍数的测试方法3.进一步掌握输出电阻、输入电阻、最大步失真输出电压的测试方法二、实验原理1.实验电路2.理论计算公式三、实验内容与步骤:(1)照图用专用导线接好电路(2)静态工作点测试接通电源,并按实验电路图接好函数发生器和示波器,函数发生器调整为1khz,4V左右。
用实验法调好静态工作点,使Vi?0,测试并记下Vb,Ve,Vc及VRb2?Rw。
填入表一中(3)放大倍数测试在上一步基础上,用示波器或毫伏表分别测量RL?oo及RL?2.4kΩ时输出电压Vi和输出电压V0,并计算(:电工实验直流电路实验报告)放大倍数,填入表二中(4)观察工作点对输出波形V0的影响保持输入信号不变,增大和减小Rw,观察V0波形变化,测量并记录表一表三四、实验设备1.晶体管直流稳压电源(型号Dh1718)2.调节输出电压+12V3.低频信号发生器4.双踪示波器5.交流毫伏表6.数字万用表7.晶体三极管8.电位器9.电阻、电解电容器五、误差分析下面从静态工作点、电压放大倍数、输入电阻、输出电阻之值与理论计算值比较(取一组数据进行比较),分析产生误差原因。
基准电压Vb太高,使得Ve=Vb增高而使uce相对的减小了,因为影响实验。
输入输出电阻选择不够合理,导致实验误差,影响实验。
温度的升高使得偏置电流Ib能自动的减小以限制Ic的增大。
实验二集成运算放大器的线性应用验证机仿真一、实验目的:1、进一步理解典型集成运算放大线性运算的原理。
2、掌握集成运放调零的方法。
电工实验直流电路实验报告
电工实验直流电路实验报告篇一:电工与电子技术实验报告XX实验一电位、电压的测量及基尔霍夫定律的验证一、实验目的1、用实验证明电路中电位的相对性、电压的绝对性。
2、验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。
3、掌握直流电工仪表的使用方法,学会使用电流插头、插座测量支路电流的方法。
二、实验线路实验线路如图1-1所示。
DAE12BC图1-1三、实验步骤将两路直流稳压电源接入电路,令E1=12V,E2=6V(以直流数字电压表读数为准)。
1、电压、电位的测量。
1)以图中的A点作为电位的参考点,分别测量B、C、D各点的电位值U及相邻两点之间的电压值UAB、UCD、UAC、UBD,数据记入表1-1中。
2)以C点作为电位的参考点,重复实验内容1)的步骤。
2、基尔霍夫定律的验证。
1)实验前先任意设定三条支路的电流参考方向,如图中的I1,I2,I3所示,熟悉电流插头的结构,注意直流毫安表读出电流值的正、负情况。
2)用直流毫安表分别测出三条支路的电流值并记入表1-2中,验证?I=0。
3)用直流电压表分别测量两路电源及电阻元件上的电压值并记入表1-2中,验证?U=0。
四、实验数据表1-1表1-2五、思考题 1、用万用表的直流电压档测量电位时,用负表棒(黑色)接参考电位点,用正表棒(红色)接被测各点,若指针正偏或显示正值,则表明该点电位参考点电位;若指针反向偏转,此时应调换万用表的表棒,表明该点电位参考点电位。
A、高于B、低于 2、若以F点作为参考电位点,R1电阻上的电压 ()A、增大B、减小C、不变六、其他实验线路及数据表格图1-2表1-3 电压、电位的测量实验二叠加原理和戴维南定理一、实验目的1、牢固掌握叠加原理的基本概念,进一步验证叠加原理的正确性。
2、验证戴维南定理。
3、掌握测量等效电动势与等效内阻的方法。
二(转载自:小草范文网:电工实验直流电路实验报告)、实验线路1、叠加原理实验线路如下图所示DE1IAIB2C图2-12、戴维南定理实验线路如下图所示ALB图2-2三、实验步骤1、叠加原理实验实验前,先将两路直流稳压电源接入电路,令E1=12V,E2=6V。
直流电路实验报告doc
直流电路实验报告篇一:直流电路实验内容实验一直流电路一、实验目的1.学习使用数字万用表测量电阻与交、直流电压;2.验证基尔霍夫电压定律及电流定律,加深对正方向的理解;3.验证线性电路的叠加原理;4.验证戴维南定理和诺顿定理,学会测量戴维南等效电路中的开路电压、诺顿等效电路中的短路电流及等效内阻的方法;5.自拟电路验证负载上获得最大功率的条件。
二、实验原理1.基尔霍夫定律(1) 基尔霍夫电流定律:电路中,某一瞬间流入和流出任一节点的电流的代数和等于零,即∑I=0。
(2)基尔霍夫电压定律:电路中,某一瞬间沿任一闭合回路一周,各元件电压降的代数和等于零,即∑U =0。
2.叠加原理在具有多个独立电源的线性电路中,一条支路中的电流或电压,等于电路中各个独立电源分别作用时,在该支路中所产生的电流或电压的代数和。
值得注意的是,叠加原理只适用于电流或电压的计算,不适用于功率的计算。
3.等效电源定理(1)戴维南定理:一个线性有源二端网络,可以用一个理想电压源和一个等效电阻串联构成的电压源等效代替。
等效电压源的源电压为有源二端网络的开路电压;串联电阻为有源二端网络中所有独立电源作用为零时的无源二端网络的等效电阻。
(2)诺顿定理:一个线性有源二端网络,可以用一个理想电流源和一个等效电阻并联构成的电流源等效代替。
等效电流源的源电流为有源二端网络的短路电流;并联电阻为有源二端网络中所有独立电源作用为零时的无源二端网络的等效电阻。
4.最大功率传输正确匹配负载电阻,可在负载上获得最大功率,如图1-1所示,电路中功率和负载的关系可用下式表示(其中RL 为负载,可变;RS为电源内阻,不变),L??E2P?I2?RLR?R?LS??SRL为求得RL的最佳值,应将功率P对RL求导,即dP?0dRL图1-1 功率最大传输电路I1 得 RL=RS ,即为负载获得最大功率的条件。
三、实验内容与要求 1. 数字万用表的使用E2 使用数字万用表测量实验板上各电阻的阻值,直流稳压电源的输出电压(可改变输出电压大小多测量几次),实验台上 E1的交流电源的电压大小。
电路实验报告
电路实验报告一、实验目的:本实验的目的是通过对电路的搭建和实验测量,掌握基本电路元件的特性以及电路中的各种电路参数的测量方法,并了解电流、电压、电功率、电阻和电源之间的相互关系。
二、实验仪器与材料:1. 电源:直流电源2. 示波器:用于测量电压和电流的示波器3. 电流表:用于测量电路中的电流4. 电压表:用于测量电路中的电压5. 电阻:包括固定电阻和可变电阻6. 元器件:如电容器、二极管等三、实验步骤与结果分析:1. 实验一:欧姆定律的验证实验步骤:- 搭建电路:将电源和一个电阻(固定电阻)连接,电阻两端分别接上电压表和电流表。
- 调节电源输出电压,记录不同电压下电流的变化。
- 根据测量结果,绘制电阻与电流的关系图。
结果分析:通过实验可以发现,电流与电阻成正比关系,验证了欧姆定律:电流等于电压与电阻的比值。
2. 实验二:串联电路的电压分配实验步骤:- 搭建电路:将两个电阻串联,电压表分别连接在两个电阻的两端。
- 调节电源输出电压,记录不同电压下两电阻的电压变化。
- 根据测量结果,计算并比较两个电压值之间的关系。
结果分析:实验结果表明,串联电路中各个电阻上的电压与其电阻值成正比关系,且与电源电压成比例。
这验证了串联电路中电压的分配规律。
3. 实验三:并联电路的电流分配实验步骤:- 搭建电路:将两个电阻并联,电流表分别连接在两个电阻之间。
- 调节电源输出电压,记录不同电流下两电阻的电流变化。
- 根据测量结果,计算并比较两个电流值之间的关系。
结果分析:实验结果表明,并联电路中各个电阻上的电流与其导纳值成正比关系,且与电源电流成比例。
这验证了并联电路中电流的分配规律。
4. 实验四:电阻的测量实验步骤:- 利用可变电阻和固定电阻搭建电路,其中固定电阻的电阻值已知。
- 依次调节可变电阻的电阻值,通过测量电流和电压得到电阻值。
- 根据测量结果与已知电阻值进行对比分析。
结果分析:通过实验测量,可以准确地得到可变电阻的电阻值。
直流稳压电路实验报告
一、实验目的1. 了解直流稳压电源的工作原理及设计方法。
2. 掌握直流稳压电源的组成和各部分的作用。
3. 熟悉稳压电路的性能指标及测试方法。
4. 提高动手实践能力,培养解决实际问题的能力。
二、实验原理直流稳压电源是将交流电源(如市电220V)转换为稳定的直流电压的装置。
它主要由变压器、整流电路、滤波电路和稳压电路组成。
1. 变压器:将高压交流电降压为适合整流电路的低压交流电。
2. 整流电路:利用二极管的单向导电性,将交流电转换为脉动的直流电。
3. 滤波电路:滤除整流电路输出的脉动直流电中的高频谐波,得到较为平滑的直流电。
4. 稳压电路:将滤波后的直流电压稳定在一个特定的值,不受输入电压和负载变化的影响。
三、实验仪器与设备1. 直流稳压电源实验箱2. 万用表3. 示波器4. 面包板5. 连接线四、实验内容与步骤1. 搭建实验电路:- 按照实验电路图连接变压器、整流电路、滤波电路和稳压电路。
- 使用面包板搭建电路,确保连接正确无误。
2. 测量输入电压:- 使用万用表测量变压器输出电压,记录数据。
3. 测量整流电路输出电压:- 使用万用表测量整流电路输出电压,记录数据。
4. 测量滤波电路输出电压:- 使用万用表测量滤波电路输出电压,记录数据。
5. 测量稳压电路输出电压:- 使用万用表测量稳压电路输出电压,记录数据。
6. 分析实验结果:- 比较测量数据,分析实验结果,得出结论。
五、实验结果与分析1. 变压器输出电压:根据实验数据,变压器输出电压应与设计值相符。
2. 整流电路输出电压:整流电路输出电压应比变压器输出电压低,且应为脉动直流电压。
3. 滤波电路输出电压:滤波电路输出电压应比整流电路输出电压平滑,但仍有纹波存在。
4. 稳压电路输出电压:稳压电路输出电压应稳定在一个特定的值,不受输入电压和负载变化的影响。
六、实验总结通过本次实验,我们了解了直流稳压电源的工作原理及设计方法,掌握了直流稳压电源的组成和各部分的作用,熟悉了稳压电路的性能指标及测试方法。
直流电路测量实验报告
直流电路测量实验报告直流电路测量实验报告引言直流电路测量实验是电子工程领域中基础而重要的实验之一。
通过该实验,我们可以学习和掌握直流电路中各种电参数的测量方法,了解电路中电压、电流和电阻之间的基本关系。
本实验报告将详细介绍实验的目的、原理、实验步骤及结果分析。
一、实验目的本实验的主要目的是:1. 学习使用万用表测量直流电路中的电压、电流和电阻。
2. 掌握欧姆定律和基尔霍夫定律在直流电路中的应用。
3. 了解电路中串联和并联电阻的计算方法。
二、实验原理1. 欧姆定律欧姆定律是描述电阻与电流、电压之间关系的基本定律。
根据欧姆定律,电流I 等于通过电阻R的电压V与电阻R之比,即I = V/R。
2. 基尔霍夫定律基尔霍夫定律是描述电路中电流和电压分布的基本原理。
根据基尔霍夫定律,电路中每个节点的电流代数和为零,即ΣI = 0;电路中每个回路的电压代数和为零,即ΣV = 0。
三、实验步骤1. 准备实验器材:万用表、直流电源、电阻、导线等。
2. 搭建串联电路:将两个电阻依次连接起来,形成串联电路。
3. 测量电压:将万用表的电压档位调至直流电压档,依次测量串联电路中各个电阻上的电压,并记录下来。
4. 测量电流:将万用表的电流档位调至直流电流档,将其连接到串联电路中,测量电路中的总电流,并记录下来。
5. 计算电阻:根据欧姆定律,利用测得的电压和电流数据,计算出串联电路中各个电阻的阻值。
6. 搭建并联电路:将两个电阻并联连接起来,形成并联电路。
7. 测量电压:按照步骤3的方法,测量并联电路中各个电阻上的电压,并记录下来。
8. 测量电流:按照步骤4的方法,测量并联电路中的总电流,并记录下来。
9. 计算电阻:根据欧姆定律,利用测得的电压和电流数据,计算出并联电路中各个电阻的阻值。
四、实验结果分析1. 串联电路测量结果根据测得的电压和电流数据,我们可以计算出串联电路中各个电阻的阻值。
比较计算结果和实际电阻值,可以发现两者之间存在一定的误差。
直流电路实验报告答案
一、实验目的1. 理解并掌握直流电路的基本分析方法。
2. 熟悉直流电源、电压表、电流表的使用方法及其特性。
3. 通过实验加深对电阻串联分压电路、并联分流电路、直流电源开路电压与带负载电压等概念的理解。
二、实验仪器和器材1. 实验仪器:- 直流稳压电源型号:IT6302- 台式多用表型号:UT805A2. 实验(箱)器材:- 电路实验箱- 元器件:电阻(功率1/2W:100, 330, 470, 510x3, 1k)- 二极管(1N4148)三、实验内容1. 电阻串联分压电路和并联分流电路实验步骤:- 搭建电阻串联分压电路,记录各电阻上的电压值。
- 搭建电阻并联分流电路,记录各电阻上的电流值。
结果分析:- 串联电路中,总电压等于各电阻分压之和。
- 并联电路中,总电流等于各支路电流之和。
2. 直流电源开路电压VS和带负载电压VR实验步骤:- 测量直流电源的开路电压VS。
- 搭建带负载电路,测量带负载电压VR。
结果分析:- 直流电源开路电压VS等于理想电压源的电压。
- 带负载电压VR小于开路电压VS,因为电源存在内阻。
3. 3回路2激励源电阻线性电路实验步骤:- 搭建3回路2激励源电阻线性电路。
- 分别测量2激励源单独作用时的电压或电流。
结果分析:- 节点电流之和为零,回路电压之和为零。
- 2激励源单独作用时,电路响应与共同作用时值的关系:线性电路可叠加。
四、实验原理1. 电阻串联与并联电路:- 串联电路电流相同,具有分压作用。
- 并联电路电压相同,具有分流作用。
2. 仪器仪表内阻的影响及激励源内阻的测量:- 激励源可等效为一个理想电压源(或电流源)和内阻串联(或并联)电路。
- 当外加负载输出电流时,激励源端口电压会下降,内阻大下降多,电流大下降多。
五、实验总结本次实验通过搭建直流电路,对电阻串联分压电路、并联分流电路、直流电源开路电压与带负载电压等概念进行了验证和加深理解。
实验过程中,掌握了直流电源、电压表、电流表的使用方法,以及电阻串联与并联电路的基本分析方法。
直流电路的实验报告
一、实验目的1. 理解直流电路的基本概念和基本定律。
2. 掌握直流电路的测量方法,包括电压、电流和电阻的测量。
3. 验证基尔霍夫定律和欧姆定律在直流电路中的应用。
4. 学会使用万用表等基本测量仪器。
二、实验原理直流电路是指电路中电流的方向和大小保持不变的电路。
在直流电路中,常用的基本定律有基尔霍夫定律和欧姆定律。
基尔霍夫定律包括两个部分:基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。
KCL表明,在任何时刻,流入电路任一节点的电流之和等于流出该节点的电流之和。
KVL表明,在电路的任意闭合回路中,沿回路各段电压之和等于零。
欧姆定律描述了电压、电流和电阻之间的关系,即 \( U = IR \),其中 \( U \) 为电压,\( I \) 为电流,\( R \) 为电阻。
三、实验仪器与设备1. 直流稳压电源2. 电阻(100Ω、330Ω、470Ω、510Ω、1kΩ)3. 电容(10μF、100μF)4. 二极管(1N4148)5. 电流表(0~1A)6. 电压表(0~15V)7. 电路连接导线8. 万用表四、实验内容1. 电阻串联电路搭建一个简单的电阻串联电路,包括三个电阻(100Ω、330Ω、470Ω)和一个电源。
使用电压表测量每个电阻上的电压,并计算总电压。
验证基尔霍夫电压定律。
2. 电阻并联电路搭建一个简单的电阻并联电路,包括三个电阻(100Ω、330Ω、470Ω)和一个电源。
使用电流表测量每个电阻上的电流,并计算总电流。
验证基尔霍夫电流定律。
3. 欧姆定律验证使用万用表测量一个固定电阻的阻值,然后通过改变电源电压,测量对应的电流值。
根据欧姆定律计算电阻值,验证实验结果。
4. 基尔霍夫定律验证搭建一个复杂电路,包括多个电阻、电容和电源。
使用电压表和电流表测量电路中各节点电压和电流值。
根据基尔霍夫定律计算未知电压和电流值,验证实验结果。
五、实验结果与分析1. 电阻串联电路实验结果显示,总电压等于各电阻上的电压之和,验证了基尔霍夫电压定律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R VR 实验报告参考(直流部分)实验一 基本实验技术一、实验目的:1. 熟悉电路实验的各类仪器仪表的使用方法。
2. 掌握指针式电压表、电流表阻的测量方法及仪表误测量误差的计算。
3. 掌握线性、非线性电阻元件伏安特性的测绘。
4. 验证电路中电位的相对性、电压的绝对性。
二、需用器件与单元:三、实验容:(一) 电工仪表的使用与测量误差及减小误差的方法 A 、基本原理:通常,用电压表和电流表测量电路中的电压和电流,而电压表和电流表都具有一定的阻,分别用R V 和R A 表示。
如图2-1所示,测量电阻R 2两端电压U 2时,电压表与R 2并联,只有电压表阻R V 无穷大,才不会改变A R Am I IRI AI R图 2-2S可调恒流源V R VmU R+-U+-VURU+-S图 2-3可调恒压源电路原来的状态。
如果测量电路的电流I ,电流表串入电路,要想不改变电路原来的状态,电流表的阻R A 必须等于零,。
但实际使用的电压表和电流表一般都不能满足上述要求,即它们的阻不可能为无穷大或者为零,因此,当仪表接入电路时都会使电路原来的状态产生变化,使被测的读数值与电路原来的实际值之间产生误差,这种由于仪表阻引入的测量误差,称之为方法误差。
显然,方法误差值的大小与仪表本身阻值的大小密切相关,我们总是希望电压表的阻越接近无穷大越好,而电流表的阻越接近零越好。
可见,仪表的阻是一个十分关注的参数。
通常用下列方法测量仪表的阻: 1.用‘分流法’测量电流表的阻设被测电流表的阻为R A ,满量程电流为I m,测试电路如图2-2所示,首先断开开关S,调节恒流源的输出电流I,使电流表指针达到满偏转,即I =I A =I m。
然后合上开关S, 并保持I 值不变,调节电阻箱R的阻值,使电流表的指针指在1/2满量程位置,即2mS A II I == 则电流表的阻R R =A 。
2.用‘分压法’测量电压表的阻设被测电压表的阻为R V ,满量程电压为U m,测试电路如图2-3所示,首先闭合开关S,调节恒压源的输出电压U ,使电压表指针达到满偏转,即U =U V =U m。
然后断开开关S, 并保持U 值不变,调节电阻箱R的阻值,使电压表的指针指在1/2满量程位置,即2mR V U U U ==则电压表的阻R R =V 。
图2-1电路中,由于电压表的阻R V 不为无穷大,在测量电压时引入的方法误差计算如下:,R 2上的电压为:UR R R U 2122+=,若R 1=R 2,则U 2=U /2现用一阻R V 的电压表来测U 2值,当R V 与R 2并联后,2V 2V 2R R R R R +=',以此来代替上式的R 2 ,则得UR R R R R R R R R U ⋅+='2V 2V 12V 2V 2++绝对误差为UR R R R R R R R R R U R R R R R R R R R R R R U U U ⨯+++=⋅+-+='-=∆))(()++( 1V V 221212212V 2V 12V 2V 21222若V 21R R R ==,则得6U U =∆ 相对误差0000002220033.310026100 =⨯=⨯'-=∆U U U U U UB.实验容1.根据‘分流法’原理测定直流电流表1mA 和10mA 量程的阻实验电路如图2-2所示,其中R 为电阻箱,用⨯100Ω、⨯10Ω、⨯1Ω三组串联,1mA 电流表用表头和电位器RP2串联组成,10mA 电流表由1mA 电流表与分流电阻并联而成(具体参数见实验一),两个电流表都需要与直流数字电流表串联(采用20mA 量程档),由可调恒流源供电,调节电位器RP2校准满量程。
实验电路中的电源用可调恒流源,测试容见表2-1,并将实验数据记入表中。
表2-1 电流表阻测量数据被测表量程 (mA )S 断开,调节恒源,使I =I A =I m(mA ) S 闭合,调节电阻R , 使I R =I A =I m/2(mA )(Ω)计算阻R A (Ω) 1 6 3 39 39 1020108 82.根据‘分压法’原理测定直流电压表1V 和10V 量程的阻实验电路如图2-3所示,其中R 为电阻箱,用⨯1kΩ、⨯100Ω、⨯10Ω、⨯1Ω四组串联,1V 、10V 电压表分别用表头、电位器RP1和倍压电阻串联组成(具体参数见实验一),两个电压表都需要与直流数字电压表并联,由可调恒压源供电,调节电位器RP1校准满量程。
实验电路中的电源用可调恒压源,测试容见表2-2,并将实验数据记入表中。
表2-2 电压表阻测量数据被测表量程 (V ) S 闭合,调节恒压源,使U =U V =U m(V ) S 断开,调节电阻R ,使U R =U V =U m/2(V )R (Ω) 计算R V (Ω) 1 0.4 0.2 809 809 108416k16k3.方法误差的测量与计算实验电路如图2-1所示,其中R 1=300Ω, R 2=200Ω,电源电压U =10V (可调恒 压源〕,用直流电压表10V 档量程测量R 2上的电压U 2之值,并计算测量的绝对误差和相 对误差,实验和计算数据记入表2-3中。
R V计算值U2实测值U’绝对误差D U= U2-U’2相对误差D U/ U2´100%216k 4 3.2 0.8 20%4.实验报告要求(1)根据表2-1和表2-2数据,计算各被测仪表的阻值,并与实际的阻值相比较;(2)根据表2-3数据,计算测量的绝对误差与相对误差;(二) 线性、非线性电阻元件伏安特性A、基本原理:任何一个二端元件的特性可用该元件上的端电压U 与通过该元件的电流I之间的函数关系I=f(U)来表示,即用I-U 平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。
1. 线性电阻器的伏安特性曲线是一条通过坐标原点的直线,如图1-1中a所示,该直线的斜率等于该电阻器的电阻值。
2. 一般的白炽灯在工作时灯丝处于高温状态,其灯丝电阻随着温度的升高而增大,通过白炽灯的电流越大,其温度越高,阻值也越大,一般灯泡的“冷电阻”与“热电阻”的阻值可相差几倍至十几倍,所以它的伏安特性如图1-1中b曲线所示。
3. 一般的半导体二极管是一个非线性电阻元件,其伏安特性如图1-1中c所示。
图1-1正向压降很小(一般的锗管约为0.2~0.3V,硅管约为0.5~0.7V),正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十多至几十伏时,其反向电流增加很小,粗略地可视为零。
可见,二极管具有单向导电性,但反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。
4. 稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向特性较特别,如图1-1中d所示。
在反向电压开始增加时,其反向电流几乎为零,但当电压增加到某一数值时(称为管子的稳压值,有各种不同稳压值的稳压管)电流将突然增加,以后它的端电压将基本维持恒定,当外加的反向电压继续升高时其端电压仅有少量增加。
注意:流过二极管或稳压二极管的电流不能超过管子的极限值,否则管子会被烧坏。
B 、实验容:1. 测定线性电阻器的伏安特性按图1-2接线,调节稳压电源的输出电压U ,从0 伏开始缓慢地增加,一直到10V ,记下相应的电压表和电流表的读数UR 、I 。
图 1-2 图 1-3UR (V ) 2.3 3.0 4.5 6.0 7.9 9 I (mA )2.0 2.7 4.1 5.2 7.0 7.4按图1-3接线,R 为限流电阻器。
测二极管D 的正向特性时,其正向电流不得超过25mA ,二极管D 的正向施压UD+可在0~0.75V 之间取值。
在0.5~0.75V 之间应多取几个测量点。
测反向特性时,只需将图1-3 中的二极管D 反接,且其反向施压UD -可达30V 。
正向特性实验数据UD+ (V)0.100.30 0.50 0.55 0.60 0.65 0.70 0.75 I (mA ) 2.00 5.8012.0013.0213.4016.4419.7022.05反向特性实验数据 UD -(V) 0 -5 -10 -15 -20 -25 -30 I (mA )3. 测定稳压二极管的伏安特性(1)正向特性实验:将图1-3中的二极管换成稳压二极管,重复实验容3中的正向测量。
UZ+为2CW51的正向施压。
+-UmA+-R1KV+-UZ(V)0 0 0I(mA)8.222 9.145 9.564(2)反向特性实验:2CW51反接,测量2CW51的反向特性。
测量2CW51二端的电压UZ-及电流I,由UZ-可看出其稳压特性。
UZ-(V)30 32 34I(mA) 1.004 1.235 1.569实验注意事项(1)测二极管正向特性时,稳压电源输出应由小至大逐渐增加,应时刻注意电流表读数不得超过25mA。
(2)进行不同实验时,应先估算电压和电流值,合理选择仪表的量程,勿使仪表超量程,仪表的极性亦不可接错。
5 实验报告(1)根据各实验数据,分别在方格纸上绘制出光滑的伏安特性曲线。
(其中二极管和稳压管的正、反向特性均要求画在同一图中,正、反向电压可取为不同的比例尺)(2)根据实验结果,总结、归纳被测各元件的特性。
稳压二极管其伏安特性曲线与普通二极管相似,但反向击穿曲线比较陡,在一定围变化时,反向电流很小,当反向电压增高到击穿电压时,反向电流突然猛增,稳压管从而反向击穿,此后,电流虽然在很大围变化,但稳压管两端的电压的变化却相当小。
实验二基本电路定律实验一、实验目的:1.用实验的方法验证基尔霍夫定律、叠加定理、戴维南及定理的正确性,以提高对定理的理解和应用能力。
2.通过实验加深对电位、电压与参考点之间关系的理解。
3.通过实验加深对电路参考方向的掌握和运用能力。
二、需用器件与单元:三、实验容:(一)基尔霍夫定律A、基本原理:基尔霍夫电流、电压定律:测量电路的各支路电流及每个元件两端的电压,应能分别满足基尔霍夫定律(KCL)和电压定律(KVL)。
电路中任一节点电流的代数和等于零;电路中任一回路上全部组件端对电压代数和等于零。
KCL: ∑i=0KVL: ∑u=OB、实验容:1.验证基尔霍夫定理1)、实验线路2)、实验步骤(1)、实验前先任意设定三条支路的电流参考方向,如图所示。
(2)、分别将两路直流稳压电源接入电路(一路E1为+12V电源,另一路E2为0~30V 可调直流稳压源),令E1=+12V,E2=+6V。
(3)将弱电线插入标识“I”的两端,导线另两端接至直流电流表的“+、-”两端。
(4)将弱电线分别插入三条支路的三个标识“I”插座中,读出并记录电流值。
(5)用直流电压表分别测量两路电源及电阻元件上的电压值,并记录之。