微波仿真论坛_手机内置天线设计
手机内置天线设计
从右图可见 • 该种 monopole保 持了低频 (1GHz)工 作频带。 • 高频则可有 着与中心频 率比值20% 以上、宽达 几百兆工作 带宽。
PDF created with FinePrint pdfFactory Pro trial version
PDF created with FinePrint pdfFactory Pro trial version
Feed Strip 天线低频部分
塑胶支架 38X6X4
PCB 天线高频部分
PDF created with FinePrint pdfFactory Pro trial version
PDF created with FinePrint pdfFactory Pro trial version
手机结构 vs PIFA天线(直板 机)(二)
short pin
w=15~25
Feed pin
L=35~40
Antenna
H=6~8
Ground
手机结构 vs PIFA天线(翻盖 或滑盖)(一)
• 翻盖手机合 盖状态,天 线表现与直 板机无异。 • 开盖状态, 上下盖PCB 都为地,天 线由在地顶 端变为处于 地中央。
PDF created with FinePrint pdfFactory Pro trial version
EIRP = transmitter power + antenna gain – cable loss
Power Setting 100 mW 50 mW 30 mW 20 mW 15 mW 5 mW 1 mW dBm 20 dBm 17 dBm 15 dBm 13 dBm 12 dBm 7 dBm 0 dBm Gain@ 6 dBi Patch 6 dBi 6 dBi 6 dBi 6 dBi 6 dBi 6 dBi 6 dBi EIRP 26 dBm 23 dBm 21 dBm 19 dBm 18 dBm 13 dBm 6 dBm
微波仿真论坛_HFSS设计微带天线
微波仿真论坛_HFSS设计微带天线
一、前言
微带天线,即微带感应力天线,是一种先进的电磁发射天线,它采用微细空心管及其他微带元件,广泛应用于宽带、多址无线通信、脉冲定位系统、脉冲探测系统等许多应用中。
以HFSS为工具,设计微带感应力天线,能够更加直观地分析微带天线的性能,从而帮助我们了解微带天线的传输特性,并根据实际应用需求实现天线高效性能设计。
二、微波仿真HFSS的设计步骤:
1、首先,选择好所采用的HFSS软件,确定需要分析的微带感应力天线的构型,并建立计算模型。
2、根据相关理论,计算出微带天线的基本参数,如振子长度、空心管半径和微带宽度等,以及天线的振荡频率、相位阶跃和频带宽等。
3、设置相应的仿真网格,根据天线实际的构形,划分仿真区域,确定网格大小和步长,以达到较高的空间分辨率,从而获得更准确的仿真结果。
4、设置仿真参考电路,根据计算出的微带天线振子长度、空心管半径和微带宽度等,及其传输特性,利用HFSS软件设置好参考模型,以及仿真频率。
5、开启仿真计算,间接计算和直接计算,从而获得微带感应力天线的S参数,用于评估微带天线的性能。
hfsss手机内置天线设计资料
內置平面Monopole出現的現 實意義
• 多模手機對多頻段天 線的要求 • Monopole的大頻寬和 高增益,足以應付3G 時代跨越2GHz的幾百 兆頻寬需求。 • 內置平面Monopole結 構靈活,易於與當今 多變的手機結構相配 合
Feed Strip 天線低頻部分
塑膠支架 38X6X4
手機內置式天線設計
天線基本概念
• Return Loss(回波損耗S11)
天線原理
• Directionality(方向性係數)
天線輻射方向性參數。天線據此可分全向(omnidirectional)和定向(directional)。
• Gain(增益)
天線增益定義為規定方向的天線輻射強度和參考天線之比。
PIFA需要的空間和其它條件
• PIFA需要的空間大小視乎頻段和射頻性能的需求。
雙頻(GSM/DCS):600 mm ×7~8mm 三頻(GSM/DCS/PCS):700 mm 2×7~8mm 滿足以上需求則GSM頻段一般可能達-1~0dBi, DCS/PCS則0~1dBi。 • 天線正下方一般避免安放器件,尤其是Speaker和 Vibrator • 電池儘量遠離天線。一般至少5mm以上。 • 天線同側後蓋上不用導電漆噴塗,謹慎使用電鍍裝飾。
EIRP = transmitter power + antenna gain – cable loss
Power Setting 100 mW 50 mW 30 mW 20 mW 15 mW 5 mW 1 mW dBm 20 dBm 17 dBm 15 dBm 13 dBm 12 dBm 7 dBm 0 dBm Gain@ 6 dBi Patch 6 dBi 6 dBi 6 dBi 6 dBi 6 dBi 6 dBi 6 dBi EIRP 26 dBm 23 dBm 21 dBm 19 dBm 18 dBm 13 dBm 6 dBm
手机RF设计知识连载之——手机内置天线设计
b. 布板RF模块附近避免安置一些零散的非屏蔽元件,屏蔽盒尽量规整一体,同时少开散热孔。最忌讳长条形状孔槽。含金属结构的元件,如喇叭、马达、摄像头基板等金属要尽量接地。对于折叠和滑盖机,应避免设计长度较长的FPC(FPC走线的时钟信号及其倍频容易成为带内杂散干扰),最好两面加接地屏蔽层。
c. 常见问题
一、内置天线对于手机整体设计的通用要求
主板
a. 布线 在关联RF的布线时要注意转弯处运用45度角走线或圆弧处理,做好铺地隔离和走线的特性阻抗仿真。同时RF地要合理设计,RF信号走线的参考地平面要找对(六层板目前的大部份以第三层做完整的地参考面),并保证RF信号走线时信号回流路径最短,并且RF信号线与地之间的相应层没有其它走线影响它(主要是方便PCB布线的微带线阻抗的计算和仿真)。PCB板和地的边缘要打“地墙”。从RF模块引出的天线馈源微带线,为防止走线阻抗难以控制,减少损耗,不要布在PCB的中间层,设计在TOP面为宜,其参考层应该是完整地参考面。并且在与屏蔽盒交叉处屏蔽盒要做开槽避让设计,以防短路和旁路耦合。天线RF馈电焊盘应采用圆角矩形盘,通常尺寸为3×4mm,焊盘含周边≥0.8mm的面积下PCB所有层面不布铜。双馈点时RF与地焊盘的中心距应在4~5mm之间。
三、手机内置天线形式比较
这里简单比较一下两种主流PIFA皮法和MONOPOLE单极天线,以及分别适用的机型结构:
有效面积mm2 距主板mm 天线投影下方 天线馈源 天线体积 电性能 SAR
皮法 600 7 有地 2 大 很好 低
单极 350 4 无地 1 小 好 稍高
折叠机 滑盖机 旋盖机 直板机 超薄折叠机 超薄直板机
************************************************************************
微波仿真论坛微带天线练习课件
0 (electr.)
0 (magnet.)
343 (electr.)
281 (magnet.)
0 (electr.)
0 (magnet.)
0 (electr.)
0 (magnet.)
0 max. nodes: MAXNKNO =
12
2 max. conn.: MAXNV =
10
0 max. cuboids: MAXNQUA =
– 剖分部分变量 tri_len=lambda/12 fine_tri=lambda/16 segl=lambda/15 segr=diam/2
建立模型
• 点击图标 创建矩形贴片
– 输入以下坐标 (-len_x/2,-len_y/2,0) (-len_x/2,len_y/2,0) (len_x/2,len_y/2,0) (len_x/2,-len_y/2,0)
1640 0
• 在Edges中修改模型ant中的馈源天线线段名称为feed
网格剖分
• 点击菜单Mesh\Create Mesh进行网格剖分
• 按ALT+2进行Prefeko预处理并保存项目文件
EditFeko 定义
• 按住ALT+1运行EditFeko – 填加快速多极子控制卡 FM – 填加 SF 控制卡进行长度单位换算(mm->m) – 填加 DI 介质定义控制卡
EditFeko 定义
• 完整的EditFeko
PostFeko 结果分析
• 按住Alt+4进行Feko运算 • 按住Alt+3运行PostFeko查看结果
– 由于EditFeko中第三个FF的结果没有写入输出文件,因此这里只有前两个FF的结 果
微波仿真论坛_用HFSS 电磁软件仿真设计准八木天线
参考文献: [1] Y. Qian ,A.R. Perkons and T. itoh ”Surface wave excitation of a dielectric slab by a Yagi-Uda slot array antenna-FDTD simulation and measurement,” 1997 Topical Symposium on Millimeter Proceedings, New York: IEEE .1998.PP.137-140. [2] Y. Qian et al, “Microstrip-fed Quasi-Yagi Antenna with Broadband Characteristics,” Electronics Letters, Vol. 34, No. 23, Nov. 1998, pp. 2194- 2196. [3] N. Kaneda, Y. Qian, and T. Itoh, “A novel Yagi–Uda dipole array fed by a microstrip-to-CPS transition,” in Proc. 1998 Asia Pacific Microwave Conf. Dig., Yokohama, Japan, Dec. 1998, pp. 1413–1416.
微波仿真论坛_HFSS设计微带天线
用Sonnet & Agilent HFSS设计微带天线摘要:以一同轴线底馈微带贴片为题材,分别用Sonnet 软件及 Agilent Hfss 软件进行Simulate,分析其特性。
并根据结果对这两个软件作一比较。
天线模型:天线为微带贴片天线,馈电方式为50Ω同轴线底馈,中心频率3GHzξ=,尺寸 56mm*52mm*3.175mm基片采用Duroid材料 2.33rPatch :30mm*30mm馈电点距Patch中心7mm处。
参见下图。
一.Sonnet参数设置如下图:介质层按照天线指标予以设置:画出Antenna Layout.Top viewBottom view其中箭头所指处为via ,并在GND 层加上via port. 即实现了对Patch 的底馈。
至此,Circuit Edit 完成。
下一步对其进行模拟。
模拟结果:S11,即反射系数图:可见中心频率在3G附近,。
进一步分析电流分布:在中心频率的附近,取3G,3.1G作表面电流分布图:可见,在中心频率的电流分布较为对称。
符合设计的要求。
远区场方向图:选取了若干个频率点绘制远区场增益图。
从中可以看到,中心频率的增益较边缘为大。
符合设计的要求。
二.Agilent HfssAgilent Hfss (high frequency structure simulator)是AGILENT公司的一个专门模拟高频无源器件的软件。
较现在广泛应用的ANSOFT HFSS功能类似,但操作简单明了。
能在平面结构上建模天线不同,Agilent Hfss可以精确地定义天线的立体结构。
并可将馈电部分考虑在模拟因素内,按要求设定辐射界面,等等。
可能在本文的例子中,由于结构比较简单,并不能充分体现这一点,但也应可见一斑。
本例与HFSS HELP中所附带的例子较为类似,因此我参照HELP文件,在HFSS5.6环境下较为顺利的完成了模拟。
用HFSS模拟天线,主要分Draw Model、Assign Material、Define Boundary、Solve、Post Process 五个步骤:⒈Draw Model:HFSS采用的是相当流行的AUTOCAD的ENGINE,因此绘制方法与AUTOCAD大同小异,这里不在赘述。
微波仿真论坛_射频设计
从WiFi收发器的PCB布局看射频电路电源和接地的设计方法射频(RF)电路的电路板布局应在理解电路板结构、电源布线和接地的基本原则的基础上进行。
本文探讨了相关的基本原则,并提供了一些实用的、经过验证的电源布线、电源旁路和接地技术,可有效提高RF设计的性能指标。
考虑到实际设计中PLL杂散信号对于电源耦合、接地和滤波器元件的位置非常敏感,本文着重讨论了有关PLL杂散信号抑制的方法。
为便于说明问题,本文以MAX2827 802.11a/g收发器的PCB布局作为参考设计。
图1:星型拓扑的Vcc布线。
设计RF电路时,电源电路的设计和电路板布局常常被留到了高频信号通路的设计完成之后。
对于没有经过认真考虑的设计,电路周围的电源电压很容易产生错误的输出和噪声,这会进一步影响到RF电路的性能。
合理分配PCB的板层、采用星型拓扑的Vcc引线,并在Vcc引脚加上适当的去耦电容,将有助于改善系统的性能,获得最佳指标。
电源布线和旁路的基本原则明智的PCB板层分配便于简化后续的布线处理,对于一个四层PCB板(WLAN 中常用的电路板),在大多数应用中用电路板的顶层放置元器件和RF引线,第二层作为系统地,电源部分放置在第三层,任何信号线都可以分布在第四层。
第二层采用连续的地平面布局对于建立阻抗受控的RF信号通路非常必要,它还便于获得尽可能短的地环路,为第一层和第三层提供高度的电气隔离,使得两层之间的耦合最小。
当然,也可以采用其它板层定义的方式(特别是在电路板具有不同的层数时),但上述结构是经过验证的一个成功范例。
图2:不同频率下的电容阻抗变化。
大面积的电源层能够使Vcc布线变得轻松,但是,这种结构常常是引发系统性能恶化的导火索,在一个较大平面上把所有电源引线接在一起将无法避免引脚之间的噪声传输。
反之,如果使用星型拓扑则会减轻不同电源引脚之间的耦合。
图1给出了星型连接的Vcc布线方案,该图取自MAX2826 IEEE 802.11a/g收发器的评估板。
手机内置天线设计规则
边缘距离3mm 以上。 6,内置天线与手机电池的间距应在5mm 以上。
MONOPOLE天线设计
7,MONOPOLE 必须悬空,平面结构下不能有PCB的Ground, 一般内置天线必须离主板3mm(水平方向),在天线正下方到 地的高度必须保持在5mm(垂直方向)以上(如下示意图), 可以把主板天线区域的地挖空,目前在超薄的直板机上基本上是 要满足这个要求。
则GSM 频段一般可能达到-1~0dBi,DCS/PCS 可达 0~1dBi。当然高度越高越好,带宽性能得到保证。
PIFA天线设计
2,内置天线尽量远离周围马达、SPEARKER、 RECEIVER 等较大金属物体。有时候有摄像头出现,这时 候应该把天线这块挖空,尽量作好摄像头FPC 的屏蔽(镀 银襁),否则会影响接收灵敏度。尽量避免PCB 上微带、 引线等与天线弹片平行。
手机天线设计规则
7,手机PCB 的长度对PIFA 天线的性能有重要的影响,目前直板机PCB
的长度在75-105mm之间这个水平。 手机的长度对于天线的性能有着显著的影响
Vertically polarised gain [dBi]
chassis' length [mm]
0 -1 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 -2 -3 -4
gain -5 -6 -7 -8 -9
PIFA天线设计
8,馈电点的焊盘应该不小于2x3mm;馈 电点应该靠PCB边缘。
9,天线区域可适当开些定位孔。 10,在目前的有些超薄滑盖机中,由于天
线高度不够,可以通过挖空PIFA 天线下方 的地,然后在其背面再加一个金属片,起 到一个参考地的作用,达到满足设计带宽 的要求。
微波仿真论坛_双模双待手机天线隔离度[1]
PIFA与Monopole
从上图可以看出:PIFA与Monopole组合时,GSM频段最低隔 离度为-27dB,最高为-35dB;DCS频段最低隔离度为-25dB,最高 为-40dB。在高低两个频段内都有良好的隔离度。
PIFA与PIFA
从上图可以看出:PIFA与PIFA组合时,GSM频段最低隔离度为18dB,最高为-23dB;DCS频段最低隔离度为-23dB,最高为-31dB。 在高低两个频段内都有较好的隔离度,但比PIFA与Monopole的组合 稍差。
双模双待手机天线 隔离度问题的研究
Type Dual-band GSM/DCS/Bar-type
Index 1.Testing Item & Equipments 2.Antenna Structure 3.S Parameters Test 4.Test Results
1. Testing Item & Equipments
提高双模双待手机天线的隔离度具有重要的意 义: 1. 减少天线间的互扰,提高通话质量 2. 使手机网络能够及时准确地完成切换,避免互 扰
增大天线隔离度的方法有很多:增加两天线间 的距离可以有效的增大隔离度,但手机主板长度 有限,这种方法不可行;适当减小天线辐射功率 也能增加隔离度,但这样必然引起发射功率的降 低。最后我们将突破口放在改变天线形式上,由 于PIFA和Monopole的辐射原理和辐射方向图都不 相同,可以利用这种差异来改变天线间的隔离 度。 用一块PCB板模拟手机主板,做一对PIFA与 Monopole组合的天线,一对PIFA与PIFA组合的天 线和一对Monopole与Monopole组合的天线。使用 双端口的网络分析仪测量它们之间的隔离度。
Testing Item 1. S Parameter 2. Coupling Power Test 3. Radiation Pattern & Gain 1. Return Loss 2. S.W.R. 1. TX Power 2. Sensitivity 1. Radiation Pattern 2. Antenna Gain Equipment Network Analyzer-AGILENT ENA5071B 1. CDMA Tester: AGILENT8960 5515B 2. Shielding Box: TESCOM 1. Anechoic Chamber 6x4x4 m (3D) 2. Network Analyzer-AGILENT ENA5071B 3. CDMA Tester: AGILENT8960 5515C
微波仿真论坛_微波仿真论坛_feko5.4新例子(25,27,28,29,30)
微波仿真论坛_微波仿真论坛_feko5.4新例⼦(25,27,28,29,30)25 喇叭馈电⼤尺⼨反射镜⽤波导管端⼝激励的圆柱喇叭被⽤于激励⼀个频率为12.5Ghz的抛物⾯反射器。
反射器与喇叭天线分离很远⽽且电尺⼨很⼤(直径为36个波长)。
模型如下图25-1。
这个模型为了阐述某些feko中为了减少⼤尺⼨模型需要的资源⽽提供的技术。
图25-1圆喇叭和抛物线反射器弄清楚如何解决和近似这个问题来减少所需资源是很重要的。
某些技术可以⽤来减少资源的需求如下:●对于⼤尺度模型运⽤快速多层多极⼦(MLFMM)代替矩量法。
运⽤快速多层多极⼦能够减少相当多的内存。
(快速多层多极⼦的求解可以参照章节25.4的求解结论。
)●物理光学法(PO)可以⽤于替代计算部分模型。
⽤PO⽅法代替MOM计算将进⼀步减⼩资源的需求。
●分解问题并且运⽤等效源。
可⾏的等效源如下:—孔点源:运⽤等效原理,在区域边界上,⽤等效的电磁场源代替这个区域。
—球模式源:远场认为是外加源。
25.1 MOM喇叭和PO反射器先前的例⼦建⽴了喇叭和盘。
喇叭使⽤MOM⽅法模拟⽽盘反射器⽤PO⽅法模拟。
●freq = 12.5e9 (⼯作频率)●lam = c0/freq (⾃由空间波长)●lam_w = 0.0293 (波导波长)●h_a = 0.51*lam (波导半径)●h_b0 = 0.65*lam (椎⼝孔底半径)●h_b = lam (椎⼝孔上⽅半径)●h_l = 3.05*lam (椎⼝孔长度)●phase_centre = -2.6821e-3 (喇叭相位中⼼)●R = 18*lam (反射器半径)● F = 25*lam (反射器焦点长度)● w_l = 2*lam w (波导管长度)建⽴喇叭步骤如下:●沿z 轴建⽴cylinder ,基本中⼼为(0,0,-w_l-h_l ),半径为h_a ,⾼度为w_l ,标记为the cylinder waveguide 。
微波仿真论坛 - 八木天线的设计仿真与测试(1)
微波仿真论坛 - 八木天线的设计仿真与测试(1)北京交通大学硕士学位论文八木天线的设计仿真与测试姓名:常媛媛申请学位级别:硕士专业:通信与信息系统指导教师:周克生20211201北京交通人子硕士学位论文中文摘耍中文摘要摘要:天线在现代通信系统中的作用不可或缺,本文的主要内容就是围绕天线展丌。
论文的主要内容分两个部分:八木天线的设计和参数测量。
本文的第一个主要部分是八木天线的设计仿真,设计基于GSM-R干扰检测定向用天线的要求。
要在GSM-R频段的下行885MHz-889MHz频段内和上行 930MHz-934MHz频段内有高的方向性系数;方向图主瓣半功率角小于40。
,并且副瓣电平足够低(八木天线有很多分析方法,本文主要介绍了感应电动势法、行波天线的观点、矩量法与优化算法相结合的方法及现代仿真技术应用于天线设计方法。
本文八木夭线的分析与设计包括天线部分的设计和平衡不平衡转换结构的设计。
通过理论分析和基于矩量法的仿真软件FEKO和基于有限元法的HFSS设计仿真,得到符合要求的八木天线?通过仿真得到了天线在两个频段上垂直和水平极化方向的方向图及相关特性参数、天线输入阻抗、驻波比及带宽等天线设计要求的参数。
通过结果的对比也验证了两种软件的有效性。
本文的第二个主要部分是天线特性参数的测量,包括天线的校准、天线方向图的测量、天线驻波比的测量。
通过理论学习和实际动手操作,详细介绍了测量方法、测量步骤、测量误差的分析等。
最后,作为八木天线的设计的延续^本文介绍了国外一种新型的八木天线设计方法,其板状设计易于和基于微带的单片微波集成电路结合共形,极有可能在未来的通信和雷达系统毫米波成像技术领域得到进一步的应用,为今后进一步的设计和优化提供了思路。
关键词:八木天线HFSS FEK0 方向系数方向图半功率角驻波比分类号:TN82北京交通人7硕+论文 ABSTRACTABSTRACTAntenna plays an important role in present communication system. The main work of this paper focused on the design and measurement of Yagi-Uda antenna.The first section was the design and simulation of Yagi-Uda antenna. The antenna was used for the detection and direction of interference on the frequency band of GSM-R. In order to satisfy the requirement of detection and direction, we should manage to get the following antenna parameters: high directional coefficient; the bandwidth should cover the frequency band of GSM-R( 885-934MHz) ; HPBW (half-power-bandwidth of main lobe) <40°,1st side lobe :There are various methods on the analysis of Yagi-Uda antenna. In this paper,four methods were introduced; voltagc-induction method, the point of traveling wave, MOM combining optimum algorithm and software simulation. I use electromagnetic software HFSS and FEKO for the design. There are two part of my design: antenna and balun design. The horizontal and vertical polarization directional parameters were got, other parameters, Zm9 VSWR, bandwidth, were also got.The second main part of my work was the measurement of antenna parameters, which include antenna calibration, antenna direction measurement, VSWR measurement. The measurement method and step were describe in detail through theory study and practicc handle. The validity of two kinds of software was also tested through simulation and measurement.*Finally, a new kind design of Yagi-Uda antenna was introduced,which was totally compatible with any microstrip-based MMIC circuitry. I think this antenna find wide applications in wireless communication systems, power combining and phased arrays, as well as millimeter-wave imaging arrays.KEYWORDS : Yagi-Uda antenna HFSS FEKO direction coefficient HPBW VSWRCLASSNO; TN82致谢首先要感谢我的导师周克生教授,在我攻读硕士学位期间给予我许多帮助和悉心指导《从基础知识的学习和科研能力的培养,到论文的选题、深入、成文,周老师在每一个环节都以他周到细致的分析、敏锐的视角、渊博的知识和对科学研究的严谨态度对我做了关键性的指引。
手机中内置FM频段天线设计指南(第一部分,器件篇)
手机中内置FM频段天线设计指南(第一部分,器件篇)前言目前MTK和博通等芯片方案公司推出了集FM收发、蓝牙、WiFi、GPS于一体的手机周边芯片,FM收发(含数据传输)成为手机中标配。
然而,FM频段频率低,波长长,要做到内置并小巧,需要牺牲一些指标,问题是牺牲多少能被接受?传统拉杆金属天线,是通过伸缩金属杆子来改变频率,其实也是窄带天线,其增益高是因为在空间接收面积大。
内置FM天线要基本满足要求,需要保障核心的指标:带宽,其次才是增益。
缩小体积的代价是首先牺牲带宽是不行的。
手机中选择适合的FM天线遵循如下流程:第一:天线选型目前可以选用的有陶瓷LTCC工艺天线、电路板(FPC)天线、塑胶片绕线天线、磁性绕线天线、铁氧体天线。
各类天线比较如下:项目微航天线陶瓷天线 PCB天线有源天线绕线天线空心线圈带宽宽较宽窄较宽窄窄方向性好差差较好差差频率漂移小大大较小大大整体效果较好差差一般差差手握影响小小大小大大可调参数有,多无有,复杂有有有组装难度容易小容易小大大半硬质合金引脚有无无无无无性价比高低低低一般一般FM双向收发可以可以可以不可以可以可以陶瓷工艺天线最先用于手机中,其制造工艺决定了必须是一个标准的器件,所有参数都锁定了,没有可以调节的点,然而终端输入阻抗不是纯的50欧姆,阻抗不一定很好匹配,需要改变主板的阻抗线或者匹配电路来适应。
这成为了一缺陷,因为手机主板更改不是很方便,改变一次往往不够。
匹配电路本身也存在损耗,这类天线另一个缺陷是增益低,其结构是微波陶瓷层层叠压、印刷导电材料组成,其电磁损耗大,其回损指标难达到要求。
后来一些方案公司,把陶瓷天线贴合在PCB上,用PCB走线来弥补缺陷,调整PCB走线来调整阻抗。
实乃画蛇添足。
因为成本高了。
韩国推出的铁氧体天线,也是这么做的。
不是市场主流。
PCB画的FM天线,其谐振频率可以到FM频段内一个点频,但是其本质还是一个窄带天线,带宽太窄,很多频段接收不到。
手机内置天线设计通用规则
手机内置天线设计的通用规则1.通用设计要求手机天线性能与外形大小有密切关系。
通常会使用以物理长度的频率波长制定的规格化电气性长度,一般是将电气性长度为低于1/2波长以下的天线定义为小型天线(以下简称为小型天线)。
小型天线,它的缺点是低效率、窄频宽,为了确保天线的性能,因此天线小型化有一定的极限。
所幸的是天线使用的元件大多是可以创造空间的导体,若与波长比较的话,只要导体具备一定大小,基本上就可以当作小天线使用。
目前手机使用频率大多介于800MHz~2GHz之间,波长相当于150~350mm左右,因此100~200mm的终端尺寸对小型天线非常有利,也就是说只要巧妙应用移动终端的机壳,就可以获得小型、高性能的天线功能。
2.天线选型原则从手机整个性能的角度来考虑,天线设计在尽可能早的参与到设计过程中,因为这可确保所有的电气元件都放在可能的最佳位置上,以最大限度地优化设备的性能。
这意味着设备制造商必须重新估计设备中天线的作用,并在考虑了其它关键元件和成本的前提下明确地得出一个最优的尺寸与性能之比。
手机天线选型规则:有效面积mm2 距主板mm 天线投影下方 天线馈源 天线体积 电性能 SAR皮法 600 7 有地 2 大 很好 低单极 350 4 无地 1 小 好 稍高折叠机 滑盖机 旋盖机 直板机 超薄折叠机 超薄直板机皮法 适用 适用 适用 适用 不适用 不适用单极 不适用 不适用 不适用 适用 适用定制 适用以前天线作为一个电结构元件,长期以来一直是在开发过程硬塞进去的一个元件。
不过,为了避免被看作是“事后诸葛亮”,今天天线正逐步呈现出在设计过程中的中心作用。
随着体积尺寸继续变得越来越小,以及越来越多的连接标准需要在同一个设备中实现,天线制造商承担的在一个引人注目的设备上满足这些挑战的压力将是非常巨大的。
3. 对结构设计的要求3.1 使用尽可能大的空间:对天线性能来说,尺寸越大越好。
GSM(900/1800/1900)三频天线推荐的尺寸是20×40×8mm(PIFA,PCB单侧),或14×40×4mm(Monopole,PCB 双侧)。
微波仿真论坛_线圈天线设计经验总结概要
线圈天线设计经验总结做了三四个月的线圈天线了,从刚开始的什么都不懂,到现在的知道自己什么不懂,也算是一个成长的过程,做了这么久,有点经验,写在这里与大家分享一下。
需求是13.56MHz的天线,就像刷公交卡的那种天线一样,但不知道用什么形式的天线做,看了一两个礼拜的微带天线,参考教程在HFSS中做出了第一个微带天线的仿真,正觉得有点进展的时候,老师一句话,用线圈天线做,我不得不改做线圈天线。
然后就是各种资料的搜索与学习。
线圈天线是一种很简单的天线,复杂点说的话,就是用铜线(当然可以是其他材料)按照一定的形状绕几圈,ok,这就是线圈天线了,铜线的两头加上激励源就可以发射了。
(有兴趣的同学可以把你手中的公交卡打开,会发现它就是用的线圈天线,网上有这种教程,可以让你把公交卡拆开,然后把完成公交卡功能的天线和芯片拿出来贴在手机后盖和电池之间,这样就可以很潇洒的实现手机刷卡了,哈哈,不过要怎么充值就要自己想办法了)当然,这个时候的线圈天线是不好用的,因为你对它的特性什么的都不了解。
所以,打算先进行理论方面的研究。
理论分析与Matlab仿真因为做的是类似于RFID的NFC的13.56MHz的线圈天线,天线在这个频率一般都是使用磁场耦合来实现能量的传递,那么我们就对在这个时候线圈的磁场进行分析。
网上关于矩形线圈的磁场分析有很多论文了,但我们还是自己做一下会理解的比较深刻,先复习一下电磁场的知识,正好书上有一道例题讲的就是长度为l的导线在周围空间任意点产生的磁场公式,这里引入了矢量磁位A,因为矢量磁位A 的方向与电流I的方向是相同的,而且对矢量磁位求旋度就是磁感应强度B,这种性质对线天线来讲是很有用的。
矩形线圈我们先来研究单圈的矩形线圈天线。
叶南根据有限长导线周围磁感应强度的公式,算出四条边在空间某一点的矢量磁位A,由于两两方向相同,叠加之后就剩下了两个方向的向量相加,这样利于后面求旋度的处理;对空间某一点总矢量磁位A求旋度就得到了磁感应强度B,只取B的Z方向大小Bz就得到了我们所关心的垂直方向磁感应强度(因为刷卡的时候算磁通量只有垂直方向的是有效的)。
微波仿真论坛_2_4GHz_12GHz微带天线的设计_基于HFSS9_2软件微带天线的设计
第16卷 增刊3 广西工学院学报 V o l116 Sup3 2005年10月 JOU RNAL O F GUAN GX IUN I V ER S IT Y O F T ECHNOLO GY O ct12005文章编号:100426410(2005)S320077203214GHz 12GHz微带天线的设计——基于H FSS912软件微带天线的设计电子信息工程 013班 20000202 任 伟指导教师:曾文波摘 要:本文研究的是微带天线的设计。
AN SO FT H FSS912的使用是本设计研究的重点,它适用于射频 无线通信天线及其他任意形状三维电磁场仿真。
AN SO FT H FSS912是业界公认的三维电磁场标准仿真软件包,它提供了简洁直观的用户设计界面、精确自适应的场求解器,拥有空前电性能分析能力的功能强大后处理器,能计算任意形状三维无源结构的S参数和全波电磁场。
本设计通过对AN SO FT H FSS912的学习,设计出了几款214GH z 12GH z中心频率上的微带天线。
仿真结果表明,这几款设计出来的微带天线有较好的辐射特性和阻抗特性,能适用于无线局域网、GPS、R F I D等无线通信场合。
关 键 词:微带天线;H FSS912;仿真Abstract:T h is p ap er studies the design of m icro stri p an tennas.T he em p hasis of study is how to u se the softw are of AN SO FT H FSS9.2and3D electrom agnetic si m u lato r w h ich is u sed in R F w ireless comm un icati on an tennas,p ackages and p ho toelectron design s.AN SO FT H FSS9.2is a w ell2know n standard3D electrom agnetic si m u lato r.It p rovides a si m p le design ing in terface and an accu rate sell2adap ted field so lver,w h ich also has a pow erfu l backup p rocesso r fo r un ique electricity analysis.It can com p u te the S2p aram eters and fu ll2w ave electrom agnetic of vari ou s structu res.Several m icro stri p an tennas are designed at the cen ter frequency abou t2.4GH z o r12GH z by learn ing AN SO FT H FSS9.2.T he si m u lati on resu lt indicates that the m icro stri p an tennas design s have good radiati on characteristics and i m p edance characteristics,w h ich can be u sed in w ireless LAN,GPS and R F I D system.Key words:m icro stri p an tenna;H FSS9.2;si m u late一、HFSS912功能及使用简介H FSS——H igh F requency Structu re Si m u lato r。
三频内置手机天线的设计及仿真
学号:常州大学毕业设计(论文)(2012届)题目学生学院专业班级校内指导教师专业技术职务校外指导老师专业技术职务二○一二年六月常州大学本科毕业设计(论文)三频内置手机天线的设计及仿真摘要:内置天线是现代手机普遍的选择,能使手机的外形设计更加轻薄化,多样化。
也可以通过合理安排内置天线的位置,来抵消辐射对人体的影响。
所以小型化、多频段、智能化、多极化是移动通信未来发展的必然的趋势。
而微带天线所特有的体积小、重量轻、低剖面、可共形的特点,使得它成为了手机内置天线最佳的选择。
因此,学习研究微带天线的原理特性,对手机内置天线进行设计,对其性能进行仿真和分析的研究势在必行。
本文介绍了一种新型PIFA三频手机天线,天线采取中心单馈点同轴馈电,在辐射片开两个U型槽的方法,用软件HFSS对天线进行设计和仿真,在GMS900MHz,DCS1800MHz和ISM2450MHz三个频段的增益分别达到了0.32dBi,0.11dBi和0.613dBi,相对带宽分别达到了7.8%,0.95%和3.9%。
该天线可满足多频手机天线的要求,在三个频段上都能够正常工作,达到了新型无线通信天线系统对频段、带宽和增益的要求。
关键词:平面倒F天线(PIFA);三频天线GSM900MHz/DCS1800MHz/ISM2450 MHz; U型槽I常州大学本科毕业设计(论文)Design and simulation of inner couplers handset antenna inTriple-frequencyAbstract:Internal antenna is a popular choice for modern handset. It can make The appearance of the handset more light and thin making and more diversity . Also It can make the reasonable arrangements for the location of internal antenna, to counteract the impact of radiation on the human body. Therefore, the miniaturization, multi-band, intelligentization, and multi-polarization are the inevitable trend of the future development of mobile communications. And the microstrip antenna with the unique characteristics such as small size, light weight, low profile, conformal deformation, has been the best choice of the internal antenna in handset. Therefore, the study of the principle characteristics of microstrip antenna, is imperative for the internal antenna design of phone, and the research of its performance simulation and analysis.This paper presents a new PIFA tri-band mobile phone antenna, the antenna takes the center single feed as coaxial feed, makes two U-shaped slots in the radiation-chip, and makes the antenna design and simulation by using HFSS software. three frequency band gain respectively reached 0.32 dBi, 0.11 and 0.613 dBi dBi, relative bandwidth achieved respectively 7.8%, 0.95% and 3.9% in GMS900MHz, DCS1800MHz and ISM2450MHz. It shows that the antenna can meet the antenna requirements of multi-band mobile phone, and can work normally in three bands, to reach the requirements of the new wireless communication antenna system for the band, bandwidth and gain.Key words:PIFA; GSM900MHz/DCS1800MHz/ISM2450MHz;U-shaped slotII常州大学本科毕业设计(论文)目录摘要 (I)目录 (III)前言 ................................................................................................................................................ I V 1 绪论 (1)1.1 研究的背景及目的 (1)1.2 天线的性能参数 (2)1.2.1 辐射强度 (2)1.2.2 方向性系数 (3)1.2.3 效率 (3)1.2.4 增益 (3)1.2.5 输入阻抗 (3)1.2.6 天线的带宽 (4)1.2.7 边界条件 (4)1.2.8 激励方式 (5)1.2.9 Optimetrics优化设计 (5)2 天线的设计流程 (6)2.1 天线的设计思路 (6)2.2 设计流程 (7)2.3 设计过程中的部分问题 (8)3 PIFA天线建模 (9)3.1 PIFA天线的基本结构和由来 (9)3.2 天线的基本数据 (9)3.3 建立模型的前期准备 (11)3.4 PIFA天线设计建模 (14)4 PIFA天线的仿真和分析 (31)4.1 设计检查 (31)4.2 运行仿真运算 (31)4.3 数据分析 (31)4.4 天线结构参数对天线性能的影响分析 (32)4.5天线的输入阻抗 (37)4.6 查看天线的方向图 (38)4.7 辐射金属片表面电流的分布 (42)5 结论 (43)参考文献 (44)致谢 (45)III常州大学本科毕业设计(论文)前言自赫兹和马可尼发明出天线以来,天线在人类社会的生活中发挥着越来越重要的作用。
金属机身手机FM内置天线设计方案(设计,安装,仿真)(1)(1)
金属机身智能手机FM收音频段天线设计方案(设计,安装,仿真)金属机身智能手机中还能存在FM 广播功能吗?调频FM广播属于地方性电台,音质好,有立体声功能,而且内容丰富,从新闻娱乐到民生教育等,应有尽有,与平常的生活息息相关,深受百姓喜爱,大多数人都有自己喜欢收听的电台和节目主持人,从mp3盛行的年代开始,FM收音功能已经成为便携式电子通讯产品的标准配置,到后来的手机、便携音箱等都无一例外的带调频收音功能,从这以后,通过手机等随时收听调频广播已经成为老百姓长期养成的生活习惯。
但是随着智能手机的诞生,FM广播慢慢淡出了。
为什么?原因一:客户需要花费流量的前提下收听音乐、广播,增加客户的需求成本;原因二:操作的复杂,用户如果要用FM的广播,首先要打开菜单,点击收音机,还要带上耳塞;原因三:金属机身的有限的手机空间严重影响FM天线的设计,手机的内部空间紧张,传统FM 的天线尺寸太大,无法容纳;原因四:智能手机MCU的主频不断提高,手机的电磁辐射对FM信号干扰,影响FM信号的接收效果;微航在金属机身智能手机FM收音频段天线设计方案的优势FM调频广播的载波频率是76~108Mhz,波长最长约3米,对应的接收天线尺寸大约70~100厘米,所以早期的手机都是采用耳机线做调频广播的接收天线,但是由于使用和携带不方便,逐步被内置天线所取代,微航磁电研发的磁性内置天线,采用自主研发的有机磁性材料,增益高,带宽宽,抗干扰能力强,成为手机内置收音天线的首选,在功能手机中被大量使用,国内不少的品牌手机上面都采用了微航的内置天线实现免耳机的FM收音外放功能。
在智能手机上同样能够方便地接收传统的调频电台节目,依然是迫切需要解决的问题,基于此,芯片商一如既往的在芯片上集成收音芯片,不仅没有去掉FM收音功能,而且还陆续推出功能更强,集成度更高的芯片方案,如博通公司最新专为手机推出的BCM943341WCD1集NFC、WIFI、蓝牙、FM功能于一体的模组,仅8.7x1.35x1.35mm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
手机结构 vs PIFA天线(直板 机)(二)
short pin
w=15~25
Feed pin
L=35~40
Antenna
H=6~8
Ground
手机结构 vs PIFA天线(直板 机)(三) • PIFA最重要的三个参数 W,L,H,其中H和天线谐振频率的带宽密 切相关。W、L决定天线最低频率。 • 手机PCB的尺寸对PIFA有很大影响 • Shielding Case对天线的影响 • 手机电池芯对PIFA影响强烈。
内置平面Monopole出现的现 实意义
• 多模手机对多频段天 线的要求 • Monopole的大带宽和 高增益,足以应付3G 时代跨越2GHz的几百 兆带宽需求。 • 内置平面Monopole结 构灵活,易于与当今 多变的手机结构相配 合
Feed Strip 天线低频部分
塑胶支架 38X6X4
内置天线分类
• PIFA Planar Inverted F Antenna • Internal Planar Monopole 内置平面单极天线 • Internal Helix 内置螺旋天线
手机结构 vs PIFA天线(直板 机)(一)
• 典型PIFA形 式,GSM/DCS (/PCS) • 位于手机顶部 • 面向Z轴正向, 与电池同侧。
XY平面为H面,YZ面E1面,XZ面E2面。
Z
基站
Y X
天线原理
• 一个理论上的各向同 性(Isotropic)天线 有全立体角相等的方 向分布。 • 该天线可作为其它天 线的参照。
侧视 (垂直方向图)
顶视 (平面方向图)
天线原理-偶极天线
• 偶极天线方向图侧视
看来Isotropic方向图垂直 方向收到“挤压”,水 平方向则扩大了覆盖范 围。
内置天线结构种类
天线 Pogo Pin 天线 Pogo Pin
PCB
正向使用Pogo Pin的
PCB
反向使用Pogo Pin的
1. Stamping
Stamping热熔到Housing内侧,Stamping伸出spring与手机PCB连接
2. Stamping + Support
Stamping热熔到Support上,连接用spring
手机内置式天线设计
天线基本概念
• Return Loss(回波损耗S11)
天线原理
• Directionality(方向性系数)
天线辐射方向性参数。天线据此可分全向(omnidirectional)和定向(directional)。
• Gain(增益)
天线增益定义为规定方向的天线辐射强度和参考天线之比。
• 以上二图分别为直板(左)、翻盖(右)@1GHz时的增 益方向图。 • 由于翻盖打开,增益比直板状态增大了。直板状态全向性 好,翻盖状态则背向增益变小。
PIFA的局限
• PIFA脱胎于带短路微带天线,有带宽窄的先天缺 点。 • PIFA增益偏低。 • 结构单调,不易与当今灵活多变的手机结构相适 应。 • 面对3G和多模手机的要求,一个手机的天线(组) 必须同时面对900(800)MHz、1700MHz~ 2200MHz如此宽广电磁波谱的要求。PIFA显得力 不从心。
PIFA需要的空间和其它条件
• PIFA需要的空间大小视乎频段和射频性能的需求。
双频(GSM/DCS):600 m m ×7~8mm 三频(GSM/DCS/PCS):700 m m2×7~8mm 满足以上需求则GSM频段一般可能达-1~0dBi, DCS/PCS则0~1dBi。 • 天线正下方一般避免安放器件,尤其是Speaker和 Vibrator • 电池尽量远离天线。一般至少5mm以上。 • 天线同侧后盖上不用导电漆喷涂,谨慎使用电镀装饰。
PCB 天线高频部分
从右图可见 • 该种 monopole保 持了低频 (1GHz)工 作频带。 • 高频则可有 着与中心频 率比值20% 以上、宽达 几百兆工作 带宽。
右图为该天线 模型在 1.8GHz频 率下的增益 方向图。 • 最大增益~ 4dBi。 • 全向性可控 制
内置Planar Monopole vs 手机 结构设计 • 内置Planar Monopole天线可以比同样工作 频率的PIFA小。 • Monopole必须悬空,平面结构下不能有 PCB的Ground。 • Monopole只需要一个Feed Point和PCB上 的Pad相连。
• Efficiency(效率)
Gain=Directionality × Efficiency
Efficiency=Output Power/Input Power
天线原理
• Polarization(极化)
天线远场处电矢量轨迹。分线极化、圆极化、椭圆极化。 一般手机外置(stubby)天线在H面接近线极化,PIFA和Monopole极 化复杂。 基站入射波为线极化,方向与地面垂直。
内置Helix
类似外置Helix内藏于手机壳内 • 金属线Helix嵌入塑料内模,轴线平行于PCB平面, 竖直装载于PCB顶端。 • 金属线Helix嵌入塑料内模,轴线平行于PCB平面, 平行装载于PCB顶端。 以上实际RF效果均不够理想。一般辐射效率在20%。 优点在于可以利用以往的外置天线手机主板设计, 稍加修改快速设计出一款内置天线手机。
EIRP = transmitter power + antenna gain – cable loss
Power Setting 100 mW 50 mW 30 mW 20 mW 15 mW 5 mW 1 mW dBm 20 dBm 17 dBm 15 dBm 13 dBm 12 dBm 7 dBm 0 dBm Gain@ 6 dBi Patch 6 dBi 6 dBi 6 dBi 6 dBi 6 dBi 6 dBi 6 dBi EIRP 26 dBm 23 dBm 21 dBm 19 dBm 18 dBm 13 dBm 6 dBm
Beamwidth
Area of poor coverage directly under the antenna
Side View (Vertical Pattern)
Top View (Horizontal Pattern)
• EIRP( Effective Isotropic Radiated Power )
3. Stamping +源自Support + Pogo pin (正、反)
Stamping热熔到Support上,连接用Pogo Pin。
正向使用Pogo Pin一般适合于带support的结构,反向使用都可以。
• • • •
FPC FPC + Support + FPC连接器 FPC + Support + Pogo pin (正、反) Housing表面电镀
2
天线馈点和接地的摆放 (红色为馈点,蓝色为接地)
手机结构 vs PIFA天线(翻盖 或滑盖)(一)
• 翻盖手机合 盖状态,天 线表现与直 板机无异。 • 开盖状态, 上下盖PCB 都为地,天 线由在地顶 端变为处于 地中央。
手机结构 vs PIFA天线(翻盖 或滑盖)(二)
• 右二图为合、开两 种状态下天线S11 参数的Smith圆图。 右上图为合盖,右 下为开盖。 • 由右图可见两种状 态下天线工作状态 发生较大变化。通 常低频谐振降低。
侧视 (垂直方向图)
垂直波束
dipole (with Gain)
• 增益越高,垂直方向 波束越窄,水平方向 覆盖面积越大。
顶视 (水平方向图)
全向和定向
• 右上图为一高增益全 向天线。垂直方向波 束窄,阴影为天线不 能覆盖范围。水平方 向则覆盖面积很大。 • 右下图显示方向图被 “挤压”向一个方向, 辐射能量在一定角度 分布较大。而背面能 量分布少。