统计学9.相关与回归
统计学相关与回归分析试题
相关与回归分析试题一、单项选择题1、自然界和人类社会中的诸多关系基本上可归纳为两种类型,这就是( )A.函数关系和相关关系B.因果关系和非因果关系C.随机关系和非随机关系D.简单关系和复杂关系 2、相关关系是指变量间的( )A.严格的函数关系B.简单关系和复杂关系C.严格的依存关系D.不严格的依存关系3.具有相关关系的两个变量的关系是()A.一个变量的取值不能由另一个变量唯一确定B.一个变量的取值由另一个变量唯一决定C.变量之间的一种确定性的数量关系D.变量之间存在的一种函数关系 4.当变量x 的值增加时,变量y 的值也随之增加,那么变量x 和变量y 之间存在着()。
A.正相关系 B.负相关系C.不确定关系D.非线性相关关系 5.下列相关系数的取值不正确的是()A. 0B. -0.96C.0.87D.1.066.两个变量之间的线性相关关系越不密切,相关系数r 值就越接近() A.-1 B.+1D.0 D.大于-1或小于+1 7.相关系数的值越接近-1,表明两个变量间()A.正线性相关关系越弱B.负线性相关关系越强C.负线性相关关系越弱D.正线性相关关系越强 8.回归分析中,被解释的变量称为()A.自变量B.因变量C.随机变量D.非随机变量 9.根据最小二乘法配合线性回归方程是使()A.最小)(=∑2y ˆ-y B.最小)(=∑y ˆ-yC.最小)(=∑2y -y D.最小)(=∑y -y10.回归方程 1.5x 123yˆ+=中回归系数的意思是,当自变量每增加一个单位时,因变量()A.增加1.5个单位B.平均增加1.5个单位C.增加123个单位D.平均增加123个单位11.若回归系数b 大于0,表明回归直线是上升的,此时相关系数r 的值() A.一定大于0 B.一定小于0 C.等于0 D.无法判断 12.在回归分析中,F 检验主要用来检验()A.相关系数的显著性B.回归系数的显著性C.线性关系的显著性D.估计标准误差的显著性13.在多元线性回归方程k k 22110x b x b x b b yˆ++++= 中,回归系数i b 表示() A.自变量i x 每变动一个单位因变量y 的平均变动量 B.自变量i x 每变动一个单位因变量y 的变动总量C.在其他条件不变的情况下,自变量i x 每变动一个单位因变量y 的平均变动量D.在其他条件不变的情况下,自变量i x 每变动一个单位因变量y 的变动总量 14.在多元线性回归分析中,t 检验用来检验()A.总体线性关系的显著性B.各回归系数的显著性C.样本线性关系的显著性D.各相关系数的显著性15.在多元线性回归分析中,如果F 检验表明线性关系显著,则意味着() A.至少有一个自变量与因变量之间的线性关系是显著的 B.所有自变量与因变量之间的线性关系都是显著的C.至少有一个自变量与因变量之间的线性关系是不显著的D.所有自变量与因变量之间的线性关系都是不显著的16.在多元线性回归分析中,若自变量i x 对因变量y 的影响很小,则回归系数i b () A.可能接近0 B.可能接近1 C.可能小于0 D.可能大于1 二、多项选择题1.下列关系中属于相关关系的是()A.家庭收入与消费支出的关系B.商品价格与商品需求量的关系C.速度不变,路程与时间的关系D.肥胖程度和死亡率的关系E.利率变动与居民储蓄存款额的关系2.判断变量之间相关关系形态及密切程度的方法有() A.回归方程 B.散点图 C.相关系数 D.回归系数3.回归方程可用于()A.根据自变量预测因变量B.根据给定因变量推算自变量C.确定两个变量之间的相关程度D.解释自变量与因变量的数量依存关系 4.在回归分析中要建立有意义的线性回归方程,应该满足的条件是() A.现象间存在着显著性的线性相关关系 B.相关系数必须等于1C.在两个变量中须确定自变量和因变量D.相关数列的项数应足够多 5.对于简单线性回归方程的回归系数b ,下列说法中正确的是()A.b 是回归直线的斜率B.b 的绝对值介于0~1之间C.b 接近0表明自变量对因变量的影响不大D.b 与r 有相同的符号三、计算题1、为探讨某产品的耗电量x (单位:度)与日产量y (单位:件)的相关关系,随机抽选了10个企业,经计算得到:,,,,要求:①计算相关系数;②建立直线回归方程,解释回归系数的经济意义。
统计学第9章 相关分析和回归分析
回归模型的类型
回归模型
一元回归
线性回归
10 - 28
多元回归
线性回归 非线性回归
非线性回归
统计学
STATISTICS (第二版)
一元线性回归模型
10 - 29
统计学
STATISTICS (第二版)
一元线性回归
1. 涉及一个自变量的回归 2. 因变量y与自变量x之间为线性关系
被预测或被解释的变量称为因变量 (dependent variable),用y表示 用来预测或用来解释因变量的一个或多个变 量称为自变量 (independent variable) ,用 x 表示
统计学
STATISTICS (第二版)
3.相关分析主要是描述两个变量之间线性关 系的密切程度;回归分析不仅可以揭示 变量 x 对变量 y 的影响大小,还可以由 回归方程进行预测和控制 4.回归系数与相关系数的符号是一样的,但 是回归系数是有单位的,相关系数是没 有单位的。
10 - 27
统计学
STATISTICS (第二版)
10 - 19
统计学
STATISTICS (第二版)
相关系数的经验解释
1. 2. 3. 4.
|r|0.8时,可视为两个变量之间高度相关 0.5|r|<0.8时,可视为中度相关 0.3|r|<0.5时,视为低度相关 |r|<0.3时,说明两个变量之间的相关程度 极弱,可视为不相关
10 - 20
10 - 6
统计学
STATISTICS (第二版)
函数关系
(几个例子)
某种商品的销售额 y 与销售量 x 之间的关系 可表示为 y = px (p 为单价)
相关和回归分析
第八章 相关与回归分析第一节 相关关系及其种类一、相关分析的意义相关与回归分析,是统计学中最有适应价值的一个分支,在科学研究、社会经济管理等若干方面,都能够发挥重要的作用。
世界是普遍联系的有机整体,现象之间存在着相关依存、相互制约的关系,每一个现象的运动、变化和发展,与其周围的现象相互联系和相互影响着。
比如,销售规模扩大了,相应地会降低产品的销售成本,价格的上升,将导致供应量的增加,但与此同时,可能会压制消费水平,适当地增加土地耕作深度、施肥量,有利于农作物产出的提高,投入的学习时间与取得的成绩一般呈现出正向关系,数学课学得好则计算机也会学得好一些,身材高的父母,他们的子女的身高也相对较高,降低储蓄的利率,可能会引起存款量的减少,一个人接受教育的程度,与他的劳动效率有着千丝万缕的联系,工作年限长的工人,由于动作熟练和经验丰富,因此比起新手其生产效率将高出一截等等。
通过对现象间的这些关系的研究,可以帮助人们找到现象变化内在与外在的影响因素及其发生机制,进而达到认识规律的目的。
如果能够准确地把握住这些规律,借以估计、预测和控制,就可以对决策活动和科学研究给予帮助与指导。
相关关系又叫统计关系,它是指现象之间客观存在的相互依存关系。
这种关系,只是大致的、从总体上而言的,并不是说某一现象的每一变化,都一定会引起与它有联系的另一现象的同样的变化,换句话,就是一个现象发生了变化,另一现象可能暂时无反应,或者该现象没变,但另一现象却有些变化,可是如果从更大的截面上观察,似乎又存在着某些必然的联系。
比如,生产规模与经济效益有联系,但有可能的情况是,规模小的企业不见得单位产品成本就一定比规模大的低甚至低多少,父母身材高的小孩他的身高不会肯定就比父母身材矮的小孩的身材高。
那么,说规模和效益、高身材与低身材父母的遗传关系的规律,不过是从普遍的事实中概括出来的。
统计学是研究客观现象数量方面的,从数量角度研究现象间的相互依存关系,需要把它们转化为变量的描述和处理。
西南财经大学向蓉美、王青华《统计学》第三版——第9章:相关与回归分析
相关关系(例)
▪ 单位成本(y)与产量(x) 的关系…… ▪ 父亲身高(y)与子女身高(x)之间的关系 ▪ 社会商品零售额(y)与居民可支配收入(x)之
间的关系 ▪ 收入 (y)与文化程度(x)之间的关系 ▪ 商品销售量(y)与广告费支出(x1)、价格(x2)
之间的关系 ▪ 需要PPT配套视频,请加VX:1033604968
简单相关系数(简单线性相关系数) 对两个变量(定量变量)之间线性相关程 度的度量。 也称直线相关系数, 常简称相关系数。
等级相关(秩相关)
对两个定序变量之间线性相关程度的度量。
9--19
相关系数(Pearson’s
correlation coefficient)
有总体相关系数与样本相关系数之分:
• 总体相关系数ρ
变量间的相互依存关系有 两种类型:
——函数关系 ——相关关系
9--3
函数关系
1. 指变量之间确定性的数量依存关系;
2. 当变量 x 取某个数值时,
y 有确定的值与之对应, 则称 y 是 x 的函数 y = f
(x)
• 通常将作为变动原因的变 量 x 称为自变量,作为变
Y
动结果的变量y 称为因变量
将两个变量成对的观测数据在坐标图上标示出来, 变量 x 的值为横坐标,另一个变量 y 对应的数值 为纵坐标,一对观测值对应一个点,样本数据若 有n 对观测值,则相应的 n 个点形成的图形就称为 散点图。
如果一个是解释变量另一个是被解释变量,则通常 将解释变量放在横轴。
有助于分析者判断相关的有无、方向、形态、密 切程度。
9--5
相关关系
1. 指变量间数量上不确定的依存关系;
2. 一个变量的取值不能唯一地由 另一个变量来确定。当变量 x 取某个值时,与之相关的 变量 y 的取值可能有若干个 (按某种规律在一定范围内
统计学原理 相关与回归分析
粮食产量y 随机的
降雨量
土质
种子 耕作技术
X3
X4 X5
可 控 的
(二)相关的种类
完全相关 函数关系是相关关系的一种特例。 不完全相关 相关分析的基本内容
度相 关 密 切 程
y 完全由x的数值唯一确定,函数关系。
不相关
相 关 的 性 质
x、y值变化各自独立,变量间没有相关
关系
正相关 x 负相关
y
x
x2 26896 28900 31329 24336 25600 27556
y2
62540 73695 420857
70225 83521 463382
55696 65025 382469
合计
2114
从表上可以看出,随着个人收入的增加,消 费支出有明显的增长趋势,二者存在一定的依存 关系。正相关关系。 2、相关图(散点图) 直角坐标系第一象限
1、相关表
单变量分组相关表
分组相关表
双变量分组相关表
先做定性分析——相关资料排序——列在一张表上
个人收入x 164 170 177 182 192 207 225 243 265 289
消费支出y 156 160 166 170 178 188 202 218 236 255 1929
xy 25584 27200 29382
yc = 25.32 + 0.7927 300 = 263.13万元
(三)估计标准误差Syx P197
Syx = Syx =
=
(y - yc) 2 n-2 y2 - a y -b xy n-2
382469 -25.32 1929 -0.7927 420857
10 - 2
医学统计学-直线相关与回归
病例号
血糖
胰岛素
i
YI
Xi
1
12.21
15.2
2
14.54
16.7
3
12.27
11.9
4
12.04
14.0
5
7.88
19.8
6
11.10
16.2
7
10.43
17.0
8
13.32
10.3
9
19.59
5.9
10
9.05
18.7
i
Yi
Xi
11
6.44
25.1
12
9.49
16.4
13
10.16
22.0
14
8.38
年龄-身高; 肺活量-体重; 药物剂量-动物死亡率
双变量资料
统计资料
单变量资料:X 双变量资料:X,Y 多变量资料:X1,X2,…,XK,Y
3
相关与回归是研究两个或多个变量之间相互关系的
一种分析方法。
数据结构
编号
Y
1
2
n
X1
……
XK
4
概念:
回归:是研究变量之间在数量上依存关系的一种 方法。
相关:是研究随机变量之间相互联系密切程度和 方向的方法。
23.1
5
7.88
19.8
15
8.49
23.2
6
11.10
16.2
16
7.71
25.0
7
10.43
17.0
17
11.38
16.8
8
13.32
10.3
18
10.82
第9章 相关与回归分析
第九章相关与回归分析习题一、单选题1.下面的函数关系是()。
A、销售人员测验成绩与销售额大小的关系B、圆周的长度决定于它的半径C、家庭的收入和消费的关系D、数学成绩与统计学成绩的关系2.若要证明两变量之间线性相关程度是高的,则计算出的相关系数应接近于()。
A、+1B、0C、0.5D、+1或-13.回归系数和相关系数的符号是一致的,其符号均可用来判断现象()。
A、线性相关还是非线性相关B、正相关还是负相关C、完全相关还是不完全相关D、单相关还是复相关4.在线性相关的条件下,自变量的均方差为2,因变量均方差为5,而相关系数为0.8时,则其回归系数为( )。
A、8B、0.32C、2D、12.55.下面现象间的关系属于相关关系的是()。
A、圆的周长和它的半径之间的关系B、价格不变条件下,商品销售额与销售量之间的关系C、家庭收入愈多,其消费支出也有增长的趋势D、正方形面积和它的边长之间的关系6.下列关系中,属于正相关关系的是()。
A、合理限度内,施肥量和平均单产量之间的关系B、产品产量与单位产品成本之间的关系C、商品的流通费用与销售利润之间的关系D、流通费用率与商品销售量之间的关系7.相关分析是研究()。
A、变量之间的数量关系B、变量之间的变动关系C、变量之间的相互关系的密切程度D、变量之间的因果关系8.在回归直线y=a+bx中,b<0,则x与y之间的相关系数( )。
A、r=0B、r=lC、0<r<1D、-1<r<09.在回归直线y=a+bx中,b表示()。
A、当x增加一个单位时,y增加a的数量B、当y增加一个单位时,x增加b的数量C、当x增加一个单位时,y的平均增加量D、当y增加一个单位时,x的平均增加量10.当相关系数r=0时,表明()。
A、现象之间完全无关B、相关程度较小C、现象之间完全相关D、无直线相关关系11.下列现象相关密切程度最高的是()。
A、某商店的职工人数与商品销售额之间的相关系数0.87B、流通费用水平与利润率之间的相关关系为-0.94C、商品销售额与利润率之间的相关系数为0.51D、商品销售额与流通费用水平的相关系数为-0.8112.估计标准误差是反映()。
统计学第六章 研究变量的关系:相关与回归
• 例:
第三节 简单线性回归:推断
• 前两节从数据分析的角度对数据之间关系 的模式进行搜寻,如果将可观察的数据作 为总体的一个样本,搜寻到的模式就是总 体变量关系的一种估计,由此需要统计推 断方法来估计与检验此种关系。 • 推断问题开始于对总体模型的假定,本节 仅限于一个解释变量与一个响应变量线性 关系的研究,这被称为简单线性回归或一 元线性回归。
• 最小二乘回归特点:
第二节 数值型数据之间关系研究:相关与回归
• 可决系数R-squared: 表示在响应变量的总变动中能被回归方程解 释的百分比,用来描述直线关系的强度。 在一元线性回归中,其值等于相关系数的 平方。
第二节 数值型数据之间关系研究:相关与回归
• 残差(residuals):
回归线是解释变量与响应变量之间线性关系整体模 式的数学模型,研究与整体模式的偏差也是很重 要的。
第二节 数值型数据之间关系研究:相关与回归
残差图:
第二节 数值型数据之间关系研究:相关与回归
• 回归中的异常观测点和有影响的观测点
第二节 数值型数据之间关系研究:相关与回归
• 小心使用相关与回归方法:
第二节 数值型数据之间关系研究:相关与回归
• 例:
第二节 数值型数据之间关系研究:相关与回归
第一节 分类数据之间关系研究:列联表
模型2:检验独立性
Model for Examining Independence in Two-Way Tables Select an SRS of size n from a population. Measure two categorical variables for each individual. The null hypothesis is that the row and column variables are independent. The alternative hypothesis is that the row and column variables are dependent. CASE7.2
第九章双变量线性回归与相关
1 ( X X )2 SYˆ SY .X n ( X X )2
当X
X时,SYˆ
SY X n
Syˆ 是 Yˆ 的标准误。
例 计算当X0=150时, yˆ 95%可信区间。 yˆ 的95%可信区间为:
(46.52, 51.75)Kg
其含义是:当身高为150cm时,15岁男童的体重
的总体均数为49.135kg(点值估计),95%可信区 间为:(46.52, 51.75)Kg (区间估计)。
男性:身高(cm)-105=标准体重(kg) 女性:身高(cm)-100=标准体重(kg)
北方人理想体重=(身高cm-150)×0.6+50(kg) 南方人理想体重=(身高cm-150)×0.6+48(kg)
回归与相关是研究变量之间相互关系的统计分 析方法,它是一类双变量或多变量统计分析方法 (本章主要介绍双变量分析方法),在实际之中有 着广泛的应用。
如年龄与体重、年龄与血压、身高与体重、体 重与肺活量、体重与体表面积、毒物剂量与动物死 亡率、污染物浓度与污染源距离等都要运用回归与 相关方法对资料进行统计分析。
变量之间的关系: (1)直线关系(线性 关系); (2)曲线关系(非线 性关系)。 在回归与相关分析中, 直线回归与相关是最简单 的一种,是本章主要内容。
变量间的关系 函数关系: 确定的关系。 例如园周长与半径:y=2πr 。
回归关系:不确定的关系(随机的关系)。 例如血压和年龄的关系,称为直线 回归 (linear regression)。
北方人理想体重=(身高cm-150)×0.6+50(kg)
变量间的回归关系 由于生物间存在变异,故两相关变量之间的关 系具有某种不确定性,如同性别、同年龄的人,其 肺活量与体重有关,肺活量随体重的增加而增加, 但体重相同的人其肺活量并不一定相等。因此,散 点呈直线趋势,但并不是所有的散点均在同一条直 线上,肺活量与体重的关系与严格对应的函数关系 不同,它们之间是一种回归关系,称直线回归。这 种关系是用直线回归方程来定量描述。
(整理)统计学原理第九章相关与回归习题答案
第九章相关与回归一.判断题部分题目1:负相关指的是因素标志与结果标志的数量变动方向是下降的。
()答案:×题目2:相关系数为+1时,说明两变量完全相关;相关系数为-1时,说明两个变量不相关。
()答案:√题目3:只有当相关系数接近+1时,才能说明两变量之间存在高度相关关系。
()答案:×题目4:若变量x的值增加时,变量y的值也增加,说明x与y之间存在正相关关系;若变量x的值减少时,y变量的值也减少,说明x与y之间存在负相关关系。
()答案:×题目5:回归系数和相关系数都可以用来判断现象之间相关的密切程度。
()答案:×题目6:根据建立的直线回归方程,不能判断出两个变量之间相关的密切程度。
()答案:√题目7:回归系数既可以用来判断两个变量相关的方向,也可以用来说明两个变量相关的密切程度。
()答案:×题目8:在任何相关条件下,都可以用相关系数说明变量之间相关的密切程度。
()答案:×题目9:产品产量随生产用固定资产价值的减少而减少,说明两个变量之间存在正相关关系。
()答案:√题目10:计算相关系数的两个变量,要求一个是随机变量,另一个是可控制的量。
()答案:×题目11:完全相关即是函数关系,其相关系数为±1。
()答案:√题目12:估计标准误是说明回归方程代表性大小的统计分析指标,指标数值越大,说明回归方程的代表性越高。
()答案×二.单项选择题部分题目1:当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于()。
A.相关关系B.函数关系C.回归关系D.随机关系答案:B题目2:现象之间的相互关系可以归纳为两种类型,即()。
A.相关关系和函数关系B.相关关系和因果关系C.相关关系和随机关系D.函数关系和因果关系答案:A题目3:在相关分析中,要求相关的两变量()。
A.都是随机的B.都不是随机变量C.因变量是随机变量D.自变量是随机变量答案:A题目4:测定变量之间相关密切程度的指标是()。
统计学第九章 相关与回归分析
第九章相关与回归分析Ⅰ. 学习目的和要求本章所要学习的相关与回归分析是经济统计分析中最常重要的统计方法之一。
具体要求:1.掌握有关相关与回归分析的基本概念;2.掌握单相关系数的计算与检验的方法,理解标准的一元线性回归模型,能够对模型进行估计和检验并利用模型进行预测;3.理解标准的多元线性回归模型,掌握估计、检验的基本方法和预测的基本公式,理解复相关系数和偏相关系数及其与单相关系数的区别;4.了解常用的非线性函数的特点,掌握常用的非线性函数线性变换与估计方法,理解相关指数的意义;5.能够应用Excel软件进行相关与回归分析。
Ⅱ. 课程内容要点第一节相关与回归分析的基本概念一、函数关系与相关关系当一个或几个变量取一定的值时,另一个变量有确定值与之相对应,这种关系称为确定性的函数关系。
当一个或几个相互联系的变量取一定数值时,与之相对应的另一变量的值虽然不确定,但仍按某种规律在一定的范围内变化。
这种关系,称为具有不确定性的相关关系。
变量之间的函数关系和相关关系,在一定条件下是可以互相转化的。
116117二、相关关系的种类按相关的程度可分为完全相关、不完全相关和不相关。
按相关的方向可分为正相关和负相关。
按相关的形式可分为线性相关和非线性相关。
按所研究的变量多少可分为单相关、复相关和偏相关。
三、相关分析与回归分析相关分析是用一个指标来表明现象间相互依存关系的密切程度。
回归分析是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。
通过相关与回归分析虽然可以从数量上反映现象之间的联系形式及其密切程度,但是无法准确地判断现象内在联系的有无,也无法单独以此来确定何种现象为因,何种现象为果。
只有以实质性科学理论为指导,并结合实际经验进行分析研究,才能正确判断事物的内在联系和因果关系。
四、相关图相关图又称散点图。
它是以直角坐标系的横轴代表变量X ,纵轴代表变量Y,将两个变量间相对应的变量值用坐标点的形式描绘出来,用来反映两变量之间相关关系的图形。
第九章 相关与回归分析 《统计学原理》PPT课件
[公式9—4]
r xy n • xy
x y
[公式9—5]
返回到内容提要
第三节 回归分析的一般问题
一、回归分析的概念与特点
(一)回归分析的概念
现象之间的相关关系,虽然不是严格 的函数关系,但现象之间的一般关系值, 可以通过函数关系的近似表达式来反映, 这种表达式根据相关现象的实际对应资料, 运用数学的方法来建立,这类数学方法称 回归分析。
单相关是指两个变量间的相关关系,如 自变量x和因变量y的关系。
复相关是指多个自变量与因变量间的相关 关系。
(二)相关关系从表现形态上划分,可分为 直线相关和曲线相关
直线相关是指两个变量的对应取值在坐标 图中大致呈一条直线。
曲线相关是指两个变量的对应取值在坐 标图中大致呈一条曲线,如抛物线、指数曲线、 双曲线等。
0.578
a y b x 80 0.578 185 3.844
n
n7
7
yˆ 3.844 0.578x
二、估计标准误差 (一)估计标准误差的概念与计算 估计标准误差是用来说明回归直线方程 代表性大小的统计分析指标。其计算公式为:
Syx
y yˆ 2
n
[公式9—8]
实践中,在已知直线回归方程的情况下, 通常用下面的简便公式计算估计标准误差:
[例9—2] 根据相关系数的简捷公式计算有:
r
n xy x y
n x2 x2 n y2 y2
7 218018580
0.978
7 5003 1852 7 954 802
再求回归直线方程:
yˆ a bx
b
n xy x y
n x2 x2
7 2180 18580 7 50031852
相关分析和回归分析要注意的要点,自己整理的,很全面
回归分析与相关分析的联系:研究在专业上有一定联系的两个变量之间是否存在直线关系以及如何求得直线回归方程等问题,需进行直线相关和回归分析。
从研究的目的来说,若仅仅为了了解两变量之间呈直线关系的密切程度和方向,宜选用线性相关分析;若仅仅为了建立由自变量推算因变量的直线回归方程,宜选用直线回归分析。
从资料所具备的条件来说,作相关分析时要求两变量都是随机变量(如:人的身长与体重、血硒与发硒);作回归分析时要求因变量是随机变量,自变量可以是随机的,也可以是一般变量(即可以事先指定变量的取值,如:用药的剂量)。
在统计学教科书中习惯把相关与回归分开论述,其实在应用时,当两变量都是随机变量时,常需同时给出这两种方法分析的结果;另外,若用计算器实现统计分析,可用对相关系数的检验取代对回归系数的检验,这样到了化繁为简的目的。
回归分析和相关分析都是研究变量间关系的统计学课题,它们的差别主要是:1、在回归分析中,y被称为因变量,处在被解释的特殊地位,而在相关分析中,x与y处于平等的地位,即研究x与y的密切程度和研究y与x的密切程度是一致的;2、相关分析中,x与y都是随机变量,而在回归分析中,y是随机变量,x可以是随机变量,也可以是非随机的,通常在回归模型中,总是假定x是非随机的;3、相关分析的研究主要是两个变量之间的密切程度,而回归分析不仅可以揭示x对y的影响大小,还可以由回归方程进行数量上的预测和控制。
1.为什么要对相关系数进行显著性检验?在对实际现象进行分析时,往往是利用样本数据计算相关系数()作为总体相关系数()的估计值,但由于样本相关系数具有一定的随机性,它能否说明总体的相关程度往往同样本容量有一定关系。
当样本容量很小时,计算出的不一定能反映总体的真实相关关系,而且,当总体不相关时,利用样本数据计算出的也不一定等于零,有时还可能较大,这就会产生虚假相关现象。
为判断样本相关系数对总体相关程度的代表性,需要对相关系数进行显著性检验。
统计学原理-第六章--相关与回归分析习题
A+1 B 0 C 0.5 D [1]5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( )A线性相关还是非线性相关B正相关还是负相关C完全相关还是不完全相关D单相关还是复相关6.某校经济管理类的学生学习统计学的时间()与考试成绩(y)之x间建立线性回归方程y c=a+b。
经计算,方程为y c=200—0.8x,该方程参数x的计算( )A a值是明显不对的B b值是明显不对的C a值和b值都是不对的 C a值和6值都是正确的7.在线性相关的条件下,自变量的均方差为2,因变量均方差为5,而相关系数为0.8时,则其回归系数为:( )A 8B 0.32C 2D 12.58.进行相关分析,要求相关的两个变量( )A都是随机的B都不是随机的C一个是随机的,一个不是随机的D随机或不随机都可以9.下列关系中,属于正相关关系的有( )A合理限度内,施肥量和平均单产量之间的关系B产品产量与单位产品成本之间的关系C商品的流通费用与销售利润之间的关系D流通费用率与商品销售量之间的关系10.相关分析是研究( )A变量之间的数量关系B变量之间的变动关系C变量之间的相互关系的密切程度D变量之间的因果关系11.在回归直线y c=a+bx,b<0,则x与y之间的相关系数( )A =0B =lC 0<<1D -1<<0r r r r12.在回归直线yc=a+bx中,b表示( )A当x增加一个单位,,y增加a的数量B当y增加一个单位时,x增加b的数量C当x增加一个单位时,y的均增加量D当y增加一个单位时,x的平均增加量13.当相关系数r=0时,表明( )A现象之间完全无关B相关程度较小C现象之间完全相关D无直线相关关系14.下列现象的相关密切程度最高的是( )A某商店的职工人数与商品销售额之间的相关系数0.87B流通费用水平与利润率之间的相关关系为-0.94C商品销售额与利润率之间的相关系数为0.51D商品销售额与流通费用水平的相关系数为-0.8115.估计标准误差是反映( )A平均数代表性的指标B相关关系的指标C回归直线的代表性指标D序时平均数代表性指标三、多项选择题1.下列哪些现象之间的关系为相关关系( )A家庭收入与消费支出关系B圆的面积与它的半径关系C广告支出与商品销售额关系D单位产品成本与利润关系E在价格固定情况下,销售量与商品销售额关系2.相关系数表明两个变量之间的( )A线性关系B因果关系C变异程度D相关方向E相关的密切程度3.对于一元线性回归分析来说( )A两变量之间必须明确哪个是自变量,哪个是因变量B回归方程是据以利用自变量的给定值来估计和预测因变量的平均可能值C可能存在着y依x和x依y的两个回归方程D回归系数只有正号E 确定回归方程时,尽管两个变量也都是随机的,但要求自变量是给定的。
统计学课后习题答案第七章相关分析与回归分析
统计学课后习题答案第七章相关分析与回归分析第七章相关分析与回归分析⼀、单项选择题1.相关分析是研究变量之间的A.数量关系B.变动关系C.因果关系D.相互关系的密切程度2.在相关分析中要求相关的两个变量A.都是随机变量B.⾃变量是随机变量C.都不是随机变量D.因变量是随机变量3.下列现象之间的关系哪⼀个属于相关关系?A.播种量与粮⾷收获量之间关系B.圆半径与圆周长之间关系C.圆半径与圆⾯积之间关系D.单位产品成本与总成本之间关系4.正相关的特点是A.两个变量之间的变化⽅向相反B.两个变量⼀增⼀减C.两个变量之间的变化⽅向⼀致D.两个变量⼀减⼀增5.相关关系的主要特点是两个变量之间A.存在着确定的依存关系B.存在着不完全确定的关系C.存在着严重的依存关系D.存在着严格的对应关系6.当⾃变量变化时, 因变量也相应地随之等量变化,则两个变量之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系7.当变量X值增加时,变量Y值都随之下降,则变量X和Y之间存A.正相关关系B.直线相关关系C.负相关关系D.曲线相关关系8.当变量X值增加时,变量Y值都随之增加,则变量X和Y之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系9.判定现象之间相关关系密切程度的最主要⽅法是A.对现象进⾏定性分析B.计算相关系数C.编制相关表D.绘制相关图10.相关分析对资料的要求是A.⾃变量不是随机的,因变量是随机的B.两个变量均不是随机的C.⾃变量是随机的,因变量不是随机的D.两个变量均为随机的11.相关系数A.既适⽤于直线相关,⼜适⽤于曲线相关B.只适⽤于直线相关C.既不适⽤于直线相关,⼜不适⽤于曲线相关D.只适⽤于曲线相关12.两个变量之间的相关关系称为A.单相关B.复相关C.不相关D.负相关13.相关系数的取值范围是A.-1≤r≤1B.-1≤r≤0C.0≤r≤114.两变量之间相关程度越强,则相关系数A.愈趋近于1B.愈趋近于0C.愈⼤于1D.愈⼩于115.两变量之间相关程度越弱,则相关系数A.愈趋近于1B.愈趋近于0C.愈⼤于1D.愈⼩于116.相关系数越接近于-1,表明两变量间A.没有相关关系B.有曲线相关关系C.负相关关系越强D.负相关关系越弱17.当相关系数r=0时,A.现象之间完全⽆关B.相关程度较⼩B.现象之间完全相关 D.⽆直线相关关系18.假设产品产量与产品单位成本之间的相关系数为-0.89,则说明这两个变量之间存在A.⾼度相关B.中度相关C.低度相关D.显著相关19.从变量之间相关的⽅向看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和⽆相关20.从变量之间相关的表现形式看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和⽆相关21.物价上涨,销售量下降,则物价与销售量之间属于A.⽆相关B.负相关C.正相关D.⽆法判断22.配合回归直线最合理的⽅法是A.随⼿画线法B.半数平均法C.最⼩平⽅法D.指数平滑法23.在回归直线⽅程y=a+bx中b表⽰A.当x增加⼀个单位时,y增加a的数量B.当y增加⼀个单位时,x增加b的数量C.当x增加⼀个单位时,y的平均增加量D.当y增加⼀个单位时, x的平均增加量24.计算估计标准误差的依据是A.因变量的数列B.因变量的总变差C.因变量的回归变差D.因变量的剩余变差25.估计标准误差是反映A.平均数代表性的指标B.相关关系程度的指标C.回归直线的代表性指标D.序时平均数代表性指标26.在回归分析中,要求对应的两个变量A.都是随机变量B.不是对等关系C.是对等关系D.都不是随机变量27.年劳动⽣产率(千元)和⼯⼈⼯资(元)之间存在回归⽅程y=10+70x,这意味着年劳动⽣产率每提⾼⼀千元时,⼯⼈⼯资平均A.增加70元B.减少70元C.增加80元D.减少80元28.设某种产品产量为1000件时,其⽣产成本为30000元,其中固定成本6000元,则总⽣产成本对产量的⼀元线性回归⽅程为:A.y=6+0.24xB.y=6000+24xC.y=24000+6xD.y=24+6000x29.⽤来反映因变量估计值代表性⾼低的指标称作A.相关系数B.回归参数C.剩余变差D.估计标准误差⼆、多项选择题1.下列现象之间属于相关关系的有A.家庭收⼊与消费⽀出之间的关系B.农作物收获量与施肥量之间的关系C.圆的⾯积与圆的半径之间的关系D.⾝⾼与体重之间的关系E.年龄与⾎压之间的关系2.直线相关分析的特点是A.相关系数有正负号B.两个变量是对等关系C.只有⼀个相关系数D.因变量是随机变量E.两个变量均是随机变量3.从变量之间相互关系的表现形式看,相关关系可分为A.正相关B.负相关C.直线相关D.曲线相关E.单相关和复相关4.如果变量x与y之间没有线性相关关系,则A.相关系数r=0B.相关系数r=1C.估计标准误差等于0D.估计标准误差等于1E.回归系数b=05.设单位产品成本(元)对产量(件)的⼀元线性回归⽅程为y=85-5.6x,则A.单位成本与产量之间存在着负相关B.单位成本与产量之间存在着正相关C.产量每增加1千件,单位成本平均增加5.6元D.产量为1千件时,单位成本为79.4元E.产量每增加1千件,单位成本平均减少5.6元6.根据变量之间相关关系的密切程度划分,可分为A.不相关B.完全相关C.不完全相关D.线性相关E.⾮线性相关7.判断现象之间有⽆相关关系的⽅法有A.对现象作定性分析B.编制相关表C.绘制相关图D.计算相关系数E.计算估计标准误差 8.当现象之间完全相关的,相关系数为A.0B.-1C.1D.0.5E.-0.5 9.相关系数r =0说明两个变量之间是A.可能完全不相关B.可能是曲线相关C.肯定不线性相关D.肯定不曲线相关E.⾼度曲线相关10.下列现象属于正相关的有A.家庭收⼊愈多,其消费⽀出也愈多B.流通费⽤率随商品销售额的增加⽽减少C.产量随⽣产⽤固定资产价值减少⽽减少D.⽣产单位产品耗⽤⼯时,随劳动⽣产率的提⾼⽽减少E.⼯⼈劳动⽣产率越⾼,则创造的产值就越多 11.直线回归分析的特点有A.存在两个回归⽅程B.回归系数有正负值C.两个变量不对等关系D.⾃变量是给定的,因变量是随机的E.利⽤⼀个回归⽅程,两个变量可以相互计算 12.直线回归⽅程中的两个变量A.都是随机变量B.都是给定的变量C.必须确定哪个是⾃变量,哪个是因变量D.⼀个是随机变量,另⼀个是给定变量E.⼀个是⾃变量,另⼀个是因变量13.从现象间相互关系的⽅向划分,相关关系可以分为A.直线相关B.曲线相关C.正相关D.负相关E.单相关 14.估计标准误差是A.说明平均数代表性的指标B.说明回归直线代表性指标C.因变量估计值可靠程度指标D.指标值愈⼩,表明估计值愈可靠E.指标值愈⼤,表明估计值愈可靠 15.下列公式哪些是计算相关系数的公式16.⽤最⼩平⽅法配合的回归直线,必须满⾜以下条件A.∑(y-y c )=最⼩值B.∑(y-y c )=0C.∑(y-y c )2=最⼩值D.∑(y-y c )2=0E.∑(y-y c )2=最⼤值 17.⽅程y c =a+bx222222)()(.)()())((...))((.y y n x x n yx xy n r E y y x x y y x x r D L L L r C L L L r B n y y x x r A xx xy xyyy xx xy y x ∑-∑?∑-∑∑?∑-∑=-∑?-∑--∑===--∑=σσA.这是⼀个直线回归⽅程B.这是⼀个以X为⾃变量的回归⽅程C.其中a是估计的初始值D.其中b是回归系数E.y c是估计值18.直线回归⽅程y c=a+bx中的回归系数bA.能表明两变量间的变动程度B.不能表明两变量间的变动程度C.能说明两变量间的变动⽅向D.其数值⼤⼩不受计量单位的影响E. 其数值⼤⼩受计量单位的影响19.相关系数与回归系数存在以下关系A.回归系数⼤于零则相关系数⼤于零B.回归系数⼩于零则相关系数⼩于零C.回归系数等于零则相关系数等于零D.回归系数⼤于零则相关系数⼩于零E.回归系数⼩于零则相关系数⼤于零20.配合直线回归⽅程的⽬的是为了A.确定两个变量之间的变动关系B.⽤因变量推算⾃变量C.⽤⾃变量推算因变量D.两个变量相互推算E.确定两个变量之间的相关程度21.若两个变量x和y之间的相关系数r=1,则A.观察值和理论值的离差不存在B.y的所有理论值同它的平均值⼀致C.x和y是函数关系D.x与y不相关E.x与y是完全正相关22.直线相关分析与直线回归分析的区别在于A.相关分析中两个变量都是随机的;⽽回归分析中⾃变量是给定的数值,因变量是随机的B.回归分析中两个变量都是随机的;⽽相关分析中⾃变量是给定的数值,因变量是随机的C.相关系数有正负号;⽽回归系数只能取正值D.相关分析中的两个变量是对等关系;⽽回归分析中的两个变量不是对等关系E.相关分析中根据两个变量只能计算出⼀个相关系数;⽽回归分析中根据两个变量只能计算出⼀个回归系数三、填空题1.研究现象之间相关关系称作相关分析。
相关与回归分析统计学
• 一、函数关系和相关关系 • (一)函数关系和相关关系的区别与联系。 • 客观现象总是普遍联系、相互依存、相互制约
的,当我们用变量来反映这些现象的特征时, 便表现为变量之间的依存关系。变量之间就其 关系的变化来说可分为函数关系和相关关系。
整理课件
当一个或几个变量取一定的值时,另一个变量有确定值 与之相对应,我们称这种确定性的一一对应关系为函数关 系。如圆的周长与其半径之间的关系即为函数关系。
整理课件
变量之间的函数关系和相关关系,在一定条件 下是可以相互转化的。
本来具有函数关系的变量,当存在观测误差 时,其函数关系往往以相关关系的形式表现出来。 而对于具有相关关系的变量之间的联系,如果我们 对它们有了深刻的规律性认识,并且能把影响因变 量变动的因素全部纳入方程,这时的相关关系也可 能转化为函数关系。客观现象的函数关系可以用数 学分析的方法去研究,而研究客观现象的相关关系 则要借助于统计学中的相关与回归分析方法。
关和偏相关的基础。单相关有线性相关和非线性相关 两种表现形式。测定线性相关系数的方法是最基本的 相关分析,是测定其他相关系数方法的基础。 • 单相关系数或简单相关系数可简称相关系数。
• 相关系数是在直线相关条件下,对变量之间相关关系 密切程度的度量。把若干个相关系数加以比较,可以 发现现象发展中具有决定意义的因素,因而相关系数 在多个因素的作用判断中亦有重要作用。
• 判断真实相关与虚假相关,必须依靠有关的实 质性科学提供的知识做定性分析,而不能靠数 学公式或简单的数学图表来作出判断。
整理课件
二、相关关系的分析
• 相关分析就是对变量之间相关关系的描述与度量。 • 其基本内容包括: • 1、直观地判断变量之间是否存在相关关系及其相关关
第10章 直线回归与相关分析
回归方程的基本条件(性质): 回归方程的基本条件(性质): 性质1 性质1 性质2 性质2 性质3 性质3
ˆ 最小; Q = ∑( y − y)2 = 最小;
ˆ ∑( y − y) = 0
; 。
回 归 直 线 通 过 点 (x, y)
2
ˆ Q = ∑( yi − yi ) = ∑[ yi − (a + bxi )]
二、直线回归的显著性检验
回归关系的假设测验: 回归关系的假设测验: 对于样本的回归方程,必须测定其来自无 对于样本的回归方程,必须测定其来自无 直线回归关系总体的概率大小。只有当这种概 直线回归关系总体的概率大小。 率小于0.05或0.01时,我们才能冒较小的危 或 率小于 时 险确认其所代表的总体存在着直线回归关系。 险确认其所代表的总体存在着直线回归关系。 这就是回归关系的假设测验 。 回归关系的假设测验有两种方法: 测验或F 回归关系的假设测验有两种方法:t测验或F测验
由于x变数的实测区间为[31.7,44.2], 由于x变数的实测区间为[31.7,44.2], [31.7 在应用=48.5-1.1x于预测时,需限定x 在应用=48.5-1.1x于预测时,需限定x的区间 =48.5 于预测时 为[31.7,44.2];如要在x<31.7或>44.2的 [31.7,44.2];如要在x 31.7或 44.2的 区间外延,则必须有新的依据。 区间外延,则必须有新的依据。
整理后可得: 整理后可得:
na + ( ∑ xi )b = ∑ yi ( ∑ xi ) a + ( ∑ x i ) b = ∑ x i y i
2
上式叫做a与b的正规方程组 正规方程组。 正规方程组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要内容
❖9.1.变量的相关关系(掌握) ❖9.2.一元线性回归(掌握) ❖9.3.一元线性回归的拓展(理解) ❖9.4.回归方程的应用(理解)
9.1 变量的相关关系
一、变量间的关系 二、相关关系的度量和检验 三、相关分析和回归分析
变量间的关系
【课本P230-234为回归】
数值变量间的关系
1.函数关系
2 ). H 0 : P 0 .1; H 1 : P 0 .1; 0.08 0.1
Z 0 .1 * 0 .9 / 1 0 0 2 / 3 Z 0.05 1 .6 4 5 不差
推断统计学 要点回顾
统计推断的过程
总体均值、 比例、方差
总体
样 描述
本
统计
样本统计量
(样本均值、比 例、方差)
在实际中往往通过相关关系表现出来。 ❖在研究相关关系时,又常常要使用函数关
系的形式来表现,以便找到相关关系的一 般数量表现形式。
Y = f ( X ) + ε =f ( X , ε ) ( ε为随机变量)
❖相关关系不一定是因果关系!。
相关关系的分类
4.:相关关系的分类
1)、按相关关系涉及因素(变量)的多少分为: ▪ 单相关——一元相关,指两个变量间的相关关系 (如商品销售额与商品价格的关系); ▪ 复相关——多元相关,指三个(或以上)变量间 的相关关系(如商品销售额与居民收入、商品价格 等的关系)。
不能拒绝原假设
第七章 课后习题 参考答案
❖课本P211习题7.15。大样本成数的检验,
用Z检验。1)双侧检验,2)右侧检验
1). H 0 : P 0 .1; H 1 : P 0 .1; 0.08 0.1
Z 0 .1 * 0 .9 / 1 0 0 2 / 3 Z 0.05 /2 1 .9 6 一样好
总体(变量)间的关系
❖客观现象普遍联系和相互依存,变量间存在 一定的关系。
▪ 变量:数值变量;分类变量。
❖独立性检验:分析分类变量之间是的关系;
(P203-204)
❖方差分析: 数值变量与(一个或多个)分 类变量之间的关系;(第八章)
❖相关与回归分析:主要处理数值变量之间的 关系。(第九章)
第九章 相关与回归
X / n X
s/ n
~ N(0,1) ~ N(0,1)
t
X s/
n
~
t(n
1)
▪ 区间估计:
ZZ/2
XZ/2
nXZ/2
n
t t/2 Xt/2
snXt/2
s n
▪ 参数检验:左侧、右侧、双侧检验拒绝域 0
Z检 验 : ZZ;ZZ;ZZ/2 t检 验 : tt;tt;tt/2
推断统计要点回顾
统计研究的过程
统计设计[2]
实际问题
收集数据[2,5] (取得数据)
整理数据[2] (处理数据)
解释数据 (结果说明)
分析数据 (研究数据)
统计研究的主要内容
研究数据
单位
总体
部分
总体
总体
之间 关系
总体 时间 变化
综合指标 [3]
推断统计 [4,5,6,7,8]
相关与 指数[10]、 回归[9] 时间序列[11]
它反映现象之间存在着严格的依存关系,在这种 关系中,对于某一变量的每一个数值,都有另一 个变量的确定值与之相对应,并且这种关系可以 用一个数学表达式反映出来。
y = f (x)
例: ▪ 某种商品的销售额(y)与销售量(x)之间的关系可表示为 y = p x (p 为单价)
▪ 圆的面积(S)与半径之间的关系可表示为S = R2
方法B:男孩:(父亲身高+母亲身高 ×1.08)÷2 女孩:(父亲身高×0.923+母亲身高)÷2
(我国系数:男1.11~1.12,女0.948~0.980之间 )
2、足长身高预测法
成年的身高=13岁时足长×7 运用这种方法来预测孩子未来的身高更为简单方便,误差不
超过3厘米
数值变量间的关系
3.相关关系与函数关系的联系 ❖ 由于有观察或测量误差等原因,函数关系
统计学9.相关与回归
第七章 课后习题 参考答案
❖ 课本P211习题7.12。是正态总体均值的检验,小 样本而且方差未知,用t检验。需要计算样本均值 和样本方差
X 1 2 4 .9 3 7ຫໍສະໝຸດ 5 ;S 2 1 .7 1 4 7
H 0 : 120; H 1 : 120; t 12214..79134775/112600.9095t0.005 2.947
推断统计要点回顾
❖点估计:矩估计法(替代) ❖估计量优良的评判标准:
▪ 无偏性 ▪ 有效性 ▪ 一致性
❖区间估计:估计总体参数的置信区间
❖假设检验:
▪ 参数检验:对总体参数的检验 ▪ 非参数检验:对分布形式等的检验
推断统计要点回顾
❖总体均值的推断
▪ 样本均值 抽样分布: X ~ N(,
2
/
n)
Z Z
推断统计要点回顾
❖总体方差的推断
▪ 正态总体样本方差抽样分布:
2
(n1)s2
2
~2(n1)
▪ 区间估计:
1 2 /22 2 /2 (n 2 1 )s22(n 21 )s2
/2
1 /2
▪ 参数检验:左侧、右侧、双侧检验拒绝域 0 2 检 验 : 2 2 1 ;2 2 ;2 2 1 / 2 o r 2 2 / 2
例如:孩子的身高与父母身高的关系;成人升高与体重的关系;收入与
学历的关系;GDP与投资的关系,粮食亩产量与施肥量、降雨量、 温度之间的关系……
Y = f ( X ) + ε =f ( X , ε ) ( ε为随机变量)
数值变量间的关系
2.相关关系
例:身高的预测方法:
1、父母身高预测方法
方法A:男孩:(母亲身高+父亲身高+13厘米)/2 女孩:(父亲身高+母亲身高-13厘米)/2
❖总体成数的推断
▪
样本成数(大样 本)抽样分布:
p~N (P ,P (1 P )) Z p P ~N (0 ,1 )
n
P (1 P )/n
▪ 区间估计:根号下Pp
Z Z /2 p Z /2
p ( 1 n p ) p Z /2
p ( 1 p ) n
▪ 参数检验:左侧、右侧、双侧检验拒绝域 P P0 Z 检 验 : Z Z ;Z Z ;Z Z /2
▪ 企业的原材料消耗额(y)与产量(x1) 、单位产量消耗(x2) 、 原材料价格(x3)之间的关系可表示为y = x1 x2 x3
数值变量间的关系
2.相关关系
它反映现象之间确实存在的,但关系数值不固定 的相互依存关系。这一概念表明: (1)相关关系是指现象之间确实存在数量上的相互 依存关系。 (2)现象之间数量依存关系的具体关系值不是固定 的。