8高等数学课件(完整版)详细
合集下载
高等数学教学课件PPT
注 (1) 周期函数在每个周期上有相同的图形
(2) 通常周期函数的周期是指最小正周期
(3) 并非每个周期函数都有最小正周期
例:常量函数 f ( x) C
y
狄利克雷函数
1 f (x) 0
xQ x QC
1
概念
概念
集映
函
合射
逆映射
反函数
数
区邻 间域
构造 复合映射
构造
➢概念
设函数 f : D f (D) 是单射, 则它存在逆映射 f 1 : f (D) D 称映射 f 1 为函数f 的反函数. 一般地, y f ( x), x D的反函数记成 y f 1( x), x f (D)
1, x 0
y
sgn
x
0,
x0
1, x 0
y
1
o
x
1
y
注 分段函数不一定就是非初等函数!
2 1o 1 2 3 4 x
x x0
2
例5 设f(x)的定义域D=[0,1],求下述函数的定义域
当 x1 x2 时,恒有 f ( x1) f ( x2 )
那么称函数f (x)在区间I上是单调增加的 o
类似可定义函数f (x)在区间I上是单调减少的
x1 x2 x
2.函数的单调性
设函数f (x) 的定义域为D,区间 I D
y
➢ 如果对于区间I上的任意两点x1及x2,
当 x1 x2 时,恒有 f ( x1) f ( x2 )
设f是从集合X到集合Y的映射
若
即Y中的任一元素y都是X中某元素的像,
则称f为X到Y上的映射或满射
若对X中任意两个不同的元素 则称f为X到Y的单射
高等数学课件详细
分学
多元微积分的应用实例
物理学:描述物理现象,如流体力学、电磁学等 工程学:解决工程问题,如结构分析、控制系统设计等 经济学:分析经济模型,如市场均衡、最优化问题等 计算机科学:用于图像处理、机器学习等领域
无穷级数与常微分
07
方程
无穷级数的概念和性质
性质:收敛性、发散 性、绝对收敛性、条
件收敛性等
数
常微分方程的概念和分类
常微分方程:描述函数在某点或某区 间上的变化规律的方程
一阶常微分方程:只含有一个未知函 数和一个自变量的方程
二阶常微分方程:含有两个未知函数 和两个自变量的方程
高阶常微分方程:含有多个未知函数 和多个自变量的方程
线性常微分方程:未知函数和自变量 之间的关系是线性的方程
非线性常微分方程:未知函数和自变 量之间的关系是非线性的方程
常微分方程的基本解法与实例
基本解法:分离变量法、积分因子法、常数变易法等 实例:求解一阶线性常微分方程、求解二阶线性常微分方程等 应用:在物理、化学、生物等领域有广泛应用 难点:求解高阶常微分方程、求解非线性常微分方程等
微分方程的应用实例
生物:描述生物种群增长、 生态平衡等现象
化学:描述化学反应速率、 物质扩散等现象
06
多元函数微积分
多元函数的极限与连续性
多元函数的极限:定义、性质、计算方法 多元函数的连续性:定义、性质、判断方法 多元函数的可微性:定义、性质、判断方法 多元函数的可导性:定义、性质、判断方法 多元函数的可积性:定义、性质、判断方法 多元函数的积分:定义、性质、计算方法
偏导数与全微分
性质。
函数连续性的 性质:连续函 数具有局部有 界性、局部保 号性、局部保 序性等性质。
多元微积分的应用实例
物理学:描述物理现象,如流体力学、电磁学等 工程学:解决工程问题,如结构分析、控制系统设计等 经济学:分析经济模型,如市场均衡、最优化问题等 计算机科学:用于图像处理、机器学习等领域
无穷级数与常微分
07
方程
无穷级数的概念和性质
性质:收敛性、发散 性、绝对收敛性、条
件收敛性等
数
常微分方程的概念和分类
常微分方程:描述函数在某点或某区 间上的变化规律的方程
一阶常微分方程:只含有一个未知函 数和一个自变量的方程
二阶常微分方程:含有两个未知函数 和两个自变量的方程
高阶常微分方程:含有多个未知函数 和多个自变量的方程
线性常微分方程:未知函数和自变量 之间的关系是线性的方程
非线性常微分方程:未知函数和自变 量之间的关系是非线性的方程
常微分方程的基本解法与实例
基本解法:分离变量法、积分因子法、常数变易法等 实例:求解一阶线性常微分方程、求解二阶线性常微分方程等 应用:在物理、化学、生物等领域有广泛应用 难点:求解高阶常微分方程、求解非线性常微分方程等
微分方程的应用实例
生物:描述生物种群增长、 生态平衡等现象
化学:描述化学反应速率、 物质扩散等现象
06
多元函数微积分
多元函数的极限与连续性
多元函数的极限:定义、性质、计算方法 多元函数的连续性:定义、性质、判断方法 多元函数的可微性:定义、性质、判断方法 多元函数的可导性:定义、性质、判断方法 多元函数的可积性:定义、性质、判断方法 多元函数的积分:定义、性质、计算方法
偏导数与全微分
性质。
函数连续性的 性质:连续函 数具有局部有 界性、局部保 号性、局部保 序性等性质。
高等数学完整版详细 ppt课件
h
lim f(0h)f(0)lim h 1,
h 0
h
h h 0
y y x
o
x
f(0h )f(0 ) h
lim
lim1.
h 0
h
h h 0
即 f (0 )f (0 ), 函y数 f(x)在 x0点不 . 可
四、导数的几何意义
y
f (x0 )表示曲线y f (x) 在点M(x0, f (x0 ))处的 切线的斜率,即
4
4
2. 2
例3 求函 yx数 n(n为正 )的 整导 .数数
解 (xn)lim (xh)nxn
h 0
h
li[n m n 1 x n (n 1 )x n 2 h h n 1 ]nxn1
h 0
2 !
即(xn)nn x 1.
更一般地 (x ) x 1 . ( R )
例如,
y x
f(x0)
0( x 0 ) y f(x 0 ) x x
l x 0 i y m l x 0 i [ f m ( x 0 ) x x ] 0
函f(数 x )在x 0连 点 . 续
注意: 该定理的逆定理不成立.
★ 连续函数不存在导数举例
1. 函 数 f(x)连 续 ,若f(x0)f(x0)则 称x0点 为函f(数 x)的角,函 点数在角点 . 不
xx0
切线 MT的斜率为 ktan lim f(x)f(x0). x x0 xx0
二、导数的定义
定义 设函数 y f ( x)在点 x0的某个邻域内 有定义, 当自变量 x在 x0处取得增量 x (点 x0 x 仍在该邻域内)时, 相应地函数 y取 得增量y f ( x0 x) f ( x0 ); 如果y与 x之比当x 0时的极限存在, 则称函数 y f ( x)在点 x0处可导, 并称这个极限为函 数 y f ( x)在点 x0处的导数, 记为y x x0 ,
第8章高等数学PPT课件
定义6 对于函数y = f (x)在x0附近有定义(在x0可以没有定义),如果当x
无限地趋近于x0(始终不等于x0)时,函数值f (x)无限趋近于一个确定的常
数A,则称函数y = f (x)当
x →x0时以A为极限,记作f (x) = A 或f (x)
→ A (x →x0)。
lim
xx0
第21页/共40页
余弦函数y = cos x的性质:
定义域是R,值域是[-1, 1],是偶函数, 是周期函数,最小正周期是2π
正切函数y = tan x的性质:
定义域是{x
x
R, 且x
2
k
,
k
Z}
,
值域是R,是奇函数,是周期函数,最小正周
期是π
第15页/共40页
余切函数y = cot x的性质:
定义域是{x x R,且x k , k Z} ,值
第19页/共40页
二、函数极限的定义
定义3 对于函数y = f (x),如果当x无限地增 大时,函数值f (x)无限趋近于一个确定的常 数limA,则称函数y = f (x)当x → +∞ 时以A为
x
极限,记作
f (x) = A或 f (x) → A (x → +∞)。
定义4 对于函数y = f (x),如果当lixm无限地 x 变小(x的绝对值无限地增大)时,函数值f (x)无限趋近于一个确定的常数A,则称函数y = f (x)当x → -第∞20页时/共4以0页A为极限,记作
lim
x x0
第22页/共40页
定义8 对于函数y = f (x)在x0附近有定义(在x0可以没有定义),如果当x 从小于x0的方向无限地趋近于x0(始终不等于x0)时,函数值f (x)无限趋近 于一个确定的常数A,则称A是函数y = f (x)当x →x0时的左极限,记为 f (x) = A或f (x) → A (x →x0-)。
高等数学课件(完整版)详细
M L ( x , y )ds ; ( 2) 当 f ( x , y ) 1时, L弧长 Lds ;
z f ( x, y)
( 3) 当 f ( x , y )表示立于L上的 柱面在点( x , y )处的高时,
S柱面面积 f ( x , y )ds.
L
s
L
(4) 曲线弧对x轴及 y轴的转动惯量,
f ( x , y )ds f ( x , y )ds f ( x , y )ds.
L1 L2
2. 函数f ( x , y )在闭曲线 L上对弧长的 曲线积分记为L f ( x , y )ds.
4.性质
(1) [ f ( x , y ) g( x , y )]ds f ( x , y )ds g( x , y )ds.
I x x 2 ds,
L
I y y 2 ds.
L
(5) 曲线弧的重心坐标
xds x , ds
L L
yds y . ds
L L
五、小结
1、对弧长曲线积分的概念
2、对弧长曲线积分的计算
3、对弧长曲线积分的应用
思考题
对弧长的曲线积分的定义中 S i 的符号 可能为负吗?
f ( x , y , z )ds
2 2 2 f [ ( t ), ( t ), ( t )] ( t ) ( t ) ( t )dt
( )
x a cos t , 例1 求 I xyds, L : 椭圆 (第象限). L y b sin t ,
( )
注意:
1. 定积分的下限 一定要小于上限 ; 2. f ( x, y )中 x, y 不彼此独立, 而是相互有关的 .
z f ( x, y)
( 3) 当 f ( x , y )表示立于L上的 柱面在点( x , y )处的高时,
S柱面面积 f ( x , y )ds.
L
s
L
(4) 曲线弧对x轴及 y轴的转动惯量,
f ( x , y )ds f ( x , y )ds f ( x , y )ds.
L1 L2
2. 函数f ( x , y )在闭曲线 L上对弧长的 曲线积分记为L f ( x , y )ds.
4.性质
(1) [ f ( x , y ) g( x , y )]ds f ( x , y )ds g( x , y )ds.
I x x 2 ds,
L
I y y 2 ds.
L
(5) 曲线弧的重心坐标
xds x , ds
L L
yds y . ds
L L
五、小结
1、对弧长曲线积分的概念
2、对弧长曲线积分的计算
3、对弧长曲线积分的应用
思考题
对弧长的曲线积分的定义中 S i 的符号 可能为负吗?
f ( x , y , z )ds
2 2 2 f [ ( t ), ( t ), ( t )] ( t ) ( t ) ( t )dt
( )
x a cos t , 例1 求 I xyds, L : 椭圆 (第象限). L y b sin t ,
( )
注意:
1. 定积分的下限 一定要小于上限 ; 2. f ( x, y )中 x, y 不彼此独立, 而是相互有关的 .
高等数学(完整版)详细(课堂PPT)
因此
Sn
a, 0,
n 为奇数 n 为偶数
从而
lim
n
Sn
不存在
,
因此级数发散.
综合 1)、2)可知, q 1 时, 等比级数收敛 ;
q 1 时, 等比级数发散 .
例2. 判别下列级数的敛散性:
(1)
ln
n1
n
n
1
;
解: (1)
(2) n1n(n11) .
Sn
ln 2 1
ln 3 2
ln 4 3
的敛散性.
证: 将级数 un 的前 k 项去掉, 所得新级数 uk n
n1
n1
的部分和为
n
n uk l Sk n Sk
l 1
由于n 时, n 与Sk n 极限状况相同, 故新旧两级
数敛散性相同.
当级数收敛时, 其和的关系为 S Sk .
类似可证前面加上有限项的情况 .
性质4. 收敛级数加括弧后所成的级数仍收敛于原级数
将各项依
n1
un u1 u2 u3
n1
un
称上式为无穷级数,其中第 n 项 un 叫做级数的一般项,
级数的前 n 项和
n
Sn uk u1 u2 u3 un
k 1
称为级数的部分和. 若 lim Sn S 存在, 则称无穷级数
n
收敛 , 并称 S 为级数的和, 记作
S un
1 n (n 1)n
34
二 、交错级数及其审敛法
设 un 0 , n 1, 2, , 则各项符号正负相间的级数 u1 u2 u3 (1)n1un
称为交错级数 .
定理6 . ( Leibnitz 判别法 ) 若交错级数满足条件:
高等数学ppt课件
05
常微分方程初步
常微分方程基本概念
1 2
常微分方程定义
明确常微分方程的定义,包括独立变量、未知函 数、方程阶数等概念。
初始条件和边界条件
解释初始条件和边界条件在解常微分方程中的作 用和意义。
3
常微分方程的解
阐述通解、特解、隐式解、显式解等概念,并举 例说明。
一阶常微分方程解法
分离变量法
介绍分离变量法的原理、步骤和适用范围,通 过实例演示其应用。
向量积定义
两向量按照右手定则所构成的平行四边形的面积,结果为一向量,可用于计算法向量、判断三向量共 面等。
平面和直线方程求解方法
要点一
平面方程求解方法
包括点法式、一般式等,用于确定平面在空间中的位置。
要点二
直线方程求解方法
包括点向式、参数式等,用于确定直线在空间中的位置和 方向。
常见曲面方程及其图形特征
为未来职业生涯打基础
许多行业都需要具备一定的数学基础 ,学习高等数学有助于为未来职业生 涯打下坚实基础。
02
函数与极限
函数概念与性质
函数定义
详细解释函数的定义,包括函数值、定义域、值域等概念。
函数性质
介绍函数的单调性、奇偶性、周期性等基本性质,并举例说明。
初等函数及其图像
基本初等函数
详细讲解幂函数、指数函数、对数函数、三角函数等基本初等函数的定义、性质和图像。
隐函数求导法
阐述隐函数存在定理,介绍隐函数求导方法及应用实例。
二重积分定义和计算方法
二重积分定义
阐述二重积分概念、性质及实际意义,介绍 二重积分在物理、工程等领域的应用。
二重积分计算方法
分别介绍直角坐标系和极坐标系下二重积分 的计算方法,包括累次积分法、换元积分法
高数课件1-8PPT课件
证 lim lim( )
lim lim lim
lim
.
函数与极限
6
例3 求 lim tan2 2x . x0 1 cos x
解 当x 0时, 1 cos x ~ 1 x2 , 2
原式
lim x0
(2 x )2 1 x2
8.
2
tan 2x ~ 2x.
注意 不能滥用等价无穷小代换.
解
lim
x0
tan
x x3
sin
x
lim(x0Leabharlann tan xx1
cos x2
x
)
1, 2
tan x sin x为x的三阶无穷小.
函数与极限
4
常用等价无穷小: 当x 0时,
sin x ~ x, arcsin x ~ x,
tan x ~ x, arctan x ~ x,
ln(1 x) ~ x, e x 1 ~ x, 1 cos x ~ 1 x2 . 2
1 x
不存在.
不可比.
极限不同, 反映了趋向于零的“快慢”程度不
同.
函数与极限
2
定义:设,是同一过程中的两个无穷小,且 0.
(1) 如果lim 0,就说是比高阶的无穷小,
记作 o();
(2) 如果 lim C(C 0), 就说与是同阶的无穷小;
特殊地 如果lim 1,则称与是等价的无穷小;
原式 lim
2
x0
3x o( x)
o( x) 1 o( x 2 )
5 x lim x 2
x
5.
x0
3 o( x)
3
x
函数与极限
9
三、小结
高等数学课件详细
导数的应用
第五章
函数的单调性和极值
导数与函数的单调性:导数大于0,函数单调递增;导数小于0,函数单调递减
极值的定义:函数在某点处的导数为0,且该点两侧的导数符号相反,则该点为函数的极 值点
极值的分类:极大值和极小值
极值的求解:通过求导数等于0的点,并判断该点两侧的导数符号,确定极值点
曲线的凹凸性和拐点
质。
定积分的应用: 定积分在物理、 工程、经济等 领域有着广泛 的应用,如计 算物体的质量、 体积、重心等。
定积分的计算 方法:常用的 定积分计算方 法有牛顿-莱布 尼茨公式、积 分表法、数值
积分法等。
定积分的运算和求法
定积分的定义: 对函数在某一区 间上的积分
定积分的性质: 线性性、可加性、 单调性等
导数:函数在某一点的切 线斜率
凹凸性:函数在某点附近 的增减性
拐点:函数在某点附近的 凹凸性发生变化的点
应用:判断函数的单调性、 极值、最值等
洛必达法则和不定积分
洛必达法则:用于求解极限, 包括0/0型和∞/∞型
不定积分:用于求解函数的原 函数,包括基本积分公式和换 元积分法
洛必达法则的应用:求解极限、 求导、求积分等
不定积分的应用:求解函数的 原函数、求导、求积分等
泰勒公式和等价无穷小量代换
等价无穷小量代换:将复杂 函数替换为简单函数,便于 计算和近似
泰勒公式的应用:求极限、 求导数、求积分等
泰勒公式:将函数展开为多 项式形式,便于计算和近似
等价无穷小量代换的应用: 求极限、求导数、求积分等
不定积分与定积分
极限的应用:极限在微积分、函数分析、概率论等领域有着广泛的应用。
极限的运算和求法
极限的定义:函数 在某点或某区间上 的极限值
高等数学第八章课件.ppt
x x0 y y0 z z0 . x(t0 ) y(t0 ) z(t0 ) 切向量:切线的方向向量称为曲线的切向量.
T x(t0), y(t0), z(t0)
法平面:过M点且与切线垂直的平面.
x(t0 )(x x0 ) y(t0 )( y y0 ) z(t0 )(z z0 ) 0
限,记为
lim f( x, y) A,
( x, y x0 , y0 )
或 f(x,y) A,( x, y)( x0, y0 )
例 考察函数
g( x,
y)
xy
x2 y2
,
x2 y2 0 ,
0 , x2 y2 0
当 ( x, y ) ( 0 , 0 ) 时的极限
解 当 ( x, y ) 沿 y 轴趋向于原点,即当 y 0 而
若函数 u u(x, y), v v(x, y) 在点(x, y) 处有偏导 数,则 z f (u) 在对应点(u, v) 处有连续偏导数, 则复合函数 z f [u(x, y), v(x, y)] 在点(x, y) 处也存 在偏导数,并且
两种特殊情况:
(二) 隐函数的求导法则
设方程 F (x , y) = 0 确定了函数 y = y(x),两端 对 x 求导,得
f(x0,y0)=C
第二节 偏导数
一、偏导数的概念及几何意义 二、高阶偏导数 三、复合函数与隐函数的求导法则
一、偏导数的概念及几何意义
(一) 偏导数的概念
定义 设函数
在点
的某邻域内极限
存在,则称此极限为函数 的偏导数,记为
注意:
同样可定义对 y 的偏导数为
若函数 z f ( x, y)在域 D 内每一点 ( x, y)处对 x
T x(t0), y(t0), z(t0)
法平面:过M点且与切线垂直的平面.
x(t0 )(x x0 ) y(t0 )( y y0 ) z(t0 )(z z0 ) 0
限,记为
lim f( x, y) A,
( x, y x0 , y0 )
或 f(x,y) A,( x, y)( x0, y0 )
例 考察函数
g( x,
y)
xy
x2 y2
,
x2 y2 0 ,
0 , x2 y2 0
当 ( x, y ) ( 0 , 0 ) 时的极限
解 当 ( x, y ) 沿 y 轴趋向于原点,即当 y 0 而
若函数 u u(x, y), v v(x, y) 在点(x, y) 处有偏导 数,则 z f (u) 在对应点(u, v) 处有连续偏导数, 则复合函数 z f [u(x, y), v(x, y)] 在点(x, y) 处也存 在偏导数,并且
两种特殊情况:
(二) 隐函数的求导法则
设方程 F (x , y) = 0 确定了函数 y = y(x),两端 对 x 求导,得
f(x0,y0)=C
第二节 偏导数
一、偏导数的概念及几何意义 二、高阶偏导数 三、复合函数与隐函数的求导法则
一、偏导数的概念及几何意义
(一) 偏导数的概念
定义 设函数
在点
的某邻域内极限
存在,则称此极限为函数 的偏导数,记为
注意:
同样可定义对 y 的偏导数为
若函数 z f ( x, y)在域 D 内每一点 ( x, y)处对 x
高等数学课件完整版
-x f (x)
y
y f (x)
f (x)
o
xx
奇函数
4.函数的周期性:
设函数f ( x)的定义域为D, 如果存在一个不为零的
数l, 使得对于任一x D, ( x l ) D. 则称f ( x)为周
期函数, l称为f ( x)的周期. 且f ( x l) f ( x)恒成立.
(通常说周期函数的周期是指其最小正周期).
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
3.邻域: 设a与是两个实数 , 且 0.
数集{ x x a }称为点a的邻域 , 点a叫做这邻域的中心, 叫做这邻域的半径 .
U (a) {x a x a }.
对应法则f
(
W
y f (x0 )
自变量
)
因变量
约定: 定义域是自变量所能取的使算式有意义 的一切实数值.
例如, y 1 x2 例如, y 1
1 x2
D :[1,1] D : (1,1)
如果自变量在定 y
义域内任取一个数值
时,对应的函数值总
是只有一个,这种函 W
数叫做单值函数,否
y
则叫与多值函数.
o
x
y min{ f ( x), g( x)}
y
f (x)
g( x)
o
x
在自变量的不同变化范围中, 对应法则用不同的 式子来表示的函数,称为分段函数.
例如,
2x 1,
f
(
x)
x
2
1,
8高等数学课件(完整版)详细
f ( x, y)d
d
dy
2 ( y) f ( x, y)dx.
D
c
1( y)
X型区域的特点: 穿过区域且平行于y轴的直
线与区域边界相交不多于两个交点.
Y型区域的特点:穿过区域且平行于x轴的直
线与区域边界相交不多于两个交点.
若区域如图, 则必须分割.
在分割后的三个区域上分别 使用积分公式
D3 D1
的代数和;
3、>,<;
4、 .
三、1、 ( x y)2 d ( x y)3 d ;
D
D
2、 ln( x y)d [ln( x y)]2 d .
D
四、36 ( x2 4 y2 9)d 100.
一、利用直角坐标系计算二重积分
如果积分区域为:a x b, 1( x) y 2( x).
记为 f ( x, y)d ,
D
n
即
D
f
( x,
y)d
lim
0 i1
f
(i ,i ) i.
积被 积 分积 分 区函 变 域数 量
被面 积积 积 表元 分 达素 和 式
对二重积分定义的说明:
(1) 在二重积分的定义中,对闭区域的划分是 任意的.
(2)当 f ( x, y)在闭区域上连续时,定义中和式
练习题
一、填空题:
1、当函数 f ( x, y) 在闭区域D 上______________时, 则其在D 上的二重积分必定存在 .
2、二 重 积 分 f ( x, y)d 的 几 何 意 义 是
D
___________________________________.
3、若 f ( x, y) 在 有 界 闭 区 域 D 上 可 积 , 且
高等数学课件
微积分在力学中的应用: 解决力学问题,如牛顿第 二定律、能量守恒等
微积分在电学中的应用: 解决电学问题,如电场强 度、电势等
微积分在热力学中的应用: 解决热力学问题,如热传 导、热对流等
微积分在光学中的应用: 解决光学问题,如折射率、 反射率等
微积分在声学中的应用: 解决声学问题,如声速、 声压等
微积分在材料科学中的应 用:解决材料科学问题, 如应力、应变等
傅里叶变换与拉 普拉斯变换的关 系:傅里叶变换 是拉普拉斯变换 的特殊情况,当 s=jω时,傅里 叶变换等于拉普 拉斯变换
傅里叶变换与拉 普拉斯变换的应 用:信号处理、 控制系统分析、 图像处理等领域
05
高等数学解题方法
代数法与因式分解法
代数法:通过代数运算求解问题的方法, 包括解方程、解不等式等
导数与微分
导数:函数在某一点的切线斜率 微分:函数在某一点的增量 导数与微分的关系:导数是微分的极限 导数的计算方法:极限法、导数公式、导数表等 微分的计算方法:微分公式、微分表等 导数与微分的应用:求极限、求导数、求微分等
不定积分与定积分
不定积分:求导数的逆运算,用于求解微分方程 定积分:求函数在某一区间上的面积,用于求解物理问题 积分公式:牛顿-莱布尼茨公式,用于求解不定积分 积分技巧:换元法、分部积分法、积分表等,用于求解定积分
高等数学课件完整版
单击添加副标题
汇报人:
目录
01 03 05
单击添加目录项标题
02
高等数学基础知识
04
高等数学解题方法
06
高等数学概述 高等数学核心内容 高等数学实际应用案例
01
添加章节标题
02
高等数学概述
高等数学的定义
《高等数学课件》课件
导数的定义
导数是函数在某一点的变化率,表示函数在该 点的斜率或切线斜率。
导数的几何意义
导数在几何上表示曲线在某一点处的切线斜率 。
导数的性质
导数具有一些重要的性质,如线性性质、乘积法则、商的导数法则等。
导数的计算方法
基本初等函数的导数
对于一些基本的初等函数,如幂函数、指数 函数、三角函数等,它们的导数已经给出。
链式法则
乘积法则用于计算两个函数的导数,公式为 (uv)'=u'v+uv'。
乘积法则
链式法则是计算复合函数导数的重要工具, 通过链式法则可以将复合函数的导数转化为 简单函数的导数。
商的导数法则
商的导数法则是计算分式函数的导数的关键 ,公式为(u/v)'=(u'v-uv')/v^2。
微分的概念与性质
详细描述
无穷级数在数学、物理、工程等领域有广泛的应用。在 数学领域,无穷级数可以用来证明一些数学定理,如泰 勒定理等;在物理领域,无穷级数可以用来描述一些物 理现象,如振动和波动等;在工程领域,无穷级数可以 用来解决一些工程问题,如信号处理和图像处理等。
感谢您的观看
THANKS
重积分、方向导数等概念的基础。
06
微分方程
微分方程的基本概念
总结词
理解微分方程的基本定义和分类
详细描述
介绍微分方程的定义,以及微分方程 的分类,如线性微分方程、非线性微 分方程、一阶微分方程、高阶微分方 程等。
一阶微分方程的解法
总结词
掌握一阶微分方程的常见解法
详细描述
介绍一阶微分方程的常见解法,如变量分离法、积分因子法、常数变易法等,并 举例说明每种解法的应用。
导数是函数在某一点的变化率,表示函数在该 点的斜率或切线斜率。
导数的几何意义
导数在几何上表示曲线在某一点处的切线斜率 。
导数的性质
导数具有一些重要的性质,如线性性质、乘积法则、商的导数法则等。
导数的计算方法
基本初等函数的导数
对于一些基本的初等函数,如幂函数、指数 函数、三角函数等,它们的导数已经给出。
链式法则
乘积法则用于计算两个函数的导数,公式为 (uv)'=u'v+uv'。
乘积法则
链式法则是计算复合函数导数的重要工具, 通过链式法则可以将复合函数的导数转化为 简单函数的导数。
商的导数法则
商的导数法则是计算分式函数的导数的关键 ,公式为(u/v)'=(u'v-uv')/v^2。
微分的概念与性质
详细描述
无穷级数在数学、物理、工程等领域有广泛的应用。在 数学领域,无穷级数可以用来证明一些数学定理,如泰 勒定理等;在物理领域,无穷级数可以用来描述一些物 理现象,如振动和波动等;在工程领域,无穷级数可以 用来解决一些工程问题,如信号处理和图像处理等。
感谢您的观看
THANKS
重积分、方向导数等概念的基础。
06
微分方程
微分方程的基本概念
总结词
理解微分方程的基本定义和分类
详细描述
介绍微分方程的定义,以及微分方程 的分类,如线性微分方程、非线性微 分方程、一阶微分方程、高阶微分方 程等。
一阶微分方程的解法
总结词
掌握一阶微分方程的常见解法
详细描述
介绍一阶微分方程的常见解法,如变量分离法、积分因子法、常数变易法等,并 举例说明每种解法的应用。
《高等数学》课件
《高等数学》PPT课件
欢迎来到《高等数学》PPT课件。让我们一起探索数学的奇妙世界,进一步 了解高等数学的概述和其在现实生活中的应用与意义。
什么是高等数学
高等数学是数学的重要分支,研究微积分、极限、连续、导数、积分和常微 分方程等概念与理论,为其他学科提供数学工具和方法。
极限与连续
1
极限的定义
极限是数列或函数无限接近某一特定值的概念。学习极限有助于我们理解数学中 的趋势和变化规律。
积分具有线性性质、换元积分法和分部积分法等运算法则,简化了对复杂函数的 积分计算。
3
牛顿-莱布尼兹公式
牛顿-莱布尼兹公式将定积分与不定积分联系起来,使我们能够通过求不定积分 来求定积分。
常微分方程
1 常微分方程的定义
常微分方程描述了自变量和函数之间的关系,在物理、生物和工程等领域中有广泛应用。
2 一阶常微分方程的解法
偏导数及其运算法则
多元函数的极值
偏导数描述了多元函数在给定 方向上的变化率,通过偏导数, 我们可以了解函数在各个方向 上的变化情况。
多元函数的极值是指函数在特 定约束条件下的最大值和最小 值,可以通过偏导数和拉格朗 日乘数法等方法求解。
通过分离变量、齐次化和常数变易法等方法,我们可以解决一阶常微分方程。
3 二阶常微分方程的解法
二阶常微分方程的解法需要基于一阶方程的解法,我们可以通过特征方程和待定系数法 等方法求解。
多元函数微积分初步
二元函数的概念和性质
二元函数描述了自变量和因变 量之间的关系,帮助我们研究 二维空间中的变化规律。
函数的微分
微分是导数的一个重要应用,描述了函数图像在某一点处的近似变化,以及函数在一段区间 内的平均变化率。
欢迎来到《高等数学》PPT课件。让我们一起探索数学的奇妙世界,进一步 了解高等数学的概述和其在现实生活中的应用与意义。
什么是高等数学
高等数学是数学的重要分支,研究微积分、极限、连续、导数、积分和常微 分方程等概念与理论,为其他学科提供数学工具和方法。
极限与连续
1
极限的定义
极限是数列或函数无限接近某一特定值的概念。学习极限有助于我们理解数学中 的趋势和变化规律。
积分具有线性性质、换元积分法和分部积分法等运算法则,简化了对复杂函数的 积分计算。
3
牛顿-莱布尼兹公式
牛顿-莱布尼兹公式将定积分与不定积分联系起来,使我们能够通过求不定积分 来求定积分。
常微分方程
1 常微分方程的定义
常微分方程描述了自变量和函数之间的关系,在物理、生物和工程等领域中有广泛应用。
2 一阶常微分方程的解法
偏导数及其运算法则
多元函数的极值
偏导数描述了多元函数在给定 方向上的变化率,通过偏导数, 我们可以了解函数在各个方向 上的变化情况。
多元函数的极值是指函数在特 定约束条件下的最大值和最小 值,可以通过偏导数和拉格朗 日乘数法等方法求解。
通过分离变量、齐次化和常数变易法等方法,我们可以解决一阶常微分方程。
3 二阶常微分方程的解法
二阶常微分方程的解法需要基于一阶方程的解法,我们可以通过特征方程和待定系数法 等方法求解。
多元函数微积分初步
二元函数的概念和性质
二元函数描述了自变量和因变 量之间的关系,帮助我们研究 二维空间中的变化规律。
函数的微分
微分是导数的一个重要应用,描述了函数图像在某一点处的近似变化,以及函数在一段区间 内的平均变化率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
也 表 示 它 的 面 积 , 在 每 个 i 上 任 取 一 点
(i ,i ),
作乘积 f (i ,i ) i ,
(i 1,2, , n),
n
并作和 f (i ,i ) i ,
i 1
如果当各小闭区域的直径中的最大值 趋近于零
时,这和式的极限存在,则称此极限为函数
f ( x, y)在闭区域 D 上的二重积分,
又当 x y 1时, ln( x2 y2 ) 0,
于是 ln( x2 y2 )dxdy 0.
r x y 1
例 4 比较积分 ln( x y)d 与[ln( x y)]2 d
D
D
的大小, 其中 D 是三角形闭区域, 三顶点各为(1,0),
(1,1), (2,0).
y
解 三角形斜边方程 x y 2
的极限必存在,即二重积分必存在.
二重积分的几何意义 当被积函数大于零时,二重积分是柱体的体积. 当被积函数小于零时,二重积分是柱体的体积的 负值.
在直角坐标系下用平 y 行于坐标轴的直线网来划 分区域D,
则面积元素为 d dxdy
o
故二重积分可写为
D
x
f ( x, y)d f ( x, y)dxdy
记为 f ( x, y)d ,
D
n
即
D
f
( x,
y)d
lim
0 i1
f
(i ,i ) i.
积被 积 分积 分 区函 变 域数 量
被面 积积 积 表元 分 达素 和 式
对二重积分定义的说明:
(1) 在二重积分的定义中,对闭区域的划分是 任意的.
(2)当 f ( x, y)在闭区域上连续时,定义中和式
f ( x, y)d f ( x, y)d f ( x, y)d .
D
D1
D2
性质4 若 为D的面积, 1 d d .
D
D
性质5 若在D上 f ( x, y) g( x, y),
则有 f ( x, y)d g( x, y)d .
D
D
特殊地 f ( x, y)d f ( x, y)d .
•
(i ,i )
看作均匀薄片, 所有小块质量之和 近似等于薄片总质量
i
o
n
x
M lim 0
(i ,i ) i .
i 1
二、二重积分的概念
定义 设 f ( x, y) 是有界闭区域D 上的有界 函
数,将闭区域D 任意分成n 个小闭区域 1 ,
2 , , n ,其中 i 表示第i 个小闭区域,
练习题
一、填空题:
1、当函数 f ( x, y) 在闭区域D 上______________时, 则其在D 上的二重积分必定存在 .
2、二 重 积 分 f ( x, y)d 的 几 何 意 义 是
D
___________________________________.
3、若 f ( x, y) 在 有 界 闭 区 域 D 上 可 积 , 且
一、问题的提出
1.曲顶柱体的体积 柱体体积=底面积×高 特点:平顶.
z f (x, y) D
柱体体积=? 特点:曲顶.
求曲顶柱体的体积采用 “分割、求和 、取极限”的方法,如下动画演示.
播放
步骤如下:
先分割曲顶柱体的底,z
并取典型小区域,
z f (x, y)
用若干个小平
顶柱体体积之
和近似表示曲
将二重积分定义与定积分定义进行比较, 找出它们的相同之处与不同之处.
思考题解答
定积分与二重积分都表示某个和式的极限 值,且此值只与被积函数及积分区域有关.不 同的是定积分的积分区域为区间,被积函数为 定义在区间上的一元函数,而二重积分的积分 区域为平面区域,被积函数为定义在平面区域 上的二元函数.
D
(二重积分中值定理)
例 1 不作计算,估计 I e( x2 y2 )d 的值,
D
其中D
是椭圆闭区域:
x2 a2
y2 b2
1
(0 b a).
解 区域 D 的面积 ab , 在D上 0 x2 y2 a2, 1 e0 ex2 y2 ea2 ,
由性质 6 知 e d ( x2 y2 ) ea2 ,
1
在 D 内有 1 x y 2 e,
故 ln( x y) 1,
D
o
12x
于是ln( x y) ln( x y)2,
因此 ln( x y)d [ln( x y)]2 d .
D
D
四、小结
二重积分的定义 (和式的极限) 二重积分的几何意义(曲顶柱体的体积) 二重积分的性质
思考题
D
D
三、二重积分的性质
(二重积分与定积分有类似的性质)
性质1 当k为常数时,
kf ( x, y)d k f ( x, y)d .
D
D
性质2
[ f ( x, y) g( x, y)]d
D
f ( x, y)d g( x, y)d .
D
D
性质3 对区Hale Waihona Puke 具有可加性 ( D D1 D2 )
o
顶柱体的体积,x
D
•
n
i
曲顶柱体的体积 V lim 0
f (i ,i ) i .
i 1
y
(i ,i )
2.求平面薄片的质量
设有一平面薄片,占有 xoy 面上的闭区域
D ,在点( x, y)处的面密度为 ( x, y) ,假定 ( x, y)在D 上连续,平面薄片的质量为多少?
将薄片分割成若干小块, y 取典型小块,将其近似
f ( x, y)的最小值 m 1 1 ( x 1, y 2) 32 42 5
故2 I 2 0.4 I 0.5.
5
4
例 3 判断 ln( x2 y2 )dxdy 的符号.
r x y 1
解 当r x y 1时, 0 x2 y2 ( x y )2 1,
故 ln( x2 y2 ) 0;
D
ab e d ( x2 y2 ) abea2 .
D
例 2 估计I
d
的值,
D x2 y2 2 xy 16
其中 D: 0 x 1, 0 y 2.
解 f (x, y)
1
,
( x y)2 16
区域面积 2,
在D上 f ( x, y)的最大值 M 1 ( x y 0) 4
D
D
性质6 设M 、m 分别是 f ( x, y)在闭区域 D 上的
最大值和最小值, 为 D 的面积,则
m f ( x, y)d M
D
(二重积分估值不等式)
性质7 设函数 f ( x, y)在闭区域D 上连续, 为D 的面积,则在 D 上至少存在一点( , ) 使得
f ( x, y)d f (,)