温州市九年级上册数学期末考试试卷
浙江省温州市九年级上学期数学期末考试试卷
浙江省温州市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020九下·西安月考) 对于的图象下列叙述正确的是()A . 的值越大,开口越大B . 的值越小,开口越小C . 的绝对值越小,开口越大D . 的绝对值越小,开口越小【考点】2. (2分) (2020九上·临海期末) 若关于x的一元二次方程x2+2x﹣m=0的一个根是x=1,则m的值是()A . 1B . 2C . 3D . 4【考点】3. (2分)(2018·龙东) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .【考点】4. (2分) (2019九下·武冈期中) 下列说法错误的是()A . 必然事件的概率为1B . 数据1、2、2、3的平均数是2C . 连续掷一枚硬币,若5次都是正面朝上,则第六次仍然可能正面朝上D . 如果某种活动的中奖率为40%,那么参加这种活动10次必有4次中奖【考点】5. (2分)若⊙O的面积为25π,在同一平面内有一个点P,且点P到圆心O的距离为4.9,则点P与⊙O的位置关系为()A . 点P在⊙O外B . 点P在⊙O上C . 点P在⊙O内D . 无法确定【考点】6. (2分)(2016·龙华模拟) 中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖、参加这个游戏的观众有三次翻牌的机会.某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是()A .B .C .D .【考点】7. (2分)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C',此时点A'恰好在AB边上,则点B'与点B之间的距离为()A . 12B . 6C . 6D .【考点】8. (2分)关于x的二次方程的一个根是0,则a的值为().A . 1B . -1C . 1或-1D .【考点】9. (2分) (2017·阿坝) 如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A . 4个B . 3个C . 2个D . 1个【考点】10. (2分)如图,AB是⊙O的直径,AC是⊙O的切线,BC与⊙O相交于D,连接AD、OD(AC≠AB),则能够判断图中∠B的余角(不再添加任何辅助线)的有()A . 1个B . 2个C . 3个D . 4个【考点】二、填空题 (共7题;共7分)11. (1分) (2018八下·嘉定期末) 写出一个轴对称图形但不是中心对称图形的四边形:________【考点】12. (1分) (2019九上·龙山期末) 同时掷两个质地均匀的骰子,两个骰子向上一面的点数相同的概率是________。
温州市九年级上册期末数学数学试卷
温州市九年级上册期末数学数学试卷一、选择题1.已知3sin2α=,则α∠的度数是()A.30°B.45°C.60°D.90°2.若将半径为24cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为()A.3cm B.6cm C.12cm D.24cm3.已知△ABC,以AB为直径作⊙O,∠C=88°,则点C在()A.⊙O上B.⊙O外C.⊙O内4.在平面直角坐标系中,如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的两根分别为﹣3和1;④b2﹣4ac>0,其中正确的命题有()A.1个B.2个C.3个D.4个5.如图,等腰直角三角形ABC的腰长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B和A→C的路径向点B、C运动,设运动时间为x(单位:s),四边形PBC Q的面积为y(单位:cm2),则y与x(0≤x≤4)之间的函数关系可用图象表示为()A.B.C.D.6.如图,某水库堤坝横断面迎水坡AB的坡比是1:3,堤坝高BC=50m,则应水坡面AB的长度是()A.100m B.3m C.150m D.37.如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A .3B .33C .6D .98.在平面直角坐标系中,将抛物线y =2(x ﹣1)2+1先向左平移2个单位,再向上平移3个单位,则平移后抛物线的表达式是( )A .y =2(x+1)2+4B .y =2(x ﹣1)2+4C .y =2(x+2)2+4D .y =2(x ﹣3)2+49.如图,点A 、B 、C 均在⊙O 上,若∠AOC =80°,则∠ABC 的大小是( )A .30°B .35°C .40°D .50° 10.二次函数22y x x =-+在下列( )范围内,y 随着x 的增大而增大.A .2x <B .2x >C .0x <D .0x >11.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则( )A .摸出黑球的可能性最小B .不可能摸出白球C .一定能摸出红球D .摸出红球的可能性最大 12.如图,在圆内接四边形ABCD 中,∠A :∠C =1:2,则∠A 的度数等于( )A .30°B .45°C .60°D .80° 13.一元二次方程x 2=-3x 的解是( )A .x =0B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-3 14.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( ) A .16k ≤ B .116k ≤ C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 15.如图,点P (x ,y )(x >0)是反比例函数y=k x(k >0)的图象上的一个动点,以点P 为圆心,OP 为半径的圆与x 轴的正半轴交于点A ,若△OPA 的面积为S ,则当x 增大时,S 的变化情况是( )A .S 的值增大B .S 的值减小C .S 的值先增大,后减小D .S 的值不变二、填空题16.已知矩形ABCD ,AB=3,AD=5,以点A 为圆心,4为半径作圆,则点C 与圆A 的位置关系为 __________.17.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.18.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.19.数据2,3,5,5,4的众数是____.20.若x 1,x 2是一元二次方程2x 2+x -3=0的两个实数根,则x 1+x 2=____.21.在△ABC 中,∠C=90°,若AC=6,BC=8,则△ABC 外接圆半径为________;22.如图,Rt △ABC 中,∠ACB =90°,AC =BC =4,D 为线段AC 上一动点,连接BD ,过点C 作CH ⊥BD 于H ,连接AH ,则AH 的最小值为_____.23.点P 在线段AB 上,且BP AP AP AB=.设4AB cm =,则BP =__________cm . 24.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-•=__________.25.如图,四边形ABCD 是⊙O 的内接四边形,若∠C=140°,则∠BOD=____°.26.如图,在⊙O 中,分别将弧AB 、弧CD 沿两条互相平行的弦AB 、CD 折叠,折叠后的弧均过圆心,若⊙O 的半径为4,则四边形ABCD 的面积是__________________.27.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.28.若函数y =(m +1)x 2﹣x +m (m +1)的图象经过原点,则m 的值为_____.29.如图,在△ABC 中,AC :BC :AB =3:4:5,⊙O 沿着△ABC 的内部边缘滚动一圈,若⊙O 的半径为1,且圆心O 运动的路径长为18,则△ABC 的周长为_____.30.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC 中,AB=AC ,若△ABC 是“好玩三角形”,则tanB____________。
浙江省温州市九年级(上)期末数学试卷
第 2 页,共 19 页
A. 点 C
B. 点 D
C. 点 E
二、填空题(本大题共 8 小题,共 24.0 分)
D. 点 F
11.
已知������
������
=
4,则������−������=______.
3
������
12. 将抛物线 y=x2+2 向上平移 1 个单位后所得新抛物线的表达式为______.
18. 如图,四边形 ABDC 内接于半圆 O,AB 为直径,AD 平分∠CAB,AB-AC=4,AD=3 7,作 DE⊥AB 于点 E, 则 BE 的长为______,AC 的长为______.
三、解答题(本大题共 6 小题,共 46.0 分) 19. 有 4 张卡片,正面分别写上 1,2,3,4,它们的背面都相同.现将它们背面朝上,
D. ������ < ������ < ������
8. 如图,圆上有两点 A,B,连接 AB,分别以 A,B 为 圆心,AB 的长为半径画弧,两弧相交于点 C,D,CD 交 AB 于点 E,交������������于点 F.若 EF=1,AB=6,则该 圆的半径长是( )A. 4来自B. 5C. 6
先从中任意摸出一张,卡片不放回,再任意摸出一张. (1)请用树状图或列表法表示出所有可能的结果. (2)求摸出的两张卡片上的数之和大于 5 的概率.
20. 如图,△ABC 内接于⊙O,请用直尺和圆规按要求作图(保留作图痕迹). (1)在图 1 中画出一个圆心角,所作角的度数是∠ACB 的 2 倍. (2)在图 2 中画出一个圆周角,所作角的度数是∠ACB 的 2 倍.
23. 小张准备给长方形客厅铺设瓷砖,已知客厅长 AB=8m,宽 BC=6m,现将其划分成 一个长方形 EFGH 区域 I 和环形区域Ⅱ,区域Ⅰ用甲、乙瓷砖铺设,其中甲瓷砖铺 设成的是两个全等的菱形图案,区域Ⅱ用丙瓷砖铺设,如图所示,已知 N 是 GH 中 点,点 M 在边 HE 上,HN=3HM,设 HM=x(m). (1)用含 x 的代数式表示以下数量. 铺设甲瓷砖的面积为______m2. 铺设丙瓷砖的面积为______m2. (2)若甲、乙、丙瓷砖单价分别为 300 元/m2,200 元/m2,100 元/m2,且 EF≥FG+2,铺设好整个客厅,三种瓷砖总价至少需要多少钱?
浙江省温州市九年级上学期期末数学试卷
浙江省温州市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)方程x(x+3)=x+3的解为()A . x1=0,x2=﹣3B . x1=1,x2=﹣3C . x1=0,x2=3D . x1=1,x2=32. (2分)(2019·龙湾模拟) 如图,水平的讲台上放置的圆柱笔筒和长方体形粉笔盒,它的俯视图是()A .B .C .D .3. (2分)一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有125次摸到白球,因此小亮估计口袋中的红球大约有()个.A . 100B . 90C . 80D . 704. (2分)如图,已知线段AB坐标两端点的坐标分别为A(1,2),B(3,1),以点O为位似中心,相似比为3,将AB在第一象限内放大,A点的对应点C的坐标为()A . (3,6)B . (9,3)C . (﹣3,﹣6)D . (6,3)5. (2分) (2018九上·南召期末) 河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为A . 12米B . 4 米C . 5 米D . 6 米6. (2分) (2016九上·临海期末) 将抛物线y=3x2先向左平移一个单位,再向上平移一个单位,两次平移后得到的抛物线解析式为()A . y=3(x+1)2+1B . y=3(x+1)2﹣1C . y=3(x﹣1)2+1D . y=3(x﹣1)2﹣17. (2分)(2017·普陀模拟) 如图,直线l1∥l2∥l3 ,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于()A .B .C .D .8. (2分) (2018九上·宁波期中) 下列命题正确的个数是()①平分弧的直径垂直平分弧所对的弦;②平分弦的直径平分弦所对的弧;③垂直于弦的直线必过圆心;④垂直于弦的直径平分弦所对的弧.A . 1个B . 2个C . 3个D . 4个9. (2分) (2017九上·鄞州月考) 一次函数和同一直角坐标系内的图象是()A .B .C .D .10. (2分)如图,在平面直角坐标系中,已知点在双曲线上,轴于D,轴于,点在轴上,且,则图中阴影部分的面积之和为A . 6B . 12C . 18D . 24二、填空题 (共5题;共5分)11. (1分)阳阳的身高是1.6m,他在阳光下的影长是1.2m,在同一时刻测得某棵树的影长为3.6m,则这棵树的高度约为________ m.12. (1分) (2020九上·百色期末) 如图,请补充一个条件________:,使△ACB∽△ADE.13. (1分) (2016九上·江北期末) 如图,过y轴上一点P(0,1)作平行于x轴的直线PB,分别交函数y1=x2(x≥0)与y2= (x≥0)的图象于A1 , B1两点,过点B1作y轴的平行线交y1的图象于点A2 ,再过A2作直线A2B2∥x轴,交y2的图象于点B2 ,依次进行下去,连接A1A2 , B1B2 , A2A3 , B2B3 ,…,记△A2A1B1的面积为S1 ,△A2B1B2的面积为S2 ,△A3A2B2的面积为S3 ,△A3B2B3的面积为S4 ,…则S2016=________14. (1分)cos45°=________.15. (1分)(2018·杭州) 如图,AB是⊙的直径,点C是半径OA的中点,过点C作DE⊥AB,交O于点D,E 两点,过点D作直径DF,连结AF,则∠DEA=________。
浙江省温州市2023-2024学年九年级上学期期末数学试题
温州市2023学年第一学期九年级(上)学业水平期末检测数学试卷本试卷分为选择题和非选择题两个部分,共4页,考试时间90分钟,全卷满分100分.答题时请在答题纸答题区域作答,不得超出答题区域边框线.选择题部分一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选均不给分)1.抛物线()2345y x =−−+的顶点坐标是( ) A .()4,5B .()4,5−C .()4,5−D .()4,5−−2.已知点P 到圆心O 的距离为5,若点P 在圆内,则O 的半径可能为( ) A .3B .4C .5D .63.如图是海上风力发电装置,相同的三个转子叶片呈均匀分布.若图案绕中心旋转n °后能与原图案重合,则n 可以取( )(第3题) A .90B .120C .150D .1804.图1是《墨经》中记载的“小孔成像”实验图,图2是其示意图,其中物距2m BF =,像距1m CE =.若像的高度CD 是0.9m ,则物体的高度AB 为( )图1 图2 (第4题) A .1.2mB .1.5mC .1.8mD .2.4m阅读背景素材,完成5~6题.一个不透明的盒子内装有1个红球,1个黄球,1个蓝球,它们除颜色外其余均相同.现从中随机摸出一球,记下颜色后放回搅匀,如此继续.5.右表是小温前两次摸球的情况,当小温第三次摸球时,下列说法正确的是( )次数 第1次 第2次 第3次 颜色红球红球(第5题) A .一定摸到红球B .一定摸不到红球C .摸到黄球比摸到蓝球的可能性大D .摸到红球、黄球和蓝球的可能性一样大6.小州摸球两次,则出现相同颜色的概率为( ) A .19B .16C .13D .127.已知二次函数()20y ax bx c a ++≠的图象如图所示,则点(),A a b c +所在的象限是( )(第7题) A .第一象限 B .第二象限C .第三象限D .第四象限8.如图,ABC △内接于O ,AC 为直径,半径OD BC ∥,连结OB ,AD .若AOB α∠=,则BAD∠的度数为( )(第8题)A .2αB .902α°−C .904α°−D .1802α°−9.如图,在ABC △中,AB AC =,在AC 上取点D ,使CBD BAC ∠=∠,延长BC 至点E ,使得DE DB =.若BE k BC =,则ADAB等于( )(第9题) A .1k −B .11k − C .kD .1k10.已知抛物线()20y ax bx b a a =++−>,当03x ≤≤时,50y −≤≤.若将抛物线向左平移4个单位后经过点()1,0−,则b 的值为( )A .1−B .32−C .2−D .52−二、填空题(本题有6个小题,11-15每小题3分,16题4分,共19分)11.若一个正多边形的一个外角为36°,则这个正多边形的边数是______. 12.若扇形的圆心角为120°,半径为4,则它的弧长为______.(结果保留π) 13.某次踢球,足球的飞行高度h (米)与水平距离x (米)之间满足2560h x x =−+,则足球从离地到落地的水平距离为______米.14.如图,四边形ABCD 内接于圆,点E 在 CD 上,若 AB AD =,BC CE ED ==,105BCD ∠=°,则CDE ∠为______度.(第14题)15.如图,在ABC △中,90C ∠=°,点D 在AB 上,作DE BC ⊥于点E ,将BDE △绕点D 逆时针旋转至FDG △,点G ,F 分别落在AB ,AC 上.若2DG =,3FG =,则CE =______.(第15题)16.【情境】图1是某庭院所砌的一堵带有月洞门的墙,其设计图(图2)是轴对称图形,对称轴GH 交圆弧于点G ,墙面ABCD 为正方形,门洞上方匾额的中点M ,N ,P ,Q 分别是上方两个矩形对角线的交点.已知154AB =米,32EF =米,218GH =米,38EK =米.【问题】月洞门所在圆的半径为______米,匾额的长与宽之比为______.图1 图2 (第16题)三、解答题(本题有6小题,共51分,解答需写出必要的文字说明、演算步骤或证明过程)17.(本题5分)已知线段..a ,b ,满足23a b=. (1)求3a bb−的值. (2)当线段..x 是线段a ,b 的比例中项,且4a =时,求x 的值.18.(本题6分)某校七年级社会实践,安排三辆车,编号分别为A ,B ,C .小温与小州都可以从这三辆车中任意选择一辆搭乘.(1)求小温没有搭乘C 车的概率.(2)若小温没有搭乘C 车,请用画树状图或列表的方法,求出小温与小州不同车的概率. 19.(本题6分)如图,A ,B ,O 三点都在方格纸的格点上,请按要求在方格纸内作图.(图1) (图2) (第19题)(1)在图1中以点O 为位似中心,作线段AB 的位似图形CD ,使其长度为AB 的2倍.(2)已知OPQ △的三边比为1:2,在图2中画格点ABD △,使ABD △与OPQ △相似.20.(本题10分)如图,抛物线2y x bx c =−++经过点()1,0A −,()3,0B ,与y 轴交于点C .(第20题)(1)求抛物线的表达式及C 点坐标.(2)点(),3D m 是抛物线上一点,且当x m ≥时,y 的最大值为3,求BCD △的面积.21.(本题12分)如图,在ABC △中,90ACB ∠=°,点D 在BC 边上,ACD △的外接圆O 交AB 于点E ,AC CE =,过点C 作CG AD ⊥于点G ,延长CG 交AB 于点F .(第21题)(1)求证:FAC ACG ∠=∠.(2)求证:GC AGCA BC=.(3)若3CF FG =,AC =BD 的长.22.(本题12分)综合与实践:设计公交车停靠站的扩建方案.【素材1】图1为某公交车停靠站,顶棚截面由若干段形状相同的抛物线拼接而成.图2为某段结构示意图,1C ,2C 皆为轴对称图形,且关于点M 成中心对称,该段结构水平宽度为8米.图1 图2 图3【素材2】图3为停靠站部分截面示意图,两根长为2.5米的立柱11M N ,22M N 竖直立于地面并支撑在对称中心1M ,2M 处.小温将长为2.8米的竹竿AB 竖直立于地面,当点A 触碰到顶棚时,测得2N B 为1米. 【素材3】将顶棚扩建,要求截面为轴对称图形,且水平宽度为27米.计划在顶棚两个末端到地面之间加装垂直于地面的挡风板.【任务】(1)确定中心:求图2中点M到该结构最低点的水平距离l.C的函数表达式.(2)确定形状:在图3中建立合适的直角坐标系,求1(3)确定高度:求挡风板的高度.2023-2024学年浙江省温州市九年级(上)期末数学试卷(参考答案及评分标准)一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案ADBCDCBCAD二、填空题(11-15每小题3分,16题4分)11.十 12.8π313.1214.2515 16.54;7:3三、解答题(共51分,5分+6分+6分+10分+12分+12分)17.解:(1)23a b = ,3323113a b a b b b b −∴=−=×−=(2)334622b a ==×= ,24624x ab ==×=,x ∴18.解:(1)计算:P (小温未搭乘C )23=(2)列表如下:由表可知,共有6种等可能结果,其中小温和小州搭不同车的结果有4种,∴小温和小州搭不同车的概率为4263=.19.解:(1)(2)注:答案不唯一.20.解:(1)把1x =−,0y =;3x =,0y =代入,得()()2011b c =−−+×−+,()2033b c =−+×+解得2b =,3c =223y x x ∴=−++;点C 为()0,3.(其他解法,相应给分) (2)由题意得,二次函数经过点(),3D m 由(1)得,()2221b a −=−=×−012m +∴=,2m =; 2CD ∴=,3OC = 12332BCD S ∴=××=△(第20题) 21.(本题12分)(第21题) (1)证明:AC CE= FAC ADC ∴∠=∠ 90ACB =°∠ ,CG AD ⊥90ACG DCG ADC DCG ∴∠+∠=∠+∠=° ACG ADC ∴∠=∠FAC ACG ∴∠=∠(2)证明:CG AD ⊥ ,90AGC BCA ∴∠=∠=°FAC ADC ∠=∠ AGC BCA ∴∽△△GC AGAC BC∴= (3)解:3CF FG = 设FG a =,3FA FC a ==在AFG Rt △中,AG ==ABC ACG ∽△△,AC =BC ACAG CG ∴==∴90AGC ACD ∠°∠== ,CAG DAC ∠=∠ ACG ADC ∴∽△△,CG CD AG AC ∴==CD ∴BD BC CD ∴=−=.(利用重心的性质得出D 为中点相应得分) 22.(本题12分)解:(1)由中心对称性得:824÷=米,由轴对称性得:422÷=米. (2)以2M 点为原点,按如图形式建立直角坐标系,由条件得,1C 过()0,0、()1,0.3,对称轴为2x =,设顶点式为()22y a x h =−+,将()0,0、()1,0.3代入得()()220020.312a ha h=−+ =−+ ,解得:0.4h =,0.1a =−.()210.120.4C y x =−−+(3)27833m −×=,332m 2÷=(图3) 情况①:当37222x =+=时,()120.120.40.175m C y x =−−+=, 2.5 2.675m h y =+=情况②:将31222x =−=−时,()220.120.40.175m C y x =+−=−, 2.5 2.325m h y =+=法二:由图形为轴对称图形可知,图形必由若干个图2结构和一个1C 或者2C 构成;48328+×=,28271−=,120.5÷=米,只需将0.5x =;0.5x =−相应代入1C ,2C 即可()120.10.520.40.175C y =−−+=米, 2.5 2.675m h y =+= 或()220.10.520.40.175m C y =−+−=−, 2.5 2.325m h y =+=. 建系二:按如图形式建立直角坐标系,(2)由条件得,1C 过()0,0.3、()1,0−,210.10.20.3C y x x =−++(3)27833m −×=,332m 2÷=. 情况①:当352122x =+−=时,120.10.20.30.175m c y x x =−++=, 2.5 2.675m h y =+=.情况②:将332122x=−+−=− 时,220.10.60.50.175m C y x x =++=−, 2.5 2.325m h y =+=.建系三:以A 为原点,按如图形式建立直角坐标系,(2) 由条件得,1C 过()0,0、()1,0.3−−,120.10.2C y x x =−+(3)27833m −×=,332m 2÷= 情况①:当352122x =+−=时,120.10.20.125m C y x x =−+=−, 2.8 2.675m h y =+=.情况②:将332122x=−+−=−时,220.10.60.20.475mCy x x=++=−, 2.8 2.325mh y=+=.。
九年级上册温州数学全册期末复习试卷测试卷(解析版)
九年级上册温州数学全册期末复习试卷测试卷(解析版)一、选择题1.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm2.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 723.如图,等腰直角三角形ABC 的腰长为4cm ,动点P 、Q 同时从点A 出发,以1cm/s 的速度分别沿A →B 和A →C 的路径向点B 、C 运动,设运动时间为x (单位:s),四边形PBC Q 的面积为y(单位:cm 2),则y 与x(0≤x≤4)之间的函数关系可用图象表示为( )A .B .C .D .4.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为( ) A .42 B .45 C .46 D .48 5.函数y=mx 2+2x+1的图像 与x 轴只有1个公共点,则常数m 的值是( )A .1B .2C .0,1D .1,26.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 7.某班7名女生的体重(单位:kg )分别是35、37、38、40、42、42、74,这组数据的众数是( ) A .74B .44C .42D .408.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积为4,则△ABC 的面积为( )A .8B .12C .14D .169.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+10.将函数的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位 11.关于x 的一元二次方程x 2+bx-6=0的一个根为2,则b 的值为( )A .-2B .2C .-1D .112.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( ) A .()2241y x =-- B .()2241y x =+- C .()2241y x =-+D .()2241y x =++13.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=- B .()247x +=-C .()2425x +=D .()247x +=14.如图,O 的半径为2,弦2AB =,点P 为优弧AB 上一动点,60PAC ∠=︒,交直线PB 于点C ,则ABC 的最大面积是 ( )A .12B .1C .2D 215.如图物体由两个圆锥组成,其主视图中,90,105A ABC ︒︒∠=∠=.若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A .2B .3C .32D .2二、填空题16.已知∠A =60°,则tan A =_____.17.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,CD CB =.若100C ∠=︒,则ABC ∠的度数为______.18.已知关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=-1,x 2=2 ,则二次函数y=x 2+mx+n 中,当y <0时,x 的取值范围是________;19.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++>的解集是_______.20.如图,Rt △ABC 中,∠ACB =90°,AC =BC =4,D 为线段AC 上一动点,连接BD ,过点C 作CH ⊥BD 于H ,连接AH ,则AH 的最小值为_____.21.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.22.关于x 的方程220kx x --=的一个根为2,则k =______. 23.如图,O 的直径AB 与弦CD 相交于点53E AB AC ==,,,则tan ADC ∠=______.24.如图,点O 是△ABC 的内切圆的圆心,若∠A =100°,则∠BOC 为_____.25.一种药品经过两次降价,药价从每盒80元下调至45元,平均每次降价的百分率是__.26.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.27.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.28.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.29.某公园平面图上有一条长12cm 的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.30.如图,点O 为正六边形ABCDEF 的中心,点M 为AF 中点,以点O 为圆心,以OM 的长为半径画弧得到扇形MON ,点N 在BC 上;以点E 为圆心,以DE 的长为半径画弧得到扇形DEF ,把扇形MON 的两条半径OM ,ON 重合,围成圆锥,将此圆锥的底面半径记为r 1;将扇形DEF 以同样方法围成的圆锥的底面半径记为r 2,则r 1:r 2=_____.三、解答题31.在Rt △ABC 中,AC =BC ,∠C =90°,求: (1)cosA ;(2)当AB =4时,求BC 的长.32.如图,已知矩形ABCD 的边6AB =,4BC =,点P 、Q 分别是AB 、BC 边上的动点.(1)连接AQ 、PQ ,以PQ 为直径的O 交AQ 于点E .①若点E 恰好是AQ 的中点,则QPB ∠与AQP ∠的数量关系是______; ②若3BE BQ ==,求BP 的长; (2)已知3AP =,1BQ =,O 是以PQ 为弦的圆.①若圆心O 恰好在CB 边的延长线上,求O 的半径:②若O 与矩形ABCD 的一边相切,求O 的半径.33.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,∠BAC 的平分线交⊙O 于点D ,过点D 作DE ⊥AC 交AC 的延长线于点E ,连接BD .(1)求证:DE 是⊙O 的切线; (2)若BD =3,AD =4,则DE = .34.4张相同的卡片分别写有数字﹣1、﹣3、4、6,将这些卡片的背面朝上,并洗匀. (1)从中任意抽取1张,抽到的数字大于0的概率是______;(2)从中任意抽取1张,并将卡片上的数字记作二次函数y =ax 2+bx 中的a ,再从余下的卡片中任意抽取1张,并将卡片上的数字记作二次函数y =ax 2+bx 中的b ,利用树状图或表格的方法,求出这个二次函数图象的对称轴在y 轴右侧的概率. 35.已知关于x 的一元二次方程()222140x m x m +++-=.(1)当m 为何值时,方程有两个不相等的实数根?(2)设方程两根分别为1x 、2x ,且21x 、22x 分别是边长为5的菱形的两条对角线,求m 的值.四、压轴题36.如图,B 是O 的半径OA 上的一点(不与端点重合),过点B 作OA 的垂线交O 于点C ,D ,连接OD ,E 是O 上一点,CE CA =,过点C 作O 的切线l ,连接OE 并延长交直线l 于点F.(1)①依题意补全图形. ②求证:∠OFC=∠ODC . (2)连接FB ,若B 是OA 的中点,O 的半径是4,求FB 的长.37.某校网球队教练对球员进行接球训练,教练每次发球的高度、位置都一致.教练站在球场正中间端点A 的水平距离为x 米,与地面的距离为y 米,运行时间为t 秒,经过多次测试,得到如下部分数据: t 秒 0 1.5 2.5 4 6.5 7.5 9 … x 米 0 4 8 10 12 16 20 … y 米24.565.8465.844.562…(2)网球落在地面时,与端点A 的水平距离是多少? (3)网球落在地面上弹起后,y 与x 满足()256y a x k =-+①用含a 的代数式表示k ;②球网高度为1.2米,球场长24米,弹起后是否存在唯一击球点,可以将球沿直线扣杀到A 点,若有请求出a 的值,若没有请说明理由.38.已知抛物线y =﹣14x 2+bx +c 经过点A (4,3),顶点为B ,对称轴是直线x =2.(1)求抛物线的函数表达式和顶点B 的坐标;(2)如图1,抛物线与y 轴交于点C ,连接AC ,过A 作AD ⊥x 轴于点D ,E 是线段AC 上的动点(点E 不与A ,C 两点重合);(i )若直线BE 将四边形ACOD 分成面积比为1:3的两部分,求点E 的坐标; (ii )如图2,连接DE ,作矩形DEFG ,在点E 的运动过程中,是否存在点G 落在y 轴上的同时点F 恰好落在抛物线上?若存在,求出此时AE 的长;若不存在,请说明理由. 39.如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点,A 点的坐标为(1,0)-,过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH OB ⊥于点H .若5PB t =,且01t <<.(1)点C 的坐标是________,b =________; (2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与COQ 相似?若存在,直接写出所有t 的值;若不存在,说明理由. 40.如图,抛物线2)12(0y ax x c a =-+≠交x 轴于,A B 两点,交y 轴于点C .直线122y x =-经过点,B C .(1)求抛物线的解析式;(2)点P是抛物线上一动点,过P作x轴的垂线,交直线BC于M.设点P的横坐标是t.①当PCM∆是直角三角形时,求点P的坐标;②当点P在点B右侧时,存在直线l,使点,,A C M到该直线的距离相等,求直线解析式y kx b=+(,k b可用含t的式子表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB 的长为:2×5=10cm . 故选B . 【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.2.B解析:B 【解析】 【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题; 【详解】解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC , ∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH , ∴S 平行四边形ABCD =6 S △AGH , ∴S △AGH :ABCD S 平行四边形=1:6, ∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFCABCDS S =四边形, ∴1176824AGHEFCABCDSSS +=+=四边形=7∶24, 故选B. 【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.3.C解析:C 【解析】【分析】先计算出四边形PBCQ 的面积,得到y 与x 的函数关系式,再根据函数解析式确定图象即可.【详解】由题意得: 22111448222y x x =⨯⨯-=-+(0≤x≤4), 可知,抛物线开口向下,关于y 轴对称,顶点为(0,8),故选:C.【点睛】此题考查二次函数的性质,根据题意列出解析式是解题的关键.4.C解析:C【解析】【分析】根据中位数的定义,把8个数据从小到大的顺序依次排列后,求第4,第5位两数的平均数即为本组数据的中位数.【详解】解:把数据由小到大排列为:42,44,45,46,46,46,47,48 ∴中位数为4646462+=. 故答案为:46.【点睛】 找中位数的时候一定要先排好大小顺序,再根据奇数个数和偶数个数来确定中位数.如果是奇数个,则正中间的数字即为中位数;如果是偶数个,则找中间两个数的平均数为中位数.先将数据按从小到大顺序排列是求中位数的关键.5.C解析:C【解析】【分析】分两种情况讨论,当m=0和m ≠0,函数分别为一次函数和二次函数,由抛物线与x 轴只有一个交点,得到根的判别式的值等于0,列式求解即可.【详解】解:①若m=0,则函数y=2x+1,是一次函数,与x 轴只有一个交点;②若m ≠0,则函数y=mx 2+2x+1,是二次函数.根据题意得:b 2-4ac=4-4m=0,解得:m=1.∴m=0或m=1故选:C.【点睛】本题考查了一次函数的性质与抛物线与x 轴的交点,抛物线与x 轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.6.A解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 7.C解析:C【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.考点:众数.8.D解析:D【解析】【分析】直接利用三角形中位线定理得出DE ∥BC ,DE=12BC ,再利用相似三角形的判定与性质得出答案.【详解】解:∵在△ABC 中,点D 、E 分别是AB 、AC 的中点,∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC , ∵DE BC =12, ∴14ADE ABC S S ∆∆=, ∵△ADE 的面积为4,∴△ABC 的面积为:16,故选D .【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE ∽△ABC 是解题关键.9.A解析:A【解析】将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x =-+.故选A.10.D解析:D【解析】A.平移后,得y=(x+1)2,图象经过A 点,故A 不符合题意;B.平移后,得y=(x−3)2,图象经过A 点,故B 不符合题意;C.平移后,得y=x 2+3,图象经过A 点,故C 不符合题意;D.平移后,得y=x 2−1图象不经过A 点,故D 符合题意;故选D.11.D解析:D【解析】【分析】根据一元二次方程的解的定义,把x=2代入方程得到关于b 的一次方程,然后解一次方程即可.【详解】解:把x=2代入程x 2+bx-6=0得4+2b-6=0,解得b=1.故选:D .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.B解析:B【解析】【分析】根据题意直接利用二次函数平移规律进而判断得出选项.【详解】解:22y x =的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关系式是:()2241y x =+-.故选:B .【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可. 【详解】2890x x ++=,289x x +=-,2228494x x ++=-+,所以()247x +=,故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键. 14.B解析:B【解析】【分析】连接OA 、OB ,如图1,由2OA OB AB ===可判断OAB 为等边三角形,则60AOB ∠=︒,根据圆周角定理得1302APB AOB ∠=∠=︒,由于60PAC ∠=︒,所以90C ∠=︒,因为2AB =,则要使ABC 的最大面积,点C 到AB 的距离要最大;由90ACB ∠=︒,可根据圆周角定理判断点C 在D 上,如图2,于是当点C 在半圆的中点时,点C 到AB 的距离最大,此时ABC 为等腰直角三角形,从而得到ABC 的最大面积.【详解】解:连接OA 、OB ,如图1,2OA OB ==,2AB =,OAB ∴为等边三角形,60AOB ∴∠=︒,1302APB AOB ∴∠=∠=︒, 60PAC ∠=︒90ACP ∴∠=︒2AB =,要使ABC 的最大面积,则点C 到AB 的距离最大,作ABC 的外接圆D ,如图2,连接CD ,90ACB ∠=︒,点C 在D 上,AB 是D 的直径,当点C 半圆的中点时,点C 到AB 的距离最大,此时ABC 等腰直角三角形,CD AB ∴⊥,1CD =,12ABC S ∴=⋅AB ⋅CD 12112=⨯⨯=, ABC ∴的最大面积为1.故选B .【点睛】本题考查了圆的综合题:熟练掌握圆周角定理和等腰直角三角形的判断与性质;记住等腰直角三角形的面积公式.15.D解析:D【解析】【分析】先证明△ABD 为等腰直角三角形得到∠ABD =45°,BD 2AB ,再证明△CBD 为等边三角形得到BC =BD 2AB ,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB :CB ,从而得到下面圆锥的侧面积.【详解】∵∠A =90°,AB =AD ,∴△ABD 为等腰直角三角形,∴∠ABD =45°,BD 2AB ,∵∠ABC =105°,∴∠CBD =60°,而CB =CD ,∴△CBD 为等边三角形,∴BC =BD 2AB ,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,×1.故选D.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.二、填空题16.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tanA=tan60°=.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tan A=tan60°.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.17.50【解析】【分析】连接AC,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可. 【详解】解:连接AC,∵四边形ABCD是半圆的内接四边形,∴∵DC=CB∴∵AB 是直解析:50【解析】【分析】连接AC ,根据圆内接四边形的性质求出DAB ∠,再利用圆周角定理求出ACB ∠,CAB ∠,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴DAB 180DCB 80∠∠=︒-=︒∵DC=CB∴1CAB 402DAB ∠=∠=︒ ∵AB 是直径∴ACB 90∠=︒∴ABC 90CAB 50∠∠=︒-=︒故答案为:50.【点睛】本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键. 18.-1<x <2【解析】【分析】根据方程的解确定抛物线与x 轴的交点坐标,即可确定y <0时,x 的取值范围.【详解】由题意得:二次函数y=x2+mx+n 与x 轴的交点坐标为(-1,0),(2,0), 解析:-1<x <2【解析】【分析】根据方程的解确定抛物线与x 轴的交点坐标,即可确定y <0时,x 的取值范围.【详解】由题意得:二次函数y=x 2+mx+n 与x 轴的交点坐标为(-1,0),(2,0),∵a=10>,开口向上,∴y <0时,x 的取值范围是-1<x <2.【点睛】此题考查二次函数与一元二次方程的关系,函数图象与x 轴的交点横坐标即为一元二次方程的解,掌握两者的关系是解此题的关键.19.【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x解析:15x -<<【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x 轴的一个交点为5,所以,另一交点为2-3=-1. ∴x 1=-1,x 2=5. ∴不等式20ax bx c ++>的解集是15x -<<.故答案为15x -<<【点睛】要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.20.2﹣2【解析】【分析】取BC 中点G ,连接HG ,AG ,根据直角三角形的性质可得HG =CG =BG =BC =2,根据勾股定理可求AG =2,由三角形的三边关系可得AH≥AG ﹣HG ,当点H 在线段AG 上时,解析:2【解析】【分析】取BC 中点G ,连接HG ,AG ,根据直角三角形的性质可得HG =CG =BG =12BC =2,根据勾股定理可求AG =,由三角形的三边关系可得AH ≥AG ﹣HG ,当点H 在线段AG 上时,可求AH 的最小值.解:如图,取BC中点G,连接HG,AG,∵CH⊥DB,点G是BC中点∴HG=CG=BG=12BC=2,在Rt△ACG中,AG=22AC CG=25在△AHG中,AH≥AG﹣HG,即当点H在线段AG上时,AH最小值为25﹣2,故答案为:25﹣2【点睛】本题考查了动点问题,解决本题的关键是熟练掌握直角三角形中勾股定理关系式.21.2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求解析:2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=12CF=12BF,在Rt△PBF中,tan∠BOF=BFOF=2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.22.1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k的方程,从而求得k的值.【详解】把x=2代入方程得:4k−2−2=0,解得k=1故解析:1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k的方程,从而求得k的值.【详解】把x=2代入方程得:4k−2−2=0,解得k=1故答案为:1.【点睛】本题主要考查了方程的根的定义,是一个基础的题目.23.【解析】分析:由已知条件易得△ACB中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,结合∠ADC=∠ABC,即可由tan∠ADC=tan∠ABC=求得所求的值了.详解:∵AB 是 解析:34【解析】分析:由已知条件易得△ACB 中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,结合∠ADC=∠ABC ,即可由tan ∠ADC=tan ∠ABC=AC BC 求得所求的值了. 详解:∵AB 是O 的直径,∴∠ACB=90°,又∵AC=3,AB=5,∴4=,∴tan ∠ABC=34AC BC =, 又∵∠ADC=∠ABC , ∴tan ∠ADC=34. 故答案为:34. 点睛:熟记“圆的相关性质和正切函数的定义”解得本题的关键.24.140°.【解析】【分析】根据内心的定义可知OB 、OC 为∠ABC 和∠ACB 的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB 的度数,进而可求出∠BOC 的度数.【详解】∵点O 是△ABC解析:140°.【解析】【分析】根据内心的定义可知OB 、OC 为∠ABC 和∠ACB 的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB 的度数,进而可求出∠BOC 的度数.【详解】∵点O 是△ABC 的内切圆的圆心,∴OB 、OC 为∠ABC 和∠ACB 的角平分线,∴∠OBC=12∠ABC ,∠OCB=12∠ACB , ∵∠A=100°,∴∠ABC+∠ACB=180°-100°=80°,∴∠OBC+∠OCB=12(∠ABC+∠ACB )=40°, ∴∠BOC=180°-40°=140°.故答案为:140°【点睛】 本题考查了三角形内心的定义及三角形内角和定理,熟练掌握三角形内切圆的圆心是三角形三条角平分线的交点是解题关键.25.25%【解析】【分析】设每次降价的百分比为x ,根据前量80,后量45,列出方程,解方程即可得到答案.【详解】设每次降价的百分比为x ,,解得:x1=0.25=25%,x2=1.75(不合解析:25%【解析】【分析】设每次降价的百分比为x ,根据前量80,后量45,列出方程280(1)45x ,解方程即可得到答案.【详解】设每次降价的百分比为x , 280(1)45x ,解得:x 1=0.25=25%,x 2=1.75(不合题意舍去)故答案为:25%.【点睛】此题考查一元二次方程的实际应用,正确理解百分率问题,代入公式:前量(1 x )2=后量,即可解答此类问题.26.【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧 解析:72-【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,()22223323AB AC BC =+=+=,然后根据PAB PBC ∠=∠,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小,构建圆,利用勾股定理,即可得解.【详解】∵90ACB ∠=︒,3AC =,3BC =, ∴()22223323AB AC BC =+=+=∴∠CAB=30°,∠ABC=60°∵PAB PBC ∠=∠,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小∴CO ⊥AB ,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90°∴()2222237OC OB BC =+=+= ∴72CP OC OP =-=-故答案为72-.【点睛】此题主要考查直角三角形中的动点综合问题,解题关键是找到点P 的位置.27.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件解析:∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.28.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键.29.240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000c解析:240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000cm=240m.故答案为240m.【点睛】本题考查图上距离实际距离与比例尺的关系,解题的关键是掌握比例尺=图上距离∶实际距离.30.【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF∵六边形ABCDEF为正六边形∴2【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF ∵六边形ABCDEF为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,3a∵正六边形中心角为60°∴∠MON=120°∴扇形MON 120323aa π⋅⋅=则r13同理:扇形DEF的弧长为:120241803aaππ⋅⋅=则r2=2 3 ar1:r23:3:点睛:本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.三、解答题31.(12;(2)2【解析】【分析】(1)根据等腰直角三角形的判定得到△ABC为等腰直角三角形,则∠A=45°,然后利用特殊角的三角函数值求解即可;(2)根据∠A的正弦求解即可.【详解】∵AC=BC,∠C=90°,∴∠A=∠B=45°,∴cosA=cos45°=22, ∴BC=AB sin A ⨯=22,【点睛】本题考查解直角三角形及等腰直角三角形的判定,熟练掌握特殊角三角函数值是解题关键.32.(1)①2QPB AQP ∠=∠;②1.5;(2)①5;②53、255,35630、5. 【解析】【分析】(1)①根据直径所对的圆周角是直角判断△APQ 为等腰三角形,结合等腰三角形的两底角相等和圆周角定理证明;②证明△PBQ ∽△QBA ,由对应边成比例求解;(2)①画出图形,由勾股定理列方程求解;②分O 与矩形ABCD 的四边分别相切,画出图形,利用切线性质,由勾股定理列方程求解.【详解】解:(1)①如图,PQ 是直径,E 在圆上,∴∠PEQ=90°,∴PE ⊥AQ,∵AE=EQ,∴PA=PQ,∴∠PAQ=∠PQA,∴∠QPB=∠PAQ+∠PQA=2∠AQP ,∵∠QPB=2∠AQP . \②解:如图,∵BE=BQ=3,∴∠BEQ=∠BQE,∵∠BEQ=∠BPQ,∵∠PBQ=∠QBA,∴△PBQ ∽△QBA,∴BPBQ BQ BA,36∴BP=1.5;(2)①如图, BP=3,BQ=1,设半径OP=r,在Rt△OPB中,根据勾股定理得,PB2+OB2=OP2∴32+(r-1)2=r2,∴r=5,∴O的半径是5.②如图,O与矩形ABCD的一边相切有4种情况,如图1,当O与矩形ABCD边BC相切于点Q,过O作OK⊥AB于K,则四边形OKBQ为矩形,设OP=OQ=r,则PK=3x,由勾股定理得,r2=12+(3-r)2,3∴O半径为5 3 .如图2,当O与矩形ABCD边AD相切于点N,延长NO交BC于L,则OL⊥BC,过P作PS⊥NL于S,设OS=x,则ON=OP=OQ=3+x,设PS=BL=y,由勾股定理得,2222223331x x yx x y,解得125 2x (舍去),225 2x,∴ON=25 5,∴O 半径为25 5.如图3,当O与矩形ABCD边CD相切于点M,延长MO交AB于R,则OR⊥AB,过O作OH⊥BC于H,设OH=BR=x,设HQ=y, 则OM=OP=OQ=4-1-y=3-y,由勾股定理得,2222223331y x yy x y,解得163032x(舍去),263032x,∴OM=35630,∴O半径为35630.如图4,当O与矩形ABCD边AB相切于点P,过O作OG⊥BC于G,则四边形AFCG为矩形,设OF=CG=x,,则OP=OQ=x+4,由勾股定理得(x+4)2=32+(x+3)2,解得,x=1,∴OP=5,∴O半径为5.综上所述,若O与矩形ABCD的一边相切,为O的半径53,255,35630,5.【点睛】本题考查圆的相关性质,涉及圆周角定理,垂径定理,切线的性质等,综合性较强,利用分类思想画出对应图形,化繁为简是解答此题的关键.33.(1)见解析;(2)125【解析】【分析】(1)连接OD ,如图,先证明OD ∥AE ,再利用DE ⊥AE 得到OD ⊥DE ,然后根据切线的判定定理得到结论;(2)证明△ABD ∽△ADE ,通过线段比例关系求出DE 的长.【详解】(1)证明:连接OD ∵AD 平分∠BAC∴∠BAD =∠DAC∵OA =OD∴∠BAD =∠ODA∴∠ODA =∠DAC∴OD ∥AE∴∠ODE +∠E =180°∵DE ⊥AE∴∠E =90°∴∠ODE =180°-∠E =180°-90°=90°,即OD ⊥DE∵点D 在⊙O 上∴DE 是⊙O 的切线.(2)∵AB 是⊙O 的直径,∴∠ADB=90°,∵AD 平分∠BAC ,∴∠BAD=∠DAE ,在△ABD 和△ADE 中,==BDA DEA BAD DAE ∠∠⎧⎨∠∠⎩, ∴△ABD ∽△ADE ,∴AB BD AD DE=,。
浙江省温州市九年级(上)期末数学试卷
B. 5cm
C. 6cm
D. 7cm
3. 若将抛物线 y=x2 向下平移 1 个单位,则所得抛物线对应的函数关系式为( )
A. y=(x−1)2
B. y=(x+1)2
C. y=x2−1
D. y=x2+1
4. 要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为 3cm,4.5cm 和 6m,另一个三角形的最长边长为 12cm,则它的最短边长为( )
1. 下列事件属于不确定事件的是( )
A. 若 a 是实数,则|a|≥0
B. 今年元旦那天温州的最高气温是 10℃
C. 抛掷一枚骰子,球的袋子中摸球,摸出黑球
2. 已知点 P 在半径为 5cm 的圆内,则点 P 到圆心的距离可以是( )
A. 4cm
【解析】
解:设另一个三角形的最短边长为 xcm,
根据题意,得: = ,
解得:x=6, 即另一个三角形的最短边的长为 6cm. 故选:A. 根据相似三角形的对应边成比例求解可得. 本题考查相似三角形的判定和性质,解题的关键是熟练掌握基本知识,属于 中考常考题型. 5.【答案】D
【解析】
第 6 页,共 17 页
则劣弧 AC 的长为( )
A. 23π
B. 3π
C. 43π
D. 4π
9. 如图,Rt△ABC 中,∠ACB=Rt∠,BC=2AC.正方形 DEFG 如图
放置,点 D,G 分别在 AC,BC 上,E,F 都在边 AB 上,若
AB=14,则 EF 的长为( )
A. 2
B. 4
C. 25
D. 8
10. 如图,阴影部分表示以直角三角形各边为直径的三个半圆所
在 Rt△ACB 中,∵∠ACB=90°,BC=2AC,AB=14,
浙江省温州市九年级上学期期末数学试卷
浙江省温州市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是()A . 正方体B . 球C . 圆锥D . 圆柱体2. (2分) (2017九上·鄞州月考) 下列事件是必然事件的是()A . 三点确定一个圆B . 三角形内角和180度C . 明天是晴天D . 打开电视正在放广告3. (2分)(2014·遵义) 如图,边长为2的正方形ABCD中,P是CD的中点,连接AP并延长,交BC的延长线于点F,作△CPF的外接圆⊙O,连接BP并延长交⊙O于点E,连接EF,则EF的长为()A .B .C .D .4. (2分) (2019八下·苏州期中) 在反比例函数的图像上有三点(,),(,),(,)若>>0>,则下列各式正确的是()A . >>B . >>C . >>D . >>5. (2分)(2017·深圳模拟) 下列命题为真命题的是A . 有两边及一角对应相等的两个三角形全等B . 方程x2+2x+3=0有两个不相等的实数根C . 面积之比为1∶2的两个相似三角形的周长之比是1∶4D . 顺次连接任意四边形各边中点得到的四边形是平行四边形6. (2分)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD 的值等于()A . OM的长B . 20M的长C . CD的长D . 2CD的长7. (2分)为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图所示图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据,根据所测数据不能求出A,B间距离的是()A . BC,∠ACBB . DE,DC,BCC . EF,DE,BDD . CD,∠ACB,∠ADB8. (2分)如图所示图形中,是由一个矩形沿顺时针方向旋转90°后所形成的图形的是()A . (1)(4)B . (2)(3)C . (1)(2)D . (2)(4)9. (2分)一个正方体的每个面都有一个汉字,其展开图如图所示,那么在该正方体中和“值”字相对的字是()A . 记B . 观C . 心D . 间10. (2分)一个袋子中只装有黑、白两种颜色的球,这些球的形状、质地等完全相同,其中白色球有2个,黑色球有n个.在看不到球的条件下,随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀.同学们进行了大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值为()A . 2B . 3C . 4D . 511. (2分)(2019·赤峰模拟) 某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x ,则下面所列方程正确是()A . 289(1﹣x)2=256B . 256(1﹣x)2=289C . 289(1﹣2x)2=256D . 256(1﹣2x)2=28912. (2分) (2017八下·武进期中) 在菱形ABCD中,AC=10,BD=24,则该菱形的周长等于()A . 13B . 52C . 120D . 24013. (2分)(2018·道外模拟) 点A(-1,y1),B(-2,y2)在反比例函数y=的图象上,则y1 , y2的大小关系是()A . y1>y2B . y1=y2C . y1<y2D . 不能确定14. (2分) (2020九上·厦门期中) 已知抛物线y=ax2+bx+c(a≠0)是由抛物线y=﹣x2+x+2先作关于y 轴的轴对称图形,再将所得到的图象向下平移3个单位长度得到的,点Q1(﹣2.25,q1),Q2(1.5,q2)都在抛物线y=ax2+bx+c(a≠0)上,则q1 , q2的大小关系是()A . q1>q2B . q1<q2C . q1=q2D . 无法确定二、填空题 (共5题;共5分)15. (1分)(2020·重庆模拟) 计算: ________.16. (1分) (2020九上·越城月考) 一个足球被从地面向上踢出,它距地面的高度h(m)与足球被踢出后经过的时间t(s)之间具有函数关系h=at2+19.6t,已知足球被踢出后经过4 s落地,则足球距地面的最大高度是________m.17. (1分)(2018·苏州模拟) 如图,正五边形的边长为2,连接对角线AD,BE,CE,线段AD分别与BE和CE相交于点M,N,给出下列结论:①∠AME=108°;② ;③MN= ;④ .其中正确结论的序号是________.18. (1分)点A(x1 , y1)、B(x2 , y2)分别在双曲线y=﹣的两支上,若y1+y2>0,则x1+x2的范围是________.19. (1分)(2019·颍泉模拟) 如图,CD=4,∠C=90°,点B在线段CD上,,沿AB所在的直线折叠△ACB得到△AC′B,若△DC′B是以BC'为腰的等腰三角形,则线段CB的长为________.三、解答题 (共7题;共48分)20. (5分)已知x=1是关于x的方程ax2+bx﹣3=0(a>0)的一根.(1)求a+b的值;(2)若b=2a,x1和x2是方程的两根,求x1+x2的值.21. (6分) (2020九上·苏州期末) 在一个不透明的口袋中有标号为1,2,3,4的四个小球,除数字不同外,小球没有任何区别,摸球前先搅拌均匀,每次摸一个球(1)摸出一个球,摸到标号为偶数的概率为________.(2)从袋中不放回地摸两次,用列表或树状图求出两球标号数字为一奇一偶的概率.22. (5分)如图,在正方形ABCD中,E是BC上的一点,连结AE,作BF⊥AE,垂足为H,交CD于F,作CG∥AE,交BF于G.求证:(1)CG=BH,(2)FC2=BF·GF,(3)=.23. (7分)【阅读理解】对于任意正实数a、b,∵ ≥0,∴a﹣≥0,∴a+b≥2 ,只有当a=b时,等号成立.(1)【获得结论】在a+b≥2 (a、b均为正实数)中,若ab为定值p,则a+b≥2 ,只有当a=b 时,a+b有最小值2 .根据上述内容,回答下列问题:若m>0,只有当m=________时,m+ 有最小值________.(2)【探索应用】如图,已知A(﹣3,0),B(0,﹣4),P为双曲线上的任意一点,过点P 作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.24. (5分)如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(取1.73)(1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.25. (10分) (2019九上·宝应期末) 如图,点E、F分别是正方形ABCD的边BC、CD上的动点,连结AE、EF.(1)若点E是BC的中点,CF:FD=1:3,求证:△ABE∽△ECF;(2)若AE⊥EF,设正方形的边长为6,BE=x,CF=y.当x取什么值时,y有最大值?并求出这个最大值.26. (10分) (2017九上·东台期末) 如图,已知二次函数的图象经过A(2,0)、B(0,-6)两点.(1)求这个二次函数的解析式(2)设该二次函数的对称轴与轴交于点C,连结BA、BC,求△ABC的面积。
2022-2023学年浙江省温州市部分学校九年级(上)期末数学试卷
2022-2023学年浙江省温州市部分学校九年级(上)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分,每小题只有一个选项是正确的,选择正确才给分)1.二次函数y=﹣(x﹣b)2+4b+1图象与一次函数)=﹣x+5(﹣1≤x≤5)只有一交点,则b的值为()A.b=0.75B.b=2或b=12或b=0.75C.2<b≤12D.2<b<12或b=0.752.已知抛物线y=ax2+bx+c(a、b、c是常数,a≠0)经过点A(1,0)和点B(0,﹣3),若该抛物线的顶点在第三象限,记m=2a﹣b+c,则m的取值范围是()A.0<m<3B.﹣6<m<3C.﹣3<m<6D.﹣3<m<03.已知点A(1,y1)、B(﹣,y2)、C(﹣2,y3)在函数y=a(x+1)2﹣m(a>0)上,则y1、y2、y3的大小关系是()A.y1>y3>y2B.y1>y2>y3C.y3>y1>y2D.y2>y1>y34.如图,正方形ABCD内接于⊙O,线段MN在对角线BD上运动,若⊙O的面积为2π,MN=1,则△AMN 周长的最小值是()A.3B.4C.5D.65.如图,△ABC,AC=3,BC=4,∠ACB=60°,过点A作BC的平行线l,P为直线l上一动点,⊙O 为△APC的外接圆,直线BP交⊙O于E点,则AE的最小值为()A.B.7﹣4C.D.16.已知四边形ABCD两条对角线相交于点E,AB=AC=AD,AE=3,EC=1,则BE+DE的值为()A.6B.7C.12D.16.7.已知a、b、c是三个任意整数,在,,这三个数中,整数的个数至少有()个.A.0个B.1个C.2个D.3个8.从长度为3、5、7、8的四条线段中任意选三条组成三角形,其中能组成含有60°角的三角形的概率为()A.0.8B.0.6C.0.5D.0.49.如图,四边形ABCD内接于⊙O,AB=3,AD=5,∠BCD=120°,点C为的中点,则线段AC的长为()A.B.C.4D.10.洗手盘台面上有一瓶洗手液.当同学用一定的力按住顶部A下压如图位置时,洗手液从喷口B流出,路线近似呈抛物线状,且喷口B为该抛物线的顶点.洗手液瓶子的截面图下面部分是矩形CGHD.同学测得:洗手液瓶子的底面直径GH=12cm,喷嘴位置点B距台面的距离为16cm,且B、D、H三点共线.在距离台面15.5cm处接洗手液时,手心Q到直线DH的水平距离为3cm,不去接则洗手液落在台面的位置距DH的水平面是()cm.A.6B.6C.12D.12二、填空题(本题有8小题,每小题3分,共24分)11.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,那么三辆汽车经过这个十字路口,至少有两辆车向左转的概率为.12.如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上P A段扫过的区域(阴影部分)的面积为.13.如图,点D在等边三角形ABC的边BC上,连接AD,线段AD的垂直平分线EF分别交边AB,AC于点E,F.当2CD=3BD时,的值为.14.如图,△ABC内接于半径为的半⊙O,AB为直径,点M是的中点,连接BM交AC于点E,AD 平分∠CAB交BM于点D,且D为BM的中点,则BC的长为.15.如图,在⊙O中,C是的中点,作点C关于弦AB的对称点D,连接AD并延长交⊙O于点E,过点B作BF⊥AE于点F,若∠BAE=2∠EBF,则∠EBF等于度.16.如图,AB=AC=4,∠BAC=90°,点M是线段AC上一个动点,连接BM,将线段BA沿直线BM进行翻折,点A落在点N处,连接CN,以CN为斜边在直线CN的左侧(或者下方)构造等腰直角三角形CND,则点M从A运动到C的过程中,线段CD的最小值是,当M从点A运动到点C时,点D的运动总路径长是.17.小郑在一次拼图游戏中,发现了一个很神奇的现象:(1)他先用图形①②③④拼出矩形ABCD.(2)接着拿出图形⑤.(3)通过平移的方法,用①②③④⑤拼出了矩形ABMN.已知AE:EO=2:3,图形④的面积为15,则增加的图形⑤的面积为:,当CO=3,EH=4时,=.18.如图,在矩形ABCD中,AB:BC=3:5,点E是对角线AC上一动点(不与点A,C重合),将矩形沿过点E的直线MN折叠,使得点A,B的对应点A1,B1分别落在直线AD与BC上,当△A1CE为直角三角形时,AN:DN的值为.三、解答题(本题共6小题,共46分,无特定要求的解答时需写出必要的文字说明,演算步骤或证明过程)19.某水果公司以9元千克的成本从果园购进10000千克特级柑橘,在运输过程中,有部分柑橘损坏,该公司对刚运到的特级柑橘进行随机抽查,并得到如下的“柑橘损坏率”统计图.由于市场调节,特级柑橘的售价与日销售量之间有一定的变化规律,如下表是近一段时间该水果公司的销售记录.特级柑橘的售价(元/千克)14 15 16 17 18特级柑橘的日销售量(千克)1000 950 900 850 800 (1)估计购进的10000千克特级柑橘中完好的柑橘的总重量为 千克;(2)按此市场调节的规律来看,若特级柑橘的售价定为16.5元千克,估计日销售量,并说明理由.(3)考虑到该水果公司的储存条件,该公司打算12天内售完这批特级柑橘(只售完好的柑橘),且售价保持不变,求该公司每日销售该特级柑橘可能达到的最大利润,并说明理由.20.已知,AB 是⊙O 直径,弦CD ⊥AB 于点H ,点P 是⊙O 上一点.(1)如图1,连接PB 、PC 、PD ,求证:BP 平分∠CPD ;(2)如图2,连接P A 、PC 、PD ,PC 交AB 于点E ,交AD 于点F ,若AE =AP ;求证:CE =DP ;(3)如图3,在(2)的条件下,连接BP 交AD 于G ,连接OG ,若∠OGA =45°,S △AOG =30,求⊙O半径.21.如图,在7×4方格纸中,点A,B,C都在格点上,请用无刻度直尺作图.(1)在图1中的线段AC上找一个点D,使CD=0.4AC;(2)在图2中作一个格点上的△CEF,使△CEF与△ABC相似,且△CEF的面积为△ABC的面积的五分之一.22.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4与x轴交于A(﹣2,0),B两点,其对称轴直线x =2与x轴交于点D.(1)求该抛物线的函数表达式为;(2)如图1,点P为抛物线上第四象限内的一动点,连接CD,PB,PC,求四边形BDCP面积最大值和点P此时的坐标;(3)如图2,将该抛物线向左平移得到抛物线y',当抛物线y'经过原点时,与原抛物线的对称轴相交于点E,点F为抛物线y对称轴上的一点,点M是平面内一点,若以点A,E,F,M为顶点的四边形是以AE为边的菱形,请直接写出满足条件的点M的坐标.23.某商场经营A种品牌的玩具,购进时间的单价是30元,但据市场调查,在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请用含x的代数式表示该玩具的销售量;(2)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于450件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?(3)该商场计划将(2)中所得的利润的一部分资金采购一批B种玩具并转手出售,根据市场调查并准备两种方案,方案①:如果月初出售,可获利15%,并可用本和利再投资C种玩具,到月末又可获利10%;方案②:如果只到月末出售可直接获利30%,但要另支付他库保管费350元,请问商场如何使用这笔资金,采用哪种方案获利较多?24.等腰三角形AFG中AF=AG,且内接于圆O,D、E为边FG上两点(D在F、E之间),分别延长AD、AE交圆O于B、C两点(如图1),记∠BAF=α,∠AFG=β.(1)求∠ACB的大小(用α,β表示);(2)连接CF,交AB于H(如图2).若β=45°,且BC×EF=AE×CF.求证:∠AHC=2∠BAC;(3)在(2)的条件下,取CH中点M,连接OM、GM(如图3),若∠OGM=2α﹣45°,①求证:GM∥BC,GM=BC;②请直接写出的值.。
九年级上册温州数学期末试卷测试卷(解析版)
九年级上册温州数学期末试卷测试卷(解析版)一、选择题1.下图是甲、乙两人2019年上半年每月电费支出的统计,则他们2019年上半年月电费支出的方差2S 甲和2S 乙的大小关系是( )A .2S 甲>2S 乙B .2S 甲=2S 乙C .2S 甲<2S 乙D .无法确定2.如图,以AB 为直径的⊙O 上有一点C ,且∠BOC =50°,则∠A 的度数为( )A .65°B .50°C .30°D .25°3.二次函数()20y ax bx c a =++≠的图像如图所示,它的对称轴为直线1x =,与x 轴交点的横坐标分别为1x ,2x ,且110x -<<.下列结论中:①0abc <;②223x <<;③421a b c ++<-;④方程()2200ax bx c a ++-=≠有两个相等的实数根;⑤13a >.其中正确的有( )A .②③⑤B .②③C .②④D .①④⑤4.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是( ) A .16B .13C .12D .235.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+6.如图,ABC △内接于⊙O ,30BAC ∠=︒,8BC = ,则⊙O 半径为( )A .4B .6C .8D .12 7.已知α、β是一元二次方程22210x x --=的两个实数根,则αβ+的值为( ) A .-1 B .0 C .1 D .2 8.方程2x x =的解是( )A .x=0B .x=1C .x=0或x=1D .x=0或x=-1 9.一元二次方程x 2=-3x 的解是( ) A .x =0 B .x =3 C .x 1=0,x 2=3 D .x 1=0,x 2=-3 10.一组数据0、-1、3、2、1的极差是( )A .4B .3C .2D .111.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1212.如图,点P (x ,y )(x >0)是反比例函数y=kx(k >0)的图象上的一个动点,以点P 为圆心,OP 为半径的圆与x 轴的正半轴交于点A ,若△OPA 的面积为S ,则当x 增大时,S 的变化情况是( )A .S 的值增大B .S 的值减小C .S 的值先增大,后减小D .S 的值不变二、填空题13.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____.14.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的解,则此三角形的周长是_____.15.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD.若AC=2,则cosD=________.16.正方形ABCD的边长为4,圆C半径为1,E为圆C上一点,连接DE,将DE绕D顺时针旋转90°到DE’,F在CD上,且CF=3,连接FE’,当点E在圆C上运动,FE’长的最大值为____.17.若53x yx+=,则yx=______.18.如图,在Rt△ABC中,BC AC⊥,CD是AB边上的高,已知AB=25,BC=15,则BD=__________.19.已知关于x的方程a(x+m)2+b=0(a、b、m为常数,a≠0)的解是x1=2,x2=﹣1,那么方程a(x+m+2)2+b=0的解_____.20.如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是______.21.已知⊙O半径为4,点,A B在⊙O上,21390,sin13BAC B∠=∠=,则线段OC的最大值为_____.22.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A⇒B⇒A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当t为_____s时,△BEF是直角三角形.23.若函数y=(m+1)x2﹣x+m(m+1)的图象经过原点,则m的值为_____.24.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____.三、解答题25.解方程:(1)(x+1)2﹣9=0(2)x2﹣4x﹣45=026.京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).27.如图,已知二次函数y=ax2+4ax+c(a≠0)的图象交x轴于A、B两点(A在B的左侧),交y轴于点C.一次函数y=﹣12x+b的图象经过点A,与y轴交于点D(0,﹣3),与这个二次函数的图象的另一个交点为E,且AD:DE=3:2.(1)求这个二次函数的表达式;(2)若点M为x轴上一点,求MD 5MA的最小值.28.如图,在正方形ABCD 中,AB =4,动点P 从点A 出发,以每秒2个单位的速度,沿线段AB 方向匀速运动,到达点B 停止.连接DP 交AC 于点E ,以DP 为直径作⊙O 交AC 于点F ,连接DF 、PF .(1)求证:△DPF 为等腰直角三角形; (2)若点P 的运动时间t 秒.①当t 为何值时,点E 恰好为AC 的一个三等分点;②将△EFP 沿PF 翻折,得到△QFP ,当点Q 恰好落在BC 上时,求t 的值.29.解方程 (1)(x +1)2﹣25=0 (2)x 2﹣4x ﹣2=030.解方程:3x 2﹣4x +1=0.(用配方法解)31.如图,在平面直角坐标系中,⊙O 的半径为1,点A 在x 轴的正半轴上,B 为⊙O 上一点,过点A 、B 的直线与y 轴交于点C ,且OA 2=AB •AC .(1)求证:直线AB 是⊙O 的切线;(2)若AB 3AB 对应的函数表达式.32.如图,已知一次函数3y x =-+分别交x 、y 轴于A 、B 两点,抛物线2y x bx c =-++经过A 、B 两点,与x 轴的另一交点为C .(1)求b 、c 的值及点C 的坐标;(2)动点P 从点O 出发,以每秒1个单位长度的速度向点A 运动,过P 作x 轴的垂线交t t>秒.抛物线于点D,交线段AB于点E.设运动时间为(0)①当t为何值时,线段DE长度最大,最大值是多少?(如图1)⊥,垂足为F,连结BD,若BOC与BDF相似,求t的值(如②过点D作DF AB图2)【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】方差的大小反映数据的波动大小,方差越小,数据越稳定,根据题意可判断乙的数据比甲稳定,所以乙的方差小于甲. 【详解】解:由题意可知,乙的数据比甲稳定,所以2S 甲>2S 乙 故选:A 【点睛】本题考查方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2.D解析:D 【解析】 【分析】根据圆周角定理计算即可. 【详解】解:由圆周角定理得,1252A BOC ∠=∠=︒,故选:D . 【点睛】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.A解析:A 【解析】 【分析】利用抛物线开口方向得到a <0,利用对称轴位置得到b >0,利用抛物线与y 轴的交点在x 轴下方得c <0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤. 【详解】∵抛物线开口向下,∵对称轴为直线1x = ∴b=-2a >0∵抛物线与y 轴的交点在x 轴下方, ∴c <-1,∴abc >0,所以①错误;∵110x -<<,对称轴为直线1x = ∴1212x x +=故223x <<,②正确; ∵对称轴x=1,∴当x=0,x=2时,y 值相等, 故当x=0时,y=c <0,∴当x=2时,y=421a b c ++<-,③正确; 如图,作y=2,与二次函数有两个交点,故方程()2200ax bx c a ++-=≠有两个不相等的实数根,故④错误;∵当x=-1时,y=a-b+c=3a+c >0, 当x=0时,y=c <-1 ∴3a >1,故13a >,⑤正确; 故选A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置. 当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).也考查了二次函数的性质.4.D解析:D 【解析】 【分析】根据概率公式直接计算即可.解:在这6张卡片中,偶数有4张, 所以抽到偶数的概率是46=23, 故选:D . 【点睛】本题主要考查了随机事件的概率,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数,灵活利用概率公式是解题的关键.5.A解析:A 【解析】将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x =-+.故选A.6.C解析:C 【解析】 【分析】连接OB ,OC ,根据圆周角定理求出∠BOC 的度数,再由OB =OC 判断出△OBC 是等边三角形,由此可得出结论. 【详解】解:连接OB ,OC , ∵∠BAC =30°, ∴∠BOC =60°. ∵OB =OC ,BC =8, ∴△OBC 是等边三角形, ∴OB =BC =8. 故选:C.【点睛】本题考查的是圆周角定理以及等边三角形的判定和性质,根据题意作出辅助线,构造出等边三角形是解答此题的关键.7.C解析:C 【解析】根据根与系数的关系即可求出αβ+的值. 【详解】解:∵α、β是一元二次方程22210x x --=的两个实数根 ∴212αβ-+=-= 故选C . 【点睛】此题考查的是根与系数的关系,掌握一元二次方程的两根之和=ba-是解决此题的关键. 8.C解析:C 【解析】 【分析】根据因式分解法,可得答案. 【详解】 解:2x x =, 方程整理,得,x 2-x=0 因式分解得,x (x-1)=0, 于是,得,x=0或x-1=0, 解得x 1=0,x 2=1, 故选:C . 【点睛】本题考查了解一元二次方程,因式分解法是解题关键.9.D解析:D 【解析】 【分析】先移项,然后利用因式分解法求解. 【详解】 解:(1)x 2=-3x , x 2+3x=0, x (x+3)=0, 解得:x 1=0,x 2=-3. 故选:D . 【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.10.A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.11.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.12.D解析:D【解析】【分析】作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=12|k|,所以S=2k,为定值.作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=12|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.二、填空题13.y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解析:y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为y=x2+2.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.14.14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0解析:14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.【点睛】本题考查了因式分解法解一元二次方程以及三角形的三边关系,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,熟练掌握一元二次方程的解法是解法本题的关键.15.【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形解析:1 3【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=ACAB=26=13.故答案为13.考点:1.圆周角定理;2.解直角三角形.16.【解析】【分析】先作出FE’最大时的图形,再利用勾股定理即可求解.【详解】解:如下图,过点F作FP⊥AB于P,延长DP到点E’,使PE’=1,此时FE’长最大, 由题可知,PF=4,DF=解析:171+【解析】【分析】先作出FE’最大时的图形,再利用勾股定理即可求解.【详解】解:如下图,过点F作FP⊥AB于P,延长DP到点E’,使PE’=1,此时FE’长最大,由题可知,PF=4,DF=1,∴DP=22+=17,41∴FE’=171+,+故答案是:171【点睛】本题考查了图形的旋转,圆的基本性质,勾股定理的应用,中等难度,准确找到点P的位置是解题关键.17.【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.解:∵,∴3x+3y=5x,∴2x=3y,∴.故答案为:. 【点睛】本题考查比例的解析:2 3【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵53x yx+=,∴3x+3y=5x,∴2x=3y,∴23 yx =.故答案为:2 3 .【点睛】本题考查比例的基本性质,解题关键是将比例式与等积式之间能相互转换.18.9【解析】【分析】利用两角对应相等两三角形相似证△BCD∽△BAC,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵,,∴∠ACB=∠CDB=90°,∵∠B=∠B,解析:9【解析】【分析】利用两角对应相等两三角形相似证△BCD∽△BAC,根据相似三角形对应边成比例得比例式,代入数值求解即可.解:∵BC AC ⊥,CD AB ⊥,∴∠ACB=∠CDB=90°,∵∠B=∠B,∴△BCD ∽△BAC, ∴BC BD AB BC = , ∴152515BD =, ∴BD=9.故答案为:9.【点睛】本题考查利用相似三角形的性质求线段长,证明两三角形相似注意题中隐含条件,如公共角,对顶角等,利用相似的性质得出比例式求解是解答此题的关键.19.x3=0,x4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x 求解.【详解】解:∵关于x 的方程a (x+m )2+b =0的解是x1=2,x2=﹣1,(a ,m , 解析:x 3=0,x 4=﹣3.【解析】【分析】把后面一个方程中的x +2看作整体,相当于前面一个方程中的x 求解.【详解】解:∵关于x 的方程a (x +m )2+b =0的解是x 1=2,x 2=﹣1,(a ,m ,b 均为常数,a ≠0),∴方程a (x +m +2)2+b =0变形为a [(x +2)+m ]2+b =0,即此方程中x +2=2或x +2=﹣1, 解得x =0或x =﹣3.故答案为:x 3=0,x 4=﹣3.【点睛】此题主要考查一元二次方程的解,解题的关键是熟知整体法的应用.20.【解析】【分析】【详解】解:如图所示:∵MA′是定值,A′C 长度取最小值时,即A′在MC 上时,过点M 作MF ⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A=60°,M 为AD 中点,∴2 解析:272-【解析】【分析】【详解】解:如图所示:∵MA′是定值,A′C 长度取最小值时,即A′在MC 上时,过点M 作MF ⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A=60°,M 为AD 中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°, ∴FD=12MD=1, ∴FM=DM×cos30°=3,∴2227MC FM CF =+=,∴A′C=MC ﹣MA′=272-.故答案为272-.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.21.【解析】【分析】过点A 作AE⊥AO,并使∠AEO=∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE 的最大值,则答案即可求出.41383+ 【解析】【分析】过点A 作AE ⊥AO,并使∠AEO =∠ABC,先证明ABC AEO ∆∆,由三角函数可得出23AO AE =,进而求得6AE =,再通过证明AEB AOC ∆∆,可得出23OC BE =,根据三角形三边关系可得:BE OE OB ≤+,由勾股定理可得213OE =,求出BE 的最大值,则答案即可求出.【详解】解:过点A作AE⊥AO,并使∠AEO=∠ABC,∵OAE BACAEO ABC∠=∠⎧⎨∠=∠⎩,∴ABC AEO∆∆,∴tanAC AOBAB AE∠==,∵13sin13B∠=,∴2213313cos11313B⎛⎫∠=-=⎪⎪⎝⎭,∴213sin213tancos3313BBn B∠∠===∠,∴23AOAE=,又∵4AO=,∴6AE=,∵90,90 EAB BAO OAC BAO∠+∠=︒∠+∠=︒,∴=EAB OAC∠∠,又∵AC AOAB AE=,∴AEB AOC∆∆,∴23OC ACBE AB==,∴23OC BE=,在△OEB中,根据三角形三边关系可得:BE OE OB≤+,∵222264213OE AE AO=+=+=,∴2134OE OB+=,∴BE 的最大值为:2134+,∴OC 的最大值为:()24138213433+=+. 【点睛】本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形. 22.1或1.75或2.25s【解析】试题分析:∵AB 是⊙O 的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm .则当0≤t <3时,即点E 从A 到B 再到解析:1或1.75或2.25s【解析】试题分析:∵AB 是⊙O 的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm .则当0≤t <3时,即点E 从A 到B 再到O (此时和O 不重合).若△BEF 是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E 与点O 重合,即t=1; 当∠BEF=90°时,则BE=BF=34,此时点E 走过的路程是214或274,则运动时间是74s 或94s . 故答案是t=1或74或94. 考点:圆周角定理.23.0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m 的方程,然后解方程即可.【详解】∵函数经过原点,∴m (m+1)=0,∴m =0或m =﹣1,故答案为0或﹣1.【点解析:0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m 的方程,然后解方程即可.【详解】∵函数经过原点,∴m (m +1)=0,∴m =0或m =﹣1,故答案为0或﹣1.【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.24.y =﹣(x+1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】解析:y =﹣(x +1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为()212y a x +-=,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】由题意可知,平移后的函数的顶点为(﹣1,﹣2),设平移后函数的解析式为()212y a x +-=,∵所得的抛物线经过点(0,﹣3),∴﹣3=a ﹣2,解得a =﹣1,∴平移后函数的解析式为()212y x +=--,故答案为()212y x +=--.【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握坐标平移规律:“左右平移时,横坐标左移减右移加,纵坐标不变;上下平移时,横坐标不变,纵坐标上移加下移减”。
浙江省温州市九年级上学期期末数学试卷
浙江省温州市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2020九下·碑林月考) 已知4a=5b(ab≠0),下列变形错误的是()A .B .C .D .2. (2分) (2017九上·鄞州月考) 抛物线的对称轴是直线()A .B .C .D .3. (2分)小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是()A .B .C .D .4. (2分) (2019九上·黄浦期末) 已知某条传送带和地面所成斜坡的坡度为1:2,如果它把一物体从地面送到离地面9米高的地方,那么该物体所经过的路程是()A . 18米B . 4.5米C . 9 米D . 9 米.5. (2分)将抛物线y=3x2的图象先向上平移3个单位,再向右平移4个单位所得的解析式为()A .B .C .D .6. (2分) (2017九上·温江期末) 如图,l1∥l2∥l3 ,直线a,b与l1 , l2 , l3分别相交于A,B,C 和点D,E,F,若 = ,DE=6,则EF的长是().A .B .C . 10D . 67. (2分)下面的图形都可以看作某种特殊的“细胞”,它们分裂时能同时分裂为全等的4个小细胞,分裂的小细胞与原图形相似,则相似比为()A . 1:4B . 1:3C . 1:2D . 1:8. (2分) (2016九上·牡丹江期中) 已知二次函数y=﹣ x2﹣7x+ ,若自变量x分别取x1 , x2 ,x3 ,且0<x1<x2<x3 ,则对应的函数值y1 , y2 , y3的大小关系正确的是()A . y1>y2>y3B . y1<y2<y3C . y2>y3>y1D . y2<y3<y19. (2分)如图,在△ABC中,AB=8,AC=6,点D在AC上,且AD=2,如果要在AB上找一点E,使△ADE与△ABC 相似,则AE的长为()A .B .C . 3D . 或10. (2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A . a>0B . 当x>1时,y随x的增大而增大C . c<0D . 3是方程ax2+bx+c=0的一个根11. (2分)在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为()A . 7sin35°B .C . 7cos35°D . 7tan35°12. (2分) (2017八下·福州期末) 如图,在□ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF :S△BAF=4:25,则DE:AB =().A . 2∶5B . 2∶3C . 3∶5D . 3∶2二、填空题 (共6题;共6分)13. (1分) (2019九上·浙江期末) 计算:sin30°tan60°=________.14. (1分) (2018九上·崇明期末) 已知,那么 ________.15. (1分)(2017·岳阳模拟) 如图所示,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=56°,∠E=32°,则∠F=________.16. (1分) (2018八上·阿城期末) 如图所示,小华从A点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是________.17. (1分) (2016九上·莒县期中) 某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是________ cm.18. (1分)如图,小聪与小慧玩跷跷板,跷跷板支架高EF为0.6米,E是AB的中点,那么小聪能将小慧翘起的最大高度BC等于________ 米.三、解答题 (共8题;共76分)19. (5分)(2019·岐山模拟) 计算: -(π-1)0-2cos45°+()-2.20. (6分) (2019九上·万州期末) 已知△ABC和△CDE都为等腰直角三角形,∠ACB=∠ECD=90°.(1)探究:如图①,当点A在边EC上,点C在线段BD上时,连结BE、AD.求证:BE=AD,BE⊥AD.(2)拓展:如图②,当点A在边DE上时,AB、CE交于点F,连结BE.若AE=2,AD=4,则的值为________.21. (15分)(2017·磴口模拟) 如图,⊙O是Rt△ABC的外接圆,AC是⊙O的直径,弦BD=BA,AB=12,BC=5,BE⊥DC,交DC的延长线于点E.(1)求证:△ABC∽△DEB;(2)求证:BE是⊙O的切线;(3)求DE的长.22. (5分)(2017·青岛模拟) 如图,轮船沿正南方向以33海里/时的速度匀速航行,在m处观测到灯塔p 在西偏南69°方向下,航行2小时后到达n处,观测灯塔p在西偏南57°方向上,若该船继续向南航行至离灯塔最近位置,求此时轮船离灯塔的距离约为多少海里?(结果精确到整数,参考数据:tan33°≈ ,sin33°≈ ,cos33°≈ ,tan21°≈ ,sin21°≈ ,c0s21°≈ )23. (10分)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)小明和小红玩摸球游戏,规定每人摸球后再将摸到的球放回去为一次游戏.若摸到黑球小明获胜,摸到黄球小红获胜,这个游戏对双方公平吗?请说明你的理由;(2)现在裁判想从袋中取出若干个黑球,并放入相同数量的黄球,使得这个游戏对双方公平,问取出了多少黑球?24. (10分)每年六七月份我市荔枝大量上市,今年某水果商以5元/千克的价格购进一批荔枝进行销售,运输过程中质量损耗5%,运输费用是0.7元/千克,假设不计其他费用.(1)水果商要把荔枝售价至少定为多少才不会亏本?(2)在销售过程中,水果商发现每天荔枝的销售量m(千克)与销售单价x(元/千克)之间满足关系:m= -10x+120,那么当销售单价定为多少时,每天获得的利润w最大?25. (10分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD= AD,AC=3,求CD的长.26. (15分)(2017·江都模拟) 如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y 轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)若P(0,t)(t<﹣1)是y轴上一点,Q(﹣5,0),将点Q绕着点P顺时针方向旋转90°得到点E.当点E 恰好在该二次函数的图象上时,求t的值;(3)在(2)的条件下,连接AD、AE.若M是该二次函数图象上一点,且∠DAE=∠MCB,求点M的坐标.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共76分)19-1、20-1、20-2、21-1、21-2、21-3、22-1、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、。
九年级上册温州数学期末试卷测试卷(解析版)
九年级上册温州数学期末试卷测试卷(解析版)一、选择题1.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =1,BD =2,则DE BC的值为( )A .12B .13C .14D .192.如图,已知O 的内接正方形边长为2,则O 的半径是( )A .1B .2C .2D .223.如图,在平面直角坐标系xOy 中,点A 为(0,3),点B 为(2,1),点C 为(2,-3).则经画图操作可知:△ABC 的外心坐标应是( )A .()0,0B .()1,0C .()2,1--D .()2,04.二次函数22y x x =-+在下列( )范围内,y 随着x 的增大而增大. A .2x <B .2x >C .0x <D .0x >5.如图在△ABC 中,点D 、E 分别在△ABC 的边AB 、AC 上,不一定能使△ADE 与△ABC 相似的条件是( )A .∠AED=∠BB .∠ADE=∠C C .AD DEAB BC= D .AD AEAC AB= 6.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如下表:x2- 1-0 12y5 03- 4-3-以下结论:①二次函数2y ax bx c =++有最小值为4-; ②当1x <时,y 随x 的增大而增大;③二次函数2y ax bx c =++的图象与x 轴只有一个交点;④当13x 时,0y <.其中正确的结论有( )个A .1B .2C .3D .47.一元二次方程x 2﹣3x =0的两个根是( ) A .x 1=0,x 2=﹣3B .x 1=0,x 2=3C .x 1=1,x 2=3D .x 1=1,x 2=﹣38.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( ) A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>9.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个10.在4张相同的小纸条上分别写上数字﹣2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为( ) A .14B .13C .12D .2311.已知抛物线与二次函数23y x =-的图像相同,开口方向相同,且顶点坐标为(1,3)-,它对应的函数表达式为( ) A .23(1)3y x =--+ B .23(1)3y x =-+ C .23(1)3y x =+-D .23(1)3y x =-++12.如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+ C .1(1)2a -- D .1(3)2a -+ 二、填空题13.若m 是方程2x 2﹣3x =1的一个根,则6m 2﹣9m 的值为_____.14.如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD .若AC =2,则cosD =________.15.如图,△ABC 周长为20cm ,BC=6cm,圆O 是△ABC 的内切圆,圆O 的切线MN 与AB 、CA 相交于点M 、N ,则△AMN 的周长为________cm.16.已知一组数据:4,4,m ,6,6的平均数是5,则这组数据的方差是______.17.如图,二次函数y=ax2+bx+c的图像过点A(3,0),对称轴为直线x=1,则方程ax2+bx+c=0的根为____.18.关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,则m满足的条件是_____. 19.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是以点A为圆心2为半径的圆上一点,连接BD,M为BD的中点,则线段CM长度的最小值为__________.20.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.21.已知关于x的一元二次方程(m﹣1)x2+x+1=0有实数根,则m的取值范围是.22.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)23.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.24.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S甲、2S,且乙22S S,则队员身高比较整齐的球队是_____.甲乙三、解答题25.京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).26.5G 网络比4G 网络的传输速度快10倍以上,因此人们对5G 产品充满期待.华为集团计划2020年元月开始销售一款5G 产品.根据市场营销部的规划,该产品的销售价格将随销售月份的变化而变化.若该产品第x 个月(x 为正整数)销售价格为y 元/台,y 与x 满足如图所示的一次函数关系:且第x 个月的销售数量p (万台)与x 的关系为1p x =+.(1)该产品第6个月每台销售价格为______元;(2)求该产品第几个月的销售额最大?该月的销售价格是多少元/台?(3)若华为董事会要求销售该产品的月销售额不低于27500万元,则预计销售部符合销售要求的是哪几个月?(4)若每销售1万台该产品需要在销售额中扣除m 元推广费用,当68x ≤≤时销售利润最大值为22500万元时,求m 的值.27.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,∠BAC 的平分线交⊙O 于点D ,过点D 作DE ⊥AC 交AC 的延长线于点E ,连接BD .(1)求证:DE 是⊙O 的切线; (2)若BD =3,AD =4,则DE = .28.某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是矩形,且AG ∶BG =3∶2.设BG 的长为2x 米.(1)用含x的代数式表示DF=;(2)x为何值时,区域③的面积为180平方米;(3)x为何值时,区域③的面积最大?最大面积是多少?29.如图①抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.(1)试求抛物线的解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.30.如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小华在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己的影长FG=4m.如果小华的身高为1.5m,求路灯杆AB的高度.31.如图,在平面直角坐标系中,⊙O的半径为1,点A在x轴的正半轴上,B为⊙O上一点,过点A、B的直线与y轴交于点C,且OA2=AB•AC.(1)求证:直线AB 是⊙O 的切线;(2)若AB =3,求直线AB 对应的函数表达式.32.如图,点C 是线段AB 上的任意一点(C 点不与A B 、点重合),分别以AC BC 、为边在直线AB 的同侧作等边三角形ACD 和等边三角形BCE ,AE 与CD 相交于点M ,BD 与CE 相交于点N .(1)求证: DB AE =; (2)求证: //MN AB ;(3)若AB 的长为12cm ,当点C 在线段AB 上移动时,是否存在这样的一点C ,使线段MN 的长度最长?若存在,请确定C 点的位置并求出MN 的长;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:∵DE ∥BC ,∴AD DE AB BC =,∵13AD AB =,∴31DE BC =.故选B . 考点:平行线分线段成比例.2.C解析:C 【解析】 【分析】如图,连接BD,根据圆周角定理可得BD为⊙O的直径,利用勾股定理求出BD的长,进而可得⊙O的半径的长.【详解】如图,连接BD,∵四边形ABCD是正方形,边长为2,∴BC=CD=2,∠BCD=90°,∴BD=2222+=22,∵正方形ABCD是⊙O的内接四边形,∴BD是⊙O的直径,∴⊙O的半径是1222⨯=2,故选:C.【点睛】本题考查正方形的性质、圆周角定理及勾股定理,根据圆周角定理得出BD是直径是解题关键.3.C解析:C【解析】外心在BC的垂直平分线上,则外心纵坐标为-1.故选C.4.C解析:C【解析】【分析】先求函数的对称轴,再根据开口方向确定x的取值范围.【详解】222(1)1y x x x=-+=--+,∵图像的对称轴为x=1,a=-10<,∴当x1<时,y随着x的增大而增大,故选:C.【点睛】此题考查二次函数的性质,当a0a0<时,对称轴左增右减,当>时,对称轴左减右增. 5.C解析:C【解析】【分析】由题意根据相似三角形的判定定理依次对各选项进行分析判断即可. 【详解】解:A 、∠AED=∠B ,∠A=∠A ,则可判断△ADE ∽△ACB ,故A 选项错误; B 、∠ADE=∠C ,∠A=∠A ,则可判断△ADE ∽△ACB ,故B 选项错误; C 、AD DEAB BC=不能判定△ADE ∽△ACB ,故C 选项正确; D 、AD AEAC AB =,且夹角∠A=∠A ,能确定△ADE ∽△ACB ,故D 选项错误. 故选:C . 【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键.6.B解析:B 【解析】 【分析】根据表中数据,可获取相关信息:抛物线的顶点坐标为(1,-4),开口向上,与x 轴的两个交点坐标是(-1,0)和(3,0),据此即可得到答案. 【详解】①由表格给出的数据可知(0,-3)和(2,-3)是一对对称点,所以抛物线的对称轴为202+=1,即顶点的横坐标为x=1,所以当x=1时,函数取得最小值-4,故此选项正确; ②由表格和①可知当x <1时,函数y 随x 的增大而减少;故此选项错误;③由表格和①可知顶点坐标为(1,-4),开口向上,∴二次函数2y ax bx c =++的图象与x 轴有两个交点,一个是(-1,0),另一个是(3,0);故此选项错误; ④函数图象在x 轴下方y<0,由表格和③可知,二次函数2y ax bx c =++的图象与x 轴的两个交点坐标是(-1,0)和(3,0),∴当13x 时,y<0;故此选项正确;综上:①④两项正确, 故选:B . 【点睛】本题综合性的考查了二次函数的性质,解题的关键是能根据二次函数的对称性判断:纵坐标相同两个点的是一对对称点.7.B解析:B 【解析】 【分析】利用因式分解法解一元二次方程即可. 【详解】 x 2﹣3x =0,x (x ﹣3)=0, x =0或x ﹣3=0, x 1=0,x 2=3. 故选:B . 【点睛】本题考查了解一元二次方程−因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).8.D解析:D 【解析】试题分析:∵22y x x c =-++,∴对称轴为x=1,P 2(3,2y ),P 3(5,3y )在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D . 考点:二次函数图象上点的坐标特征.9.C解析:C 【解析】 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据抛物线与x 轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断. 【详解】解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0, 故③正确;由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧, y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误. 故选:C . 【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.10.C解析:C【分析】画树状图展示所有12种等可能的结果数,再找出2次抽出的签上的数字和为正数的结果数,最后根据概率公式计算即可.【详解】根据题意画图如下:共有12种等情况数,其中2次抽出的签上的数字的和为正数的有6种,则2次抽出的签上的数字的和为正数的概率为612=12; 故选:C .【点睛】本题考查列表法与树状图法、概率计算题,解题的关键是画树状图展示出所有12种等可能的结果数及准确找出2次抽出的签上的数字和为正数的结果数, 11.D解析:D【解析】【分析】先根据抛物线与二次函数23y x =-的图像相同,开口方向相同,确定出二次项系数a 的值,然后再通过顶点坐标即可得出抛物线的表达式.【详解】∵抛物线与二次函数23y x =-的图像相同,开口方向相同, 3a ∴=-∵顶点坐标为(1,3)-∴抛物线的表达式为23(1)3y x =-++故选:D .【点睛】本题主要考查抛物线的顶点式,掌握二次函数表达式中的顶点式是解题的关键. 12.D解析:D【解析】【分析】设点B 的横坐标为x ,然后表示出BC 、B′C 的横坐标的距离,再根据位似变换的概念列式计算.设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.二、填空题13.3【解析】【分析】把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣3x=1的一个根,解析:3【解析】【分析】把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣3x=1的一个根,∴2m2﹣3m=1,∴6m2﹣9m=3(2m2﹣3m)=3×1=3.故答案为3.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14.【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形解析:1 3【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=ACAB=26=13.故答案为13.考点:1.圆周角定理;2.解直角三角形.15.8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线解析:8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线,如下图,连接各切点,有切线长定理易得,BE=BF,CE=CG,ME=MH,NG=NH,∵△ABC周长为20cm, BC=6cm,∴BC=CE+BE=CG+BF=6cm,∴△AMN的周长=AM+AN+MN=AM+AN+FM+GN=AF+AG,又∵AF+AG=AB+AC-(BF+CG)=20-6-6=8cm故答案是8【点睛】本题考查了三角形内接圆的性质,切线长定理的应用,中等难度,熟练掌握等量代换的方法是解题关键.16.8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为: (表示样本的平均数,n 表示样本数据的个数,S2表示方差.)【详解】解:∵4,4,,6,6的平均数是5,∴4+4解析:8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:2222121n S x x x x x x n (x 表示样本的平均数,n 表示样本数据的个数,S 2表示方差.)【详解】解:∵4,4,m ,6,6的平均数是5,∴4+4+m+6+6=5×5,∴m=5,∴这组数据为4,4,m ,6,6,∴22222214545556565=0.85S ,即这组数据的方差是0.8.故答案为:0.8.【点睛】本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.17.【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得:解析:123;1x x ==-【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得: 抛物线与x 轴交于(3,0)和(-1,0)即当y=0时,x=3或-1∴ax 2+bx +c =0的根为123;1x x ==-故答案为:123;1x x ==-【点睛】本题考查抛物线的对称性及二次函数与一元二次方程,利用对称性求出抛物线与x 轴的交点坐标是本题的解题关键.18.【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m 的不等式求解即可.【详解】解:∵关于x 的方程(m ﹣2)x2﹣2x+1=0是一元二次方程,∴m -2≠0,∴m≠解析:2m ≠【解析】【分析】根据一元二次方程的定义ax 2+bx+c=0(a ≠0),列含m 的不等式求解即可.【详解】解:∵关于x 的方程(m ﹣2)x 2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m ≠2.故答案为:m ≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.19.【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【解析:3 2【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【详解】解:如图,取AB的中点E,连接CE,ME,AD,∵E是AB的中点,M是BD的中点,AD=2,∴EM为△BAD的中位线,∴112122EM AD ,在Rt△ACB中,AC=4,BC=3,由勾股定理得,AB=2222435AC BC+=+=∵CE为Rt△ACB斜边的中线,∴1155222 CE AB,在△CEM中,551122CM ,即3722CM,∴CM的最大值为3 2 .故答案为:3 2 .【点睛】本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点.20.2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求解析:2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=12CF=12BF,在Rt△PBF中,tan∠BOF=BFOF=2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.21.m≤且m≠1.【解析】【分析】【详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=即1-4(-1)(m-1)≥0解得m≥,又一元二次方程所以m-1≠0综上m≥且m≠1.解析:m≤54且m≠1. 【解析】【分析】【详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=240b ac -≥即1-4(-1)(m-1)≥0解得m≥34,又一元二次方程所以m-1≠0综上m≥34且m≠1. 22.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S 甲2>S 乙2,∴成绩较为稳定的是乙;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.23.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π. 【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键. 24.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵,∴队员身解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵22S S 甲乙,∴队员身高比较整齐的球队是乙,故答案为:乙.【点睛】本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量三、解答题25.该段运河的河宽为303m .【解析】【分析】过D 作DE ⊥AB ,可得四边形CHED 为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH 与直角三角形BDE 中,设CH=DE=xm ,利用锐角三角函数定义表示出AH 与BE ,由AH+HE+EB=AB 列出方程,求出方程的解即可得到结果.【详解】解:过D 作DE AB ⊥,可得四边形CHED 为矩形,40HE CD m ∴==,设CH DE xm ==,在Rt BDE ∆中,60DBA ∠=︒,33BE xm ∴=, 在Rt ACH ∆中,30BAC ∠=︒,3AH xm ∴=,由160AH HE EB AB m ++==,得到3340160x x ++=, 解得:303x =,即303CH m =,则该段运河的河宽为303m .【点睛】考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.26.(1)4500元;(2)7,4000;(3)4、5、6、7、8、9、10;(4)90007. 【解析】【分析】(1)利用待定系数法将(2,6500),(4,5500)代入y=kx+b 求k,b 确定表达式,求当x=6时的y 值即可;(2)求销售额w 与x 之间的函数关系式,利用二次函数的最大值问题求解;(3)分三种情况讨论假设6月份,7月份,8月份的最大销售为22500万元时,求相应的m 值,再分别求出此时另外两月的总利润,通过比较作出判断.【详解】设y=kx+b,根据图象将(2,6500),(4,5500)代入得,2650045500k b k b , 解得,5007500k b ,∴y= -500x+7500, 当x=6时,y= -500×6+7500=4500元;(2)设销售额为z 元,z=yp=( -500x+7500 )(x+1)= -500x 2+7000x+7500= -500(x-7)2+32000, ∵z 与x 成二次函数,a= -500<0,开口向下,∴当x=7时,z 有最大值, 当x=7时,y=-500×7+7500=4000元.答:该产品第7个月的销售额最大,该月的销售价格是4000元/台.(3)z 与x 的图象如图的抛物线当y=27500时,-500(x-7)2+32000=27500,解得,x 1=10,x 2=4∴预计销售部符合销售要求的是4,5,6,7,8,9,10月份.(4)设总利润为W= -500x 2+7000x+7500-m(x+1)= -500x 2+(7000-m)x+7500-m,第一种情况:当x=6时,-500×62+(7000-m) ×6+7500-m=22500,解得,m=90007, 此时7月份的总利润为-500×72+(7000-90007) ×7+7500-90007≈17714<22500, 此时8月份的总利润为-500×82+(7000-90007) ×8+7500-90007≈19929<22500, ∴当m=90007时,6月份利润最大,且最大值为22500万元. 第二种情况:当x=7时,-500×72+(7000-m) ×7+7500-m=22500,解得,m=1187.5 ,此时6月份的总利润为-500×62+(7000-1187.5) ×6+7500-1187.5=23187.5>22500,∴当m=1187.5不符合题意,此种情况不存在.第三种情况:当x=8时,-500×82+(7000-m) ×8+7500-m=22500,解得,m=1000 ,此时7月份的总利润为-500×72+(7000-1000) ×7+7500-1000=24000>22500,∴当m=1000不符合题意,此种情况不存在.∴当68x ≤≤时销售利润最大值为22500万元时,此时m=90007. 【点睛】本题考查二次函数的实际应用,最大利润问题,利用二次函数的最值性质是解决实际问题的重要途径.27.(1)见解析;(2)125【解析】【分析】(1)连接OD ,如图,先证明OD ∥AE ,再利用DE ⊥AE 得到OD ⊥DE ,然后根据切线的判定定理得到结论;(2)证明△ABD ∽△ADE ,通过线段比例关系求出DE 的长.【详解】(1)证明:连接OD∵AD 平分∠BAC∴∠BAD =∠DAC∵OA =OD∴∠BAD =∠ODA∴∠ODA =∠DAC∴OD ∥AE∴∠ODE +∠E =180°∵DE ⊥AE∴∠E =90°∴∠ODE =180°-∠E =180°-90°=90°,即OD ⊥DE∵点D 在⊙O 上∴DE 是⊙O 的切线.(2)∵AB 是⊙O 的直径,∴∠ADB=90°,∵AD 平分∠BAC ,∴∠BAD=∠DAE ,在△ABD 和△ADE 中,==BDA DEA BAD DAE∠∠⎧⎨∠∠⎩, ∴△ABD ∽△ADE , ∴AB BD AD DE=,∵BD =3,AD =4,∴DE=345⨯=125. 【点睛】 本题考查了切线的判定定理,相似三角形的判定和性质,适当画出正确的辅助线是解题的关键.28.(1)48-12x ;(2)x 为1或3;(3)x 为2时,区域③的面积最大,为240平方米【解析】【分析】(1)将DF 、EC 以外的线段用x 表示出来,再用96减去所有线段的长再除以2可得DF 的长度;(2)将区域③图形的面积用关于x 的代数式表示出来,并令其值为180,求出方程的解即可;(3)令区域③的面积为S ,得出x 关于S 的表达式,得到关于S 的二次函数,求出二次函数在x 取值范围内的最大值即可.【详解】(1)48-12x(2)根据题意,得5x (48-12x )=180,解得x 1=1,x 2=3答:x 为1或3时,区域③的面积为180平方米(3)设区域③的面积为S ,则S =5x (48-12x )=-60x 2+240x =-60(x -2)2+240 ∵-60<0,∴当x =2时,S 有最大值,最大值为240答:x 为2时,区域③的面积最大,为240平方米【点睛】本题考查了二次函数的实际应用,解题的关键是正确理解题中的等量关系,正确得出区域面积的表达式.29.(1)y =﹣x 2+3x +4;(2)存在.P (﹣34,1916).(3)1539(,)24M -- 21139(,)24M - 3521(,)24M 【解析】【分析】(1)将A,B,C 三点代入y =ax 2+bx+4求出a,b,c 值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=11 2∴﹣m2+3m+4=39 4 -,∴21139 (,) 24M-;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴322 2m∴m=5 2∴﹣m2+3m+4=21 4∴3521 (,) 24M综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为1539 (,)24M--21139 (,) 24M-3521 (,) 24M.【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.30.路灯杆AB 的高度是6m .【解析】【分析】在同一时刻物高和影长成正比,根据相似三角形的性质即可解答.【详解】解:∵CD ∥EF ∥AB ,∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG , ∴,CD DF FE FG AB BF AB BG==, 又∵CD =EF , ∴DF FG BF BG=, ∵DF =3m ,FG =4m ,BF =BD +DF =BD +3,BG =BD +DF +FG =BD +7, ∴3437DB BD =++, ∴BD =9,BF =9+3=12, ∴1.5312AB =, 解得AB =6. 答:路灯杆AB 的高度是6m .【点睛】考查了相似三角形的应用和中心投影.只要是把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例就可以求出结果.31.(1)见解析;(2)323 y x=-+【解析】【分析】,(1)连接OB,根据题意可证明△OAB∽△CAO,继而可推出OB⊥AB,根据切线定理即可求证结论;(2)根据勾股定理可求得OA=2及A点坐标,根据相似三角形的性质可得OB AB CO AO=,进而可求CO的长及C点坐标,利用待定系数法,设直线AB对应的函数表达式为y=kx+b,再把点A、C的坐标代入求得k、b的值即可.【详解】(1)证明:连接OB.∵OA2=AB•AC∴OA AB AC OA=,又∵∠OAB=∠CAO,∴△OAB∽△CAO,∴∠ABO=∠AOC,又∵∠AOC=90°,∴∠ABO=90°,∴AB⊥OB;∴直线AB是⊙O的切线;(2)解:∵∠ABO=90°,3AB=OB=1,。
温州市九年级上学期数学期末考试试卷
温州市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2016·自贡) 下列根式中,不是最简二次根式的是()A .B .C .D .2. (2分)(2018·和平模拟) 如图,在▱ABCD中,F是AD延长线上一点,连接BF交DC于点E,则图中相似三角形共有()对.A . 2对B . 3对C . 4对D . 5对3. (2分)(2017·马龙模拟) 一个扇形的圆心角为60°,弧长为2π厘米,则这个扇形的半径为()A . 6厘米B . 12厘米C . 厘米D . 厘米4. (2分)将函数y=2x2的图象向右平行移动1个单位,再向上平移5个单位,可得到的抛物线是()A . y=2(x+1)2-5B . y=2(x+1)2+5C . y=2(x-1)2-5D . y=2(x-1)2+55. (2分)已知a、b、c为△ABC三边,且方程(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0有两个相等实数根,则△ABC为()A . 两腰和底不等的等腰三角形B . 等边三角形C . 直角三角形D . 等腰直角三角形6. (2分)如图,P为⊙O外一点,PA切⊙O于点A,⊙O的半径为6,且PA=8,则cos∠APO等于()A .B .C .D .7. (2分)在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图所示的方式折叠,使点A 与点D重合,折痕为EF,则△DEF的周长为()A . 9.5B . 10.5C . 11D . 15.58. (2分)如图,AB为圆O的直径,CD为圆O的弦,∠ABD=53°,则∠BCD为()A . 37°B . 47°C . 45°D . 53°9. (2分)(2020·上海模拟) 二次函数y=ax2+bx+c与一次函数y=ax+c的图像大致为()A .B .C .D .10. (2分) (2017八下·武进期中) 如图,在矩形ABCD中,点E,F,G分别是AD,CD,BC上的点,且BE =EF,BE⊥EF,EG⊥BF.若FC=1,AE=2,则BG的长是()A . 2.6B . 2.5C . 2.4D . 2.3二、填空题 (共5题;共5分)11. (1分)计算: =________.12. (1分)(2012·抚顺) 若分式有意义,则x的取值范围是________.13. (1分) (2018九上·清江浦期中) 如图,P是⊙O外一点,PA与⊙O相切于点A,若PO=25cm,PA=24cm,则⊙O的半径为________ cm.14. (1分)如图,矩形ABCD中,E、F分别为AD、AB上一点,且EF=EC,EF⊥EC,若DE=2,矩形周长为16,则矩形ABCD的面积为________15. (1分) (2017九上·蒙阴期末) 如图,在平面内将Rt△ABC绕着直角顶点C逆时针旋转90°,得到Rt△EFC,若AB= ,BC=1,则阴影部分的面积为________.三、解答题 (共8题;共70分)16. (5分) (2017八上·阿荣旗期末) 先化简再求值:,其中x=3.17. (6分) (2018九上·渭滨期末) 四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由.18. (10分)(2018·邯郸模拟) 如图1,图2中,正方形ABCD的边长为6,点P从点B出发沿边BC—CD以每秒2个单位长的速度向点D匀速运动,以BP为边作等边三角形BPQ,使点Q在正方形ABCD内或边上,当点Q恰好运动到AD边上时,点P停止运动。
浙江省温州市九年级上学期期末数学试卷
浙江省温州市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)在Rt△ABC中,∠C=90°,∠B=60°,那么sinA+cosB的值为()A . 1B .C .D .2. (2分) (2020·娄底模拟) 函数y=的大致图象是()A .B .C .D .3. (2分)如图,若点M是x轴正半轴上的任意一点,过点M作PQ∥y轴,分别交函数(x>0)和(x>0)的图象于点P和Q,连接OP、OQ,则下列结论正确的是()A . ∠POQ不可能等于90°B .C . 这两个函数的图象一定关于x轴对称D . △POQ的面积是4. (2分)(2012·绵阳) 下列事件中,是随机事件的是()A . 度量四边形的内角和为180°B . 通常加热到100℃,水沸腾C . 袋中有2个黄球,3个绿球,共五个球,随机摸出一个球是红球D . 抛掷一枚硬币两次,第一次正面向上,第二次反面向上5. (2分)某品牌服装原价173元,连续两次降价x%后售价价为127元,下面所列方程中正确的是()A . 173(1+x%)2=127B . 173(1-2x%)=127C . 173(1-x%)2=127D . 127(1+x%)2=1736. (2分)反比例函数y=﹣的图象上有两点P1(x1 , y1),P2(x2 , y2),若x1<0<x2 ,则下列结论正确的是()A . y1<y2<0B . y1<0<y2C . y1>y2>0D . y1>0>y27. (2分) (2019九上·德清期末) 如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧BC的长等于().A .B .C .D .8. (2分)为了测量某一电线杆的高度,简单实际的办法是()A . 爬上去用皮尺进行测量B . 利用测角仪与皮尺通过解三角形的方法求出C . 测得电线杆及一较短木棍在同一时刻的投影,然后通过比例进行计算(电线杆和木棍可以在不同的位置上)D . 答案C中的方法只适合于阳光等平行投影9. (2分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A . y=﹣5(x+1)2﹣1B . y=﹣5(x﹣1)2﹣1C . y=﹣5(x+1)2+3D . y=﹣5(x﹣1)2+310. (2分) (2019八下·东至期末) 如图所示,四边形OABC为正方形,边长为3,点A、C分别在x轴,y 轴的正半轴上,点D在OA上,且D点的坐标为(1,0),P是OB上的一个动点,则PD+PA和的最小值是()A . 2B .C . 4D . 911. (2分) (2017八下·常州期末) 若A(a,b)、B(a﹣1,c)是函数y=﹣图象上的两点,且a<0,则b与c的大小关系为()A . b<cB . b=cC . b>cD . 无法判断12. (2分)如图,身高为1.6m的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m ,CA=0.8m,则树的高度为()A . 4.8mB . 6.4mC . 8mD . 10m二、填空题: (共6题;共6分)13. (1分)如图,过正方形ABCD的顶点B作BE∥AC,且AE=AC,则∠AEB=________度.14. (1分) (2019七上·闵行月考) 正三角形是旋转对称图形,绕旋转中心至少旋转________度,可以和原图形重合.15. (1分)下表是小红家4月初连续8天每天早上电表显示的读数,若每千瓦时电收取电费0.53元,则小红家4月份的电费大约是________元.日期12345678电表读数212428333942464916. (1分) (2019九上·淮阴期末) 若二次函数的图象与x轴没有交点,则m的取值范围是________.17. (1分)(2017·贵港) 如图所示,正方形OEFG和正方形ABCD是位似图形,点F的坐标为(﹣1,1),点C的坐标为(﹣4,2),则这两个正方形位似中心的坐标是________.18. (1分)如图,一艘海轮位于灯塔P的北偏东方向60°,距离灯塔为4海里的点A处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长________海里.三、解答题: (共7题;共70分)19. (10分)(2018·吴中模拟) 如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.20. (10分) (2017九上·宁波期中) 甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.21. (5分) (2018九下·龙岩期中) 如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,AE⊥AB交BC于点D,交⊙O于点E,F在DA的延长线上,且AF=AD.若AF=3,tan∠ABD=,求⊙O的直径.22. (10分)(2017·南京模拟) 已知:如图,已知⊙O的半径为1,菱形ABCD的三个顶点A、B、D在⊙O上,且CD与⊙O相切.(1)求证:BC与⊙O相切;(2)求阴影部分面积.23. (15分) (2019八下·张家港期末) 如图,已知正比例函数y =ax的图象与反比例函数的图象有一个公共点A(1,2).(1)求这两个函数表达式;(2)根据图象写出正比例函数值大于反比例函数值的x的取值范围;(3)根据反比例函数的图象,写出当−2<x<−1时y 的取值范围。
温州市九年级上学期数学期末考试试卷
温州市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分)单词“HUNAN”的五个字母中,既是轴对称图形又是中心对称图形的字母是()A . HB . UC . AD . N2. (2分)下列说法正确的是()A . 掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B . 甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定C . “明天降雨的概率为”,表示明天有半天都在降雨D . 了解一批电视机的使用寿命,适合用普查的方式3. (2分)若(m+1)x2-mx+2=0是关于x的一元二次方程,则m的取值范围是()A . m≠-1B . m=-1C . m-1D . m≠04. (2分)二次函数图象的顶点坐标是()A . (-1,3)B . (1,3)C . (-1,-3)D . (1,-3)5. (2分)抛物线y= x2-6x+24的顶点坐标是()A . (-6,-6)B . (-6,6)C . (6,6)D . (6,-6)6. (2分)在反比例函数y=图象的每条曲线上,y都随x的增大而增大,则k的取值范围是()A . k>1B . k>0C . k≥1D . ﹣l≤k<17. (2分)如图,A,B,C,D是⊙O上四个点,且弧AB=弧BC=弧CD,BA和CD的延长线相交于P,∠P=40°,则∠ACD 的度数是()A . 15°B . 20°C . 40°D . 50°8. (2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a>0,b>0;②c<0,△<0;③c-4b>0;④4a-2b+c=16a+4b+c.其中正确结论的个数是()A . 1B . 2C . 3D . 49. (2分)如图,正五边形ABCDE的边长为2,连结AC、AD、BE,BE分别与AC和AD相交于点F、G,连结DF,给出下列结论:①∠FDG=18°;②FG=3﹣;③(S四边形CDEF)2=9+2 ;④DF2﹣DG2=7﹣2 .其中结论正确的个数是()A . 1B . 2C . 3D . 4二、填空题 (共6题;共9分)10. (2分)(2012·常州) 已知点P(﹣3,1),则点P关于y轴的对称点的坐标是________,点P关于原点O的对称点的坐标是________.11. (1分)若关于x的一元二次方程为ax2+bx+c=0的两根之和为3,则关于x的方程a(x+1)2+b(x+1)+c=0的两根之和为________.12. (1分) (2017九上·莘县期末) 在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是________.13. (3分)如图,已知:PA、PB、EF 分别切⊙O 于A、B、D,若PA=10cm,那么△PEF 周长是________ cm.若∠P=35°,那么∠AOB=________,∠EOF=________14. (1分)(2017·房山模拟) 若把代数式x2-4x-5化成(x-m)2+k的形式,其中m,k为常数,则m+k=________15. (1分)(2017·普陀模拟) 一次抽奖活动设置了翻奖牌(图展示的分别是翻奖牌的正反两面),抽奖时,你只能看到正面,你可以在9个数字中任意选中一个数字,可见抽中一副球拍的概率是,那么请你根据题意写出一个事件,使这个事件发生的概率是.这个事件是________.三、解答题 (共10题;共117分)16. (5分)已知,凸4n+2边形A1A2…A4n+2(n是非零自然数)各内角都是30°的整数倍,又关于x的方程:均有实根,求这凸4n+2边形各内角的度数.17. (20分)解方程(1) x2﹣2x﹣3=0(2) 2x2+5x﹣1=0(3)(2x﹣3)2﹣121=0(4)(x﹣3)2=2(3﹣x).18. (10分) (2016九上·萧山期中) 如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.19. (5分)如图,一次函数y=x+1的图象与反比例函数y=(k为常数,且k≠0)的图象都经过点A(m,2).(1)求点A的坐标及反比例函数的表达式;(2)设一次函数y=x+1的图象与x轴交于点B,若点P是x轴上一点,且满足△ABP的面积是2,直接写出点P的坐标.20. (10分)(2016·宁夏) 在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣1),B(3,﹣3),C(0,﹣4)(1)画出△ABC关于原点O成中心对称的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2.21. (20分) (2018七下·平定期末) 问题情境:如图1,AB∥CD ,∠PAB=130°,∠PCD=120°,求∠APC 的度数.小明的思路是:过点P作PE∥AB ,通过平行线性质来求∠APC .(1)按小明的思路,请你求出∠APC的度数;(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B,D两点之间运动时,问∠APC与α,β之间有何数量关系?请说明理由;(3)联想拓展:在(2)的条件下,如果点P在B,D两点外侧运动时(点P与点O,B,D三点不重合),请直接写出∠APC与α,β之间的数量关系;(4)解决问题:我们发现借助构造平行线的方法可以帮我们解决许多问题,随着以后的学习你还会发现平行线的许多用途.试构造平行线解决以下问题.已知:如图3,三角形ABC,求证:∠A+∠B+∠C=180°22. (7分) (2015九上·山西期末) 商场某种商品平均每天可销售30件,每件盈利50元。
浙江省温州市各学校2024届数学九年级第一学期期末学业质量监测模拟试题含解析
浙江省温州市各学校2024届数学九年级第一学期期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是( )A.6 B.5 C.4 D.32.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是BE的中点,则下列结论:①OC∥AE;②EC=BC;③∠DAE =∠ABE;④AC⊥OE,其中正确的有()A.1个B.2个C.3个D.4个∠的3.如图,AB是圆O的直径,直线PA与圆O相切于点A,PO交圆O于点C,连接BC.若42∠=,则ABCP度数是()A.21B.24C.42D.484.下列事件是必然事件的是()A.明天太阳从西方升起B.打开电视机,正在播放广告C.掷一枚硬币,正面朝上D.任意一个三角形,它的内角和等于180°5.如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=1,则⊙O的半径为()A.8.5 B.7.5 C.9.5 D.86.如图,△ABC是⊙O的内接三角形,∠A=55°,则∠OCB为()A.35°B.45°C.55°D.65°7.如图,将O沿着弦AB翻折,劣弧恰好经过圆心O.如果半径为4,那么O的弦AB长度为A.2B.4C.23D.438.一元二次方程x2﹣3x﹣4=0的一次项系数是()A.1 B.﹣3 C.3 D.﹣49.如图,已知⊙O中,半径OC 垂直于弦AB,垂足为D,若 OD=3,OA=5,则AB的长为()A.2 B.4 C.6 D.810.不等式组215840xx-≤⎧⎨-<⎩的解集在数轴上表示为()A .B .C .D .11.在同一坐标系中,一次函数y ax b =+与二次函数2y ax bx =+的大致图像可能是A .B .C .D .12.若关于x 的一元二次方程2690kx x -+=有实数根,则k 的取值范围( )A .1k ≤-B .1kC .1k 且0k ≠D .1k ≤且0k ≠二、填空题(每题4分,共24分)13.如图,已知⊙O 上三点A ,B ,C ,半径OC =3,∠ABC =30°,切线PA 交OC 延长线于点P ,则PA 的长为____.14.在Rt △ABC 中,∠C =90°,如果tan ∠A =33,那么cos ∠B =_____. 15.在一个布袋中装有只有颜色不同的a 个小球,其中红球的个数为2,随机摸出一个球记下颜色后再放回袋中,通过大量重复实验和发现,摸到红球的频率稳定于0.2,那么可以推算出a 大约是____________.16.若抛物线2y ax bx c =++的开口向下,写出一个a 的可能值________. 17.如图,在ABC 中,90C ∠=︒,810,AC AB ==,按以下步骤作图:①在,AB AC 上分别截取,,AM AN 使;AM AN =②分别以M N 、为圆心,以大于12MN 的长为半径作弧,两弧在BAC ∠内交于点;P ③作射线AP 交BC 于点D ,则CD =_______.18.若α∠,β∠均为锐角,且满足3sin tan 102αβ-+-=,则αβ∠-∠=__________︒. 三、解答题(共78分) 19.(8分)如图,已知直线y =kx +6与抛物线y =ax 2+bx +c 相交于A ,B 两点,且点A (1,4)为抛物线的顶点,点B 在x 轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第三象限图象上是否存在一点P ,使△POB 与△POC 全等?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若点Q 是y 轴上一点,且△ABQ 为直角三角形,求点Q 的坐标.20.(8分)如图,在平面直角坐标系xOy 中,点A (1-,3),B (4-,2),C (0,1-).(1)以y 轴为对称轴,把△ABC 沿y 轴翻折,画出翻折后的△11A B C ;(2)在(1)的基础上,①以点C 为旋转中心,把△11A B C 顺时针旋转90°,画出旋转后的△22A B C ;②点2A 的坐标为 ,在旋转过程中点1B 经过的路径12B B 的长度为_____(结果保留π).21.(8分)一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、-2、-3、4,它们除了标有的数字不同之外再也没有其它区别,小芳从盒子中随机抽取一张卡片.(1)求小芳抽到负数的概率;(2)若小明再从剩余的三张卡片中随机抽取一张,请你用树状图或列表法,求小明和小芳两人均抽到负数的概率.22.(10分)从三角形一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC 中,∠A=40°,∠B=60°,当∠BCD=40°时,证明:CD 为△ABC 的完美分割线.(2)在△ABC 中,∠A=48°,CD 是△ABC 的完美分割线,且△ACD 是以AC 为底边的等腰三角形,求∠ACB 的度数.(3)如图2,在△ABC 中,AC=2,BC=2,CD 是△ABC 的完美分割线,△ACD 是以CD 为底边的等腰三角形,求CD 的长.23.(10分)用适当的方法解下列方程:(1)2240x x --=(2)27100x x -+=24.(10分).如图,小明在大楼的东侧A 处发现正前方仰角为75°的方向上有一热气球在C 处,此时,小亮在大楼的西侧B 处也测得气球在其正前方仰角为30°的位置上,已知AB 的距离为60米,试求此时小明、小亮两人与气球的距离AC 和BC .(结果保留根号)25.(12分)如图,BD 是△ABC 的角平分线,点E 位于边BC 上,已知BD 是BA 与BE 的比例中项.(1)求证:∠CDE=12∠ABC ; (2)求证:AD•CD=AB•CE .26.某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x …﹣3 ﹣52﹣2 ﹣1 0 1 2523 …y … 3 54m ﹣1 0 ﹣1 0543 …其中,m= .(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有个交点,所以对应的方程x2﹣2|x|=0有个实数根;②方程x2﹣2|x|=2有个实数根.③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是.参考答案一、选择题(每题4分,共48分)1、B【解题分析】过点O作OC⊥AB,垂足为C,则有AC=12AB=12×24=12,在Rt△AOC中,∠ACO=90°,AO=13,∴OC=22AO AC=5,即点O到AB的距离是5.2、C【分析】由C为弧EB中点,利用垂径定理的逆定理得到OC垂直于BE,根据等弧对等弦得到BC=EC,再由AB为直角,利用圆周角定理得到AE垂直于BE,进而得到一对直角相等,利用同位角相等两直线平行得到OC与AE平行,由AD为圆的切线,利用切线的性质得到AB与DA垂直,利用同角的余角相等得到∠DAE=∠ABE,根据E不一定为弧AC中点,可得出AC与OE不一定垂直,即可确定出结论成立的序号.【题目详解】解:∵C为BE的中点,即=BC CE,∴OC⊥BE,BC=EC,选项②正确;设AE与CO交于F,∴∠BFO=90°,∵AB为圆O的直径,∴AE⊥BE,即∠BEA=90°,∴∠BFO=∠BEA,∴OC∥AE,选项①正确;∵AD为圆的切线,∴∠DAB=90°,即∠DAE+∠EAB=90°,∵∠EAB+∠ABE=90°,∴∠DAE=∠ABE,选项③正确;点E不一定为AC中点,故E不一定是AC中点,选项④错误,则结论成立的是①②③,故选:C.【题目点拨】此题考查了切线的性质,圆周角定理,平行线的判定,以及垂径定理,熟练掌握性质及定理是解本题的关键.3、B【分析】根据切线的性质可得: ∠BAP=90°,然后根据三角形的内角和定理即可求出∠AOC,最后根据圆周角定理即可求出ABC∠.【题目详解】解:∵直线PA与圆O相切∴∠BAP=90°∵42P∠=∴∠AOC=180°-∠BAP-∠P=48°∴1242ABC AOC∠=∠=︒故选B.【题目点拨】此题考查的是切线的性质和圆周角定理,掌握切线的性质和同弧所对的圆周角是圆心角的一半是解决此题的关键.4、D【分析】必然事件就是一定会发生的事件,依次判断即可.【题目详解】A、明天太阳从西方升起,是不可能事件,故不符合题意;B、打开电视机,正在播放广告是随机事件,故不符合题意;C、掷一枚硬币,正面朝上是随机事件,故不符合题意;D、任意一个三角形,它的内角和等于180°是必然事件,故符合题意;故选:D.【题目点拨】本题是对必然事件的考查,熟练掌握必然事件知识是解决本题的关键.5、A【解题分析】根据垂径定理得到直角三角形,求出AD的长,连接OA,得到直角三角形,然后在直角三角形中计算出半径的长.【题目详解】解:如图所示:连接OA,则OA长为半径.∵OC AB ⊥于点D , ∴142AD DB AB ===, ∵在Rt OAD 中,222OA AD OD =+,∴()22214OA OA =-+,∴178.52OA ==, 故答案为A.【题目点拨】本题主要考查垂径定理和勾股定理.根据垂径定理“垂直于弦的直径平分弦,并且平分弦所对的弧”得到一直角边,利用勾股定理列出关于半径的等量关系是解题关键.6、A【分析】首先根据圆周角定理求得∠BOC ,然后根据三角形内角和定理和等腰三角形的性质即可求得∠OCB .【题目详解】解:∵∠A=55°,∴∠BOC=55°×2=110°,∵OB=OC ,∴∠OCB=∠OBC=12(180°-∠BOC)=35°, 故答案为A .【题目点拨】本题主要考查了圆周角定理、等腰三角形的性质以及三角形的内角和定理,掌握并灵活利用相关性质定理是解答本题的关键.7、D【分析】如果过O 作OC ⊥AB 于D ,交折叠前的AB 弧于C ,根据折叠后劣弧恰好经过圆心O ,根据垂径定理及勾股定理即可求出AD 的长,进而求出AB 的长.【题目详解】解:如图,过O 作OC ⊥AB 于D ,交折叠前的AB 弧于C ,根据折叠后劣弧恰好经过圆心O ,那么可得出的是OD=CD=2,直角三角形OAD 中,OA=4,OD=2,∴AD= 2223OA OD -=∴AB=2AD=故选:D.【题目点拨】本题考查了垂径定理和勾股定理的综合运用,利用好条件:劣弧折叠后恰好经过圆心O是解题的关键.8、B【解题分析】根据一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中bx叫一次项,系数是b,可直接得到答案.【题目详解】解:一次项是:未知数次数是1的项,故一次项是﹣3x,系数是:﹣3,故选:B.【题目点拨】此题考查的是求一元一次方程一般式中一次项系数,掌握一元一次方程的一般形式和一次项系数的定义是解决此题的关键.9、D【解题分析】利用垂径定理和勾股定理计算.【题目详解】根据勾股定理得4AD==,根据垂径定理得AB=2AD=8故选:D.【题目点拨】考查勾股定理和垂径定理,熟练掌握垂径定理是解题的关键.10、B【分析】分别求出每一个不等式的解集,根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则即可得答案.【题目详解】解:215840xx-≤⎧⎨-<⎩①②,解不等式2x−1≤5,得:x≤3,解不等式8−4x<0,得:x>2,故不等式组的解集为:2<x≤3,故选:B.【题目点拨】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟悉在数轴上表示不等式解集的原则“大于向右,小于向左,包括端点用实心,不包括端点用空心”是解题的关键.11、D【分析】对于每个选项,先根据二次函数的图象确定a 和b 的符号,然后根据一次函数的性质看一次函数图象的位置是否正确,若正确,说明它们可在同一坐标系内存在.【题目详解】A 、由二次函数y =ax 2+bx 的图象得a >0,b >0,则一次函数y =ax +b 经过第一、二、三象限,所以A 选项错误;B 、由二次函数y =ax 2+bx 的图象得a >0,b <0,则一次函数y =ax +b 经过第一、三、四象限,所以B 选项错误;C 、由二次函数y =ax 2+bx 的图象得a <0,b <0,则一次函数y =ax +b 经过第一、二、四象限,所以C 选项错误;D 、由二次函数y =ax 2+bx 的图象得a <0,b >0,则一次函数y =ax +b 经过第二、三、四象限,所以D 选项正确. 故选:A .【题目点拨】本题考查了二次函数的图象:二次函数的图象为抛物线,可能利用列表、描点、连线画二次函数的图象.也考查了二次函数图象与系数的关系.12、D【分析】根据一元二次方程的定义和根的判别式得出0k ≠且0≥,求出即可.【题目详解】∵关于x 的一元二次方程2690kx x -+=有实数根,∴0k ≠且()2246490b ac k =-=--⨯≥⊿,解得:k ≤1且0k ≠,故选:D .【题目点拨】本题考查了一元二次方程的定义和根的判别式,能得出关于k 的不等式是解此题的关键.二、填空题(每题4分,共24分)13、1【分析】连接OA ,根据圆周角定理求出∠AOP ,根据切线的性质求出∠OAP =90°,解直角三角形求出AP 即可.【题目详解】连接OA ,∵∠ABC=10°,∴∠AOC=2∠ABC=60°,∵切线PA交OC延长线于点P,∴∠OAP=90°,∵OA=OC,∴AP=OA tan60°1.故答案为:1.【题目点拨】本题考查了圆的切线问题,掌握圆周角定理、圆的切线性质是解题的关键.14、1 2【分析】直接利用特殊角的三角函数值得出∠A=30°,进而得出∠B的度数,进而得出答案.【题目详解】∵tan∠A∴∠A=30°,∵∠C=90°,∴∠B=180°﹣30°﹣90°=60°,∴cos∠B=12.故答案为:12.【题目点拨】此题主要考查了特殊角的三角函数值,正确理解三角函数的计算公式是解题关键.15、1【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【题目详解】解:由题意可得,2a=0.2,解得,a=1.故估计a大约有1个.故答案为:1.【题目点拨】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.16、-3(负数均可)【分析】根据二次函数的性质,所写函数解析式二次项系数小于0即可.【题目详解】解:根据二次函数的性质,二次项系数小于0时,图象开口向下.所以a 的值可以是-3..故答案为:-3(负数均可).【题目点拨】此题主要考查了二次函数的图象性质,二次项系数的正负决定了开口方向,这是解题关键.17、83【分析】由已知可求BC =6,作DE AB ⊥,由作图知AP 平分BAC ∠,依据90C AED ∠=∠=︒知CD DE =,再证Rt ACD Rt AED ∆≅∆得AC AE =可知BE =2,设CD DE x ==,则6BD x =-,在Rt BDE 中222DE BE BD +=得2222(6)x x +=-,解之可得答案.【题目详解】解:如图所示,过点D 作DE AB ⊥于点E ,由作图知AP 平分BAC ∠,90C AED ∠=∠=︒,CD DE ∴=,AD AD =,CD DE =,Rt ACD Rt AED(HL)∴∆≅∆,AC AE ∴=,∴2BE AB AE =-=,∵在ABC 中,90C ∠=︒,810,AC AB ==,22221086BC AB AC =-=-=,设CD DE x ==,则6BD x =-在Rt BDE 中222DE BE BD +=∴2222(6)x x +=-,解得:83x =,即83CD =, 故选:83. 【题目点拨】本题综合考查了角平分线的尺规作图及角平分线的性质、勾股定理等知识,利用勾股定理构建方程求解是解题关键. 18、15【分析】利用绝对值和二次根式的非负性求得sin ;tan αβ的值,然后确定两个角的度数,从而求解.【题目详解】解:由题意可知:sin 0;tan 10αβ=-=∴sin tan 1αβ== ∴∠α=60°,∠β=45°∴∠α-∠β=15°故答案为:15【题目点拨】本题考查绝对值及二次根式的非负性和特殊角的三角函数值,正确计算是本题的解题关键.三、解答题(共78分)19、(1)y =﹣x 2+2x +3;(2)存在,11,22P ⎛⎫- ⎪ ⎪⎝⎭;(3)①170,2Q ⎛⎫ ⎪⎝⎭;②Q 点坐标为(0,72)或(0, 32-)或(0,1)或(0,3).【分析】(1)用待定系数法求解析式;(2)作PM ⊥x 轴于M ,作PN ⊥y 轴于N ,当∠POB =∠POC 时,△POB ≌△POC ,设P (m ,m ),则m =﹣m 2+2m +3,可求m;(3)分类讨论:①如图,当∠Q 1AB =90°时,作AE ⊥y 轴于E ,证△DAQ 1∽△DOB ,得1DQ AD OD DB ==②当∠Q 2BA =90°时,∠DBO +∠OBQ 2=∠OBQ 2+∠O Q 2B =90°,证△BOQ 2∽△DOB ,得2OQ OB OD OB =,20363Q =;③当∠AQ 3B =90°时,∠AEQ 3=∠BOQ 3=90°,证△BOQ 3∽△Q 3EA ,33OQ OB Q E AE =,即3303401Q Q =-; 【题目详解】解:(1)把A (1,4)代入y =kx +6,∴k =﹣2,∴y =﹣2x +6,由y =﹣2x +6=0,得x =3∴B (3,0).∵A 为顶点∴设抛物线的解析为y =a (x ﹣1)2+4,∴a =﹣1,∴y =﹣(x ﹣1)2+4=﹣x 2+2x +3(2)存在.当x =0时y =﹣x 2+2x +3=3,∴C (0,3)∵OB =OC =3,OP =OP ,∴当∠POB =∠POC 时,△POB ≌△POC ,作PM ⊥x 轴于M ,作PN ⊥y 轴于N ,∴∠POM =∠PON =45°.∴PM =PN∴设P (m ,m ),则m =﹣m 2+2m +3,∴m =12, ∵点P 在第三象限,∴P . (3)①如图,当∠Q 1AB =90°时,作AE ⊥y 轴于E ,∴E (0,4)∵∠DA Q 1=∠DOB =90°,∠AD Q 1=∠BDO∴△DAQ 1∽△DOB ,∴1DQ ADOD DB == ∴DQ 1=52, ∴OQ 1=72, ∴Q 1(0,72);②如图,当∠Q 2BA =90°时,∠DBO +∠OBQ 2=∠OBQ 2+∠O Q 2B =90°∴∠DBO =∠O Q 2B∵∠DOB =∠B O Q 2=90°∴△BOQ 2∽△DOB , ∴2OQ OB OD OB =, ∴20363Q =, ∴OQ 2=32, ∴Q 2(0,32-); ③如图,当∠AQ 3B =90°时,∠AEQ 3=∠BOQ 3=90°,∴∠AQ 3E +∠E AQ 3=∠AQ 3E +∠B Q 3O =90°∴∠E AQ 3=∠B Q 3O∴△BOQ 3∽△Q 3EA ,∴33OQ OB Q E AE =,即3303401Q Q =-, ∴OQ 32﹣4OQ 3+3=0,∴OQ 3=1或3,∴Q 3(0,1)或(0,3).综上,Q 点坐标为(0,72)或(0,32-)或(0,1)或(0,3).【题目点拨】考核知识点:二次函数,相似三角形.构造相似三角形,数形结合分类讨论是关键.20、(1)画图见解析;(2)①画图见解析;② (4,-2),52π. 【分析】(1)根据轴称图形的性质作出图形即可;(2)①根据旋转的性质作出图形即可;②在坐标系中直接读取数值即可,第二空根据弧长计算公式进行计算即可.【题目详解】解:(1)如图所示:△11A B C 为所求;(2)①如图所示,△22A B C 为所求;②由图可知点2A 的坐标为(4,-2);∵12B C C B ==2234+ =5在旋转过程中点1B 经过的路径12B B 的长度为:905180π⨯⨯ =52π. 故答案为:(4,-2),52π. 【题目点拨】本题考查了轴对称和旋转作图,以及弧长计算公式的应用.掌握弧长计算公式是解题的关键.21、(1)12;(2)16【分析】(1)由一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、-2、-3、4,它们除了标有的数字不同之外再也没有其它区别,小芳从盒子中随机抽取一张卡片,抽到负数的有2种情况,直接利用概率公式求解即可求得答案.(2)首先根据题意画出树状图或列表,然后由图表求得所有等可能的结果与小明和小芳两人均抽到负数的情况,再利用概率公式求解即可求得答案.【题目详解】(1)∵一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、-2、-3、4,它们除了标有的数字不同之外再也没有其它区别,∴小芳从盒子中随机抽取一张卡片,抽到负数的有2种情况,∴P(小芳抽到负数)=21 42 =(2)画树状图如下:∵共有12种机会均等的结果,其中两人均抽到负数的有2种,∴P(两人均抽到负数)=21 126=22、(1)证明见解析;(2)∠ACB=96°;(3)CD5【分析】(1)根据三角形内角和定理可求出∠ACB=80°,进而可得∠ACD=40°,即可证明AD=CD,由∠BCD=∠A=40°,∠B为公共角可证明三角形BCD∽△BAC,即可得结论;(2)根据等腰三角形的性质可得∠ACD=∠A=48°,根据相似三角形的性质可得∠BCD=∠A=48°,进而可得∠ACB的度数;(3)由相似三角形的性质可得∠BCD=∠A,由AC=BC=2可得∠A=∠B,即可证明∠BCD=∠B,可得BD=CD,根据相似三角形的性质列方程求出CD的长即可.【题目详解】(1)∵∠A=40°,∠B=60°,∴∠ACB=180°-40°-60°=80°,∵∠BCD=40°,∴∠ACD=∠ACB-∠BCD=40°,∴∠ACD=∠A,∴AD=CD,即△ACD是等腰三角形,∵∠BCD=∠A=40°,∠B为公共角,∴△BCD∽△BAC,∴CD为△ABC的完美分割线.(2)∵△ACD是以AC为底边的等腰三角形,∴AD=CD ,∴∠ACD=∠A=48°,∵CD 是△ABC 的完美分割线,∴△BCD ∽△BAC ,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°. (3)∵△ACD 是以CD 为底边的等腰三角形,∴AD=AC=2,∵CD 是△ABC 的完美分割线,∴△BCD ∽△BAC ,∴∠BCD=∠A ,CD BC AC AB =, ∵AC=BC=2,∴∠A=∠B ,∴∠BCD=∠B ,∴BD=CD , ∴CD BC AC AD CD =+,即CD 222CD=+,解得:或(舍去),∴CD 【题目点拨】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,正确理解完美分割线的定义并熟练掌握相似三角形的性质是解题关键.23、(1)11x =21x = ;(2)12x = , 25x =【分析】(1)移项,两边同时加1,开方,即可得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【题目详解】(1)2240x x --=22141x x -+=+()215x -=1x -=115x =+,215x =-.(2)27100x x -+=()()250x x --=20x -=,50x -=12x =,25x =.【题目点拨】本题考查了解一元二次方程,有直接开平方法、配方法、公式法、因式分解法,仔细观察运用合适的方法能简便计算.24、小明、小亮两人与气球的距离AC 为302米,BC 为30(3+1)米.【分析】作AD ⊥BC 于D ,根据题意求出∠C 的度数,根据锐角三角函数的概念分别求出BD 、CD 、AC 即可.【题目详解】解:作AD ⊥BC 于D ,由题意得,∠CAE =75°,∠B =30°,∴∠C =∠CAE -∠B =45°, ∵∠ADB =90°,∠B =30°,∴AD =12AB =30,BD =AB 3, ∵∠ADC =90°,∠C =45°,∴30DC AD ==∴AC 2,BC =BD +CD 3,答:小明、小亮两人与气球的距离AC 为2米,BC 为303)米.【题目点拨】此题考查解直角三角形的应用-仰角俯角问题,正确理解仰角俯角的概念、熟记锐角三角函数的概念是解题的关键.25、 (1)证明见解析;(2)证明见解析;【解题分析】试题分析:(1)根据BD 是AB 与BE 的比例中项可得BA BD BD BE=, BD 是∠ABC 的平分线,则∠ABD =∠DBE,可证△ABD ∽△DBE, ∠A =∠BDE . 又因为∠BDC =∠A +∠ABD ,即可证明∠CDE =∠ABD =12∠ABC ,(2) 先根据∠CDE =∠CBD ,∠C =∠C ,可判定 △CDE ∽△CBD ,可得CE DE CD DB =.又△ABD ∽△DBE ,所以DE AD DB AB =,CE AD CD AB =,所以 AD CD AB CE ⋅=⋅.试题解析:(1)∵BD是AB与BE的比例中项,∴BA BD BD BE=,又BD是∠ABC的平分线,则∠ABD=∠DBE, ∴△ABD∽△DBE,∴∠A=∠BDE.又∠BDC=∠A+∠ABD,∴∠CDE=∠ABD=12∠ABC,即证.(2)∵∠CDE=∠CBD,∠C=∠C, ∴△CDE∽△CBD,∴CE DE CD DB=.又△ABD∽△DBE,∴DE AD DB AB=,∴CE AD CD AB=,∴AD CD AB CE⋅=⋅.26、(1)1;(2)作图见解析;(3)①函数y=x2﹣2|x|的图象关于y轴对称;②当x>1时,y随x的增大而增大;(答案不唯一)(4) 3,3,2,﹣1<a<1.【解题分析】(1)把x=-2代入y=x2-2|x|得y=1,即m=1,故答案为:1;(2)如图所示;(3)由函数图象知:①函数y=x2-2|x|的图象关于y轴对称;②当x>1时,y随x的增大而增大;(4)①由函数图象知:函数图象与x轴有3个交点,所以对应的方程x2-2|x|=1有3个实数根;②如图,∵y=x2-2|x|的图象与直线y=2有两个交点,∴x2-2|x|=2有2个实数根;③由函数图象知:∵关于x的方程x2-2|x|=a有4个实数根,∴a的取值范围是-1<a<1,故答案为:3,3,2,-1<a<1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温州市九年级上册数学期末考试试卷
姓名:________
班级:________
成绩:________
一、 单选题 (共 12 题;共 24 分)
1. (2 分) (2019 八下·北京期末) 某校在“我运动,我快乐”的技能比赛培训活动中,在相同条件下,对
甲、乙两名同学的“单手运球”项目进行了 5 次测试,测试成绩(单位:分)如下:根据右图判断正确的是( )
A . 甲成绩的平均分低于乙成绩的平均分; B . 甲成绩的中位数高于乙成绩的中位数; C . 甲成绩的众数高于乙成绩的众数; D . 甲成绩的方差低于乙成绩的方差. 2. (2 分) (2017 九上·重庆开学考) 现有 6 张正面分别标有数字﹣1,0,1,2,3,4 的不透明卡片,它们 除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为 a,则使得关于 x
的二次函数 y=x2﹣2x+a﹣2 与 x 轴有交点,且关于 x 的分式方程
有解的概率为( )
A.
B.
C.
D. 3. (2 分) (2016 九下·赣县期中) 下列图形中,是中心对称图形但不是轴对称图形的是( )
A.
B.
第 1 页 共 13 页
C.
D.
4. (2 分) (2017 九上·东丽期末) 抛物线
的顶点坐标是( )
A.
B.
C.
D.
5. (2 分) (2017 九上·东丽期末) 下列判断中正确的是( )
A . 长度相等的弧是等弧
B . 平分弦的直线也必平分弦所对的两条弧
C . 弦的垂直平分线必平分弦所对的两条弧
D . 平分一条弧的直线必平分这条弧所对的弦
6.(2 分)(2017 九上·东丽期末) 如图, 是⊙ 的弦,点 在圆上,已知
,则
()
A.
B.
C.
D.
7. (2 分) (2017 九上·东丽期末) 如图,在△
转
,得到△
,连接 ,若
,
中, ,则线段
,将△
绕点
的长为( )
顺时针旋
第 2 页 共 13 页
A.
B. C.
D.
8. (2 分) (2017 九上·官渡期末) 一元二次方程 x2﹣4x+4=0 的根的情况是( )
A . 有两个不相等的实数根
B . 有两个相等的实数根
C . 无实数根
D . 无法确定
9. (2 分) (2017 九上·东丽期末) 已知抛物线
,与 轴的一个交点为
,则代数式
的值为( )
A.
B.
C.
D.
10. (2 分) (2017 九上·东丽期末) 已知等腰三角形的腰和底的长分别是一元二次方程
的根,
则该三角形的周长是( )
A.5
B.7
C . 5或7
D . 10
11. (2 分) (2017 九上·东丽期末) 函数
中,当
时,函数值 的取值范围是
()
A.
B.
C.
D.
第 3 页 共 13 页
12. ( 2 分 ) (2017 九 上 · 东 丽 期 末 ) 已 知 △
和△
都是等腰直角三角形,
,
,
段 长度的取值范围是( )
, 是 的中点.若将△
绕点 旋转一周,则线
A. B.
C.
D.
二、 填空题 (共 6 题;共 6 分)
13. (1 分) (2020 七上·德城期末) 若
,则
14. (1 分) (2017 九上·东丽期末) 如图,在半径为
,则
________.
________. 的⊙ 中,弦
,
于点
15. (1 分) (2017 九上·东丽期末) 已知二次函数 小.
,当 x________时, 随 的增大而减
16. (1 分) (2016·西安模拟) 圆内接正六边形的边心距为
,则这个正六边形的面积为________cm2 .
17. (1 分) (2017 九上·东丽期末) 如图, 是半径为 的⊙ 的直径, 是圆上异于 , 的
任意一点,
的平分线交⊙ 于点 ,连接 和 ,△
的中位线所在的直线与⊙ 相交
于点 、 ,则 的长是________.
18. (1 分) (2017 九上·东丽期末) 如图所示的二次函数
第 4 页 共 13 页
的图象中,观察得出了下面
五条信息:
①
;②
;③
;④
你认为其中正确信息的个数有________个.
;⑤
,
三、 解答题 (共 7 题;共 55 分)
19. (20 分) 解下列方程 (1) 3x+3=2x+7 (2) 4x+3=2(x﹣1)+1
(3)
﹣
=1
(4) (x+15)= ﹣ (x﹣7) 20. (10 分) (2017 九上·东丽期末) 如图,转盘 A 的三个扇形面积相等,分别标有数字 1,2,3,转盘 B 的四个扇形面积相等,分别有数字 1,2,3,4.转动 A、B 转盘各一次,当转盘停止转动时,将指针所落扇形中的 两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).
(1) 用树状图或列表法列出所有可能出现的结果;
(2) 求两个数字的积为奇数的概率.
21. (5 分) (2017 九上·东丽期末) 如图,⊙ 是△
的外接圆,
为直径,弦
,
交
的延长线于点 ,求证:
(Ⅰ)
;
第 5 页 共 13 页
(Ⅱ) 是⊙ 的切线.
22. (5 分) (2017 九上·东丽期末) 已知:抛物线
经过
、
两点,顶点
为 .求:
(Ⅰ)求 , 的值;
(Ⅱ)求△
的面积.
23.(5 分)(2017 九上·东丽期末) 如图,用长为 的铝合金条制成“日”字形窗框,若窗框的宽为 ,
窗户的透光面积为
(铝合金条的宽度不计).
(Ⅰ)求出 与 的函数关系式;
(Ⅱ)如何安排窗框的长和宽,才能使得窗户的透光面积最大?并求出此时的最大面积.
24. (5 分) (2017 九上·东丽期末) 如图 1,已知 为正方形
的中心,分别延长 到点 ,
到点 ,使
,
,连结 ,将△
绕点 逆时针旋转 角得到△
(如
图 2).连结
、
.
(Ⅰ)探究
与
的数量关系,并给予证明;
(Ⅱ)当
,
时,求:
①
的度数;
②
的长度.
25. (5 分) (2017 九上·东丽期末) 如图,抛物线
与 轴交于 、 两点(点 在
点 的左侧),点 的坐标为
,与 轴交于点
,作直线 .动点 在 轴上运动,过
点作
轴,交抛物线于点 ,交直线 于点 ,设点 的横坐标为 .
(Ⅰ)求抛物线的解析式和直线 的解析式;
(Ⅱ)当点 在线段 上运动时,求线段
的最大值;
(Ⅲ)当以 、 、 、 为顶点的四边形是平行四边形时,直接写出 的值.
第 6 页 共 13 页
第 7 页 共 13 页
一、 单选题 (共 12 题;共 24 分)
1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、 10-1、 11-1、 12-1、
二、 填空题 (共 6 题;共 6 分)
13-1、 14-1、 15-1、 16-1、 17-1、 18-1、
三、 解答题 (共 7 题;共 55 分)
19-1、
参考答案
第 8 页 共 13 页
19-2、 19-3、 19-4、 20-1、 20-2、
第 9 页 共 13 页
21-1、 22-1、
第 10 页 共 13 页
23-1、
第11 页共13 页
第12 页共13 页24-1、
25-1、
第13 页共13 页。