投影与视图—知识讲解

合集下载

投影的基本知识、三面投影与三视图

投影的基本知识、三面投影与三视图
教法学法直观讲授启发小组讨论任务驱动练习教学资源三面投影体系教学模型学生绘图工具图纸教学课件及多媒体教学设备一套齿轮式机油泵游标卡尺教学组织过程步骤学习内容教学方法教学手段学生活动时间分配布置绘图任务本次学习任务知识目标能力目标素质目标讲授法任务驱动多媒体听讲动手操作查询资料30min引入投影的知识投影在机械制图中的应用讲授法启发法多媒体听讲观察讨论互相交流10min讲解投影法的概念投影法的分类各种讲授法提问法多媒体三面投影体听讲观察45min投影法的特点三视图的形成过程投影规律及反映物体的方位启发法小组讨论法系教学模型小组讨论课堂示范三视图的画图步骤及画法演示法黑板绘图工听讲观察记忆20min任务实施绘制机油泵从动轴钢球销轴衬三视图提问法演示法练习法机油泵实物绘图工具绘图纸回答问题观察小组讨论动手绘图50min检查以小组为单位学生讲述小组绘图过程并展示绘图成果接受其余小组评价并自我评价教师对各小组给出评价
一、投影的概念
投影——空间物体在光线的照射下,在地上或墙上产生的影子,这种现象叫做投影。
投影法——在投影面上作出物体投影的方法称为投影法
二、投影法的种类
1.中心投影法:
特性:投影大小与物体和投影面之间距离有关。
同学观看图片:
结论:
从图中可以看出,空间图形经过中心投影后,直线变成直线,但平行线可能变成了相交的直线.
难点
三视图的投影规律
教学对
象分析
课程的学习者是中职学校一年级学生,在前期的学习过程中已经具备了平面几何的相关知识,在中学初步了解了投影等基础知识,具备了一定的空间思维能力。通过学习《机械基础》等课程,掌握了机械零部件的结构、装配要求等知识。
教法学法
直观讲授、启发、小组讨论、任务驱动、练习
教学资源

人教版九年级下册数学《由三视图确定几何体的面积或体积》投影与视图研讨复习说课教学课件

人教版九年级下册数学《由三视图确定几何体的面积或体积》投影与视图研讨复习说课教学课件

6. 某一空间图形的三视图如图所示,其中主视图是半径为1的半圆以及高为 1
的矩形;左视图是半径为1 的四分之一圆以及高为1的矩形;俯视图是半径为
1
的圆,求此图形的体积
(参考公式:V球=
4 3
πR3).
解:由已知可得该几何体是一个下部为圆柱,上部为
1/4球的组合体.由三视图可得,下部圆柱的底面 半径为1,高为1,则V圆柱=π,上部1/4球的半径 为1,则V1/4球=π/3,故此几何体的体积为4π/3.
15
15
10 主视图
12 左视图
解:长方体,其体积为10×12×15=1800(cm3).
10 俯视图
新知讲解
例2:如图是一个几何体的三视图,根据所示数据,求该几何体的表面积和体积.
分析:由三视图可知该几何体是由圆柱、长方体组合而成.分别计算它们 的表面积和体积,然后相加即可.
新知讲解
解:该图形上、下部分分别是圆柱、长方体,根据图中数据得: 表面积为20×32π+30×40×2+25×40×2+25×30×2=(5 900+640π)(cm2), 体积为25×30×40+102×32π=(30 000+3 200π)(cm3).
学以致用
如图是一个几何体的三视图,试描绘出这个零件的形状,并求出此 三视图所描述的几何体的表面积.
解:该几何体的表面积为 π×22+2π×2×2+ 1/2×4×4π=20π
课堂小结
1.三种图形的转化:

三视图
立体图
展开图
2. 由三视图求立体图形的体积(或面积)的方法: (1)先根据给出的三视图确定立体图形,并确定立体图形的长、宽、高

第二章 投影的基本知识

第二章 投影的基本知识

Z W a'' O b'' Y
a ( b) YH
68
b' X O
b'' YW
X
A在B的正上方
H面重影,被挡 住的投影加( )
结论: ●X、Y分别相等,H面重影(H面投射线上),Z大可见。 正上(下)方 ●X、Z分别相等,V面重影(V面投射线上),Y大可见。 正前(后)方 ●Y、Z分别相等,W面重影(W面投射线上),X大可见。 正左(右)方
间点重合,另两个投影分别在投影轴上。
60
例3、根据点的坐标,作出点的三面投影, 并想像该点的空间位置。 A(15,10,20)
a'
Z aZ
a''
aX
X a
15
a YW
O a YH
YW
YH
61
B(20,15,0)
Z
X
b'
O
b''
YW
b Y
H
62
C(20,0,20)
c'
Z
c''
X
c
b' a' X b
b"
O
YW
a
YH
因此 点A位于点B左、前、下方。
67
两点重影
▲重影点要判别其可见性,不可见的投影用括号括起来,以示 ▲当空间两点的两对坐标相等时,两点处于同一投射线上,在 区别。 该投射线的投影面上的投影重合在一起,称为该投影面的重影 a'' 点。 a'
V
a' b' A B
H a(b)
X a′ A aX H a aZ

第五章投影与视图单元(教案)

第五章投影与视图单元(教案)
其次,我发现学生们在视图绘制的精细度和准确性上还有待提高。尤其是在标注尺寸和细节处理上,容易出现错误。针对这个问题,我计划在接下来的课程中,增加一些专门的练习,重点训练学生对细节的关注和尺寸标注的规范。
另外,小组讨论环节非常活跃,学生们能够积极思考并参与讨论。但在分享成果时,我发现有些小组的表达不够清晰,这可能是因为他们在讨论过程中的逻辑梳理不够。我打算在下次的小组活动中,提前给出一些指导性的问题,帮助他们更好地组织和表达自己的观点。
2.教学难点
-空间想象能力的培养,特别是对于复杂的几何体,如何从不同的角度进行观察和想象。
-投影变换的理解,包括如何将三维空间中的物体转换成二维平面上的视图。
-视图的精细绘制和尺寸标注,如何确保视图的准确性和清晰度。
-对透视图的理解,以及如何将透视图与实际物体对应起来。
-计算机辅助设计软件的使用,如何将传统视图绘制方法与现代化工具相结合。
第五章投影与视图单元(教案)
一、教学内容
第五章投影与视图
1.投影的基本概念与分类
-中心投影
-平行投影
-斜投影
2.三视图的形成及其特性
-主视图
-俯视图
-左视图
-等轴测图
3.视图绘制方法与步骤
-确定投影方向
-绘制主视图
-绘制俯视图Leabharlann 左视图-标注尺寸和细节4.空间几何体的视图识别与应用
-立方体
-球体
-圆柱体
3.重点难点解析:在讲授过程中,我会特别强调平行投影和中心投影这两个重点。对于难点部分,如透视图的理解,我会通过实例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与视图相关的实际问题,如如何从给定的视图重建三维模型。

九年级数学《投影与视图》空间想象与绘图技巧教案

九年级数学《投影与视图》空间想象与绘图技巧教案

九年级数学《投影与视图》空间想象与绘图技巧教案一、教学目标通过本节课的学习,学生应能够:1. 理解投影与视图的概念,能够准确描述物体的投影和视图;2. 掌握空间想象与绘图的基本技巧,能够运用这些技巧进行空间图形的绘制和分析;3. 培养学生的空间想象能力,提高解决数学问题的能力。

二、教学重难点1. 教学重点:投影与视图的概念及绘图技巧;2. 教学难点:培养学生的空间思维和想象能力。

三、教学准备1. 教师准备:黑板、彩色粉笔、教案、教学PPT等;2. 学生准备:课本、笔、作业本。

四、教学过程1. 导入通过引发学生对空间想象的思考,激发学生学习的兴趣。

2. 概念解释与讲解(在黑板上画投影与视图的示意图)投影是指三维空间中物体在不同平面上的投射结果,视图是指物体在某一特定方向上的投影结果。

通过透过物体和围绕物体的不同的视点,我们可以得到物体在各个平面上的投影和在不同方向上的视图。

3. 绘图技巧的讲解(在黑板上讲解并示范)a. 正投影:物体在垂直于底面的平面上的投影。

投影与实物图形的形状大小完全相同,但是方向相反。

b. 侧投影:物体在旁侧的一个平面上的投影。

通常是物体在水平方向的投影,所以不同物体的侧投影在同一平面上。

c. 俯视图:物体在上方一个平面上的投影。

通常是物体在垂直于底面的平面上的上视图,所以不同物体的侧投影在同一平面上。

4. 练习与巩固(布置练习题并讲解)通过布置一些投影与视图的练习题,让学生进行练习和巩固所学知识。

在讲解过程中,引导学生运用正确的绘图技巧,并注意投影和视图的对应关系。

5. 拓展与应用(提出拓展问题并讨论)引导学生运用所学知识,解决一些实际问题。

例如,根据给定的物体视图,通过绘制投影图找到物体的实际形状,并进行测量和计算。

6. 归纳与总结(归纳投影与视图的性质)通过学生的总结,归纳出投影与视图的一些性质,帮助他们更好地理解和记忆所学内容。

7. 课堂作业布置相关练习题作为课堂作业,要求学生运用所学知识完成。

5.1 投影 第1课时 数学北师大版九年级上册教案

5.1 投影 第1课时 数学北师大版九年级上册教案

第五章 投影与视图1 投影第1课时【教学目标】知识与技能:了解中心投影的含义,体会灯光下物体的影子在生活中的运用,体会灯光投影在生活中的实际价值.过程与方法:经历实践、探索的过程,能区别平行投影与中心投影条件下物体的投影.情感态度与价值观:通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力.【重点难点】重点:了解中心投影的含义.难点:能根据灯光来辨别物体的影子,初步进行中心投影条件下物体与其投影之间的相互转化.【教学过程】一、创设情境投影现象调查(提前一周布置)以4人合作小组为单位,开展调查活动:(1)尽所能收集生活中各类投影现象(用电子图片形式呈现).(2)小组长整理所收集的图片,统一规格要求,交给数学教师.二、探索归纳教师课前整理、选择学生资,多媒体展示,选3—4个小组代表简单介绍,分析投影的光线特点(讲解太阳光线可以看成是平行光线).给展示图片编号,要求学生根据一定的标准进行分类(学优生可以先设定标准,再分类;学困生可以先分类,再根据自己的分类尝试写出分类的标准),通过对分类及标准的过程性加工,使学生明晰投影光线可以看成是从同一个点发出的投影叫中心投影,投影光线可以看成是平行光线的投影叫平行投影.结合中心投影的特点,完成对点光确定方法的学习.例题:确定图中路灯灯泡所在的位置.待绝大多数学生正确完成灯泡位置的确定,大部分学生在思考原理及步骤,部分学生开始书写原理及步骤时(确保学生有资可以交流),教师适时打断,引导学生讨论确定灯泡位置方法的原理和具体操作的步骤,并要求小组派代表进行班级交流(确保学生真正参与交流),使全班同学掌握作图原理及操作步骤,明晰对应点的正确找取是确定灯泡位置的关键.三、交流反思今天我最大的收获是……(从数学知识,数学方法和数学思想方面引导学生思考)四、检测反馈1.如图,一个广告牌挡住了路灯的灯泡.(1)确定图中路灯灯泡所在的位置;(2)在图中画出表示小赵身高的线段.2.两棵小树在一盏路灯下的影子如图所示.(1)确定该路灯灯泡所在的位置.(2)画出图中表示婷婷影长的线段.五、布置作业课本P128 习题5.1 第2、3题六、板书设计投影1.探究2.归纳分类:3.应用练习:例题七、教学反思1.多媒体的合理应用,可极大地激发学生的学习兴趣,提高教学效果.在本节课的“综合调查”和“情境引入”教学环节中,通过学生收集和用多媒体展示的人影、皮影、手影等的精彩图片,给学生以视觉冲击,产生了视觉和心理的震撼,这样在课堂“第一时间”抓住了学生的注意力、极大地激发了学生的学习热情,这十分有利于后面教学活动的开展,提高课堂教学效果.2.通过富有挑战性的“问题(或活动)”激发学生的探索欲望,培养创新精神,拓展思维能力.在本节课“合作学习,深入研究”“练习巩固,拓展提高”教学环节中活动设计,由简单的“模仿”到“创作设计”循序渐进、挑战性逐渐增大,不断激发学生的探索欲望,引人入胜,培养创新精神,提高拓展能力.关闭Word文档返回原板块。

投影及视图—知识讲解

投影及视图—知识讲解

投影与视图—知识解说【学习目标】1. 在察看、操作、想象等活动中加强对空间物体的掌握和理解能力;2. 经过实例认识中心投影与平行投影;3. 会画直棱柱、圆柱、圆锥和球的三种视图;4. 能依据三种视图描绘简单的几何体.【重点梳理】重点一、投影1. 投影现象物体在光芒的照耀下,会在地面或其余平面上留下它的影子,这就是投影现象 . 影子所在的平面称为投影面 .2.中心投影手电筒、路灯和台灯的光芒能够当作是从一点发出的,这样的光芒照耀在物体上所形成的投影,称为中心投影 .相应地,我们会获得两个结论:(1) 等高的物体垂直地面搁置时,如图 1 所示,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.(2)等长的物体平行于地面搁置时,如图2 所示 . 一般状况下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体自己的长度还短.在中心投影的状况下,还有这样一个重要结论:点光源、物体边沿上的点以及它在影子上的对应点在同一条直线上,依据此中两个点,就能够求出第三个点的地点.重点解说:光源和物体所处的地点及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子一直分别在物体的双侧.3. 平行投影1. 平行投影的定义太阳光芒可当作平行光芒,平行光芒所形成的投影称为平行投影 .相应地,我们会获得两个结论:①等高的物体垂直地面搁置时,如图 1 所示,在太阳光下,它们的影子同样长.②等长的物体平行于地面搁置时,如图 2 所示,它们在太阳光下的影子同样长,且影长等于物体自己的长度 .2.物高与影长的关系①在不一样时辰,同一物体的影子的方向和大小可能不一样. 不一样时辰,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从清晨到夜晚,物体影子的指向是:西→西北→北→东北→东,影长也是由长变短再变长 .②在同一时辰,不一样物体的物高与影长成正比率.即:.利用上边的关系式能够计算高大物体的高度,比方旗杆的高度等.注意:利用影长计算物高时,要注意的是丈量两物体在同一时辰的影长.重点解说:1.平行投影是物体投影的一种,是在平行光芒的照耀下产生的. 利用平行投影知识解题要分清不一样时辰和同一时辰.2.物体与影子上的对应点的连线是平行的就说明是平行光芒.4、正投影以下图,图(1) 中的投影线集中于一点,形成中心投影;图(2)(3)中,投影线相互平行,形成平行投影;图 (2) 中,投影线斜着照耀投影面;图(3)中投影线垂直照耀投影面( 即投影线正对着投影面我们也称这类情况为投影线垂直于投影面. 像图 (3) 这样,当平行光芒与投影面垂直时,这类投影称为投影 . ) ,正重点解说:正投影是特别的平行投影,它不行能是中心投影.重点二、中心投影与平行投影的差别与联系1.差别:(1)太阳光芒是平行的,故太阳光下的影子长度都与物体高度成比率;灯光是发散的,灯光下的影子与物体高度不必定成比率 .(2)同一时辰,太阳光下影子的方向老是在同一方向,而灯光下的影子可能在同一方向,也可能在不一样方向 .2.联系:(1)中心投影、平行投影都是研究物体投影的一种,只可是平行投影是在平行光芒下所形成的投影,往常的平行光芒有太阳光芒、月光等,而中心投影是从一点发出的光芒所形成的投影,往常状况下,灯泡的光芒、手电筒的光芒等都可当作是从某一点发射出来的光芒.( 2)在平行投影中,同一时辰改变物体的方向和地点,其投影也随着发生变化;在中心投影中,同一灯光下,改变物体的地点和方向,其投影也随着发生变化. 在中心投影中,固定物体的地点和方向,改变灯光的地点,物体投影的方向和地点也要发生变化.重点解说:在解决相关投影的问题时一定先判断正确是平行投影仍是中心投影,而后再依据它们的详细特色进一步解决问题 .重点三、视图1.三视图(1)视图用正投影的方法绘制的物体在投影面上的图形,称为物体的视图 .(2)三视图在实质生活和工程中,人们经常从正面、左面和上边三个不一样方向察看一个物体,分别获得这个物体的三个视图. 往常我们把从正面获得的视图叫做主视图,从左面获得的视图叫做左视图,从上边获得的视图叫做俯视图 .主视图、左视图、俯视图叫做物体的三视图.2. 三视图之间的关系( 1)地点关系一般地,把俯视图画在主视图下边,把左视图画在主视图右边,如图(1) 所示 .(2)大小关系三视图之间的大小是相互联系的,按照主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等的原则.如图(2) 所示.重点解说:三视图把物体的长、宽、高三个方面反应到各个视图上,详细地说,主视图反应物体的长和高;俯视图反应物体的长和宽,左视图反应物体的高和宽,抓住这些特色能为画物体的三视图打下坚固的基础.3.画几何体的三视图画一个几何体的三视图时,要从三个方面察看几何体,详细画法以下:(1)确立主视图的地点,画出主视图;(2) 在主视图的正下方画出俯视图,注意与主视图“长对正”;(3) 在主视图的正右方画出左视图,注意与主视图“高平齐”,与俯视图“宽相等” .几何体上被其余部分遮挡而看不见的部分的轮廓线要画成虚线.重点解说:画一个几何体的三视图,重点是把从正面、上方、左边三个方向察看时所得的视图画出来,因此,第一要注意察看时视野与察看面垂直,即察看到的平面图是该图的正投影;其二,要注意正确地用虚线表示看不到的轮廓线;其三,要充足发挥想象,多实践,多与同学沟通商讨,多总结;最后,按三视图的地点和大小要求从整体上画出几何体的三视图.4.由三视图想象几何体的形状由三视图想象几何体的形状,第一应分别依据主视图、俯视图和左视图想象主体图的前方、上边和左边面,而后综合起来考虑整体图形.重点解说:由物体的三视图想象几何体的形状有必定的难度,能够从以下门路进行剖析:(1) 依据主视图、俯视图和左视图想象几何体的前方、上边和左边面的形状以及几何体的长、宽、高;(2) 依据实线和虚线想象几何体看得见和看不见的轮廓线;(3) 熟记一些简单的几何体的三视图会对复杂几何体的想象有帮助; (4) 利用由三视图画几何体与由几何体画三视图为互逆过程,频频练习,不停总结方法.【典型例题】种类一、投影的作图与计算1.怎样才能使以下图的两棵树在同一时辰的影长分别与它们的原长相等,试绘图说明.【答案与分析】(1)以下图.可在同一方向上画出与原长相等的影长,此时为平行投影.(2)以下图,可在两树外侧不一样方向上画出与原长相等的影子,连接影子的极点与树的极点.订交于点 P.此时为中心投影, P 点即为光源地点.【总结升华】连接物体极点与其影长的极点,假如获得的是平行线,即为平行投影;假如获得订交直线,则为中心投影,这是判断平行投影与中心投影的方法,也是确立中心投影光源地点的基本做法.但若中心投影光源在两树同侧时,图中的两棵树的影长不行能同时与原长相等,因此点光源能够选在两树之间.特别提示:易错以为只有平行投影才能使两棵树在同一时辰的影长分别与它们的原长相等,进而遗漏上图这一情况.贯通融会:【变式】与一盏路灯相对,有一玻璃幕墙,幕墙前方的地面上有一盆花CD和一棵树AB.夜晚,幕墙反射路灯,灯光形成那盆花的影子DF,树影BE 是路灯灯光直接形成的,以下图,你能确立此时路灯光源的地点吗 ?【答案】作法以下:①连接 FC并延伸交玻璃幕墙于O点;②过点 O作直线 OG垂直于玻璃幕墙面;③在 OC另一侧作∠ POG=∠ FOG且交 EA延伸线于点P.P点即此时路灯光源地点,以下图.2. ( 2015·盐城校级模拟)如图,小明与同学合作利用太阳光芒丈量旗杆的高度,身高 1.6m 的小明落在地面上的影长为BC=2.4m .( 1)请你在图中画出旗杆在同一时辰阳光照耀着落在地面上的影子EG;( 2)若小明测得现在旗杆落在地面的影长EG=16m ,恳求出旗杆DE 的高度.【思路点拨】( 1)连接 AC ,过 D 点作 DG∥AC 交 BC 于 G 点,则 GE 为所求;( 2)先证明Rt△ ABC ∽ △ RtDGE ,而后利用相像比计算DE 的长.【答案与分析】解:(1)影子EG以下图;( 2)∵ DG ∥AC ,∴ ∠G= ∠C,∴ Rt△ ABC ∽ △RtDGE ,∴=,即=,解得DE=,∴旗杆的高度为m.【总结升华】此题考察了平行投影,也考察了相像三角形的判断与性质.贯通融会:【变式】 如图,小亮利用所学的数学知识丈量某旗杆 AB 的高度.( 1)请你依据小亮在阳光下的投影,画出旗杆AB 在阳光下的投影.( 2)已知小亮的身高为 1.72m ,在同一时辰测得小亮和旗杆 AB 的投影长分别为 0.86m 和 6m ,求旗杆 AB 的高.【答案】 解:(1)以下图:( 2)如图,由于 DE , AB 都垂直于地面,且光芒 DF ∥ AC ,因此 Rt △DEF ∽ Rt △ABC , 因此DEEF ,ABBC 即 1.720.86 , AB6因此 AB=12( m ).答:旗杆 AB 的高为 12m .种类二、三视图3.如图,分别从正面、左面、上边察看该立体图形,能获得什么平面图形.【答案与分析】 从正面看该几何体是三角形,从左面看该几何体是长方形,从上边看该几何体是一长方形中带一条竖线.如图:【总结升华】此题考察了几何体的三视图的判断.贯通融会:【变式】如图,画出这些立体图形的三视图.【答案】( 1)如图:( 2)如图:( 3)如图:( 4)如图:4.( 2015·惠州校级月考)如图是由几个小立方体所搭几何体的俯视图,小正方形中的数字表示该地点小立方体的个数,请画出这个几何体的主视图和左视图.【思路点拨】由已知条件可知,主视图有 3 列,每列小正方数形数量分别为2, 2, 3,左视图有 3 列,每列小正方形数量分别为1, 3, 2.据此可画出图形.【答案与分析】解:以下图:【总结升华】此题考察几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数同样,且每列小正方形数量为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数同样,且每列小正方形数量为俯视图中相应行中正方形数字中的最大数字.种类三、三视图的相关计算5.某工厂要对一机器部件表面进行喷漆,设计者给出了该部件的三视图( 以下图 ) ,请你依据三视图确立其喷漆的面积.【思路点拨】第一要依据立体图形的三视图,想象出物体的实质形状,而后再计算表面积. 【答案与分析】解:长方体的表面积为(30 × 40+40× 25+25× 30) × 2= 5900(cm2) ,圆柱体的侧面积为2 3.14 × 20× 32= 2010(cm ) ,其喷漆的面积为5900+2010= 7910(cm2) .【总结升华】由该机械部件的三视图,可想象它是一个组合体,是由一个长方体和一个圆柱体构成.其表面积是一个长方体的六个面与圆柱体的侧面构成. ( 圆柱体的上表面补在长方体的上表面被圆柱体遮挡的部分 ). 该组合体是由一长方体与一圆柱体组合而成,但不可以以为组合体的表面积就是两几何体的表面积之和.贯通融会:【变式】某物体的三视图如图:(1)此物体是什么体;(2)求此物体的全面积.【答案】解:( 1)依据三视图的知识,主视图以及左视图都为矩形,俯视图是一个圆,故可判断出该几何体为圆柱.( 2)依据圆柱的全面积公式可得,20π× 40+2×π× 10 2 =1000π.。

人教版九年级数学下册《第二十九章投影与视图》教案

人教版九年级数学下册《第二十九章投影与视图》教案

人教版九年级数学下册《第二十九章投影与视图》教案一. 教材分析《人教版九年级数学下册》第二十九章《投影与视图》是学生在学习了平面几何、立体几何的基础上,进一步研究三视图、投影等知识。

这一章节的内容既巩固了学生以前所学的几何知识,又为后续的立体几何学习打下基础。

本章主要包括以下几个知识点:1.投影的概念和分类2.正投影和斜投影3.视图的概念和分类4.一视图、二视图、三视图的画法5.几何体的三视图二. 学情分析学生在学习本章内容前,已经掌握了平面几何的基本知识,对几何图形的认知有一定的基础。

但投影与视图的概念对于他们来说比较抽象,需要通过具体的实例和实践活动来理解和掌握。

另外,学生对于空间想象能力的培养还不够,需要在教学过程中加强训练。

三. 教学目标1.让学生理解投影的概念,掌握正投影和斜投影的性质。

2.让学生掌握视图的分类,学会画一视图、二视图、三视图。

3.培养学生空间想象能力,提高他们解决实际问题的能力。

四. 教学重难点1.投影的概念和分类2.正投影和斜投影的性质3.视图的画法4.空间想象能力的培养五. 教学方法1.采用直观演示法,通过实物和模型展示投影与视图的概念和性质。

2.采用实践操作法,让学生动手画一视图、二视图、三视图,培养空间想象能力。

3.采用问题驱动法,引导学生思考和探讨,提高他们解决问题的能力。

六. 教学准备1.准备投影仪、实物、模型等教学道具。

2.准备相关的练习题和测试题。

3.准备黑板和粉笔。

七. 教学过程1. 导入(5分钟)教师通过展示实物和模型,引导学生观察和思考,让学生初步认识投影和视图的概念。

2. 呈现(10分钟)教师通过投影仪展示PPT,详细讲解投影的分类、正投影和斜投影的性质,以及视图的分类和画法。

3. 操练(10分钟)学生分组进行实践活动,每组选择一个几何体,分别画出它的三视图。

教师巡回指导,解答学生疑问。

4. 巩固(10分钟)教师出示一些练习题,让学生独立完成,检查他们对于投影与视图知识的掌握程度。

九年级数学下册投影与视图全章教案新人教版

九年级数学下册投影与视图全章教案新人教版

九年级数学下册《投影与视图》全章教案新人教版第一章:投影的概念与分类教学目标:1. 了解投影的概念,掌握各种投影的分类。

2. 能够运用投影的知识解决实际问题。

教学内容:1. 投影的概念:平行投影、中心投影。

2. 投影的分类:正投影、斜投影。

3. 投影的基本性质。

教学步骤:1. 引入投影的概念,展示各种投影的图片,引导学生观察并思考。

2. 讲解平行投影和中心投影的定义,通过示例让学生理解两种投影的特点。

3. 介绍正投影和斜投影的分类,让学生通过实际例子区分两种投影。

4. 引导学生总结投影的基本性质,如相似性、形状不变等。

5. 布置练习题,让学生巩固所学内容。

教学评价:1. 学生能够准确描述投影的概念和分类。

2. 学生能够运用投影的知识解决实际问题。

第二章:视图的定义与分类教学目标:1. 理解视图的定义,掌握各种视图的分类。

2. 能够运用视图的知识解决实际问题。

教学内容:1. 视图的定义:主视图、左视图、俯视图。

2. 视图的分类:正视图、侧视图、俯视图。

3. 视图的基本性质。

教学步骤:1. 引入视图的概念,展示各种视图的图片,引导学生观察并思考。

2. 讲解主视图、左视图、俯视图的定义,通过示例让学生理解三种视图的特点。

3. 介绍正视图、侧视图、俯视图的分类,让学生通过实际例子区分三种视图。

4. 引导学生总结视图的基本性质,如相互补充、完整性等。

5. 布置练习题,让学生巩固所学内容。

教学评价:1. 学生能够准确描述视图的定义和分类。

2. 学生能够运用视图的知识解决实际问题。

第三章:简单几何体的三视图教学目标:1. 掌握简单几何体的三视图的画法。

2. 能够运用三视图的知识解决实际问题。

教学内容:1. 简单几何体的三视图:正方体、长方体、圆柱体、圆锥体。

2. 三视图的画法与特点。

教学步骤:1. 讲解正方体、长方体、圆柱体、圆锥体的三视图的画法,通过示例让学生理解各种几何体的三视图特点。

2. 引导学生动手画出各种几何体的三视图,并观察其特点。

投影与视图教案

投影与视图教案

投影与视图教案投影与视图教案一、教学目标1.了解投影与视图的基本概念和用途。

2.掌握正交投影的方法和技巧。

3.能够正确绘制物体在不同视图中的投影。

二、教学重点1.正交投影的方法和技巧。

2.绘制物体在不同视图中的投影。

三、教学难点1.理解正交投影的原理。

2.掌握绘制物体在不同视图中的投影的技巧。

四、教学过程1.导入(5分钟)教师简要介绍投影和视图的概念,并引发学生对物体投影和视图的思考。

2.知识讲解(15分钟)(1)投影的概念和用途。

(2)视图的概念和种类。

3.示范与讲解(15分钟)(1)正交投影的方法和技巧。

(2)物体在不同视图中的投影绘制方法。

4.练习与巩固(15分钟)学生进行正交投影和视图绘制的练习。

(1)绘制物体在正面视图中的投影。

(2)绘制物体在侧面视图中的投影。

(3)绘制物体在俯视图中的投影。

5.拓展与应用(10分钟)学生尝试绘制物体在不同视图中的复杂投影,并与同学交流和比较。

教师引导学生进行思考和探索,培养学生的创造力和独立解决问题的能力。

6.总结与评价(10分钟)教师对学生的学习情况进行总结评价,提出必要的改进意见。

五、教学资源1.教科书和教学参考资料。

2.投影仪和白板等教学设备。

六、教学手段1.讲授与示范相结合。

2.练习与巩固相结合。

3.拓展与应用相结合。

4.个别指导和小组合作相结合。

七、教学评价1.观察学生对于投影与视图的理解与应用情况。

2.提出问题进行学生的回答和讨论。

3.布置作业,检查学生的掌握程度。

八、教学反思针对学生的不同水平和掌握情况,灵活调整教学内容和方法,注重培养学生的应用能力和创新思维。

第四章投影和视图单元教案

第四章投影和视图单元教案

第四章投影和视图单元教案第一节教学目标。

1. 了解投影和视图的概念和基本原理。

2. 掌握投影和视图的绘制方法。

3. 理解不同视图之间的关系。

4. 能够应用投影和视图的知识解决实际问题。

第二节教学重点和难点。

1. 投影和视图的概念和基本原理。

2. 投影和视图的绘制方法。

3. 不同视图之间的关系。

第三节教学内容。

1. 投影和视图的概念和基本原理。

1.1 投影的概念。

投影是指将三维空间中的物体投射到二维平面上的过程。

在工程制图中,常用投影的方法来表示物体的形状和尺寸。

1.2 视图的概念。

视图是指从不同方向观察物体所得到的投影。

常用的视图有主视图、俯视图和侧视图等。

1.3 投影和视图的基本原理。

投影和视图的绘制是基于投影的原理,通过投影将物体的形状和尺寸投射到平面上,再根据需要绘制不同的视图。

2. 投影和视图的绘制方法。

2.1 正投影和斜投影。

正投影是指投影线垂直于投影面的投影方法,斜投影是指投影线与投影面不垂直的投影方法。

在工程制图中常用正投影来表示物体的形状和尺寸。

2.2 视图的选择和布置。

在进行投影和视图的绘制时,需要根据物体的形状和尺寸选择合适的视图,并合理布置在图纸上。

3. 不同视图之间的关系。

3.1 主视图、俯视图和侧视图的关系。

主视图是指从正面观察物体所得到的视图,俯视图是指从上方观察物体所得到的视图,侧视图是指从侧面观察物体所得到的视图。

这三个视图之间具有一定的关系,可以通过它们来全面地了解物体的形状和尺寸。

第四节教学过程。

1. 投影和视图的概念和基本原理。

1.1 通过实物或图片等形式,让学生了解投影和视图的概念和基本原理。

1.2 讲解投影和视图的基本原理,引导学生理解投影和视图的绘制方法。

2. 投影和视图的绘制方法。

2.1 展示正投影和斜投影的绘制方法,让学生掌握投影的基本技巧。

2.2 给学生提供一些实例,让他们在老师的指导下进行投影和视图的绘制。

3. 不同视图之间的关系。

3.1 通过实例讲解主视图、俯视图和侧视图之间的关系,引导学生理解不同视图之间的联系。

初中数学知识点精讲精析 三视图知识讲解

初中数学知识点精讲精析 三视图知识讲解

29.2 三视图1.三视图概念:物体的正投影从一个方向反映了物体的形状和大小,为了全面地反映一个物体的形状和大小,我们常常再选择正面和侧面两个投影面,画出物体的正投影。

如图 (1),我们用三个互相垂直的平面作为投影面,其中正对着我们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.一个物体(例如一个长方体)在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图,在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到由左向右观察物体的视图,叫做左视图.如图(2),将三个投影面展开在一个平面内,得到这一物体的一张三视图(由主视图,俯视图和左视图组成).三视图中的各视图,分别从不同方面表示物体,三者合起来就能够较全面地反映物体的形状.三视图中,主视图与俯视图表示同一物体的长,主视图与左视图表示同一物体的高.左视图与俯视图表示同一物体的宽,因此三个视图的大小是互相联系的.画三视图时.三个视图要放在正确的位置.并且使主视图与俯视图的长对正,主视图与左视图的高平齐.左视图与俯视图的宽相等画三视图的注意点:1、画一个立体图形的三视图时要考虑从某一个方向看物体获得的平面图形的形状和大小,不要受到该方向的物体结构的干扰。

2、在画三视图时,三个三视图不要随意乱放,应做到俯视图在主视图的下方,左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等。

典型例题例1.画出下图所示的一些基本几何体的三视图.分析:画这些基本几何体的三视图时,要注意从三个方面观察它们.具体画法为:1.确定主视图的位置,画出主视图;2.在主视图正下方画出俯视图,注意与主视图“长对正”。

3.在主视图正右方画出左视图.注意与主视图“高平齐”,与俯视图“宽相等”.解:例2.画出如图所示的支架(一种小零件)的三视图.分析:支架的形状,由两个大小不等的长方体构俯视图左视图主视图成的组合体.画三视四时要注意这两个长方体的上下、前后位置关系.解:如图29.2-7是支架的三视图例3.右图是一根钢管的直观图,画出它的三视图分析.钢管有内外壁,从一定角度看它时,看不见内壁.为全面地反映立体图形的形状,画图时规定;看得见部分的轮廓线画成实线.因被其他那分遮挡而看不见部分的轮廓线画成虚线.解:图如图29.2-7是钢管的三视图,其中的虚线表示钢管的内壁.例4.如图所示图形是一个多面体的三视图,请根据视图说出该多面体的具体名称。

北师版九年级数学上册教案(BS) 第五章 投影与视图

北师版九年级数学上册教案(BS) 第五章 投影与视图

第五章投影与视图1投影第1课时灯光与影子1.了解投影和中心投影的概念,体会灯光下物体的影子在生活中的运用.2.能根据灯光来辨别物体的影子,初步进行中心投影条件下物体与其投影之间的相互转化.重点了解中心投影的概念.难点利用中心投影解决问题.一、情境导入教师:在日常生活中,我们可以看到各种各样的影子.比如,太阳光照射在窗框、长椅等物体上时,会在墙壁或地面上留下影子;而皮影和手影都是在灯光照射下形成的影子.要求学生在灯光下做不同的手势,观察映射到屏幕上的表象.引导学生得出:物体在光线的照射下,会在地面或其他平面上留下它的影子,这就是投影现象,影子所在的平面称为投影面.二、探究新知1.学生活动:取一些长短不等的小棒和三角形、矩形纸片,用手电筒(或台灯)等去照射这些小棒和纸片,观察它们的影子.引导学生思考:(1)固定手电筒(或台灯),改变小棒或纸片的摆放位置和方向,它们的影子分别发生了什么变化?(2)固定小棒和纸片,改变手电筒(或台灯)的摆放位置和方向,它们的影子发生了什么变化?学生小组合作交流后给出答案,教师点评,引导学生得出:从一个点(点光源)发出的光线所形成的投影称为中心投影.教师进一步讲解中心投影的性质:(1)光源、物体边缘上的点以及它在影子上的对应点在同一条直线上,根据同一灯光下两个不同物体及它们的影子,可以确定灯(点光源)所在的位置;(2)若物体相对于光源的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子始终分居在物体的两侧.2.课件出示:(1)下列现象属于中心投影的有()①小孔成像;②皮影戏;③手影;④放电影.A.1个B.2个C.3个D.4个(2)小华自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30 cm,幻灯片到屏幕的距离是1.5 m,幻灯片上小树的高度是10 cm,则屏幕上小树的高度是()A.50 cm B.60 cmC.500 cm D.600 cm学生思考完成后举手回答,教师点评,提问:通过上面的学习,你能总结出中心投影的特点吗?引导学生总结归纳出中心投影的三个特点:(1)等高物体垂直地面放置:离点光源越近,影子越短;离点光源越远,影子越长.(2)等长物体平行地面放置:离点光源越近,影子越长;离点光源越远,影子越短,但不会小于物体本身的长度.(3)点光源、物体边缘的点以及其在物体的影子上的对应点在同一条直线上.三、举例分析例(课件出示教材第126页例1)学生独立完成后给出答案,教师点评,并进一步讲解确定中心投影的光源位置的方法:根据点光源、物体边缘上的点以及它在影子上的对应点在同一条直线上,知道其中两个点,就可确定第三个点的位置,先找物体上两点及其在影子上的对应点,再分别过物体上的点及其在影子上的对应点画直线,两条直线的交点即为光源所在的位置.四、练习巩固1.教材第126页“议一议”.2.教材第127页“随堂练习”第1,2题.五、小结1.通过本节课的学习,你有什么收获?2.中心投影的概念及特点分别是什么?3.说说确定中心投影的光源位置的方法.六、课外作业教材第128~129页习题5.1第1~3题.本节课的内容是灯光与影子.在教学过程中,让学生通过实践、观察、探索了解中心投影的含义,体会灯光下物体的影子在生活中的应用,感悟灯光与影子在现实生活中的应用价值.通过观察、想象,能根据灯光来辨别物体的影子,初步进行中心投影条件下物体与其投影之间的相互转化.在课堂上,以学生为主,教师引导学生探讨新知识,提高学生的分析能力,调动学生的学习积极性.第2课时太阳光与影子1.理解平行投影与正投影的含义,能够确定物体在太阳光下的影子.2.理解不同时刻物体在太阳光下形成的影子的大小和方向是不同的.重点理解平行投影与正投影的含义,能够确定物体在太阳光下的影子.难点理解不同时刻物体在太阳光下形成的影子的大小和方向是不同的.一、复习导入1.下图是两棵小树在同一时刻的影子,请在图中画出形成树影的光线.它是太阳的光线还是灯光的光线?它是太阳的光线,因为两棵树的顶端及其影子的顶端的两线相交于一点.2.下图的影子是在太阳光下形成的还是在灯光下形成的?画出同一时刻旗杆的影子(用线段表示),并与同伴交流这样做的理由.学生小组讨论交流,教师点评.教师:本节课我们就来研究“太阳光与影子”.二、探究新知1.平行投影(1)学生活动:取若干长短不等的小棒及三角形、矩形纸片,观察它们在太阳光下的影子.引导学生思考:①固定投影面,改变小棒或纸片的摆放位置和方向,它们的影子分别发生了什么变化?②固定小棒或纸片,改变投影面的摆放位置和方向,它们的影子分别发生了什么变化?学生操作、观察、探索后回答问题,教师引导学生得出:太阳光线可以看成平行光线,平行光线所形成的投影称为平行投影.注意:①平行投影中对应点的连线是相互平行的;②物体与投影的对应点的连线是相互平行的就说明是平行投影;③物体在不同时刻的太阳光下,不仅影子的大小在变,而且影子的方向也在改变.就我们生活的北半球而言,上午的影子的方向是由西向北变化,影子越来越短;下午的影子方向由北向东变化,影子越来越长.(2)课件出示:这三幅图是我国北方某地某天上午不同时刻的同一位置拍摄的.①在三个不同时刻,同一棵树的影子长度不同,请将它们按拍摄的先后顺序进行排列,并说明你的理由.②在同一时刻,两棵树影子的长度与它们的高度之间有什么关系?与同伴进行交流.学生观察、交流,得出结论:在同一时刻,两棵树的影子的长度与它们的高度成比例.教师进一步讲解平行投影的特点:①等高的物体垂直于地面放置时,在同一时刻的太阳光下,它们的影子一样长;②等长的物体平行于地面放置时,在太阳光下,它们的影子一样长,且等于物体本身的长度;③在太阳光下,不同时刻,同一地点,同一物体的影子的长度可能不同;④在太阳光下,同一时刻,同一地点,以同样的方式放置不同的物体,影子的长度与物体的长度成正比.2.正投影教师:平行光线与投影面垂直,这种投影称为正投影.如图所示:强调:(1)正投影是特殊的平行投影,它不可能是中心投影;(2)正投影中强调的是光线与投影面之间的关系,与物体的位置无关;(3)物体的正投影的形状、大小与物体相对于投影面的位置有关,它分物体与投影面平行、倾斜、垂直三种情况.三、举例分析例1小乐用一块矩形硬纸板在阳光下做投影试验,通过观察,发现这块矩形硬纸板在平整的地面上不可能出现的投影是()A.三角形B.线段C.矩形D.平行四边形分析:将矩形硬纸的板面与投影线平行时,形成的影子为线段;将矩形硬纸板与地面平行放置时,形成的影子为矩形;将矩形硬纸板倾斜放置形成的影子为平行四边形.例2(课件出示教材第130页例2)学生完成后给出答案,教师点评并引导学生得出画物体的平行投影的方法:先根据物体的投影确定光线,然后利用两个物体的顶端和各自影子的顶端的连线是一组平行线,过物体顶端作平行线与地面相交,从而确定其影子.四、练习巩固1.教材第131页“做一做”.2.教材第132页“随堂练习”.五、小结1.通过本节课的学习,你有什么收获?2.平行投影的概念及其特点分别是什么?3.画物体平行投影的方法是什么?4.什么是正投影?六、课外作业教材第132~133页习题5.2第1~4题.太阳光与影子是日常生活中的常见现象,学生在其他课程的学习中已经积累了物体在太阳光下形成的影子的有关知识.而本节课是在学生学习了投影和中心投影这两个概念后,再一次给出了平行投影和正投影的概念.本节课的目的在于让学生通过众多实例进一步讨论物体在太阳光下所形成的影子的大小、形状、方向等几何知识.相比于灯光与影子,本节课的内容难度要大一些.仅仅依靠学生的想象力,还无法解决全部问题,因此本节课教师应利用课堂时间组织学生动手实践去体会太阳光与影子之间的关系.2视图1.会从投影的角度理解视图的概念,能说出基本几何体的三视图的形状.会画三棱柱、四棱柱的三视图.能根据几何体的俯视图画出其主视图和左视图.2.经历探索简单几何体及棱柱的三视图的过程,培养学生的空间想象能力及画图能力.3.经历由几何体的俯视图探索主视图和俯视图的过程,进一步发展学生的推理能力和空间感.重点掌握三视图的画法,能进行几何体和三视图之间的相互转化.难点几何体与三视图之间的相互转化.一、复习导入教师:什么是投影?什么是中心投影?什么是平行投影?什么是正投影?教师指名学生回答.二、探究新知1.主视图、俯视图、左视图的概念课件出示教材第134页图5-12,提出问题:(1)假设有一束平行光线从正面投射到图中的物体上,你能想象出它在这束平行光线下的正投影吗?把你想象的正投影画出来,并与同伴交流.(2)如果平行线光线从左面投射到图中的物体上,情况又如何?如果平行光线从上面投射到图中的物体上呢?学生独立画图,教师巡视指导,并讲解:用正投影的方法绘制的物体在投影面上的图形,叫做物体的视图.通常我们把从正面得到的视图叫做主视图,从左面得到的视图叫做左视图;从上面得到的视图叫做俯视图.(正视图、左视图、俯视图统称为三视图)2.主视图、左视图、俯视图的画法学生活动:请同学们拿出事先准备好的直三棱柱、直四棱柱,根据你所摆放的位置经过想象,再抽象出这两个直棱柱的主视图、左视图和俯视图.学生分四人小组,合作学习.观察、画图、交流,上台演示.教师:请你将抽象出来的三种视图画出来,并与同伴交流.指名同学在黑板上画出其中一个几何体的主视图、左视图和俯视图,完成后提出问题:你认为他画得对不对?谈谈你的看法.学生积极举手回答,发表自己的看法.教师:当你手中的两个直棱柱摆放的角度变化时,它们的三种视图是否会随之改变?试一试.学生动手操作演示,教师巡视.课件出示一个长方体,提出问题:请画出这个长方体的主视图、左视图、俯视图.学生独立完成后,教师课件演示:对几何体进行正投影得到三视图.教师:将水平面、侧面、正面展开到同一平面,观察得到三种视图有什么位置关系?教师引导学生得出三种视图的位置关系:主视图在图纸的左上方;左视图在主视图的右方;俯视图在主视图的下方.教师:三种视图大小有什么规律?引导学生发现三种视图的大小对应关系:主视图与俯视图长对正,主视图与左视图高平齐,左视图与俯视图宽相等.教师强调长、宽、高的概念:从正面观察几何体.长是几何体从左到右的距离,宽是几何体从前到后的距离,高是几何体从上到下的距离.3.根据几何体的三视图,描述物体的形状课件出示教材第141页图5-24,图5-25,提出问题:你能在图5-25中找出与之对应的几何体吗?学生独立完成后汇报答案,教师点评.课件出示教材第141页图5-26,提出问题:你能想象出相应几何体的形状吗?学生独立思考,并小组内交流.三、举例分析例(课件出示教材第138页例题)学生独立完成后,教师点评,并引导学生得出三视图画法的注意事项:(1)注意物体摆放的位置;(2)明确三种视图的形状;(3)明确三种视图的大小;(4)注意实线与虚线的用法.四、练习巩固1.教材第136页“随堂练习”第1,2题.2.教材第139页“随堂练习”第1,2题.3.教材第142页“随堂练习”第1,2题.五、小结1.通过本节课的学习,你有什么收获?2.什么是三视图?3.说说三视图的画法及注意事项.六、课外作业1.教材第137页习题5.3第1,2题.2.教材第140页习题5.4第1,2题.3.教材第143页习题5.5第3题.本节课的内容为视图,主要是通过对由实物抽象出几何体的过程,发展学生的空间想象能力.在教学过程中通过具体活动,积累学生的观察、想象物体投影的经验.在画实物的视图时,必须首先对实物进行合理的抽象,即把实物抽象成相应的几何体,在此基础上再画其视图.而且也会根据三视图描述几何体的形状.通过观察、操作、猜想、讨论、合作等活动,使学生体会到三视图中位置及各部分之间大小的对应关系,积累数学活动的经验.在应用数学解决生活中问题的过程中,品尝成功的喜悦,激发学生应用数学的热情.培养学生自主学习与合作学习相结合的学习方式,使学生体会从生活中发现数学.。

人教版九年级下册数学《平行投影与中心投影》投影与视图PPT课件

人教版九年级下册数学《平行投影与中心投影》投影与视图PPT课件

例题精讲
解:如图所示,OP为路灯,AE为第一-次竖起的竹竿,其影子为AC,BF为第二次竖 起,的竹竿,其影子为BD.
根据题意,得AE= BF=2米,AC=1米,BD=2米,AB=4米,设OP=x米. ∵AE//OP,∴△POC△AEC, ∴PO/PC=AE/AC= ½,则PC= ½OP= ½x m. ∴AP=CP-CA=( ½ x-1) m 同理△POD∽△BFD, 则BF/BD=PO/DP,即2/2=PO/DP, ∴PO=DP 又∵DP=DB+BA+AP=2+4+(½ x +1)=5+ ½ x. ∴x=5+ ½ x.解得x=10, 即路灯的高为10米.
BA
_____.
α A1
BA 12
第 42 页
BA B
B A3(B 2 3)
探数学新知
如图,把一块正方形硬纸板P (记为正 方形ABCD) 放在三个不同位置:(1) 纸板平 行于投影面;(2) 纸板倾斜于投影面;(3) 纸板垂直于投影面.
三种情形下纸板的正投影各是什么形状?
通过观察、测量可知: (1) 当纸板P平行于投影面β时,P的正投影与P的
第 31 页
练所获之理
下图中的三幅图是我国北方地区某地某天上午不同时刻的同一位 置拍摄的在三个不同的时刻,同一棵树的影子长度不同,请你将它 们按拍摄的先后顺序进行排列,并说明你的理由.
第 32 页
顺序为:3 → 2 → 1
觉题目之殊
思考:在同一时刻,大树和小树的影子与它们的高 度之间有什么关系?与同伴交流。
'
A' B
'
A DC ''
A' B

2024年北师大版九年级上册教学第五章 投影与视图投影

2024年北师大版九年级上册教学第五章 投影与视图投影

第1课时中心投影课时目标1.通过实例了解投影、中心投影的概念.2.在具体操作活动中,初步感受在点光源下物体影子的变化情况;在具体情境中了解在点光源下影响物体影子长度的一些因素;会进行中心投影的有关画图.3.通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力.学习重点中心投影的概念及相关画图.学习难点根据物体的影子找光源.课时活动设计情境引入成影现象调查(提前一周布置)以4人合作小组为单位,开展调查活动.(1)让学生尽可能多收集生活中各类成影现象(用电子图片形式呈现).(2)小组长整理所收集的图片(如图),统一规格要求,交给数学教师.要求学生通过观察真实成影现象(包括生活中观察的成影、视频看到的成影现象、上网调查的成影问题等),得到有关成影图片资源,收集的资源尽量多样化.在必要的情况下,教师可以对学生选择调查对象方面给予一定的指导,使调查更有实效性.小结:物体在光线的照射下,会在地面或其他平面上留下它的影子,这就是投影现象.影子所在的平面称为投影面.设计意图:通过调查活动,指导学生利用现有手段获取有效信息,培养学生善于观察生活、乐于探索研究的学习品质及与他人合作交流的意识;而在本节课和下节课的学习活动中,学生通过对他们自己收集且感兴趣的问题展开学习,将极大地激发学生学习的积极性与主动性,提高教学的实效性.做一做取一些长短不等的小棒和三角形、矩形纸片,用手电筒(或台灯)等去照射这些小棒和纸片,观察它们的影子.(1)固定手电筒(或台灯),改变小棒或纸片的摆放位置和方向,它们的影子分别发生了什么变化?(2)固定小棒或纸片,改变手电筒(或台灯)的摆放位置和方向,它们的影子分别发生了什么变化?小结:手电筒、路灯和台灯的光线可以看成是从一个点发出的,这样的光线所形成的投影称为中心投影.设计意图:通过具体操作,使学生体会在点光源下物体影子的变化情况.在此基础上,引出中心投影的概念.典例精讲结合中心投影的特点,完成确定点光源方法的学习.例确定图中路灯灯泡所在的位置.教师:结合你们刚才对中心投影的理解,请在图中尝试找一下灯泡的位置.学生:动手探究.教师:走入学生巡视,捕捉教学资源,进行教学指导.根据学生反应情况,教师选择下列方式进行过程性点拨.1.在同一灯光下,物体的影子与物体上对应点的连线过灯泡所在的位置吗?2.如何找物体与影子上的对应点?3.找一对对应点可以确定灯泡的位置吗?4.能够找到灯泡位置的同学,请思考你确定灯泡位置的原理和刚才的具体操作步骤并尝试在图旁边写下来.根据学生反应的情况,教师使用实物投影展示,对下列情境进行过程性打断纠错.1.找错对应点.2.所画光线不进行适当延长,没有相交.3.所画光线不考虑实际背景,画入了地平线以下.4.找到灯泡位置,未用字母表示.待绝大多数学生正确完成灯泡位置的确定,大部分学生在思考原理及步骤,部分学生开始书写原理及步骤(确保学生有资源可以交流),教师适时打断,引导学生讨论确定灯泡位置方法的原理和具体操作的步骤,并要求小组派代表进行汇总发言(确保学生真正参与交流),使全班同学掌握作图原理及操作步骤,明确对应点的正确找取是确定灯泡位置的关键.注意事项:教师要注意欲速则不达,放手让学生进行探究,当出现较严重的知识性问题或较多学生出现错误时,再适时进行过程性的纠错和点拨,留更多的知识点、能力点让学生在探究和合作交流中得以自我发现学习.教师板书正确答案.解:如图,过一根木杆的顶端及其影子的顶端画一条直线,再过另一根木杆的顶端及其影子的顶端画一条直线,两线相交于点O.点O就是路灯灯泡所在的位置.设计意图:通过独立探究、合作交流,使学生对中心投影有更加深入的认识,并能够应用原理解决实际问题.议一议如图,一个广场中央有一盏路灯.(1)高矮相同的两个人在这盏路灯下的影子一定一样长吗?(2)高矮不同的两个人在这盏路灯下的影子有可能一样长吗?那么什么情况下他们的影子一样长呢?请实际试一试,并与同伴交流.解:(1)高矮相同的两个人在这盏路灯下的影子不一定一样长.(2)高矮不同的两个人在这盏路灯下的影子有可能一样长.当他们到这盏路灯的距离一样时,他们的影子一样长.设计意图:让学生了解在点光源下影响物体影子长度的一些因素.巩固训练练习1两棵小树在一盏路灯下的影子如图所示.(1)确定该路灯灯泡所在的位置;(如图点O即为灯泡所在的位置)(2)画出图中表示婷婷影长的线段.(如图线段AB即为婷婷的影长)练习2请同学们在图中画出小红在走向路灯时三个时刻的影子的情况,并思考在中心投影现象中,物体离光源的远近的变化会对影子的长短带来怎样的变化.通过作图,引导学生发现中心投影,物体与光源距离的远近影响投影的长短.设计意图:通过练习1,进一步巩固学生对中心投影特点的认识,熟练找光源的方法;通过练习2,引导学生思考中心投影的各种情况.学生经历实践、探索的过程,既培养了学生的动手实践能力,积累了数学活动经验,又加深了对中心投影的了解.课堂小结谈谈今天的收获是什么?与同伴进行交流.(从数学知识、数学方法和数学思想方面引导学生思考)设计意图:通过开放式小结,使学生自主回顾、总结梳理所学知识,培养学生归纳、概括能力和表达能力.课堂8分钟.1.教材第128页习题5.1第1,2,3题.2.七彩作业.第1课时中心投影1.投影:物体在光的照射下,在地面或其他平面上留下它的影子,就是投影.2.中心投影:从一个点出发的光线所形成的投影称为中心投影.3.例题、练习题.教学反思第2课时平行投影课时目标1.通过背景丰富的实例了解平行投影和正投影的概念.2.通过具体操作活动,初步感受太阳光下物体影子的变化情况;认识太阳光下物体影子的长短与方向的变化规律;能运用平行投影的基本规律解决一些简单问题.3.在具体情境中认识中心投影与平行投影的区别.4.经历操作、观察、分析、抽象、概括、想象、推理、交流等过程,进一步积累数学活动经验,增强动手实践能力,发展空间观念.学习重点通过具体操作和实际观察活动,认识太阳光下物体影子的长短与方向的变化规律;能运用平行投影的基本规律解决一些简单问题;在具体情境中认识中心投影与平行投影的区别.学习难点让学生经历操作与观察、演示与想象、直观与推理等过程,自己归纳总结出有关结论.课时活动设计情境引入太阳光成影现象调查(提前一周布置,利用周末时间完成)以4人合作小组为单位,开展调查活动.活动:取若干长短不等的小棒及三角形、矩形纸片,观察它们在太阳光下的影子.(1)固定投影面,改变小棒或纸片的摆放位置和方向,它们的影子分别发生了什么变化?(2)固定小棒或纸片,改变投影面的摆放位置和方向,它们的影子分别发生了什么变化?小结:太阳光线可以看成平行光线,平行光线所形成的投影称为平行投影.图1,图2表示的都是平行投影,其中图2中的平行光线与投影面垂直,这种投影称为正投影.图1图2注意事项:在体会物体在太阳光下形成的影子随着物体与投影面的相对位置关系的改变而改变时,尤其要让学生观察两类特殊位置时的情形:①小棒或纸片与投影面平行;②光线与投影面垂直.对于①,要让学生观察物体影子的形状和大小的特点(物体与其影子“全等”).对于②,要让学生观察“物体影子的形状和大小”随“物体与投影面的相对位置”变化而变化的规律,如当物体平行于投影面时情况如何,当物体倾斜于投影面时情况如何,当物体垂直于投影面时情况又如何等等.设计意图:通过具体操作,体会物体在太阳光下形成的影子随着物体与投影面的位置关系的改变而改变,在此基础上引出平行投影与正投影的概念.提高学生观察生活的能力以及合作能力.在中心投影的学习后,自然对比中心投影与平行投影的异同,为本节课的学习创设学习氛围,提升本节课的学习效果.议一议1.如图所示的三幅图片是我国北方某地某天上午不同时刻的同一位置拍摄的.(1)在三个不同时刻,同一棵树的影子长度不同,请将它们按拍摄的先后顺序进行排列,并说明你的理由.解:先后顺序为(丙)(乙)(甲).理由:太阳东升西落.在早晨,太阳位于正东方向,此时树的影子较长,影子位于树的正西方向.在上午,随着太阳位置的变化,树的影子的长度逐渐变短,树的影子也由正西方向向正北方向移动.(2)在同一时刻,两棵树影子的长度与它们的高度之间有什么关系?与同伴交流.解:在同一时刻,大树高度与其影长之比等于小树高度与其影长之比.2.教师课前整理太阳光成影现象调查,选择适合学生的资源进行多媒体展示,选1个小组代表结合照片与统计的数据表格对同一时刻.不同高度的物体的影子的长短的情况进行介绍,其他小组同学进行补充,使学生明晰同一时刻,不同高度的物体的影子的长短不相同,物高与影长之间存在“A物高∶A影长=B物高∶B 影长”.教师结合图片,适时引导学生运用相似的知识对原理进行解释.设计意图:通过两个问题的设置,让学生在亲身参与的基础上,进行展示及讨论交流,让学生初步学会本节课的研究内容,在小组讨论的基础上得出两个问题的答案,进一步培养学生探究知识的能力,体会到自主学习的乐趣,为学生以后更好地学习新知奠定基础.学生在探究完教师的问题后,教师出示课前准备的图片,让学生验证变化规律的成因,给学生一个完整的知识结构.典例精讲例某校墙边有甲、乙两根木杆,已知乙木杆的高度为1.5 m.(1)某一时刻甲木杆在阳光下的影子如图所示.你能画出此时乙木杆的影子吗?(2)在图中,当乙木杆移动到什么位置时,其影子刚好不落在墙上?(3)在(2)的情形下,如果此时测得甲、乙木杆的影子长分别为1.24 m和1 m,那么你能求出甲木杆的高度吗?解:(1)如图1,连接DD',过点E作DD'的平行线,交AD'所在的直线于点E'.BE'就是乙木杆的影子.图1图2(2)如图2,平移由乙木杆、乙木杆的影子和太阳光线所构成的图形(即△BEE'),直到乙木杆影子的顶端E'抵达墙根为止.(3)因为△ADD'∽△BEE',所以,ADBE =AD'BE',即AD1.5=1.241.所以,甲木杆的高度为AD=1.5×1.241=1.86(m).设计意图:通过问题(1)深化学生所学知识,发现物体、影子、光线这三者之间,确定其中的两个因素即可确定第三个因素;通过问题(2),让学生学会动态看待投影问题;通过问题(3),使学生能够运用所探究到的知识解决实际问题,借助例题讲解的形式,让学生深入了解并运用上一环节所学的相关知识.巩固训练请完成以下两道题目,并与同伴交流你的方法.1.图中是两棵小树在同一时刻的影子,请在图中画出形成树影的光线.它们是太阳的光线还是灯光的光线?与同伴交流.解:如图即为所作,它们是灯光的光线.2.图中的影子是在太阳光下形成的还是在灯光下形成的?画出同一时刻旗杆的影子(用线段表示),并与同伴交流这样做的理由.解:太阳光下形成的,如图,旗杆的影子为线段AB.理由:过大树的顶端及其影子的顶端作一条直线,再过小树的顶端及其影子的顶端作一条直线,两条直线是平行的,因而是太阳光下形成的影子,过旗杆的顶端作一条与前面所作的两条直线中的任意一条平行的直线,其与地面相交,则以该交点和旗杆的底端为两个端点线段AB即为旗杆的影子.2.如图1,中间是一盏路灯,周围有一圈栏杆,图2,图3表示的是这些栏杆的阴影,但没有画完,请你把图2,图3补充完整.图1图2图3图4图5解:图2是中心投影,图3是平行投影.补充完整的图如图4,图5所示.设计意图:通过活动进一步巩固学生对平行投影和中心投影的认识,能熟练确定投影类型.经历实践探索、交流讨论的过程,培养学生的动手实践能力,积累数学活动经验,掌握投影现象的特点.课堂小结谈谈你的收获是什么?与同伴进行交流.(从数学知识、数学方法和数学思想方面引导学生思考)设计意图:通过开放式小结,使学生自主回顾、总结梳理所学知识,培养学生归纳、概括和表达能力.课堂8分钟.1.必做题:教材第132页习题5.2第1,3题;选做题:教材第133页习题5.2第4题.2.七彩作业.第2课时平行投影投影教学反思。

投影与视图—知识讲解[003]

投影与视图—知识讲解[003]

投影与视图—知识讲解责编:常春芳【学习目标】1.以分析实际例子为背景,认识投影和视图的基本概念和基本性质;2.通过讨论简单立体图形(包括相应的表面展开图)与它的三视图的相互转化,经历画图、识图等过程,分析立体图形和平面图形之间的联系,提高空间想象能力;3.通过制作立体模型的学习,在实际动手中进一步加深对投影和视图知识的认识,在实践活动中培养实际操作能力.【要点梳理】要点一、平行投影1.一般地,用光线照射物体,在某个平面(地面或墙壁等)上得到的影子,叫做物体的投影. 照射光线称为投影线,投影所在的平面称为投影面.2.由于太阳的光线可看作是平行的,象这样的光线照射在物体上,所形成的投影叫做平行投影.由此我们可得出这样两个结论:(1)等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子一样长.(2)等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度.3. 物高与影长的关系(1)在不同时刻,同一物体的影子的方向和大小可能不同.不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚,物体影子的指向是:西→西北→北→东北→东,影长也是由长变短再变长.(2)在同一时刻,不同物体的物高与影长成正比例.即:.利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等.注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长.要点诠释:1.平行投影是物体投影的一种,是在平行光线的照射下产生的.利用平行投影知识解题要分清不同时刻和同一时刻.2.物体与影子上的对应点的连线是平行的就说明是平行光线.要点二、中心投影若一束光线是从一点发出的,像这样的光线照射在物体上所形成的投影,叫做中心投影.这个“点”就是中心,相当于物理上学习的“点光源”.生活中能形成中心投影的点光源主要有手电筒、路灯、台灯、投影仪的灯光、放映机的灯光等.相应地,我们会得到两个结论:(1)等高的物体垂直地面放置时,如图1所示,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.(2)等长的物体平行于地面放置时,如图2所示.一般情况下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.在中心投影的情况下,还有这样一个重要结论:点光源、物体边缘上的点以及它在影子上的对应点在同一条直线上,根据其中两个点,就可以求出第三个点的位置.要点诠释:光源和物体所处的位置及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子始终分离在物体的两侧.要点三、正投影正投影的定义:如图所示,图(1)中的投影线集中于一点,形成中心投影;图(2)(3)中,投影线互相平行,形成平行投影;图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面(即投影线正对着投影面),像图(3)这样,投影线垂直于投影面产生的投影叫做正投影.1.线段的正投影如图所示.①线段AB平行于投影面P时,它的正投影是线段A1B1,与线段AB的长相等;②线段AB倾斜于投影面P时,它的正投影是线段A2B2,长小于线段AB的长;③线段AB垂直于投影面P时,它的正投影是一个点.要点诠释:一般地,线段正投影的规律:平行长不变,倾斜长缩短,垂直成一点.2.平面图形的正投影如图所示.①当平面图形平行于投影面Q时,它的正投影与这个平面图形的形状、大小完全相同,即正投影与这个平面图形全等;②当平面图形倾斜于投影面Q时,平面图形的正投影与这个平面图形的形状、大小发生变化,即会缩小,是类似图形但不一定相似.③当平面图形垂直于投影面Q时,它的正投影是直线或直线的一部分.要点诠释:一般地,平面图形正投影的规律:平行形不变,倾斜形改变,垂直成线段.3.几何体的正投影物体的正投影的形状、大小与物体相对于投影面的位置有关,立体图形的正投影与平行于投影面且过立体图形的最大截面全等.要点诠释:(1)正投影是特殊的平行投影,它不可能是中心投影.(2)由线段、平面图形和立体图形的正投影规律,可以识别或画出物体的正投影.(3)由于正投影的投影线垂直于投影面,一个物体在一个平面上的正投影是一个平面图形.要点四、三视图1.三视图的概念(1)视图一个几何体在一个平面上的正投影叫做这个几何体的视图.(2)正面、水平面和侧面用三个互相垂直的平面作为投影面,其中正对我们的面叫做正面,正面下面的面叫做水平面,右边的面叫做侧面.(3)三视图一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.主视图、左视图、俯视图叫做物体的三视图.2.三视图之间的关系(1)位置关系三视图的位置是有规定的,主视图要在左边,它的下方应是俯视图,左视图在其右边,如图(1)所示.(2)大小关系三视图之间的大小是相互联系的,遵循主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等的原则.如图(2)所示.要点诠释:物体的三视图的位置是有严格规定的,不能随意乱放.三视图把物体的长、宽、高三个方面反映到各个视图上,具体地说,主视图反映物体的长和高;俯视图反映物体的长和宽,左视图反映物体的高和宽,抓住这些特征能为画物体的三视图打下坚实的基础.3.画几何体的三视图画一个几何体的三视图时,要从三个方面观察几何体,具体画法如下:(1)确定主视图的位置,画出主视图;(2)在主视图的正下方画出俯视图,注意与主视图“长对正”;(3)在主视图的正右方画出左视图,注意与主视图“高平齐”,与俯视图“宽相等”.几何体上被其他部分遮挡而看不见的部分的轮廓线应画成虚线.要点诠释:画一个几何体的三视图,关键是把从正面、上方、左边三个方向观察时所得的视图画出来,所以,首先要注意观察时视线与观察面垂直,即观察到的平面图是该图的正投影;其二,要注意正确地用虚线表示看不到的轮廓线;其三,要充分发挥想象,多实践,多与同学交流探讨,多总结;最后,按三视图的位置和大小要求从整体上画出几何体的三视图.4.由三视图想象几何体的形状由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象主体图的前面、上面和左侧面,然后综合起来考虑整体图形.要点诠释:由物体的三视图想象几何体的形状有一定的难度,可以从如下途径进行分析:(1)根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状以及几何体的长、宽、高;(2)根据实线和虚线想象几何体看得见和看不见的轮廓线;(3)熟记一些简单的几何体的三视图会对复杂几何体的想象有帮助;(4)利用由三视图画几何体与由几何体画三视图为互逆过程,反复练习,不断总结方法.要点五、棱柱1.概念:如图,这样的几何体叫做棱柱,它的上、下两个面叫做底面(△ABC、△A1B1C1互相平行且是全等的三角形),其余各面叫做侧面,相邻侧面的交线叫做侧棱.2.分类:(1)根据棱柱底面多边形的边数,棱柱可分为是三棱柱、四棱柱、五棱柱、……(2)按侧棱与底面是否垂直可分为:①侧棱不垂直于底面的棱柱叫做斜棱柱,如图(1).②侧棱垂直于底面的棱柱叫做直棱柱,如图(2).(3)底面是正多边形的直棱柱叫做正棱柱.【典型例题】类型一、投影的作图问题1.如何才能使如图所示的两棵树在同一时刻的影长分别与它们的原长相等,试画图说明.【答案与解析】(1)如图所示.可在同一方向上画出与原长相等的影长,此时为平行投影.(2)如图所示,可在两树外侧不同方向上画出与原长相等的影子,连结影子的顶点与树的顶点.相交于点P.此时为中心投影,P点即为光源位置.【总结升华】连结物体顶点与其影长的顶点,如果得到的是平行线,即为平行投影;如果得到相交直线,则为中心投影,这是判断平行投影与中心投影的方法,也是确定中心投影光源位置的基本做法.但若中心投影光源在两树同侧时,图中的两棵树的影长不可能同时与原长相等,所以点光源可以选在两树之间.特别提醒:易错认为只有平行投影才能使两棵树在同一时刻的影长分别与它们的原长相等,从而漏掉上图这一情形.举一反三:【变式】与一盏路灯相对,有一玻璃幕墙,幕墙前面的地面上有一盆花CD和一棵树AB.晚上,幕墙反射路灯,灯光形成那盆花的影子DF,树影BE是路灯灯光直接形成的,如图所示,你能确定此时路灯光源的位置吗?【答案】作法如下:①连结FC并延长交玻璃幕墙于O点;②过点O作直线OG垂直于玻璃幕墙面;③在OC另一侧作∠POG=∠FOG且交EA延长线于点P.P点即此时路灯光源位置,如图所示.类型二、投影的应用2.某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)【答案与解析】解:(1)AB=ACtan30°=12×=4(米).答:树高约为4米.(2)如图(2),B1N=AN=AB1sin45°=4×=2(米).NC1=NB1tan60°=2×=6(米).AC1=AN+NC1=2+6.当树与地面成60°角时影长最大AC2(或树与光线垂直时影长最大或光线与半径为AB的⊙A相切时影长最大)AC2=2AB2=;【总结升华】此题考查了平行投影;通过作高线转化为直角三角形的问题,当太阳光线与圆弧相切时树影最长,是解题的关键.类型三、由三视图描述物体的形状3.如图所示,这是个由小立方体搭成的几何体从上面看的视角,小正方形中的数字表示在该位置的小立方体的个数,请画出从正面看和左面看的视图.【思路点拨】由已知条件可知,从正面看有4列,每列小正方数形数目分别为2,2,3,2;从左面看有2列,每列小正方形数目分别为3,2.据此可画出图形.【解析】解:如图所示:.【总结升华】此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.类型四、三视图的有关计算4.某工厂要对一机器零件表面进行喷漆,设计者给出了该零件的三视图(如图所示),请你根据三视图确定其喷漆的面积.【答案与解析】长方体的表面积为(30×40+40×25+25×30)×2=5900(cm2),圆柱体的侧面积为3.14×20×32=(cm2),其喷漆的面积为5900+=7910(cm2).【总结升华】由该机械零件的三视图,可想象它是一个组合体,是由一个长方体和一个圆柱体组成.其表面积是一个长方体的六个面与圆柱体的侧面构成.(圆柱体的上表面补在长方体的上表面被圆柱体遮挡的部分).该组合体是由一长方体与一圆柱体组合而成,但不能认为组合体的表面积就是两几何体的表面积之和.举一反三:【变式】某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如图所示),请你按照三视图确定制作每个密封罐所需钢板的面积(单位:mm).【答案】由三视图可知,密封罐的形状是正六棱柱(如图(1)所示).密封罐的高为50mm,底面正六边形的对角线为100mm,边长为50 mm,如图(2)所示.由展开图可知,制作一个密封罐所需钢板的面积为S=6×50×50+2×6×12×50×50×sin60°=6×50°×312⎛+⎝⎭≈27990(mm2).。

《投影与视图——视图》数学教学PPT课件(6篇)

《投影与视图——视图》数学教学PPT课件(6篇)

方法归纳
根据三视图确定小正方体的个数问题: 先有俯视图确定物体在平面上的形状,再根据主视图和左
视图确定各行各列的高度. 较方便的做法是在俯视图的相应位置标出小正方形的个数,
如:下图表示几何体共有4个小正方体组成.当只给出两种视图 时,往往个数不确定.
12 1
当堂练习
1.一个几何体的主视图和左视图如图所示,请补画这个几何体的俯视图.
视图
第2课时
讲授新课
当堂练习
课堂小结
学习目标
1.会辨别复杂的几何体的三视图. (重点) 2.会画复杂的几何体的三视图,会根据复杂的三视图判断实物原
型.重点) 3.明确三视图中实线和虚线的区别.(难点)
导入新课
问题:请画出下面几何图形的三视图.
主视图 左视图
俯视图
讲授新课
一 画复杂的几何体的三视图
图反映物体的宽和高.
(2)大小关系:三视图之间的大小是相互联系的,主视图
的长与俯视图的长对正,主视图的高与左视图的高平
齐,左视图的宽与俯视图的宽相等.
(来自《点拨》)
知1-讲
例1〈泸州〉如图所示的几何体的左视图是( C )
导引: 左视图是从物体的左面看到的视图,从圆柱的左 边向右边看,看到的是一个矩形,故(选来C自. 《点拨》)
导入新课
第五章 投影与视图
视图
第1课时
讲授新课
当堂练习
课堂小结
学习目标 1.理解视图及三视图的概念. 2.会辨别简单几何体的三种视图,能熟练画出简单几何体的三
种视图.(重点) 3.能根据三视图描述基本几何体或实物原型.(难点)
导入新课
问题:观察下面图形,假如有一束平形光从正面、左面、上面照 射到物体上,请分别画出不同方向的正投影图形.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

投影与视图—知识讲解【学习目标】1.在观察、操作、想象等活动中增强对空间物体的把握和理解能力;2.通过实例了解中心投影与平行投影;3.会画直棱柱、圆柱、圆锥和球的三种视图;4.能根据三种视图描述简单的几何体.【要点梳理】要点一、投影1.投影现象物体在光线的照射下,会在地面或其他平面上留下它的影子,这就是投影现象.影子所在的平面称为投影面.2. 中心投影手电筒、路灯和台灯的光线可以看成是从一点发出的,这样的光线照射在物体上所形成的投影,称为中心投影.相应地,我们会得到两个结论:(1)等高的物体垂直地面放置时,如图1所示,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.(2)等长的物体平行于地面放置时,如图2所示.一般情况下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.在中心投影的情况下,还有这样一个重要结论:点光源、物体边缘上的点以及它在影子上的对应点在同一条直线上,根据其中两个点,就可以求出第三个点的位置.要点诠释:光源和物体所处的位置及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子始终分离在物体的两侧.3.平行投影1.平行投影的定义太阳光线可看成平行光线,平行光线所形成的投影称为平行投影.相应地,我们会得到两个结论:①等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子一样长.②等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度.2. 物高与影长的关系①在不同时刻,同一物体的影子的方向和大小可能不同.不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚,物体影子的指向是:西→西北→北→东北→东,影长也是由长变短再变长.②在同一时刻,不同物体的物高与影长成正比例.即:.利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等.注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长.要点诠释:1.平行投影是物体投影的一种,是在平行光线的照射下产生的.利用平行投影知识解题要分清不同时刻和同一时刻.2.物体与影子上的对应点的连线是平行的就说明是平行光线.4、正投影如图所示,图(1)中的投影线集中于一点,形成中心投影;图(2)(3)中,投影线互相平行,形成平行投影;图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面(即投影线正对着投影面),我们也称这种情形为投影线垂直于投影面.像图(3)这样,当平行光线与投影面垂直时,这种投影称为正投影.要点诠释:正投影是特殊的平行投影,它不可能是中心投影.要点二、中心投影与平行投影的区别与联系1.区别:(1)太阳光线是平行的,故太阳光下的影子长度都与物体高度成比例;灯光是发散的,灯光下的影子与物体高度不一定成比例.(2)同一时刻,太阳光下影子的方向总是在同一方向,而灯光下的影子可能在同一方向,也可能在不同方向.2.联系:(1)中心投影、平行投影都是研究物体投影的一种,只不过平行投影是在平行光线下所形成的投影,通常的平行光线有太阳光线、月光等,而中心投影是从一点发出的光线所形成的投影,通常状况下,灯泡的光线、手电筒的光线等都可看成是从某一点发射出来的光线.(2)在平行投影中,同一时刻改变物体的方向和位置,其投影也跟着发生变化;在中心投影中,同一灯光下,改变物体的位置和方向,其投影也跟着发生变化.在中心投影中,固定物体的位置和方向,改变灯光的位置,物体投影的方向和位置也要发生变化.要点诠释:在解决有关投影的问题时必须先判断准确是平行投影还是中心投影,然后再根据它们的具体特点进一步解决问题.要点三、视图1.三视图(1)视图用正投影的方法绘制的物体在投影面上的图形,称为物体的视图.(2)三视图在实际生活和工程中,人们常常从正面、左面和上面三个不同方向观察一个物体,分别得到这个物体的三个视图.通常我们把从正面得到的视图叫做主视图,从左面得到的视图叫做左视图,从上面得到的视图叫做俯视图.主视图、左视图、俯视图叫做物体的三视图.2.三视图之间的关系(1)位置关系一般地,把俯视图画在主视图下面,把左视图画在主视图右面,如图(1)所示.(2)大小关系三视图之间的大小是相互联系的,遵循主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等的原则.如图(2)所示.要点诠释:三视图把物体的长、宽、高三个方面反映到各个视图上,具体地说,主视图反映物体的长和高;俯视图反映物体的长和宽,左视图反映物体的高和宽,抓住这些特征能为画物体的三视图打下坚实的基础.3.画几何体的三视图画一个几何体的三视图时,要从三个方面观察几何体,具体画法如下:(1)确定主视图的位置,画出主视图;(2)在主视图的正下方画出俯视图,注意与主视图“长对正”;(3)在主视图的正右方画出左视图,注意与主视图“高平齐”,与俯视图“宽相等”.几何体上被其他部分遮挡而看不见的部分的轮廓线要画成虚线.要点诠释:画一个几何体的三视图,关键是把从正面、上方、左边三个方向观察时所得的视图画出来,所以,首先要注意观察时视线与观察面垂直,即观察到的平面图是该图的正投影;其二,要注意正确地用虚线表示看不到的轮廓线;其三,要充分发挥想象,多实践,多与同学交流探讨,多总结;最后,按三视图的位置和大小要求从整体上画出几何体的三视图.4.由三视图想象几何体的形状由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象主体图的前面、上面和左侧面,然后综合起来考虑整体图形.要点诠释:由物体的三视图想象几何体的形状有一定的难度,可以从如下途径进行分析:(1)根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状以及几何体的长、宽、高;(2)根据实线和虚线想象几何体看得见和看不见的轮廓线;(3)熟记一些简单的几何体的三视图会对复杂几何体的想象有帮助;(4)利用由三视图画几何体与由几何体画三视图为互逆过程,反复练习,不断总结方法.【典型例题】类型一、投影的作图与计算1.如何才能使如图所示的两棵树在同一时刻的影长分别与它们的原长相等,试画图说明.【答案与解析】(1)如图所示.可在同一方向上画出与原长相等的影长,此时为平行投影.(2)如图所示,可在两树外侧不同方向上画出与原长相等的影子,连结影子的顶点与树的顶点.相交于点P.此时为中心投影,P点即为光源位置.【总结升华】连结物体顶点与其影长的顶点,如果得到的是平行线,即为平行投影;如果得到相交直线,则为中心投影,这是判断平行投影与中心投影的方法,也是确定中心投影光源位置的基本做法.但若中心投影光源在两树同侧时,图中的两棵树的影长不可能同时与原长相等,所以点光源可以选在两树之间.特别提醒:易错认为只有平行投影才能使两棵树在同一时刻的影长分别与它们的原长相等,从而漏掉上图这一情形.举一反三:【变式】与一盏路灯相对,有一玻璃幕墙,幕墙前面的地面上有一盆花CD和一棵树AB.晚上,幕墙反射路灯,灯光形成那盆花的影子DF,树影BE是路灯灯光直接形成的,如图所示,你能确定此时路灯光源的位置吗?【答案】作法如下:①连结FC并延长交玻璃幕墙于O点;②过点O作直线OG垂直于玻璃幕墙面;③在OC另一侧作∠POG=∠FOG且交EA延长线于点P.P点即此时路灯光源位置,如图所示.2.(2015·盐城校级模拟)如图,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6m的小明落在地面上的影长为BC=2.4m.(1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG;(2)若小明测得此刻旗杆落在地面的影长EG=16m,请求出旗杆DE的高度.【思路点拨】(1)连结AC,过D点作DG∥AC交BC于G点,则GE为所求;(2)先证明Rt△ABC∽△RtDGE,然后利用相似比计算DE的长.【答案与解析】解:(1)影子EG如图所示;(2)∵DG∥AC,∴∠G=∠C,∴Rt△ABC∽△RtDGE,∴=,即=,解得DE=,∴旗杆的高度为m.【总结升华】本题考查了平行投影,也考查了相似三角形的判定与性质.举一反三:【变式】如图,小亮利用所学的数学知识测量某旗杆AB的高度.(1)请你根据小亮在阳光下的投影,画出旗杆AB在阳光下的投影.(2)已知小亮的身高为1.72m,在同一时刻测得小亮和旗杆AB的投影长分别为0.86m和6m,求旗杆AB 的高.【答案】解:(1)如图所示:(2)如图,因为DE,AB都垂直于地面,且光线DF∥AC,所以Rt△DEF∽Rt△ABC,所以DE EF AB BC=,即1.720.866AB=,所以AB=12(m).答:旗杆AB的高为12m.类型二、三视图3.如图,分别从正面、左面、上面观察该立体图形,能得到什么平面图形.【答案与解析】从正面看该几何体是三角形,从左面看该几何体是长方形,从上面看该几何体是一长方形中带一条竖线.如图:【总结升华】本题考查了几何体的三视图的判断.举一反三:【变式】如图,画出这些立体图形的三视图.【答案】(1)如图:(2)如图:(3)如图:(4)如图:4.(2015·惠州校级月考)如图是由几个小立方体所搭几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,请画出这个几何体的主视图和左视图.【思路点拨】由已知条件可知,主视图有3列,每列小正方数形数目分别为2,2,3,左视图有3列,每列小正方形数目分别为1,3,2.据此可画出图形.【答案与解析】解:如图所示:【总结升华】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.类型三、三视图的有关计算5.某工厂要对一机器零件表面进行喷漆,设计者给出了该零件的三视图(如图所示),请你根据三视图确定其喷漆的面积.【思路点拨】首先要根据立体图形的三视图,想象出物体的实际形状,然后再计算表面积.【答案与解析】解:长方体的表面积为(30×40+40×25+25×30)×2=5900(cm2),圆柱体的侧面积为3.14×20×32=2010(cm2),其喷漆的面积为5900+2010=7910(cm2).【总结升华】由该机械零件的三视图,可想象它是一个组合体,是由一个长方体和一个圆柱体组成.其表面积是一个长方体的六个面与圆柱体的侧面构成.(圆柱体的上表面补在长方体的上表面被圆柱体遮挡的部分).该组合体是由一长方体与一圆柱体组合而成,但不能认为组合体的表面积就是两几何体的表面积之和.举一反三:【变式】某物体的三视图如图:(1)此物体是什么体;(2)求此物体的全面积.【答案】解:(1)根据三视图的知识,主视图以及左视图都为矩形,俯视图是一个圆,故可判断出该几何体为圆柱.(2)根据圆柱的全面积公式可得,20π×40+2×π×102=1000π.。

相关文档
最新文档