条件充分性判断终极解题技巧

合集下载

2019山东省数学考研:条件充分性判断技巧

2019山东省数学考研:条件充分性判断技巧

【导语】管理类联考有⼀类极为特殊的题型,就是条件充分性判断,对于这类题型,很多考⽣第⼀次看见的时候会有⼀种不知所措的感觉。

为了帮助⼤家熟悉这类题型,⽆忧考为同学们归纳整理了该类题型的解题常⽤⽅法以及⼀些⼩技巧。

⼀、题⽬命题形式:条件充分性的题⽬形式为:题号+题⼲(条件部分)+结论部分。

(1)条件(1)的内容(2)条件(2)的内容⼆、选项设置:(A)条件(1)充分,但条件(2)不充分(B)条件(2)充分,但条件(1)不充分(C)条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分(D)条件(1)充分,条件(2)充分(E)条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来也不充分对于以上的五个选项,要求各位同学必须熟练的背诵下来,因为这五个选项,只在第16题的上⾯出现⼀次,后⾯试卷中的每个⼩题不会再次出现这五个选项的,为了节约在考场上的答题时间,这五个选项必须背记下来。

三、解题步骤:1、判断条件(1)单独充分性是否成⽴;2、判断条件(2)单独充分性是否成⽴;3、条件(1)和(2)单独充分性均不成⽴,则将条件(1)和(2)联合,判断其充分性是否成⽴。

四、解题技巧:1、直接法:简单来说,就是由条件直接推出结论。

⾸先,将条件(1)的内容带到题⼲当中,看看是否能推出结论,若可以,则条件(1)的充分性就成⽴,反之,不成⽴;再将条件(2)的内容带到题⼲当中,看看是否能推出结论,若可以,则条件(2)的充分性就成⽴,反之,不成⽴;若条件(1)和条件(2)单独的充分性都不成⽴,最后将条件(1)和条件(2)的内容都带到题⼲当中,看看是否能推出结论,若可以,则条件(1)和(2)联合的充分性就成⽴,反之,不成⽴。

2、间接法:①举反例在条件内,若能找到⼀个例⼦满⾜条件要求⽽不满⾜结论要求,那么我们就可以判断,该条件不能推出结论,即条件充分性不成⽴。

特别需要注意的是,举反例这类⽅法只能否定结论,不能肯定结论,也就是说,找到的例⼦满⾜条件要求,也满⾜结论要求,但是我们不能判断出来该条件的充分性成⽴,因为我们举出的例⼦具有特殊性,对于题设条件不具有普适性。

充分条件与必要条件的证明方法与技巧

充分条件与必要条件的证明方法与技巧

充分条件与必要条件的证明方法与技巧在数学推理中,我们经常需要探求某个命题的真假性,即证明这个命题是真的还是假的。

在证明中,我们常常会涉及到两个重要的概念,即充分条件和必要条件。

充分条件和必要条件是数学推理中常用的表达方式,也是证明一个命题的有效方法。

本文将介绍充分条件与必要条件的证明方法与技巧。

一、充分条件的证明方法与技巧1. 直接法:直接法是最常见的证明方法之一。

它的思路是通过假设充分条件成立,然后利用已知条件和已证明的命题等,推导出结论。

举个例子来说,若要证明一个命题P是另一个命题Q的充分条件,可以先假设命题P成立,然后通过推导和推理的过程,得到命题Q成立的结论。

这样,通过结论的推导,我们可以得出充分条件的证明。

2. 反证法:反证法是另一种常用的证明方法。

反证法的思路是先假设命题的否定,然后通过推导的过程,得出与已知事实矛盾的结论,从而推翻了假设。

举个例子来说,若要证明一个命题P是另一个命题Q的充分条件,可以先假设命题的否定,即非P成立,然后通过推导和推理的过程,得出与已知事实矛盾的结论,从而推翻了假设,进而证明了命题P是命题Q的充分条件。

3. 构造法:构造法是一种通过构造一个满足充分条件的示例或者给出具体的例子来证明充分条件的方法。

举个例子来说,若要证明一个命题P是另一个命题Q的充分条件,可以通过构造一个示例,例如给出一个满足P的具体情况或者给出若干个例子,使得命题Q成立。

这样通过示例的构造和具体的例子,我们可以得出充分条件的证明。

二、必要条件的证明方法与技巧1. 反证法:反证法在证明必要条件时同样适用。

反证法的思路是先假设命题的否定,然后通过推导的过程,得出与已知事实矛盾的结论,从而推翻了假设。

举个例子来说,若要证明一个命题P是另一个命题Q的必要条件,可以先假设命题P的否定,即非P成立,然后通过推导和推理的过程,得出与已知事实矛盾的结论,从而推翻了假设,进而证明了命题P是命题Q的必要条件。

条件充分性判断题型的几种解法

条件充分性判断题型的几种解法
做题思路:条件一:因为3/14不能化简了,而3n能被14整除,所以n能被14整除
条件二:举反例:n=7满足条件二,但此时结论不成立
➢ 练一练:
设a,b,c为实数,则能确定a,b,c中的最大值。
(1)已知a,b,c的平均值
(2)已知a,b,c中的最小值
答案:E
做题思路:举反例即可,条件一和条件二单独都不充分,联合也不充分
再由 ≤ + 2可知 ≤ 6
➢ 练一练:
例: 直线 y ax b 过第二象限。
(1)
a 1, b 1
(2)
a 1, b 1
答案:A
做题思路:条件 1 = − + 1,画出函数图像可知经过一二四象限
条件 2 = − 1,画出函数图像可知经过一三四象限
例:
x 3x 4 0
2
(1) x 1
(2) x 2
➢ 条件充分性判断题型介绍:
例:
x 3x 4 0
2
(1) x 1
(2) x 2
条件充分性判断的题目意思:
1、题干是我们想要证明的结论。
2、判断条件(1)是否充分?
3、判断条件(2)是否充分?
4、如果两个条件都不充分,则两个条件联合是否充分?
➢ 练一练:
例:p=mq+1为质数
(1)m为正整数,q为质数
(2)m、q均为质数
答案:E
做题思路:只要能举出一个反例,就不充分。m=3,q=3,这既是条件一的反例,也
是条件二的反例
➢ 练一练:
n
例:
是一个整数
14
3n
(1)n是一个整数,且
也是个整数。
14

判断条件充分性的口诀

判断条件充分性的口诀

判断条件充分性的口诀
条件分析判断口诀:
一、内容要全面:
1、要从条件的逻辑关系和条件的时态上来判断,确定全部的可能性;
2、要看整体条件,考虑条件组合下的情况;
3、常量与变量要结合起来进行分析;
4、要留意范围的分配情况和客观规律;
5、要注意与被判定的实践相统一;
6、特别要考虑多种组合可能出现的情况。

二、分析充分:
1、设定条件能够充分排除其他,而将我们希望取得的结果排除在外;
2、能够仔细分析,把握不同情况下可能性的不同;
3、要考虑到未提及条件对结论有直接或者间接影响;
4、不能推论出超越情境范围的条件;
5、条件之间的相关性要考虑客观实际情况。

三、步骤合理:
1、多方联系要明确,步骤之间的关联要完全;
2、要逐步进行判断,将条件内涵分清;
3、步调要分明,层层深入地推理;
4、推论正确,要依靠证据证明;
5、不能妄下结论,要严格评判。

高考数学答题技巧:判断充分与必要条件的方法

高考数学答题技巧:判断充分与必要条件的方法

高考数学答题技巧:判断充分与必要条件的方法
高考数学答题技巧:判断充分与必要条件的方法判断充分与必要条件的方法
一、定义法
可以简单的记为箭头所指为必要,箭尾所指为充分。

在解答此类题目时,利用定义直接推导,一定要抓住命题的条件和结论的四种关系的定义。

例1 已知p:-2
分析条件p确定了m,n的范围,结论q则明确了方程的根的特点,且m,n作为系数,因此理应联想到根与系数的关系,然后再进一步化简。

解设x1,x2是方程x2+mx+n=0的两个小于1的正根,即0 而对于满足条件p的m=-1,n=,方程x2-x+=0并无实根,所以pq.
综上,可知p是q的必要但不充分条件。

点评解决条件判断问题时,务必分清谁是条件,谁是结论,然后既要尝试由条件能否推出结论,也要尝试由结论能否推出条件,这样才能明确做出充分性与必要性的判断。

二、集合法
如果将命题p,q分别看作两个集合A与B,用集合意识解释条件,则有:①若A?哿B,则x∈A是x∈B的充分条件,x∈B 是x∈A的必要条件;②若A?芴B,则x∈A是x∈B的充分不必要条件,x∈B是x∈A的必要不充分条件;③若A=B,。

考研联考逻辑条件充分性判断三方法

考研联考逻辑条件充分性判断三方法

考研联考逻辑条件充分性判断三方法条件充分性判断重点在于判断条件是否充分,通常有三种判断方法:1、举反例。

举反例是数学中说明一个命题不成立的常用方法。

如果一个命题是“所有的天鹅都是白的”,那么只需要找到一只黑天鹅就可以说明这个命题是错的。

对应到条件充分性判断这类题:无非是找一个例子,该例子满足条件但是不满足结论。

如果能找到这样的例子,那么这个条件肯定不充分。

但问题是这样的例子怎么找?怎么在有限的时间内快速找到?根据老师的经验,常用的有效方法是通过看书、听课,积累经典例子。

什么是积累?是不是用笔记下来就算积累了?显然不是。

积累指通过思考弄明白三个问题:“是什么”,“为什么”和“怎么用”(这也是学习其它方法的要求),即想明白例子本身的意思,为什么它可以在此处作为反例,以及什么时候想到用这个例子。

以上三个问题想明白了,可以算作把这种举反例的方法消化吸收了,但还没做到创新。

何为创新?数学家范剑青说过:“当你真正理解一件事情为什么如此时,你才能举一反三,无师自通。

”可见“举一反三”可算作创新了。

如何能达到这种境界?让我们向卖油翁学习“无他,唯手熟耳”。

这里的“手熟”不是重复性工作,而是在练习中查漏补缺,体会本质。

有时我们会被假象蒙蔽:觉得自己掌握了,而实际有的地方没理解到位。

这就像站在一个不牢固的地方,下面是虚空的,更悲催的是当事人还自我感觉良好,结果可想而知。

考研初数需要考生对内容和方法理解到一定深度,不进行足量的练习是难以达到的。

另外,所谓熟能生巧,熟练的重要性不言自明。

对例子比较熟悉并且理解为什么用其作为反例。

这样,遇到类似的题型,可用类似的思路找反例,并且熟练之后尝试创新,比如2013年1月真题:p=mq+1为质数(1)m为正整数,q为质数(2)m,q均为质数【解析】条件(1)反例(满足“m为正整数,q为质数”):m=2,q=7。

则p=mq+1=15显然为合数,不是质数,即此反例满足条件但推不出结论。

充分条件判断的口诀

充分条件判断的口诀

充分条件判断的口诀在数学中,充分条件判断是一种常用的逻辑推理方法,用于确定某个命题的真假。

通过充分条件判断,我们可以根据一些已知条件来推导出结论,从而解决问题。

下面,我们来探讨一下充分条件判断的口诀和应用。

我们要明确什么是充分条件。

充分条件是指当某个条件成立时,结论一定成立。

在逻辑表达中,充分条件通常以“如果…则…”的形式呈现。

例如,如果一个数是偶数,则它一定可以被2整除。

这里,“是偶数”就是充分条件。

那么,如何进行充分条件判断呢?我们可以按照以下口诀进行推理:口诀一:若要判断A是否是B的充分条件,可以反证法。

反证法是一种常用的数学证明方法,它通过假设反面,推导出矛盾,从而证明原命题的真实性。

在充分条件判断中,若要判断A是否是B的充分条件,可以假设A成立,然后推导出B成立。

如果推导过程中出现矛盾,则说明A是B的充分条件。

口诀二:若要判断A是否是B的充分条件,可以使用充分必要条件。

充分必要条件是指当且仅当A成立时,B一定成立。

因此,我们可以通过判断A和B是否相互包含来确定A是否是B的充分条件。

如果A和B相互包含,则A是B的充分条件;如果A和B不相互包含,则A不是B的充分条件。

口诀三:若要判断A是否是B的充分条件,可以使用等价命题。

等价命题是指两个命题具有相同的真值,即当且仅当A成立时,B 一定成立。

因此,我们可以通过判断A和B是否等价来确定A是否是B的充分条件。

如果A和B等价,则A是B的充分条件;如果A和B不等价,则A不是B的充分条件。

通过以上口诀,我们可以灵活运用充分条件判断来解决问题。

下面,我们以一些具体的例子来说明:例一:判断一个数是否为正数的充分条件是它大于零。

根据口诀一,我们可以假设这个数大于零,然后推导出它是正数。

由于推导过程中没有出现矛盾,所以这个数大于零是它是正数的充分条件。

例二:判断一个三角形是否为等边三角形的充分条件是它的三条边相等。

根据口诀二,我们可以判断三角形的三条边是否相等来确定是否为等边三角形。

条件充分判断题做题技巧

条件充分判断题做题技巧

条件充分判断题做题技巧1. 嘿,先看条件全不全呀!比如这道题:“如果下雨,那地面就湿”,得先确定有没有其他影响地面湿的因素。

要是只想着下雨,没考虑到也许有人泼水呢,那不就糟糕啦!2. 注意条件之间的关联呀!好比有个题说:“小王喜欢红色,小李喜欢蓝色”,那能直接说小王和小李喜欢的颜色一样吗?这不是乱来嘛!3. 要学会假设反推呢!像这样:“要是这个数是偶数,那它就能被 2 整除”,那咱反过来想想,不能被 2 整除的数会是偶数吗?这不就清楚了嘛。

示例:这个题说“动物都需要呼吸”,那咱就想,要是有个东西不需要呼吸,那它还能是动物吗?哈哈。

4. 别死磕一个条件哦!比如说一个题有多个条件,就像“他既会唱歌又会跳舞,而且还很幽默”,可不能光盯着会唱歌这条呀,其他条件也很重要呢!就像找宝藏,得把每个地方都看看。

比如这个例子:“这个手机屏幕大,性能强,价格还便宜”,不能只想着屏幕大这一点呀。

5. 对条件的理解可不能含糊!比如说“明天是晴天,我们就去爬山”,那得明白晴天和爬山之间的关系哦。

要是理解错了,那做题不就错啦!比如有个题说“学习好就能拿奖学金”,可不能误以为只要学习好就一定能拿哦。

6. 要把条件和实际联系起来呀!像“坐地铁比坐公交快”,这在大部分情况下是对的,但也得结合实际情况想想呀。

比如特殊时段公交没准更快呢。

就像这个例子:“跑马拉松需要耐力”,这在一般情况下没错,但有些人就是有特殊能力呀。

7. 千万别看漏条件咯!有题说“三角形三条边,这三条边长度分别为……”,要是漏看了边长,那还怎么做题呀!就像找东西,少看一点都找不到呢。

比如:“这个图形有四个角,每个角都是直角”,要是没注意到四个角,那不就糊涂啦。

8. 善于发现隐藏条件!有些条件没摆在明面上呢,得自己找出来。

像“他每天都锻炼,身体很棒”,那这里面就隐含着锻炼会让身体好这个条件呀。

比如说题里说“这个小镇很安静”,那是不是可以想到人少呀,这就是隐藏条件嘛。

高考数学答题技巧:判断充分与必要条件的方法

高考数学答题技巧:判断充分与必要条件的方法

高考数学答题技巧:判断充分与必要条件的方法
高考数学答题技巧:判断充分与必要条件的方法判断充分与必要条件的方法
一、定义法
可以简单的记为箭头所指为必要,箭尾所指为充分。

在解答此类题目时,利用定义直接推导,一定要抓住命题的条件和结论的四种关系的定义。

例1 已知p:-2
分析条件p确定了m,n的范围,结论q则明确了方程的根的特点,且m,n作为系数,因此理应联想到根与系数的关系,然后再进一步化简。

解设x1,x2是方程x2+mx+n=0的两个小于1的正根,即0 而对于满足条件p的m=-1,n=,方程x2-x+=0并无实根,所以pq.
综上,可知p是q的必要但不充分条件。

点评解决条件判断问题时,务必分清谁是条件,谁是结论,然后既要尝试由条件能否推出结论,也要尝试由结论能否推出条件,这样才能明确做出充分性与必要性的判断。

二、集合法
如果将命题p,q分别看作两个集合A与B,用集合意识解释条件,则有:①若A?哿B,则x∈A是x∈B的充分条件,x∈B 是x∈A的必要条件;②若A?芴B,则x∈A是x∈B的充分不必要条件,x∈B是x∈A的必要不充分条件;③若A=B,。

充分条件和必要条件的记忆口诀

充分条件和必要条件的记忆口诀

充分条件和必要条件的记忆口诀充要条件和必要条件是数学中比较容易混淆的知识点,为帮助大家更好的区分二者,整理了记忆口诀及相关内容如下,供大家参考。

充分条件和必要条件的口诀如果A能推出B,那么A就是B的充分条件。

如果没有A,则必然没有B;如果有A而未必有B,则A就是B的必要条件。

充分条件:如果A能推出B,那么A就是B的充分条件。

其中A为B的子集,即属于A的一定属于B,而属于B的不一定属于A,具体的说若存在元素属于B的不属于A,则A为B 的真子集;若属于B的也属于A,则A与B相等。

必要条件:必要条件是数学中的一种关系形式。

如果没有A,则必然没有B;如果有A而未必有B,则A就是B的必要条件,记作B→A,读作“B含于A”。

数学上简单来说就是如果由结果B能推导出条件A,我们就说A是B 的必要条件。

充要条件和必要条件的解题方法1.充分条件与必要条件的两个特征(1)对称性:若p是q的充分条件,则q是p的必要条件,即“p⇒q”⇔“q⇐p”;(2)传递性:若p是q的充分(必要)条件,q是r的充分(必要)条件,则p是r的充分(必要)条件。

注意区分“p是q的充分不必要条件”与“p的一个充分不必要条件是q”两者的不同,前者是“p⇒q”而后者是“q⇒p”。

2.从逆否命题,谈等价转换由于互为逆否命题的两个命题具有相同的真假性,因而,当判断原命题的真假比较困难时,可转化为判断它的逆否命题的真假,这就是常说的“正难则反”。

3.在判断四个命题之间的关系时,首先要分清命题的条件与结论,再比较每个命题的条件与结论之间的关系。

要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应的有了它的“逆命题”“否命题”“逆否命题”;判定命题为真命题时要进行推理,判定命题为假命题时只需举出反例即可。

对涉及数学概念的命题的判定要从概念本身入手。

4.充要条件的判断,重在“从定义出发”,利用命题“若p,则q”及其逆命题的真假进行区分,在具体解题中,要注意分清“谁是条件”“谁是结论”,如“A是B的什么条件”中,A是条件,B是结论,而“A的什么条件是B”中,A是结论,B是条件,有时还可以通过其逆否命题的真假加以区分。

充分条件与必要条件的判断技巧

充分条件与必要条件的判断技巧

充分条件与必要条件的判断技巧
一、借助于“推出方向”理解充分条件与必要条件。

若pq,则下列说法等价:p是q的充分条件,q是p的必要条件。

若pq,则称p与q互为充要条件,或p的充要条件是q,或q的充要条件是p。

例1、若A、B都是C的充要条件,D是A的必要条件,B是D的必要条件,则D是C的()
A 充分不必要条件
B 必要不充分条件
C 充要条件
D 既不充分也不必要条件
解:可用“推出方向”解。

由已知:AC,BC,AD,DB,可以推出D与C的关系:由DB,BC,得DC;由CA,AD,可得:CD。

∴CD,即D是C的充要条件。

二、借助子集的概念理解充分条件与必要条件。

若将命题p、q看成集合,当pq时,p是q的充分条件,q是p的必要条件。

这里可以用“小范围推出大范围”帮助记忆。

例2、(1)若p:x>1,q:x≥5,则p是q的条件。

(2)若p:(x-1)(x-2)=0,q:x=2,则q是p的条件。

解:从集合角度考虑:(1)中有qp;(2)中有pq。

根据“小范围推出大范围”知:(1)的p是q的必要但不充分条件;(2)中的q是p的充分但不必要条件。

三、借助原命题与其逆否命题为等价命题理解充分条件与必要条件。

例3、若p:x≠1,若y≠2,q:x+y≠3,则p是q的条件。

解:考虑其逆否命题:q:x+y=3,p:x=1且y=2,显然有:pq。

∴qp。

即p是q的必要但不充分条件。

总之,只要同学们能够熟练运用以上办法进行充要关系的判断,必定能收到良好的效果。

公务员行测之逻辑判断推理技巧

公务员行测之逻辑判断推理技巧

一、【肯前必肯后,否后必否前,否前推可能,肯后推可能】1.充分条件假言命题〔即逻辑词前推后〕〔1〕如果……那么……例:如果我考上了公务员,那么我肯定通过了笔试。

〔考上了公务员→通过了笔试〕〔2〕只要〔倘假设〕……就〔那么〕……例:只要〔倘假设〕你考上了公务员,我就嫁给你。

〔考上公务员→嫁给你〕〔3〕但凡……都……/所有的……都……例:但凡我不认识的字都不是字。

〔我不认识的字→不是字〕【这里要注意一点,做这种题不要考虑题本身是否正确,就像上面这个例子,本身是错的,但这里只要根据逻辑词去推断结果就好。

】〔4〕为了〔想要〕……一定要〔必须〕……例:为了老婆以后能穿迪奥,女儿能吃奥利奥,自己能开奥迪,我现在一定要努力。

〔老婆穿奥迪,女儿吃……→努力〕〔5〕……离不开……例:鱼离不开水。

〔鱼→水〕2.必要条件假言命题〔即逻辑词后推前〕〔1〕只有……才……例:只有老婆不生气,才有幸福小生活。

〔幸福生活→老婆不生气〕〔2〕不……不……例:不当家不知柴米油盐贵。

〔知道柴米油盐贵→在当家〕〔3〕除非……否那么不……〔注:题干中如果没有“不〞,在转换答题时需自己把“不〞添加上〕例:除非今天发工资,否那么不能买海鲜。

〔买海鲜→今天发工资/不买海鲜→没法工资〕〔4〕……是……必不可少的例:奶粉是提高婴儿营养必不可少的。

〔婴儿有营养→有奶粉〕〔5〕……是……的根底例:乐观的心态是生活幸福的根底。

〔生活幸福→乐观的心态〕〔6〕……是……的前提/关键例:类似于上面一个〔7〕没有……没有……例:没有共产党就没有新中国。

〔新中国→共产党〕二、递推公式【A→B,B→C,即A→C】例:如果给老婆买包,老婆就不生气了,老婆不生气,我就不用跪搓衣板。

〔买包→不生气,不生气→不跪,即:买包→不跪〕三、联言命题〔推理题〕1.“且〞关系:表并列A且B,A、B需同时满足或存在;A且B为真,那么A、B必须都为真;A且B为假,那么A、B中至少一个为假就为假命题。

条件充分性判断解题方法

条件充分性判断解题方法

充分性判断题解题技巧【充分条件基本概念】1.定义 对两个命题A 和B 而言,若由命题A 成立,肯定可以推出命题B 也成立(即B A ⇒为真命题),则称命题A 是命题B 成立的充分条件。

2.条件与结论 两个数学命题中,通常会有“条件”与“结论”之分,若由“条件命题”的成立,肯定可以推出“结论命题”也成立,则称“条件”充分.若由“条件命题”不一定能推出(或不能推出)“结论命题”成立,则称“条件”不充分.例如:不等式0652<--x x 能成立.(1)31<<x (2)7>x(3)5=x (4)6<x(5)61<<-x此例中,题干“0652<--x x 能成立”,这个命题是“结论”,下面分别给出了5个命题都是不同的“条件”.现在我们可以把它们按充分与否分为两类:条件(1)、(3)、(5)充分.条件(2)、(4)不充分.3.知识点评述 1.充分条件的判断:从给定的条件出发去分析,在此条件下,结论是否一定成立,若是,则条件充分,若否,则条件不充分.我们在做充分性判断的试题时,不可从“结论”入手去求解!那样只能得出“条件”对“结论”的“必要性”,而与充分性判断相背离.如:在此例中,由结论命题: 0652<--x x 能成立,可解得61<<-x .这只证明条件(5)是必要的.事实上,条件(5)是结论0652<--x x 能成立的充分必要条件,才“歪打正着”被你找到了一个充分条件. 【充分性判断基本概念】本书中,所有充分性判断题的A 、B 、C 、D 、E 五个选项所规定的含义,均以下列呈述为准,即:(A)条件(1)充分,但条件(2)不充分;(B)条件(2)充分,但条件(1)不充分;(C)条件(1)和(2)充分单独都不充分,但条件(1)和(2)联合起来充分;(D)条件(1)充分,条件(2)也充分;(E)条件(1)和(2)单独都不充分,条件(1)和(2)联合起来也不充分.上述5个选项,把条件(1)和(2)以及两条件联立起来(同时都满足即⎩⎨⎧)2()1(的充分性的所有情况都包括了,但其中“联合”不是数学名词,没有准确的定义,改为“联立”与原题意比较贴切.比如:不等式4)56(<+x x 成立.(1)1->x (2)31<x 分析 由题干4)56(<+x x解上述不等式,得 2134<<-x 显然(1)、(2)单独都不满足 联立(1)和(2)得出311<<-x ,从而原不等式成立.因此,答案是C.常用的求解方法有以下几种: 解法一 直接法(即由A 推导B .)若由A 可推导出出B ,则A 是B 的充分条件;若由A 推导出与B 矛盾的结论,则A 不是B 的充分条件.解法一是解“条件充分性判断”型题的最基本的解法,应熟练掌握.例1 要保持某种货币的币值不变.(1) 贬值10%后又升值10%;(2) 贬值20%后又升值25%;分析 设该种货币原币值为)0(≠a a 元.由条件(1)经过一次贬值又一次升值后的币值为:.99.01.19.0%)101(%)101(a a a =⋅⋅=+⋅- 显然与题干结论矛盾.所以条件(1)不充分.由条件(2)经过一次贬值又一次升值后的币值为:a a a =⋅⋅=+⋅-4554%)251(%)201( 即 题干中的结论成立,所以条件(2)充分,故应选择B.例2 等差数列{}n a 中可以确定25010021100=+++=a a a S(1) 10999832=+++a a a a(2) 10989752=+++a a a a解 据等差数列性质有由条件(1) M a a a a a a 29839921001=+=+=+250100410100100=⨯=⨯=∴M S .条件(1)充分. 由条件(2) 51975509822,2a a a a a a =+=+52105150==+∴a a 又 551501001=+=+a a a a250100251002)(1001100=⨯=⨯+=∴a a S 所以条件(2)也充分.故应选择D. 解法二 定性分析法(由题意分析,得出正确的选择.)当所给题目比较简单明了,又无定量的结论时,可以分析当条件成立时,有无结论成立的可能性,从而得出正确选择,而无需推导和演算.例3 对于一项工程,丙的工作效率比甲的工作效率高.(1)甲、乙两人合作,需10天完成该项工程;(2)乙、丙两人合作,需7天完成该项工程;解 条件(1)中无甲与丙间的关系,条件(2)中亦无甲与丙间的关系,故条件(1)和(2)显然单独均不充分.将两条件联合起来分析:在完成相同工作量的前提下,甲与乙合作所需时间比乙与丙合作所需时间多,故甲的工作效率当然比丙的工作效率低,题干结论成立,所以条件(1)和(2)联合起来充分.故应选择C.例4 在一个宴会上,每个客人都免费获得一份冰淇淋或一份水果沙拉,但不能同时获得二者,可以确定有多少客人能获得水果沙拉.(1) 在该宴会上,60%的客人都获得了冰淇淋;(2) 在该宴会上,免费提供的冰淇淋和水果沙拉共120份.解 由于条件(1)中不知客人总数,所以无法确定获得水果沙拉的客人的人数.而由于条件(2)中只给出客人总数,所以仍无法确定获得水果沙拉的客人的人数,故条件(1)和(2)单独显然均不充分.由条件(2)知客人总数,由条件(1)可获得水果沙拉的客人点总客人数的百分比,必可确定获水果沙拉的客人的人数,所以条件(1)和(2)联合起来充分.故应选择C.解法三 逆推法(由条件中变元的特殊值或条件的特殊情况入手,推导出与题干矛盾的结论,从而得出条件不充分的选择.) 注意 此种方法绝对不能用在条件具有充分性的肯定性的判断上.例5 要使不等式a x x >++-11的解集为R .(1)3>a (2)32<≤a .解 由条件(1) 3>a ,取4=a ,原式即411>++-x x ,此不等式化为: ⎩⎨⎧>--<⎩⎨⎧><≤-⎩⎨⎧>≥,42,1,42,11,42,1x x x x x x 或或 所以 22-<∅∈>x x x 或或.所以不等式的解为22>-<x x 或,所解集为R 矛盾.所以条件(1)不充分.由条件(2), 32<≤a ,取2=a ,不等式化为211>++-x x ,此不等式化为: ⎩⎨⎧>--<⎩⎨⎧><≤-⎩⎨⎧>≥,22,1,22,11,22,1x x x x x x 或或所以11-<∅∈>x x x 或或.所以不等式的解为11>-<x x 或与解集为R 矛盾.所以条件(2)也不充分.条件(1)和(2)联合,得⎩⎨⎧<≤>,32,3a a 所以∅∈a ,显然条件(1)和(2)联合起来也不充分.故应选择E.注意 条件(1)的充分性,是用解法一判断的,只有当条件不充分时,才可用解法三,如对条件(2)不充分的判断.解法四 一般分析法(寻找题干结论的充分必要条件.)即:要判断A 是否是B 的充分条件,可找出B 的充要条件C ,再判断A 是否是C 的充分条件.例6 要使62⎪⎭⎫ ⎝⎛+x a x 的展开式中的常数项为60. (1)a =1 (2)a =2解 设62⎪⎭⎫ ⎝⎛+x a x 展开式的常数项为1+r T ,因为 r r r rr rr x a C x a x C T 3662661--+=⎪⎭⎫ ⎝⎛=. 所以 .2,036==-r r因为 60226=a C ,所以 .2,60152±==a a所以题干中结论的充要条件是2±=a .所以条件(1)1=a 不充分;条件(2)2=a 充分.故应选择B.此题用解法一需要将1=a 和2=a 代入,推算两次,而用此种方法只推算一次得出2±=a 即可.例7 要使关于x 的一元方程0224=+-k x x 有四个相异的实根。

管综考试中条件充分性判断题的答题技巧

管综考试中条件充分性判断题的答题技巧

管综考试中条件充分性判断题的答题技巧管综考试中条件充分性判断题的答题技巧一、题目要求要求判断每题给出的条件(1)和条件(2)能否充分支持题干所陈述的结论,管综冲刺:条件充分性判断题答题技巧。

A.B.C.D.E五个选项为判断结果,请选择一项符合试题要求的判断,在答题卡上将所选项的字母涂黑。

选项:A.条件(1)充分,但条件(2)不充分B.条件(2)充分,但条件(1)不充分C.条件(1)和(2)单独都不充分,但条件(1)和(2)联合起来充分D.条件(1)充分,条件(2)也充分E.条件(1)和(2)单独都不充分,条件(1)和(2)联合起来也不充分二、题目结构以2014年1月真题为例:甲、乙、丙三人年龄相同——题干(已知条件,结论)(1)甲、乙、丙的年龄成等差数列——条件1(2)甲、乙、丙的年龄成等比数列——条件2【解析】条件(1):假设甲的年龄为2岁,乙的年龄为4岁,丙的年龄为6岁,则满足“三人年龄成等差数列”要求,但是并不能推出结论“三人年龄相同”。

因此,条件不充分;条件(2):假设甲的年龄为2岁,乙的年龄为4岁,丙的年龄为8岁,则满足“三人年龄成等比数列”要求,但是并不能推出结论“三人年龄相同”。

因此,条件不充分;条件(1)+(2):三人年龄既成等差数列也成等比数列,因此三人的年龄为常数列,可以推出结论“三人年龄相同”。

因此,条件充分;综上,结合选项要求知此题选C.三、常见的判断充分性的方法有三个1.举反例根据充分性的定义,对条件充分性判断这类题:无非是找一个例子,该例子满足条件但是不满足结论。

如果能找到这样的例子,那么这个条件肯定不充分。

通常举反例是会有三种考虑方式,一是找常见的简单数字,例如0,1这些;二是找满足条件的极端数字;三是找特殊情况。

2.代值验证顾名思义,即把条件所给的数值代入题干中的结论,进行验证,结论成立,则此条件充分,反之则不充分。

一般来说,多数同学在遇到此类题目的时候能想到这种方法,但也有少数同学比较“执着”:坚持依照题干中的已知和结论反推条件或者用常规的方法分析题干。

MPA管综初数:条件充分性判断知多少(二)

MPA管综初数:条件充分性判断知多少(二)

MPA管综初数:条件充分性判断知多少(二) 2015MPA管综初数:条件充分性判断知多少(二),供考生备考学习! 智能题库:考研历年真题在线测试点击进入 条件充分性判断重点在于判断条件是否充分,通常有三种判断方法:  1、举反例。

 举反例是数学中说明一个命题不成立的常用方法。

如果一个命题是“所有的天鹅都是白的”,那幺只需要找到一只黑天鹅就可以说明这个命题是错的。

对应到条件充分性判断这类题:无非是找一个例子,该例子满足条件但是不满足结论。

如果能找到这样的例子,那幺这个条件肯定不充分。

但问题是这样的例子怎幺找?怎幺在有限的时间内快速找到?根据老师的经验,常用的有效方法是通过看书、听课,积累经典例子。

什幺是积累?是不是用笔记下来就算积累了?显然不是。

积累指通过思考弄明白三个问题:“是什幺”,“为什幺”和“怎幺用”(这也是学习其它方法的要求),即想明白例子本身的意思,为什幺它可以在此处作为反例,以及什幺时候想到用这个例子。

以上三个问题想明白了,可以算作把这种举反例的方法消化吸收了,但还没做到创新。

何为创新?数学家范剑青说过:“当你真正理解一件事情为什幺如此时,你才能举一反三,无师自通。

”可见“举一反三”可算作创新了。

如何能达到这种境界?让我们向卖油翁学习“无他,唯手熟耳”。

这里的“手熟”不是重复性工作,而是在练习中查漏补缺,体会本质。

有时我们会被假象蒙蔽:觉得自己掌握了,而实际有的地方没理解到位。

这就像站在一个不牢固的地方,下面是虚空的,更悲催的是当事人还自我感觉良好,结果可想而知。

考研初数需要考生对内容和方法理解到一定深度,不进行足量的练习是难以达到的。

另外,所谓熟能生巧,熟练的重要性不言自明。

对例子比较熟悉并且理解为什幺用其作为反例。

这样,遇到类似的题型,可用类似的思路找反例,并且熟练之后尝试创新,比如2013年1月真题: p=mq+1为质数 (1)m为正整数,q为质数 (2)m,q均为质数 【解析】 跨考教育初数教研室马燕老师认为,条件(1)反例(满足“m为正整数,q为质数”):m=2,q=7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【经典资料,WORD文档,可编辑修改】
【经典考试资料,答案附后,看后必过,WORD文档,可修改】
例题1:关于x 的方程11322x x x -+=--与132x x a a x
+=---有相同的增根。

(1)a=2; (2)a=2-.
例题2:22
61040x mxy y y ++--=的图形是两条直线。

(1)m=7; (2)m=7-。

.
例题3:曲线221ax by +=通过4个定点。

(1)a+b=1; (2)a+b=2.
.
例题4:直线y=x ,y=ax+b 与x=0所围成的三角形的面积等于1.
(1)1,2a b =-=; (2)1,2a b =-=-.
题5:圆22(1)(2)4x y -+-=和直线(12)(1)330x y λλλ++---=相交于两点. (1)235λ=; (2)532
λ=.
4、 在几何图形中,由于点、线等位置或距离对称性 往往选D
例题1:直线(2)y k x =+是圆22
1x y +=的一条切线. (1)33k =-; (2)33
k =
例题2:如图,等腰梯形的上底与腰均为x ,下底为x+10,则x=13.
(1) 该梯形的上底与下底之比为13:23; (2)该梯形的面积为216.
例题3:如图,等边三角形内恰好放入三个两两外切的等圆,则阴影部分的面积为4363π+-.
(1)圆的半径r=1; (2)等边三角形的边长为232+.。

相关文档
最新文档