立体几何导学案5
高中立体几何教案5篇
![高中立体几何教案5篇](https://img.taocdn.com/s3/m/e560340fabea998fcc22bcd126fff705cc175cb8.png)
高中立体几何教案5篇第一篇:高中立体几何教案高中立体几何教案第一章直线和平面两个平面平行的性质教案教学目标1.使学生掌握两个平面平行的性质定理及应用;2.引导学生自己探索与研究两个平面平行的性质定理,培养和发展学生发现问题解决问题的能力.教学重点和难点重点:两个平面平行的性质定理;难点:两个平面平行的性质定理的证明及应用.教学过程一、复习提问教师简述上节课研究的主要内容(即两个平面的位置关系,平面与平面平行的定义及两个平面平行的判定定理),并让学生回答:(1)两个平面平行的意义是什么?(2)平面与平面的判定定理是怎样的?并用命题的形式写出来?(教师板书平面与平面平行的定义及用命题形式书写平面与平面平行的判定定理)(目的:(1)通过学生回答,来检查学生能否正确叙述学过的知识,正确理解平面与平面平行的判定定理.(2)板书定义及定理内容,是为学生猜测并发现平面与平面平行的性质定理作准备)二、引出命题(教师在对上述问题讲评之后,点出本节课主题并板书,平面与平面平行的性质)师:从课题中,可以看出,我们这节课研究的主要对象是什么?生:两个平面平行能推导出哪些正确的结论.师:下面我们猜测一下,已知两平面平行,能得出些什么结论.(学生议论)师:猜测是发现数学问题常用的方法.“没有大胆的猜想,就作不出伟大的发现.”但猜想不是盲目的,有一些常用的方法,比如可以对已有的命题增加条件,或是交换已有命题的条件和结论.也可通过类比法即通过两个对象类似之处的比较而由已经获得的知识去引出新的猜想等来得到新的命题.(不仅要引导学生猜想,同时又给学生具体的猜想方法)师:前面,复习了平面与平面平行的判定定理,判定定理的结论是两平面平行,这对我们猜想有何启发?生:由平面与平面平行的定义,我猜想:两个平面平行,其中一个平面内的直线必平行于另一个面.师:很好,把它写成命题形式.(教师板书并作图,同时指出,先作猜想、再一起证明)猜想一:已知:平面α∥β,直线a 求证:a∥β.生:由判定定理“垂直于同一条直线的两个平面平行”.我猜想:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.[教师板书]α,猜想二:已知:平面α∥β,直线l⊥α.求证:l⊥β.师:这一猜想的已知条件不仅是“α∥β”,还加上了“直线l⊥α”.下面请同学们看课本上关于判定定理“垂直于同一直线的两平面平行”的证明.在证明过程中,“平面γ∩α=a,平面γ∩β=a′”.a与a′是什么关系?生:a∥a′.师:若改为γ不是过AA′的平面,而是任意一个与α,β都相交的平面γ.同学们考虑一下是否可以得到一个猜想呢?(学生讨论)生:如果一个平面与两个平行平面中的一个相交,也必与另一个平面相交.” [教师板书] 猜想三:已知:平面α∥β,平面γ∩α=a,求证:γ与β一定相交.师:怎么作这样的猜想呢?生:我想起平面几何中的一个结论:“一条直线与两条平行线中的一条相交,也必与另一条相交.”师:很好,这里实质用的是类比法来猜想.就是把原来的直线类似看作平面.两平行直线类似看作两个平行平面,从而得出这一猜想.大家再考虑,猜想三中,一个平面与两个平行平面相交,得到的交线有什么位置关系?生:平行师:请同学们表达出这个命题.生:如果两个平行平面同时和第三个平面相交,那么它们的交线平行. [教师板书]猜想四:已知:平面α∥β,平面γ∩α=a,γ∩β=b.求证:a∥b.[通过复习定理的证明方法,既发现了猜想三,猜想四,同时又复习了定理的证明方法,也为猜想四的证明,作了铺垫] 师:在得到猜想三时,我们用到了类比法,实际上,在立体几何的研究中,将所要解决的问题与平面几何中的有关问题作类比,常常能给我们以启示,发现立体几何中的新问题.比如:在平面几何中,我们有这样一条定理:“夹在两条平行线间的平行线段相等”,请同学们用类比的方法,看能否得出一个立体几何中的猜想?生:把两条平行线看作两个平行平面,可得猜想:夹在两个平行平面间的平行线段相等. [教师板书] 猜想五:已知:平面α∥β,AA′∥BB′,且A,B∈α,B,B′∈β.求证:AA′=BB′.[该命题,在教材中是一道练习题,但也是平面与平面平行的性质定理,为了完整体现平面与平面平行的性质定理,故尔把它放在课堂上进行分析]三、证明猜想师:通过分析,我们得到了五个猜想,猜想的结论往往并不完全可靠.得到猜想,并不意谓着我们已经得到了两个平面平行的性质定理,下面主要来论证我们得到的猜想是否正确.[师生相互交流,共同完成猜想的论证] 师:猜想一是由平面与平面平行的定义得到的,因此在证明过程中要注意应用定义.[猜想一证明] 证明:因为α∥β,所以α与β无公共点.又因为a α,所以 a与β无公共点.故a∥β.师:利用平面与平面平行的定义及线面平行的定义,论证了猜想一的正确性.这便是平面与平面平行的性质定理一.简言之,“面面平行,则线面平行.”[教师擦掉“猜想一”,板书“性质定理一”] [论证完猜想一之后,教师与学生共同研究了“猜想二”,发现,若论证了“猜想四”的正确性质,“猜想二”就容易证了,因而首先讨论“猜想三,猜想四”] 师:“猜想三”是类比平面几何中的结论得到的,还记得初中时,是怎么证明的?[学生回答:反证法] 师:那么,大家可否类比初中的证明方法来证明“猜想三”呢?生:用反证法:假设γ与β不相交,则γ∥β.这样过直线a有两个平面α和γ与β平行.与“过平面外一点有且只有一个平面与已知平面平行”矛盾.故γ与β相交.师:很好.由此可知:不只是发现问题时可用类比法,就是证明方法也可用类比方法.不过猜想三,虽已证明为正确的命题,但教材中并把它作为平面与平面平行的性质定理,大家在今后应用中要注意.[猜想四的证明] 师:猜想四要证明的是直线a∥b,显然a,b共面于平面γ,只需推导出a与b无公共点即可.生:(证法一)因为a∥β,所以 a与β无公共点.又因为a α,b β.所以 a与b无公共点.又因为a γ,b 所以a∥b.师:我们来探讨其它的证明方法.要证线线平行,可以转化为线面平行.生:(证法二)因为a α,又因为α∥β,所以a∥β.又因为a γ,且γ∩β=b,所以a∥b.师:用两种不同证法得出了“猜想四”是正确的.这是平面和平面平行的性质定理二.[教师擦掉“猜想四”,板书“性质定理二”] 师:平面与平面平行的性质定理二给出了在两个平行平面内找一对平行线的方法.即:“作一平面,交两面,得交线,则线线平行.”同时也给我们证明两条直线平行的又一方法.简言之,“面面平行,则线线平行”.[猜想二的证明] 师:猜想二要证明的是直线l⊥β,根据线面垂直的判定定理,就要证明l和平面β内的两条相交直线垂直.那么如何在平面β内作两条相交直线呢?[引导学生回忆:“垂直于同一直线的两个平面平行”的定理的证明] γ,生:(证法一)设l∩α=A,l∩β=B.过AB作平面γ∩α=a,γ∩β=a′.因为α∥β,所以a∥a′.再过AB作平面δ∩α=b,δ∩β=b′.同理b∥b′.又因为l⊥α,所以l⊥a,l⊥b,所以l⊥a′,l⊥b′,又a′∩b′=β,故l⊥β.师:要证明l⊥β,根据线面垂直的定义,就是要证明l和平面β内任何一条直线垂直.生:(证法二)在β内任取一条直线b,经过b作一平面γ,使γ∩α=a,因为α∥β,所以a∥b,因此l⊥α,a α,故l⊥a,所以l⊥b.又因为b为β内任意一条直线,所以l⊥β.[教师擦掉“猜想二”,板书“性质定理三”] [猜想五的证明] 证明:因为AA′∥BB′,所以过AA′,BB′有一个平面γ,且γ∩α=AB,γ∩β=A′B′.因为α∥β,所以AB∥A′B′,因此AA′ B′B为平行四边形.故AA′=BB′.[教师擦掉“猜想五”,板书“性质定理四”] 师:性质定理四,是类比两条平行线的性质得到的.平行线的性质有许多,大家还能类比得出哪些有关平行平面的猜想呢?你能证明吗?请大家课下思考.[因类比法是重要的方法,但平行性质定理已得出,故留作课下思考]四、定理应用师:以上我们通过探索一猜想一论证,得出了平面与平面平行的四个性质定理,下面来作简单的应用.例已知平面α∥β,AB,CD为夹在α,β间的异面线段,E、F分别为AB,CD的中点.求证:EF∥α,EF∥β.师:要证EF∥β,根据直线与平面平行的判定定理,就是要在β内找一条直线与EF平行.证法一:连接AF并延长交β于G.因为AG∩CD=F,所以 AG,CD确定平面γ,且γ∩α=AC,γ∩β=DG.因为α∥β,所以AC∥DG,所以∠ACF=∠GDF,又∠AFC=∠DFG,CF=DF,所以△ACF≌△DFG.所以AF=FG.又 AE=BE,所以EF∥BG,BG 故EF∥β.同理:EF∥α.师:要证明EF∥β,只须过EF作一平面,使该平面与β平行,则根据平面与平面平行性质定理即可证.证法二:因为AB与CD为异面直线,所以A CD.β.在A,CD确定的平面内过A作AG∥CD,交β于G,取AG中点H,连结AC,HF.因为α∥β,所以AC∥DG∥EF.因为DG β,所以HF∥β.又因为 E为AB的中点,因此EH∥BG,所以EH∥β.又EH∩FH=H,因此平面EFH∥β,EF 所以EF∥β.同理,EF∥α.平面EFH,师:从以上两种证明方法可以看出,虽然是解决立体几何问题,但都是通过转化为平面几何的问题来解决的.这是解决立体几何问题的一种技能,只是依据的不同,转化的方式也不同.五、平行平面间的距离师:和两个平行平面同时垂直的直线,叫做这两个平行平面的公垂线,它夹在这两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面有几条公垂线?这些公垂线的位置关系是什么?生:两个平行平面有无数条公垂线,它们都是平行直线.师:夹在两平行平面之间的公垂线段有什么数量关系?根据是什么?生:相等,根据“夹在两个平行平面间的平行线段相等.”师:可见夹在两个平行平面的公垂线段长度是唯一的.而且是夹在两个平行平面间的所有线段中最短的.因此我们把这公垂线段的长度叫做两个平行平面的距离.显然两个平行平面的距离等于其中一个平面上的任一点到另一个平面的垂线段的长度.六、小结1.由学生用文字语言和符号语言来叙述两个平面平行的性质定理.教师总结本节课是由发现与论证两个过程组成的.简单的说就是:由具体问题具体素材用类比等方法猜想命题,并由转化等方法论证猜想的正确性,得到结论.2.在应用定理解决立体几何问题时,要注意转化为平面图形的问题来处理.大家在今后学习中一定要注意掌握这一基本技能.3.线线平行、线面平行与面面平行的判定定理和性质定理构成一套完整的定理体系.在学习中应发现其内在的科学规律:低一级位置关系判定着高一级位置关系;高一级位置关系一定能推导低一级位置关系.下面以三种位置关系为纲应用转化的思想整理如下:七、布置作业课本:p.38,习题五5,6,7,8.课堂教学设计说明1.本节课的中心是两个平行平面的性质定理.定理较多,若采取平铺直叙,直接地给出命题,那样就绕开了发现、探索问题的过程,虽然比较省事,但对发展学生的思维能力是不利的.在设计本教案时,充分考虑到教学研究活动是由发现与论证这样两个过程组成的.因而把“如何引出命题”和“如何猜想”作为本节课的重要活动内容.在教师的启发下,让学生利用具体问题;运用具体素材,通过类比等具体方法,发现命题,完成猜想.然后在教师的引导下,让学生一一完成对猜想的证明,得到两个平面平行的性质定理.也就在这一“探索”、“发现”、“论证”的过程中,培养了学生发现问题,解决问题的能力.在实施过程中,让学生处在主体地位,教师始终处于引导者的位置.特别是在用类比法发现猜想时,学生根据两条平行线的性质类比得出许多猜想.比如:根据“平行于同一条直线的两条直线平行”得到“平行于同一个平面的两个平面平行.”根据“两条直线平行,同位角相等”等,得到“与两个平行平面都相交的直线与两个平面所成的角相等”等等,当然在这些猜想中,有的是正确的,有的是错误的,这里不一一叙述.这就要求教师在教学过程中,注意变化,作适当处理.学生在整节课中,思维活跃,沉浸在“探索、发现”的思维乐趣中,也正是在这种乐趣中,提高了学生的思维能力.2.在对定理的证明过程中,课上不仅要求证出来,而且还考虑多种证法.对于定理的证明,是解决问题的一些常用方法,也可以说是常规方法,是要学生认真掌握的.因此教师要把定理的证明方法,作为教学的重点内容进行必要的讲解,培养学生解决问题的能力.3.转化是重要的数学思想及数学思维方法.它在立体几何中处处体现.实质上处理空间图形问题的基本思想方法就是把它转化为平面图形的问题,化繁为简.特别是在线线平行,线面平行,面面平行三种平行的关系上转化的思想也有较充分的体现,因而在小结中列出三个平行关系相互转让的关系图,一方面便于学生理解,记忆,同时通过此表,能马上发现三者相互推导的关系,能打开思路,发现线索,得到最佳的解题方案.第二篇:高中立体几何高中立体几何的学习高中立体几何的学习主要在于培养空间抽象能力的基础上,发展学生的逻辑思维能力和空间想象能力。
立体几何学案
![立体几何学案](https://img.taocdn.com/s3/m/95b36f1e3d1ec5da50e2524de518964bce84d250.png)
立体几何学案
一、学习目标
1. 理解三维空间的概念,掌握基本的空间几何元素及其性质。
2. 掌握空间中点、线、面的基本关系,包括平行、垂直、相交等。
3. 理解并掌握空间几何体的表面积和体积的计算方法。
4. 培养空间想象能力和几何推理能力。
二、学习内容
1. 空间几何基本概念:介绍三维空间的概念,空间几何元素(点、线、面)的定义和性质。
2. 空间几何关系:研究点、线、面之间的基本关系,包括平行、垂直、相交等。
3. 空间几何体的表面积和体积:介绍常见空间几何体(长方体、球体、圆柱体等)的表面积和体积的计算方法。
4. 空间几何的应用:通过实例介绍空间几何在现实生活中的应用,如建筑设计、机械制造等。
三、学习方法与建议
1. 观察与思考:通过观察生活中的实际例子,理解三维空间的概念和空间几何元素的基本性质。
2. 实践操作:通过制作简单的空间几何模型,理解空间几何关系和几何体的形态。
3. 归纳总结:总结学习内容,形成知识体系,加深对空间几何的理解。
4. 练习与巩固:通过大量的练习题,巩固所学知识,提高解题能力和空间想象能力。
四、学习资源
1. 教材:选择一本合适的立体几何教材,系统学习相关知识。
2. 网络资源:利用互联网查找相关资料,如三维几何图形库、教学视频等。
3. 习题集:选择一本合适的立体几何习题集,进行有针对性的练习。
4. 学习小组:与同学组成学习小组,共同探讨问题,相互学习,共同进步。
立体几何导学案
![立体几何导学案](https://img.taocdn.com/s3/m/c27f65be2b160b4e777fcf11.png)
3. 2.1立体几何中的向量方法(线线角)教学目标:1. 掌握好向量的相关知识:概念、基本运算、建系方法、坐标求法(不定点的坐标)、平行与垂直、法向量求法2. 掌握向量作为工具解决立几问题的方法3. 向量解题后建议多思考传统的方法,不仅可以锻炼思维能力,还可以深刻认识空间几何的本质重点难点:向量作为工具解决立几问题的方法 教学过程: 设疑自探:两条异面直线所成的角:设l 1与l 2两条异面直线,n ∥l 1 , m ∥l 2,则l 1与l 2所成的角α=<n ,m >或α=л -<n ,m > (0<α≤2π)cos<n ,m >=mn m n ⋅⋅或 cosα=mn m n ⋅⋅ (0<α≤2π)1的正方体1111D C B A ABCD -中,E 、F 分别是BD D D ,1的中点,G 在棱CD 上,且CD CG 41=,H 为C 1G 的中点,应用空间向量方法求解下列问题。
(1)求证:EF ⊥B 1C ;(2)求EF 与C 1G 所成的角的余弦; (3)求FH 的长。
例2.如图,在棱长为2的正方体1111D C B A ABCD -中,E 是DC 的中点,取如图所示的空间直角坐标系。
(1)写出A 、B 1、E 、D 1的坐标; (2)求AB 1与D 1E 所成的角的余弦值。
解疑合探:.cos sin 0np p n P P o ⋅==βθP αnP 0dOθβ1、在正方体1111D C B A ABCD -中,如图E 、F 分别是BB 1,CD 的中点,(1)求证:⊥F D 1平面ADE ; (2)),cos(1CB EF2.如图,长方体ABCD —A 1B 1C 1D 1中,AB=BC=2, AA 1=1,E 、H 分别是A 1B 1和BB 1的中点.求:(1)EH 与AD 1所成的角; (2)AC 1与B 1C 所成的角.3. 如图所示,ABCD 是一个正四面体,E 、F 分别为BC 和AD 的中点.求:AE 与CF 所成的角质疑再探:请同学们踊跃发言提问,解除心中的疑问。
必修2第一章立体几何导学案
![必修2第一章立体几何导学案](https://img.taocdn.com/s3/m/aaed3ea72f60ddccdb38a045.png)
1、1简单几何体学习目标1、知识与技能了解简单旋转体和简单多面体的有关概念。
通过教材展示的几何体的实物、模型、图片等,让学生感受空间几何体的结构特征。
3、情感、态度与价值观通过学生生活中的实物展示和化学中的物质晶体状来培养学生观察、分析、思考的科学态度。
进一步培养学生的数学建模思想。
【重点】简单几何体的有关概念。
【难点】对简单多面体中棱柱、棱台概念的理解。
学习过程一、预习案:“我学习,我主动,我参与,我收获!”◆学法指导:认真阅读教材p3-p4,初步了解简单几何体的有关概念及结构特征,最后把自己在学习中遇到的疑惑写下来,有待上课时和老师、同学共同探究解决。
◆教材助读:1、旋转体(1)旋转面:一条绕着它所在的平面内的一条旋转所形成的曲面。
(2)旋转体:的旋转面围成的几何体。
2、球(1)球面:所在的直线为旋转轴,将半圆旋转所围成的曲面。
(2)球:所围成的几何体叫作球体,简称球。
(3)球的有关概念①球心: .②球的半径:连接和的线段。
③球的直径:连接,并且的线段。
3、圆柱、圆锥、圆台(1)定义:分别以、、所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体分别叫作圆柱、圆锥、圆台。
(2)高、底面、侧面及侧面的母线。
4、多面体:由若干个围成的几何体叫作多面体。
5、棱柱:两个面互相平行(无公共点的两个平面是平行的),其余各面都是,并且每相邻两个四边形的公共边都,这些面围成的几何体叫作棱柱。
(1)棱柱的有关概念:棱柱定义里的的平面叫作棱柱的底面,其余各面叫作棱柱的侧面,棱柱的侧面是。
叫作棱柱的棱,与的公共顶点叫作棱柱的顶点。
(2)棱柱的分类按侧棱是否垂直于底面(侧棱垂直于底面)斜棱柱(侧棱不垂直于底面)按底面多边形形状(底面是三角形)(底面是四边形)(底面是五边形)……(3)正棱柱:底面是的叫作正棱柱。
6、棱锥:有一个面是,其余各面是的三角形,这些面围成的几何体叫作棱锥。
7、棱台:用一个棱锥底面的平面去截棱锥,,叫作棱台。
高二必修二《立体几何初步》导学案
![高二必修二《立体几何初步》导学案](https://img.taocdn.com/s3/m/e4ff693426fff705cd170ac7.png)
立体几何初步1.1.1 棱柱、棱锥、棱台学习目标1. 感受空间实物及模型,增强学生的直观感知;2. 能根据几何结构特征对空间物体进行分类;3. 理解多面体的有关概念;4. 会用语言概述棱柱、棱锥、棱台的结构特征.学习过程:一.学生活动仔细观察下面的几何体,他们有什么共同特点?(1) (2) (3) (4) 二 建构数学1.棱柱的定义:一般地_________________________________________的几何体叫棱柱; ___________________________叫底面;__________________________叫棱柱的侧面. 底面为三角形、四边形、五边形……的棱柱分别称为三棱柱、四棱柱、五棱柱…… 棱柱的特点:_____________________________________________________________; 棱柱的表示:_____________________________________________________________. 2.下面几何体有什么共同特点?3.棱锥的定义:_____________________________________________________________; 棱锥的特点:_____________________________________________________________; 棱锥的表示图(2)记为三棱锥ABC S .(1) SABC4.棱台的定义:_____________________________________________________________; 棱台的特点:上下两底面平行,侧面是梯形.5.多面体的概念:___________________________________________________________. 三 知识运用 例题例1 画一个四棱柱和一个三棱台.例2 如图,用过BC 的一个平面(此平面不过D A '')截去长方体的一个角,剩下的几何体是什么?截去的几何体是什么?请说出各部分的名称.巩固练习1.如图,四棱柱的六个面都是平行四边形,这个四棱柱可以由哪个平面图形按怎样的方向平移得到?2.画一个三棱锥和一个四棱台.3.多面体至少有几个面?这个多面体是怎样的几何体?四 回顾小结棱柱、棱锥、棱台的有关概念;多面体图形的识别.A A ' D D 'B B 'C ' C五学习评价基础知识1、棱柱的侧面是形,棱锥的侧面是形,棱台的侧面是形.2、用过不相邻的两条侧棱所在的平面截一个棱柱,则截面图形锥,则截面图形是,用过不相邻的两条侧棱所在的平面截一个棱台,则截面图形是.3、一个五棱柱如图所示,这个棱柱的底面是,侧棱是,侧面是.4、正方体可以看做平移,平移的距离形成的几何体.5、有下列命题:(1)棱柱的侧面都是平行四边形;(2)棱锥的侧面为三角形,且所有侧面都有一个共同的公共点;(3)多面体至少有四个面;(4)棱台的侧棱所在直线均相交于同一点.以上命题中正确的是 .6、给出下列命题:(1)棱柱的底面一定是平行四边形;(2)棱锥的底面一定是三角形;(3)棱锥被平面分成的两部分不可能都是棱锥;(4)棱柱被两面分成的两部分可以都是棱柱.正确的是.7、如图所示,哪些图形经过折叠可以围成一个棱柱?先想一想,再折一折.拓展延伸: 9、如图所示(1)如果你认为△ABC 是水平放置的三角形,试以它为底画一个三棱柱;(2)如果你认为△ABC 是竖起放置的三角形,试以它为底画一个三棱柱.10、指出棱柱、棱锥、棱台之间的关系.答案立体几何1.1.1棱柱、棱锥、棱台1. 平行四边 三角形 梯2. 平行四边形 三角形 梯形. 3五边形ABCDE ,五边形11111E D C B A ,11111,,,,EE DD CC BB AA ,四边形A A BB B B CC C C DD D D EE E E AA 1111111111,,,, 4. 正方形沿着正对着(垂直)于正方形所在平面的方向,等于正方形的边长 5. (1)(2)(3)(4) 6. (4) 7.略8.略9略。
2012--2013学生版立体几何导学案
![2012--2013学生版立体几何导学案](https://img.taocdn.com/s3/m/6fda861dff00bed5b9f31d0d.png)
222正(主)视图22侧(左)视图2012-2013学年高三数学导学案立体几何三视图和表面积、体积【高考目标定位】1.了解空间图形的不同表示形式;掌握画三视图的基本技能;)画出的视图与直观图.2.理解简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如:纸板)制作模型,会用斜二侧法画出它们的直观图;3.了解柱、锥、台体及球的表面积、侧面积和体积计算公式,能运用柱、锥、台体及球的有关公式进行计算和解决实际问题。
4.理解计算公式的由来;运用公式解决问题【考纲知识梳理】(一)空间几何体的表面积1.棱柱、棱锥、棱台的表面积、侧面积棱柱、棱锥、棱台是由多个平面图形围成的多面体,它们的表面积就是,也就是;它们的侧面积就是 .2.圆柱、圆锥、圆台的表面积、侧面积圆柱的侧面展开图是,长是圆柱底面圆的,宽是圆柱的设圆柱的底面半径为r,母线长为l,则S圆柱侧= S圆柱表=圆锥的侧面展开图为,其半径是圆锥的,弧长等于,设为r圆锥底面半径,l为母线长,则侧面展开图扇形中心角为,S圆锥侧= ,S圆锥表=圆台的侧面展开图是,其内弧长等于,外弧长等于,设圆台的上底面半径为r, 下底面半径为R, 母线长为l, 则侧面展开图扇环中心角为,S圆台侧= ,S圆台表=3.球的表面积:如果球的半径为R,那么它的表面积S=(二)空间几何体的体积1.柱体的体积公式V柱体=2.锥体的体积公式V锥体=3.台体的体积公式V台体=4. 球的体积公式V球=【课前热身】1.一空间几何体的三视图如图所示,则该几何体的体积为( ). A.223π+ B. 423π+ C.2323π+ D.2343π+2.某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a+b的最大值为()A.22B.23C.4D .25【典型例析】题型一:三视图问题例1.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱柱C.正方形D.圆柱动手试试:一个几何体的三视图如图所示,则该几何体的表面积为______________题型二:体积问题例2.已知三棱锥S ABC-的所有顶点都在球O的求面上,ABC∆是边长为1的正三角形,SC 为球O的直径,且2SC=;则此棱锥的体积为()()A26()B36()C23()D22动手试试:三棱柱ABC ABC P AA-''''中,为上一点,求V VP BBCC ABC ABC-''-''':俯视图题型三:侧面展开图问题例3.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为。
立体几何中点到直线的距离、点到平面的距离的计算 导学案
![立体几何中点到直线的距离、点到平面的距离的计算 导学案](https://img.taocdn.com/s3/m/771fd570767f5acfa1c7cd4d.png)
立体几何中点到直线的距离、点到平面的距离的计算班级:姓名:小组:【学习目标】(1)理解立体几何中点到直线的距离、点到平面的距离的概念.(2)掌握各种距离的计算方法.【重点、难点】重点:点到直线、点到平面距离公式的推导及应用.难点:把空间距离转化为向量知识求解.【学法指导】空间距离包括:点到点、点到线、点到面、线到线、线到面、面到面之间的距离.其中以点到面的距离最为重要,其他距离,如线到面、面到面的距离均可转化为点到面的距离,用向量法来求解。
【预习感知】1.两点间的距离的求法.设a=(a1,a2,a3),则|a|=______________,若A(x1,y1,z1),B(x2,y2,z2),则d AB=|AB→|=________________.2.点到直线距离的求法设l是过点P平行于向量s的直线,A是直线l外定点.作AA′⊥l,垂足为A′,则点A到直线l的距离d等于线段AA′的长度,而向量P A→在s上的投影的大小|P A→·s|等于线段P A′的长度,所以根据勾股定理有点A到直线l的距离d=_____________.3.点到平面的距离的求法设π是过点P垂直于向量n的平面,A是平面π外一定点.作AA′⊥π,垂足为A′,则点A到平面π的距离d等于线段AA′的长度,而向量P A→在n上的投影的大小|P A→·n0|等于线段AA′的长度,所以点A到平面π的距离d=____________.【预习检测】1.已知直线l过定点A(2,3,1),且方向向量为n=(0,1,1),则点P(4,3,2)到l的距离为()A.322B.22 C.102变式训练 如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则点O 的平面ABC 1D 1的距离为( )A .12B .24C .22D .32【课堂检测】(见课堂多媒体,随堂检测) 【课后训练】10.已知三棱柱ABC —A 1B 1C 1的各条棱长均为a ,侧棱垂直于底面,D 是侧棱CC 1的中点,问a为何值时,点C 到平面AB 1D 的距离为1.。
立体几何中点到直线的距离、点到平面的距离的计算导学案
![立体几何中点到直线的距离、点到平面的距离的计算导学案](https://img.taocdn.com/s3/m/ab3a8121195f312b3069a51b.png)
全国名校高中数学优质学案专题汇编(经典问题附详解)选修2-1导学案立体几何中点到直线的距离、点到平面的距离的计算 班级: 姓名:小组:【学习目标】(1) 理解立体几何中点到直线的距离、点到平面的距离的 概念.(2) 掌握各种距离的计算方法.【重点、难点】重点:点到直线、点到平面距离公式的推导及应用. 难点:把空间距离转化为向量知识求解. 【学法指导】空间距离包括:点到点、点到线、点到面、线到线、线 到面、面到面之间的距离.其中以点到面的距离最为重要, 设I 是过点P 平行于向量s 的直线,A 是直线I 外定点.作AA '丄I ,垂足为A ',则点A 到直线I 的距离彳占d 等于线段AA '的长度,而向量PA 在 s 上的投 /1P影的大小|PA S o l 等于线段RA 的长度,所以根 据勾股定理有点A 到直线I 的距离d= ______________________________ .3.点到平面的距离的求法设n 是过点P 垂直于向量n 的平面,A 是平面n 外一定 点.作AA'丄n 垂足为A ;则点A 到平面n /A 的距离d 等于线段AA 的长度,而向量PA 在. ;n 上的投影的大小|PA n o |等于线段AA 的长 ’ ——- 度,所以点A 到平面n 的距离d = _________________________ .其他距离,如线到面、面到面的距离均可转化为点到面的距 离,用向量法来求解。
【预习感知】1. 两点间的距离的求法.设 a = (a i , a 2, a 3),则|a |= _____________ ,若 A(x i , y i , 乙),B (X 2 , y 2, Z 2),贝S d AB= |AB| = ______________ .选修2-1导学案全国名校高中数学优质学案专题汇编(经典问题附详解)2. 点到直线距离的求法【预习检测】1.已知直线I过定点A(2,3,1),且方向向量为n = (0,1,1),则点P(4,3,2)到I的距离为()全国名校高中数学优质学案专题汇编(经典问题附详解)选修2-i 导学案第3页A.2;'3 2.如图所示,正方体 ABCD — A i B i C i D i 的棱长为1, O是底面A i B i C i D i 的中心,则0到平面ABC i D i 的距离是() C.22变式训练 已知直线I 过定点A(2,3,i),且方向向量为n =(0,i,i),则点P(4,3,2)到I 的距离为(3. 已知长方体 ABCD — A i B i C i D i 中,AB = 6, BC = 4, BB i = 3,则点B i 到平面A i BC i 的距离为 ______________ .【自主探究】 ★求点到直线的距离如图,在空间直角坐标系中有长方体 ABCD — A'B'C'D ; AB =★点面距已知正方形ABCD 的边长为4, E 、F 分别是AB 、AD 的 中点,GC 丄平面ABCD ,且|GC|= 2,求点B 到平面EFG 的距离.全国名校高中数学优质学案专题汇编(经典问题附详解)选修2-i导学案第4页【课堂检测】(见课堂多媒体,随堂检测)【课后训练】i0.已知三棱柱ABC—A i B i C i的各条棱长均为a,侧棱变式训练如图,正方体ABCD —A i B i C i D i的棱长为1, O是底面A i B i C i D i的中心,则点0的平面ABC i D i的距离为B. 42C. 22D- 23A.A H 垂直于底面, 为何值时,点。
立体图形导学案
![立体图形导学案](https://img.taocdn.com/s3/m/332eb9f1941ea76e58fa04e5.png)
立体图形导学案
学习目标:
1、用一定层次、方法展示和整理有关立体图形的特征。
2、从一定的方向观察物体来发展空间观念。
3、通过观察、操作认识长方体、正方体、圆柱和圆锥。
4、认识长方体、正方体、圆柱和圆锥的展开图。
5、能辨认从不同方向看到的物体的形状相对位置。
学习重点:
发展学生的空间观念。
学习难点:
发展学生的观察能力和空间想象能力。
学习过程:
一、激趣引入
同学们,学了这么多几何图形,一提起几何,你能想到什么?
同学们说的是点、线、面、体,几何就是研究点、线、面、体之间的关系。
你认为它们之间有什么关系?动手比划比划。
二、验证特征
我们学过哪些立体图形?如果把这些图形分成两类,可以怎样分?为什么?
长方体和正方体之间有什么关系?
让我们乘着复习的快车来回忆一下圆柱和圆锥的特征
三:观察形状
用积木拼成教材回顾与交流的第二题中的立体图形,请同学们研究从不同的位置或是从不同的方向所看到的不同形状的方法。
四:拓展应用,解决问题
完成课本上对应的练习题
拓展:用一根长144厘米的铁丝做成一个长方体的框架,长、宽、高的比是4:3:2,这个长方体的表面积是多少?体积是多少?。
(新教材)人教A版高中数学必修第二册学案 立体几何导学案含含配套练习答案
![(新教材)人教A版高中数学必修第二册学案 立体几何导学案含含配套练习答案](https://img.taocdn.com/s3/m/93aae45414791711cc7917ff.png)
8.1基本立体图形第1课时棱柱、棱锥、棱台的结构特征考点学习目标核心素养棱柱的结构特征理解棱柱的定义,知道棱柱的结构特征,并能识别直观想象棱锥、棱台的结构特征理解棱锥、棱台的定义,知道棱锥、棱台的结构特征,并能识别直观想象应用几何体的平面展开图能将棱柱、棱锥、棱台的表面展开成平面图形直观想象问题导学预习教材P97-P100的内容,思考以下问题:1.空间几何体的定义是什么?2.空间几何体分为哪几类?3.常见的多面体有哪些?4.棱柱、棱锥、棱台有哪些结构特征?1.空间几何体的定义及分类(1)定义:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.(2)分类:常见的空间几何体有多面体与旋转体两类.2.空间几何体类别定义图示多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点旋转体一条平面曲线(包括直线)绕它所在平面内的这条定直线旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体.这条定直线叫做旋转体的轴3.棱柱、棱锥、棱台的结构特征结构特征及分类图形及记法棱柱结构特征(1)有两个面(底面)互相平行(2)其余各面都是四边形(3)相邻两个四边形的公共边都互相平行记作棱柱ABCDEFA′B′C′D′E′F′分类按底面多边形的边数分为三棱柱、四棱柱…续表结构特征及分类图形及记法棱锥结构特征(1)有一个面(底面)是多边形(2)其余各面(侧面)都是有一个公共顶点的三角形记作棱锥S-ABCD 分类按底面多边形的边数分为三棱锥、四棱锥……棱台结构特征(1)上下底面互相平行,且是相似图形(2)各侧棱延长线相交于一点(或用一个平行于棱锥底面的平面去截棱锥,底面与截面之间那部分多面体叫做棱台)记作棱台ABCD-A′B′C′D′分类由三棱锥、四棱锥、五棱锥……截得的棱台分别为三棱台、四棱台、五棱台……(1)棱柱、棱锥、棱台的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).(2)各种棱柱之间的关系 ①棱柱的分类棱柱⎩⎪⎨⎪⎧直棱柱⎩⎪⎨⎪⎧正棱柱(底面为正多边形)一般的直棱柱斜棱柱②常见的几种四棱柱之间的转化关系判断(正确的打“√”,错误的打“×”) (1)棱柱的侧面都是平行四边形.( )(2)用一个平面去截棱锥,底面和截面之间的部分叫棱台. ( ) (3)将棱台的各侧棱延长可交于一点.( ) 答案:(1)√ (2)× (3)√下面多面体中,是棱柱的有( )A .1个B .2个C .3个D .4个解析:选D.根据棱柱的定义进行判定知,这4个都满足. 下面四个几何体中,是棱台的是( )解析:选C.A 项中的几何体是棱柱.B 项中的几何体是棱锥;D 项中的几何体的棱AA ′,BB′,CC′,DD′没有交于一点,则D项中的几何体不是棱台;很明显C项中的几何体是棱台.在三棱锥A-BCD中,可以当作棱锥底面的三角形的个数为()A.1 B.2C.3 D.4解析:选D.每个面都可作为底面,有4个.下列说法正确的有________.(填序号)①棱锥的侧面为三角形,且所有侧面都有一个公共点;②棱台的侧面有的是平行四边形,有的是梯形;③棱台的侧棱所在直线均相交于同一点.解析:棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故①对.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故②错,③对.因而正确的有①③.答案:①③棱柱的结构特征下列关于棱柱的说法:①所有的面都是平行四边形;②每一个面都不会是三角形;③两底面平行,并且各侧棱也平行;④被平面截成的两部分可以都是棱柱.其中正确说法的序号是__________.【解析】①错误,棱柱的底面不一定是平行四边形;②错误,棱柱的底面可以是三角形;③正确,由棱柱的定义易知;④正确,棱柱可以被平行于底面的平面截成两个棱柱,所以正确说法的序号是③④.【答案】③④棱柱结构特征的辨析技巧(1)扣定义:判定一个几何体是否是棱柱的关键是棱柱的定义.①看“面”,即观察这个多面体是否有两个互相平行的面,其余各面都是四边形;②看“线”,即观察每相邻两个四边形的公共边是否平行.(2)举反例:通过举反例,如与常见几何体或实物模型、图片等不吻合,给予排除.1.下列命题中正确的是()A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫棱柱的底面C.棱柱的侧面都是平行四边形,而底面不是平行四边形D.棱柱的侧棱都相等,侧面是平行四边形解析:选D.由棱柱的定义可知,选D.2.如图所示的三棱柱ABC-A1B1C1,其中E,F,G,H是三棱柱对应边上的中点,过此四点作截面EFGH,把三棱柱分成两部分,各部分形成的几何体是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,请说明理由.解:截面以上的几何体是三棱柱AEF-A1HG,截面以下的几何体是四棱柱BEFC-B1HGC1.棱锥、棱台的结构特征下列关于棱锥、棱台的说法:①用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;②棱台的侧面一定不会是平行四边形;③棱锥的侧面只能是三角形;④由四个面围成的封闭图形只能是三棱锥;⑤棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.【解析】①错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截面之间的部分不是棱台.②正确,棱台的侧面一定是梯形,而不是平行四边形.③正确,由棱锥的定义知棱锥的侧面只能是三角形.④正确,由四个面围成的封闭图形只能是三棱锥.⑤错误,如图所示四棱锥被平面截成的两部分都是棱锥.所以正确说法的序号为②③④.【答案】②③④判断棱锥、棱台形状的两种方法(1)举反例法结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点1.棱台不具有的性质是()A.两底面相似B.侧面都是梯形C.侧棱长都相等D.侧棱延长后相交于一点解析:选C.由棱台的概念(棱台的产生过程)可知A,B,D都是棱台具有的性质,而侧棱长不一定相等.2.下列说法中,正确的是()①棱锥的各个侧面都是三角形;②有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥;③四面体的任何一个面都可以作为棱锥的底面;④棱锥的各侧棱长相等.A.①②B.①③C.②③D.②④解析:选B.由棱锥的定义,知棱锥的各侧面都是三角形,故①正确;有一个面是多边形,其余各面都是三角形,如果这些三角形没有一个公共顶点,那么这个几何体就不是棱锥,故②错;四面体就是由四个三角形所围成的封闭几何体,因此以四面体的任何一个面作底面的几何体都是三棱锥,故③正确;棱锥的侧棱长可以相等,也可以不相等,故④错.空间几何体的平面展开图(1)水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的平面展开图(图中数字写在正方体的外表面上),若图中的“2”在正方体的上面,则这个正方体的下面是()A.1 B.9C.快D.乐(2)如图是三个几何体的侧面展开图,请问各是什么几何体?【解】(1)选 B.由题意,将正方体的展开图还原成正方体,“1”与“乐”相对,“2”与“9”相对,“0”与“快”相对,所以下面是“9”.(2)题图①中,有5个平行四边形,而且还有两个全等的五边形,符合棱柱的特点;题图②中,有5个三角形,且具有共同的顶点,还有一个五边形,符合棱锥的特点;题图③中,有3个梯形,且其腰的延长线交于一点,还有两个相似的三角形,符合棱台的特点,把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.多面体展开图问题的解题策略(1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推,同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.1.某同学制作了一个对面图案均相同的正方体礼品盒,如图所示,则这个正方体礼品盒的平面展开图应该为()解析:选A.其展开图是沿盒子的棱剪开,无论从哪条棱剪开,剪开的相邻面在展开图中可以不相邻,但未剪开的相邻面在展开图中一定相邻.相同的图案是盒子上相对的面,展开后不能相邻.2.根据如图所示的几何体的表面展开图,画出立体图形.解:如图是以四边形ABCD为底面,P为顶点的四棱锥.其图形如图所示.1.下面的几何体中是棱柱的有()A.3个B.4个C.5个D.6个解析:选C.棱柱有三个特征:(1)有两个面相互平行.(2)其余各面是四边形.(3)侧棱相互平行.本题所给几何体中⑥⑦不符合棱柱的三个特征,而①②③④⑤符合,故选C.2.下面图形中,为棱锥的是()A.①③B.③④C.①②④D.①②解析:选C.根据棱锥的定义和结构特征可以判断,①②是棱锥,③不是棱锥,④是棱锥.故选C.3.有一个多面体,共有四个面围成,每一个面都是三角形,则这个几何体为()A.四棱柱B.四棱锥C.三棱柱D.三棱锥解析:选D.根据棱锥的定义可知该几何体是三棱锥.4.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为__________cm.解析:因为棱柱有10个顶点,所以棱柱为五棱柱,共有五条侧棱,所以侧棱长为60 5=12(cm).答案:125.画一个三棱台,再把它分成:(1)一个三棱柱和另一个多面体.(2)三个三棱锥,并用字母表示.解:画三棱台一定要利用三棱锥.(1)如图①所示,三棱柱是棱柱A′B′C′AB″C″,另一个多面体是B′C′C″B″BC.(2)如图②所示,三个三棱锥分别是A′ABC,B′A′BC,C′A′B′C.[A基础达标]1.下列说法正确的是()A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱锥被平面分成的两部分不可能都是棱锥D.棱柱被平面分成的两部分可能都是棱柱解析:选D.棱柱和棱锥的底面可以是任意多边形,故选项A、B均不正确;可沿棱锥的侧棱将其分割成两个棱锥,故C错误;用平行于棱柱底面的平面可将棱柱分割成两个棱柱.2.具备下列条件的多面体是棱台的是()A .两底面是相似多边形的多面体B .侧面是梯形的多面体C .两底面平行的多面体D .两底面平行,侧棱延长后交于一点的多面体解析:选D.由棱台的定义可知,棱台的两底面平行,侧棱延长后交于一点. 3.如图,能推断这个几何体可能是三棱台的是( )A .A 1B 1=2,AB =3,B 1C 1=3,BC =4B .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =3 C .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =4D .AB =A 1B 1,BC =B 1C 1,CA =C 1A 1解析:选C.根据棱台是由棱锥截成的进行判断.选项A 中A 1B 1AB ≠B 1C 1BC ,故A 不正确;选项B 中B 1C 1BC ≠A 1C 1AC ,故B 不正确;选项C 中A 1B 1AB =B 1C 1BC =A 1C 1AC,故C 正确;选项D 中满足这个条件的可能是一个三棱柱,不是三棱台.故选C.4.一个棱锥的各棱长都相等,那么这个棱锥一定不是( ) A .三棱锥 B .四棱锥 C .五棱锥D .六棱锥解析:选D.由题意可知,每个侧面均为等边三角形,每个侧面的顶角均为60°,如果是六棱锥,因为6×60°=360°,所以顶点会在底面上,因此不是六棱锥.5.下列图形中,不能折成三棱柱的是( )解析:选C.C 中,两个底面均在上面,因此不能折成三棱柱,其余均能折成三棱柱. 6.四棱柱有________条侧棱,________个顶点.解析:四棱柱有4条侧棱,8个顶点(可以结合正方体观察求得). 答案:4 87.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱. 解析:面数最少的棱台是三棱台,共有5个面,6个顶点,9条棱. 答案:5 6 98.在下面的四个平面图形中,是侧棱都相等的四面体的展开图的为__________.(填序号)解析:由于③④中的图组不成四面体,只有①②可以.答案:①②9.根据下列关于空间几何体的描述,说出几何体的名称:(1)由6个平行四边形围成的几何体;(2)由7个面围成的几何体,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形;(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.解:(1)这是一个上、下底面是平行四边形,4个侧面也是平行四边形的四棱柱.(2)这是一个六棱锥.(3)这是一个三棱台.10.画出如图所示的几何体的表面展开图.解:表面展开图如图所示:(答案不唯一)[B能力提升]11.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱共有对角线()A.20条B.15条C.12条D.10条解析:选D.如图,在五棱柱ABCDE A1B1C1D1E1中,从顶点A出发的对角线有两条:AC1,AD1,同理从B,C,D,E点出发的对角线均有两条,共有2×5=10(条).12.一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面()A.至多有一个是直角三角形B.至多有两个是直角三角形C.可能都是直角三角形D.必然都是非直角三角形解析:选C.注意到答案特征是研究侧面最多有几个直角三角形,这是一道开放性试题,需要研究在什么情况下侧面的直角三角形最多.在如图所示的长方体中,三棱锥AA1C1D1的三个侧面都是直角三角形.13.长方体ABCD-A1B1C1D1的长、宽、高分别为3,2,1,从A到C1沿长方体的表面的最短距离为________.解析:结合长方体的三种展开图不难求得AC1的长分别是:32,25,26,显然最小值是3 2.答案:3 214.如图,已知长方体ABCD-A1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCEF把这个长方体分成两部分,各部分几何体的形状是什么?解:(1)是棱柱.是四棱柱.因为长方体中相对的两个面是平行的,其余的每个面都是矩形(四边形),且每相邻的两个矩形的公共边都平行,符合棱柱的结构特征,所以是棱柱.(2)各部分几何体都是棱柱,分别为棱柱BB1FCC1E和棱柱ABF A1DCED1.[C拓展探究]15.如图,在一个长方体的容器中装有少量水,现在将容器绕着其底部的一条棱倾斜,在倾斜的过程中:(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?(2)水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底部的一个顶点,试着讨论水面和水的形状.解:(1)不对,水面的形状就是用一个与棱(倾斜时固定不动的棱)平行的平面截长方体时截面的形状,因而是矩形,不可能是其他非矩形的平行四边形.(2)不对,水的形状就是用与棱(将长方体倾斜时固定不动的棱)平行的平面将长方体截去一部分后,剩余部分的几何体是棱柱,水比较少时,是三棱柱,水多时,可能是四棱柱;但不可能是棱台或棱锥.(3)用任意一个平面去截长方体,其截面形状可以是三角形,四边形,五边形,六边形,因而水面的形状可以是三角形,四边形,五边形,六边形;水的形状可以是棱锥,棱柱,但不可能是棱台.第2课时圆柱、圆锥、圆台、球、简单组合体的结构特征考点学习目标核心素养圆柱、圆锥、圆台、球的概念理解圆柱、圆锥、圆台、球的定义,知道这四种几何体的结构特征,能够识别和区分这些几何体直观想象简单组合体的结构特征了解简单组合体的概念和基本形式直观想象旋转体中的计算问题会根据旋转体的几何体特征进行相关运算直观想象、数学运算问题导学预习教材P101-P104的内容,思考以下问题:1.常见的旋转体有哪些?是怎样形成的?2.这些旋转体有哪些结构特征?它们之间有什么关系?3.这些旋转体的侧面展开图和轴截面分别是什么图形?1.圆柱、圆锥、圆台和球的结构特征(1)圆柱的结构特征定义以矩形的一边所在直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体图示及相关概念轴:旋转轴叫做圆柱的轴底面:垂直于轴的边旋转而成的圆面侧面:平行于轴的边旋转而成的曲面母线:无论旋转到什么位置,平行于轴的边柱体:圆柱和棱柱统称为柱体■名师点拨(1)圆柱有无数条母线,它们平行且相等.(2)平行于底面的截面是与底面大小相同的圆,如图1所示.(3)过轴的截面(轴截面)都是全等的矩形,如图2所示.(4)过任意两条母线的截面是矩形,如图3所示.(2)圆锥的结构特征定义以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转一周形成的面所围成的旋转体图示及相关概念轴:旋转轴叫做圆锥的轴底面:垂直于轴的边旋转而成的圆面侧面:直角三角形的斜边旋转而成的曲面母线:无论旋转到什么位置,不垂直于轴的边锥体:圆锥和棱锥统称为锥体(1)圆锥有无数条母线,它们有公共点即圆锥的顶点,且长度相等.(2)平行于底面的截面都是圆,如图1所示.(3)过轴的截面是全等的等腰三角形,如图2所示.(4)过任意两条母线的截面是等腰三角形,如图3所示.(3)圆台的结构特征定义用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分图示及相关概念轴:圆锥的轴底面:圆锥的底面和截面侧面:圆锥的侧面在底面和截面之间的部分母线:圆锥的母线在底面与截面之间的部分台体:圆台和棱台统称为台体■名师点拨(1)圆台有无数条母线,且长度相等,延长后相交于一点.(2)平行于底面的截面是圆,如图1所示.(3)过轴的截面是全等的等腰梯形,如图2所示.(4)过任意两条母线的截面是等腰梯形,如图3所示.(4)球的结构特征定义以半圆的直径所在直线为旋转轴,旋转一周形成的曲面叫做球面,球面所围成的旋转体叫做球体,简称球图示及相关概念球心:半圆的圆心半径:半圆的半径直径:半圆的直径■名师点拨(1)球心和截面圆心的连线垂直于截面.(2)球心到截面的距离d与球的半径R及截面圆的半径r有如下关系:r=R2-d2.2.简单组合体(1)概念由简单几何体组合而成的几何体叫做简单组合体.(2)两种构成形式①由简单几何体拼接而成;②由简单几何体截去或挖去一部分而成.判断(正确的打“√”,错误的打“×”)(1)直角三角形绕一边所在直线旋转得到的旋转体是圆锥.()(2)夹在圆柱的两个平行截面间的几何体是一圆柱.()(3)半圆绕其直径所在直线旋转一周形成球.()(4)圆柱、圆锥、圆台的底面都是圆面.()答案:(1)×(2)×(3)×(4)√下列几何体中不是旋转体的是()解析:选D.由旋转体的概念可知,选项D不是旋转体.过圆锥的轴作截面,则截面形状一定是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形答案:B可以旋转得到如图的图形的是()解析:选A.题图所示几何体上面是圆锥,下面是圆台,故平面图形应是由一个直角三角形和一个直角梯形构成.指出图中的几何体是由哪些简单几何体构成的.解:①是由一个圆锥和一个圆柱组合而成的;②是由一个圆柱和两个圆台组合而成的;③是由一个三棱柱和一个四棱柱组合而成的.圆柱、圆锥、圆台、球的概念(1)给出下列说法:①圆柱的底面是圆面;②经过圆柱任意两条母线的截面是一个矩形面;③圆台的任意两条母线的延长线可能相交,也可能不相交;④夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.(2)给出以下说法:①球的半径是球面上任意一点与球心所连线段的长;②球的直径是球面上任意两点间所连线段的长;③用一个平面截一个球,得到的截面可以是一个正方形;④过圆柱轴的平面截圆柱所得截面形状是矩形.其中正确说法的序号是________.【解析】(1)①正确,圆柱的底面是圆面;②正确,如图所示,经过圆柱任意两条母线的截面是一个矩形面;③不正确,圆台的母线延长相交于一点;④不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体.(2)根据球的定义知,①正确;②不正确,因为球的直径必过球心;③不正确,因为球的任何截面都是圆面;④正确.【答案】(1)①②(2)①④(1)判断简单旋转体结构特征的方法①明确由哪个平面图形旋转而成;②明确旋转轴是哪条直线.(2)简单旋转体的轴截面及其应用①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量;②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.判断下列各命题是否正确.(1)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;(2)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;(3)到定点的距离等于定长的点的集合是球.解:(1)错误.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示.(2)正确.(3)错误.应为球面.简单组合体的结构特征如图所示的几何体是由下面哪一个平面图形旋转而形成的()【解析】该几何体自上而下由圆锥、圆台、圆台、圆柱组合而成,故应选A.【答案】 A[变条件、变问法]若将本例选项B中的平面图形旋转一周,试说出它形成的几何体的结构特征.解:①是直角三角形,旋转后形成圆锥;②是直角梯形,旋转后形成圆台;③是矩形,旋转后形成圆柱,所以旋转后形成的几何体如图所示.通过观察可知,该几何体是由一个圆锥、一个圆台和一个圆柱自上而下拼接而成的.不规则平面图形旋转形成几何体的结构特征的分析策略(1)分割:首先要对原平面图形适当分割,一般分割成矩形、梯形、三角形或圆(半圆或四分之一圆)等基本图形.(2)定形:然后结合圆柱、圆锥、圆台、球的形成过程进行分析.已知AB是直角梯形ABCD中与底边垂直的腰,如图所示.分别以AB,BC,CD,DA所在的直线为轴旋转,试说明所得几何体的结构特征.解:(1)以AB 边所在的直线为轴旋转所得旋转体是圆台,如图①所示.(2)以BC 边所在的直线为轴旋转所得旋转体是一个组合体:下部为圆柱,上部为圆锥,如图②所示.(3)以CD 边所在的直线为轴旋转所得旋转体为一个组合体:上部为圆锥,下部为圆台,再挖去一个小圆锥,如图③所示.(4)以AD 边所在的直线为轴旋转所得旋转体是一个组合体:一个圆柱上部挖去一个圆锥,如图④所示.旋转体中的计算问题如图所示,用一个平行于圆锥SO 底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm ,求圆台O ′O 的母线长.【解】 设圆台的母线长为l cm ,由截得的圆台上、下底面面积之比为1∶16,可设截得的圆台的上、下底面的半径分别为r cm ,4r cm.过轴SO 作截面,如图所示,则△SO ′A ′∽△SOA ,SA ′=3 cm. 所以SA ′SA =O ′A ′OA ,所以33+l =r 4r =14.解得l =9,即圆台O ′O 的母线长为9 cm.解决旋转体中计算问题的方法用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,列出相关几何变量的方程(组)而解得.。
高一数学第5课时立体几何初步学案苏教版必修2
![高一数学第5课时立体几何初步学案苏教版必修2](https://img.taocdn.com/s3/m/02466c6ca2161479171128f3.png)
莫愁前路无知己,天下谁人不识君。
第五课时 平面的基本性质 【学习导航】知识网络学习要求1.初步了解平面的概念.2.了解平面的基本性质(公理1-3)3.能正确使用集合符号表示有关点 、线、面的位置关系.4.能运用平面的基本性质解决一些简单的问题自学评价1.平面的概念: .2.平面的表示法3.公理1:符号表示4. 公理2:符号表示 5公理3:符号表示问题:举出日常生活中不共线的三点确定一个平面的例子.【精典范例】例1:已知E 、F 、G 、H 分别为空间四边形(四个顶点不共面的四边形)ABCD 各边AB 、AD 、BC 、CD 上的点, 且直线EF 和GH 交于点P , 求证: B 、D 、P 在同一条直线上.听课随笔AE FD B G HC P莫愁前路无知己,天下谁人不识君。
思维点拔:证明多点共线,通常利用公里2,即两相交平面交线的唯一性;证明点在相交平面的交线上,必须证明这些点分别在两个平面内。
追踪训练如图, 在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别为AB,AA 1中点,求证CE,D 1F,DA 三条直线交于一点。
例2.如图, 在长方体ABCD-A 1B 1C 1D 1中, 下列命题是否正确? 并说明理由. 听课随笔 CA 1F①AC 1在平面CC 1B 1B 内;②若O 、O 1分别为面ABCD 、A 1B 1C 1D 1的中心, 则平面AA 1C 1C 与平面B 1BDD 1的交线为OO 1 . ③由点A 、O 、C 可以确定平面;④由点A 、C 1、B 1确定的平面与由点A 、C 1、D 确定的平面是同一个平面.追踪训练1. 为什么许多自行车后轮旁装一只撑脚?2. 用符号表示“点A 在直线l 上,l 在平面α外”正确的是3.下列叙述中,正确的是 ( )A.对边相等的四边形一定是平面图形,B.四边相等的四边形一定是平面图形,C.有一组对边平行并且相等的四边形是平行四边形.D.有一组对角相等的四边形是平行四边形.4.两个平面把空间划分的个数为那么三个平面把空间划分的个数为A 11。
高中数学 立体几何专题复习学案 新人教B版必修5
![高中数学 立体几何专题复习学案 新人教B版必修5](https://img.taocdn.com/s3/m/78b2d809cfc789eb172dc8d3.png)
立体几何专题复习-----空间角的求法一、 知识梳理(一)异面直线所成的角:定义:已知两条异面直线,a b ,经过空间任一点O 作直线//,//a a b b '',,a b ''所成的角的大小与点O 的选择无关,把,a b ''所成的锐角(或直角)叫异面直线,a b 所成的角(或夹角).为了简便,点O 通常取在异面直线的一条上理解说明:(1)平移法:即根据定义,以“运动”的观点,用“平移转化”的方法,使之成为相交直线所成的角。
(2)异面直线所成的角的范围:]2,0(π(3)异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直.两条异面直线,a b 垂直,记作a b ⊥.(4)求异面直线所成的角的方法:(1)通过平移,在一条直线上找一点,过该点做另一直线的平行线;(2)找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求 5.向量法: CDAB CD AB →→=.cos θ(二)直线和平面所成的角1.线面角的定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角2、记作:θ;3、范围:[0,2π]; 当一条直线垂直于平面时,所成的角θ=2π,即直线与平面垂直;AB n AB n∙∙(三)二面角1.二面角的平面角: (1)过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则A O B ∠叫做二面角l αβ--的平面角(2)一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角说明:(1)二面角的平面角范围是[0,180];(2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直 (3)二面角的平面角的特点:1)角的顶点在棱上 ;2)角的两边分别在两个面内 ;3)角的边都要垂直于二面角的棱。
人教版高中数学全套教案导学案第五课时 立体几何综合
![人教版高中数学全套教案导学案第五课时 立体几何综合](https://img.taocdn.com/s3/m/de0b9569a32d7375a417808c.png)
第五课时立体几何综合运用一、填空题1设α、β、γ是三个不重合的平面,m、n是不重合的直线,给出下列命题:①若α⊥β,β⊥γ,则α⊥γ;②若m∥α,n∥β, α⊥β,则m⊥n;③若α∥β,γ∥β,则α∥γ;④若m、n在γ内的射影互相垂直,则m⊥n,其中错误命题有个.2(2009·东海高级中学高三第四次月考)关于直线m、n与平面α、β,有下列四个命题:①m∥α,n∥β且α∥β,则m∥n;②m⊥α,n⊥β且α⊥β,则m⊥n;③m⊥α,n∥β且α∥β,则m⊥n;④m∥α,n⊥β且α⊥β,则m∥n.其中真命题的序是 .3(2009·海安高级中学高三试题)如图所示,半径为2的半球内有一内接正六棱锥P —ABCDEF,则此正六棱锥的体积为 .4设a,b,c是空间中互不重合的三条直线,①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线;⑤若a,b与c成等角,则a∥b.上述命题中正确的(只填序).5若l、m、n是互不相同的空间直线,α、β是不重合的平面,则下列命题中为真命题的是(填序).①若α∥β,l⊂α,n⊂β,则l∥n②若α⊥β,l⊂α,则l⊥β③若l⊥n,m⊥n,则l∥m④若l⊥α,l∥β,则α⊥β二、解答题6 (2008·江苏,16)(14分)在四面体ABCD 中,CB =CD ,AD ⊥BD ,且E ,F 分别是AB ,BD 的中点,求证: (1)直线EF ∥平面ACD ; (2)平面EFC ⊥平面BCD .7如图,在三棱柱111ABC A B C -中,四边形11A ABB 为菱形,160A AB ∠=︒,四边形11BCC B 为矩形,若AB BC ⊥且4AB =,3BC = ⑴求证:平面1A CB ⊥平面1ACB ; ⑵求三棱柱111ABC A B C -的体积.8如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,M ,N 分别为A 1B ,B 1C 1的中点.(1)求证BC ∥平面MNB 1;(2)求证平面A 1CB ⊥平面ACC 1A 1.C 11ABC M NA 1B 1C 1 (第9题)9如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧面PAD 是正三角形,且平面PAD ⊥底面ABCD. (1) 求证:PBC AD 平面||(2)求证:AB ⊥平面PAD(3)设AB=1,求四棱锥P —ABCD 的体积.10如图四边形ABCD 是菱形,PA ⊥平面ABCD , Q 为PA 的中点. 求证:⑴ PC ∥平面QBD ;⑵ 平面QBD ⊥平面PAC .11如图,在四棱锥P ABCD -中,侧面PAD 是正三角形,且与底面ABCD垂直,底面ABCD 是边长为2的菱形,60BAD ∠=︒,N 是PB 中点,过A 、N 、D 三点的平面交PC 于M .(1) 求证://DP ANC 平面(2)求证:M 是PC 中点; (3)求证:平面PBC ⊥平面ADMN12如图,四边形ABCD 为矩形,AD⊥平面ABE ,AE =EB =BC =2,F 为CE 上的点,且BF⊥平面ACE .(1)求证:A E⊥BE;BACD P Q O(2)设M 在线段AB 上,且满足AM =2MB ,试在线段CE 上确定一点N ,使得MN∥平面DAE.13在几何体ABCDE 中,2BAC π∠=,DC ⊥平面ABC ,EB ⊥平面ABC ,AB =AC =BE =2,CD =1.(Ⅰ)设平面ABE 与平面ACD 的交线为直线l , 求证:l ∥平面BCDE ;(Ⅱ)设F 是BC 的中点,求证:平面AFD ⊥平面AFE ; (Ⅲ)求几何体ABCDE 的体积.14如图,四边形ABCD 是正方形,PB ⊥平面ABCD , MA ⊥平面ABCD ,PB =AB =2MA . 求证:(Ⅰ)平面AMD ∥平面BPC ;(Ⅱ)平面PMD ⊥平面PBD ;BACDEABCD PM。
立体几何证明平行复习课导学案
![立体几何证明平行复习课导学案](https://img.taocdn.com/s3/m/6a388b0e76eeaeaad0f330a7.png)
立体几何复习课导学案编制:迟德龙一、学习目标:能够运用公理、定理和已获得的结论证明空间中的平行关系。
二、知识梳理:1、线线平行的判定:(1)平行公里:文字语言:符号语言:(2)三角形中位线:(3)平行四边形:(4)线面平行的性质定理:文字语言:符号语言:(5)面面平行的性质定理:文字语言:符号语言:(6)空间向量:文字语言:符号语言:2、线线平行的性质:3、线面平行的判定(1)线面平行的判定定理:文字语言:符号语言:(2)面面平行的性质:文字语言:符号语言:(3)空间向量:文字语言:符号语言:4、线面平行的性质:(1)线面平行的性质定理:文字语言:符号语言:5、面面平行的判定:(1)面面平行的判定定理:文字语言:符号语言:(2)面面平行的判定定理的推论:文字语言:符号语言:(3)空间向量:文字语言:符号语言:6、面面平行的性质:(1)定义性质文字语言:符号语言:(2)面面平行的性质定理:文字语言:符号语言:四、例题精选:例1、(安徽理17)如图,ABCDEF为多面体,平面ABED与平面ACFD垂直,点O在线段AD 上,1,2,OA OD==△OAB,,△OAC,△ODE,△ODF都是正三角形。
(Ⅰ)证明直线BC∥EF;训练1、山东(18)(本小题满分12分)如图所示,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH。
(Ⅰ)求证:AB//GH;(Ⅱ)求二面角D-GH-E的余弦值 .例2、(2009江苏卷)(本小题满分14分)如图,在直三棱柱111ABC A B C-中,E、F分别是1A B、1A C的中点,点D在11B C上,11A DB C⊥。
求证:(1)EF ∥平面ABC ; (2)平面1A FD ⊥平面11BB C C .训练2、(江苏16)如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点 求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面PAD例3、(2012年高考(浙江理))如图,在四棱锥P —ABCD中,底面是边长为23的菱形,且∠BAD =120°,且PA ⊥平面ABCD ,PA =26,M ,N 分别为PB ,PD 的中点.(Ⅰ)证明:MN ∥平面ABCD ;(Ⅱ) 过点A 作AQ ⊥PC ,垂足为点Q ,求二面角A —MN —Q 的平面角的余弦值.训练3(1)、(2010年高考安徽卷理科18)(本小题满分12分)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,EF FB ⊥,2AB EF =,90BFC ∠=︒,BF FC =,H 为BC 的中点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导学案(五)学习目标
1、理解平面的描述性概念。
2、掌握平面的基本性质与推论。
使用说明
1 导学案40分钟独立,规范完成
2 积极探究,合作交流,大胆质疑
知识梳理
一、平面的基本性质与推论
基本性质1 如果一条直线上的在一个平面内,那么这条直线上的都在这个平面内.
基本性质2,
有且只有一个平面,这也可以简单地说成,不共线的三点确定一个平面.
基本性质3 如果不重合的两个平面,那么它们有且只有.
推论1,
有且只有一个平面.
推论2,
有且只有一个平面.
推论3,
有且只有一个平面.
二.符号语言与数学语言的关系
1.空间两条直线的位置关系有三种:相交、平行、异面
(1)相交直线: ;
(2)平行直线: ;
(3)异面直线: ;
2.判定异面直线的方法
(1)利用定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.
(2)利用反证法:假设两条直线不是异面直线,推导出矛盾.
3.基本性质4
——空间平行线的传递性.
4.等角定理
空间中如果两个角的两边分别对应平行,那么这两个角.
5.异面直线所成的角
设a,b是异面直线,经过空间任一点O,分别作直线a′∥a,b′∥b,把直线a′与b′所成的
叫做异面直线a与b所成的角(或夹角).
典型例题
例1 证明共点问题
如图所示,空间四边形ABCD中,E,F,G 分别在AB,BC,CD上,且满足AE:EB=CF:FB=2:1,CG:GD=3:1,过E,F,G 的平面交AD于H,连接EH.
(1)求AH:HD;
(2)求证:EH,FG,BD三线共点.
小结:所谓线共点问题就是证明三条或三条以上的直线交于一点.
(1)证明三线共点的依据是公理3.
(2)证明三线共点的思路是:先证两条直线交于一点,再证明第三条直线经过该点,把问题转化为证明点在直线上的问题.实际上,点共线、线共点的问题都可以转化为点在直线上的问题来处理.
例2 点共线问题
在正方体
1111
ABCD A B C D
中,对角线
1
A C与平面
数学符号语言数学表达语言
点A在直线a上
点A在直线a外
点A在平面α内
点A在平面α外
直线a在平面α内
直线a,b相交于点A
平面α,β相交于直线a
1BDC 交于点O,AC,BD 交于点M,求证:点1C ,O,M
共线.
小结:证 明若干点共线也可用基本性质3 为依据,找出两个平面的交线,然后证明各个点都是这两平面的公共点.
例3共面问题
证明:空间不共点且两两相交的四条直线在同一平面内.
小结:共面问题具体操作方法:①证明几点共面的问题可先取三点(不共线的三点)确定一个平面,再证明其余各点都在这个平面内.②证明空间几条直线共面问题可先取两条(相交或平行)直线确定一个平面,再证明其余直线均在这个平面内. 例4.异面直线的判定和证明 (2009辽宁卷理)如图,已知两个正方行ABCD 和DCEF 不在同一平面内,M ,N 分别为AB ,DF 的中点 。
用反证法证明:直线ME 与 BN 是两条异面直线。
小结:定异面直线的常用方法:反证法;
能力提升
练1. 如图所示,已知空间四边形ABCD ,E ,
F分别是AB,AD的中点,G,H分别是BC,CD 上的点.且CG= BC,CH= DC.求证:(1)E,F,G,H四点共面;
(2)三直线FH,EG,AC共点
.
练2如图所示,已知△ABC在平面α外,AB,BC,AC 的延长线分别交平面α于P,Q,R三点.求证:P,Q,R 三点共线. 练3如图,正方体ABCD—A1B1C1D1中,判断下列命题是否正确,并说明理由.
(1)直线AC1平面CC1B1B;
(2)设正方形ABCD 与A1B1C1D1 的中心分别为O ,O1,平面AA1C1C 平面BB1D1D=OO1;
(3)点A ,O ,C 可以确定一个平面; (4)由点A ,C1,B1确定的平面是ADC1B1; (5)由A ,C1,B1确定的平面和由A ,C1, D 确定的平面是同一平面.
练4如图所示,正方体
1111
ABCD A B C D 中,M ,
N 分别是A1B1,B1C1的中点.问:
(1)AM 和CN 是否是异面直线? (2)1D B 和1C C 是否是异面直线?请说明理由.
总结提升
※学习小结
1.对于平面的三个公理,要深刻理解其含义,并能用符号准确地表述.
2.主要题型的解题方法
(1)要证明“线共面”或“点共面”可先由部分直线或点确定一个平面,再证其余直线或点也在这个平面内(即“纳入法”).
(2)要证明“点共线”可将线看作两个平面的交线,只要证明这些点都是这两个平面的公共点,根据公理3可知这些点在交线上,因此共线.
课后作业
页学案3
学习感悟。