电磁铁的吸力计算

合集下载

三相交流电磁铁的吸力分析

三相交流电磁铁的吸力分析
采 用 两 个 线 圈 , 克 服 这 个 缺 点 . 设 电 磁 铁 的 铁 能 假 芯 和 衔 铁 的 截 面 积 相 等 , 线 圈 的 匝 数 、 向 相 两 绕

设 电 磁 铁 线 圈 接 上 交 流 电 源 后 , 磁 通 为 主
Hale Waihona Puke 瓯 s (J 口 , 略 线 圈 的 电 阻 和 漏 磁 , 电 i a n t+ ) 忽 其
图 1所 示 电磁 铁 每极 吸力计 算 式[ 为 1 ]


F扭 一 . 一


B 5

() 表 明, 3 式 电磁 吸 力 随 时 间 按 正 ( )弦 规 余
2/o 一 2Z S’ — Z

l J
律 变 化 , 频 率 为 电 源频 率 的 2倍 . 此 , 使 用 其 因 在
电源 频 率 的脉 动值 , 大 小为 其
收 稿 日期 :0 10 —9 2 0 — 61 作者简介 : 建新 (96 )男 , 北英 山人 , 师 。 胡 16一 。 湖 讲 主要 从 事 大 学 物 理 教 学 和 电工 技 术 研 究 .
时会 产 生 振动 和 噪声 , 降低 电磁 铁 的 使 用 寿命 .
其 中, 5为 铁 芯 的横 截 面 积 , 为 铁 芯 和衔 铁 之 间 B 气 隙 的磁 感应 强 度 , 为 每极 磁 通.
2 单 线 圈 三 芯 柱 交 流 电磁 铁 的 吸 力
当 图 2所 示 电 磁 线 圈 加 上 交 流 电 压 【A ,B时 , 芯 柱 1 2 3的 磁 通 分 别 为 / 、 、 2 且 相 位 相 、、 2 / , 同 , ( )式 得 , 磁 铁 的 吸 力 同 样 为 一 个 2倍 于 由 1 电

电磁力公式

电磁力公式

v B2 ndS ∫
S
若沿面积S磁力线分布是均匀的(例如:两个靠得很近的平行平面磁极间) 则上述麦克斯韦吸力公式可简化为:
B 2S Fd = 2 µ0
-6 Fd的单位:牛(N);B的单位:特斯拉(T);S的单位:平方米(m 2);µ0 =1.25 ×10(H/m)
B Fd = S 5000
方法一: 1.麦克斯韦吸力公式 2.吸引力=排斥力 3.
B g 2S B n 2S F = Fg + Fn = + 2 µ0 2 µ0
(F——总磁力大小;Fg ——永磁体产生的磁力;Fn ——电磁铁产生的磁力; B g ——永磁体产生的磁场强度;Bn ——电磁铁产生的磁场强度)
1.麦克斯韦吸力公式
η ——比例系数(与 L m a 有关);L m ——永磁体在充磁方向的长度

理想磁路法得到Bg
假设在理想磁路中,没有漏磁,没有内阻,永磁体 发出的磁通量都导入气隙中:
Bm A m =Bg A g
Bm ——永磁体工作点;A m ——永磁体的极面积;Bg ——气隙磁密(磁感应强度) g ——气隙面积; ;A
-6 Fd的单位:千克力(kgf);B的单位:高斯(Gs);S的单位:平方厘米(cm 2);µ0 =1.25 ×10(H/m)
2

磁荷积分法得到的
ห้องสมุดไป่ตู้
Bg = η
2Br
π
tg
−1
ab 2L g 4L2g + a 2 + b 2
Bg ——永磁体产生的磁场强度;Br ——永磁体的剩磁场强度 a、b——永磁体的长、宽 ( a 〉 b );L g ——磁隙长度;
HmLm =HgLg

电磁铁磁感应强度及吸力计算(1)

电磁铁磁感应强度及吸力计算(1)
软磁材料的主要特征是:A、高的初始磁导率µ 和最大磁导率µ 。这表明软磁 材料对外磁场的灵敏度高,其目的在于提高功能功率。B、低的矫顽力 Hc。这表 明软磁材料既容易被外部磁场磁化,又容易受外部磁场或其他因素退磁,而切磁
滞回线窄,降低了磁化功率和磁滞损耗。C、高的饱和磁化强度 Ms 和低的剩余 磁感应强度 Br,这样可以节省资源,便于产品向轻薄短小方向发展,可迅速响 应外磁场极性(N‐S 极)的反转。D、此外,出于节省能源,降低噪声等方面考 虑,软磁材料还应具备低的铁损,高的电阻率,低的磁致伸缩系数等特征。
上式中,n′是磁介质表面的单位外法向矢量,第一项与体分布电流产生的磁矢
位表达式相同,第二项与面分布电流产生的磁矢位表达式相同。因此,磁化介质
所产生的磁矢位可以看作是等效体电流在真空中共同产生的。等效体电流和面电
流分别为
其中,n 是磁介质表面的外法向。这个等效电流叫做磁化电流,或叫束缚电流。 3、磁场强度
/
磷%:0.013;硅%:<0.050;铬%:<0.10.
2#增压阀
/
碳%:0.074;硫%:0.010;锰%:0.39;
/
磷%:0.011;硅%:<0.050;铬%:<0.10.
注:动铁芯、衔铁芯为铁基粉末冶金软磁材料。采用粉末冶金法制备复合软磁材
料,即将绝缘介质包覆于金属软磁粉末的表面,通过粉末冶金的方法制得软磁材
R dl
R dl R dl
a rcosθcosφ asinφ sinφ
a rcosθcosφ
rcosθ sinφ
rsinθ acosφ cosφ e dφ
rcosθsinφ
a rsinθcosφ dφ
由以上,得 P 点磁感应强度的解析解(精确解)表达式为:

第十五章 传动装置

第十五章 传动装置

第十五章传动装置本章主要介绍了电力机车电器上常用的传动装置(电磁式、电空式)的作用、种类、组成、工作原理和特点、特性。

电器传动装置是有触点开关电器用来驱使电器运动部分(触头、接点)按规定进行动作的执行机构。

在电力机车电器上采用的主要是电磁传动装置和电空传动装置,其次还采用了手动、机械式传动装置,个别的还采用了电动机传动(如调压开关)。

电磁传动装置就是通过电磁铁把电磁能转变成机械能来驱动电器动作的机构。

电空传动装置是以电磁阀控制的压缩空气作为动力,驱使电器运动部分动作的机构,前者主要用于小型电器,后者主要用于较大容量的电器中。

第一节电磁传动装置一、电磁传动装置的基本组成和工作原理电磁传动装置是一种通过电磁铁把电磁能变成机械能来驱使电器触头动作的机构。

电磁传动装置实际上就是一个电磁铁,它的形式很多,比如:螺管式、直动式工形、U形等。

但它们的基本组成和工作原理却是相同的。

它主要由吸引线圈和磁系统组成。

以直流接触器所用的拍合式电磁铁为例,说明其组成和工作原理。

如图15—1所示:图15—1 拍合式电磁铁的结构1—线圈;2—铁心;3—衔铁;—止档;5—反力弹簧;6—工作气隙;7—常闭触头;8—常开触头。

它主要由线圈、静铁心、动铁心(衔铁)、极靴、反力弹簧、调节螺钉(止挡)、工作气隙等组成。

其工作原理是:当线圈接通电流后,线圈中产生磁势IW,在磁系统和工作Φ气隙所构成的回路中,产生碰通,其流向用右手螺线管法则确定。

在工作气隙两端的衔铁和极靴上产生异性磁极(N、S),衔铁受到电磁吸力,当这个吸力产生的转矩大于反力弹簧产生的转矩后,则衔铁将吸合,并带动触头动作(常开触头闭合,常闹触头打开)。

当线圈电流减小时,磁势减小,吸力也减小,如果吸力小于弹簧反力(归算后),衔铁在反力弹簧的作用下将打开,带动触头将处于另一工作位置(常开触头打开,常闭触头闭合)。

由此可见,只要控制电磁铁吸引线圈电流(或电压)就能通过触头来控制其他电器。

第十章 电磁系统的吸力计算和静特性

第十章 电磁系统的吸力计算和静特性

L O G O 本章讲授内容(其中红色内容是重点)1.磁场的能量磁场能量的计算方法。

2.能量转换与电磁力的普遍公式虚位移原理、实用的电磁吸力计算公式。

3.麦克斯韦电磁吸力公式4.恒磁势与恒磁链条件下的吸力特性恒磁势与恒磁链条件下的吸力计算公式。

5.交流电磁吸力的特点与分磁环原理交流电磁吸力的计算方法、分磁环的参数计算。

6.静态吸力特性与反力特性的配合第十章电磁系统的吸力计算和静特性第十章L O G O 教学目的与要求:1、掌握麦克斯韦电磁吸力公式,熟悉能量转换与电磁力的普遍公式,了解恒磁势与恒磁链条件下的吸力。

2、掌握交流电磁吸力与分磁环的原理,熟悉静态吸力特性与反力特性的配合。

第十章电磁系统的吸力计算和静特性第十章L O G O 教学基本内容:1、磁场的能量;2、能量转换与电磁力的普遍公式;3、麦克斯韦电磁吸力公式;4、恒磁势与恒磁链条件下的吸力;5、交流电磁吸力与分磁环的原理;6、静态吸力特性与反力特性的配合。

第十章电磁系统的吸力计算和静特性第十章L O G O 教学重点与难点:1、能量转换与电磁力的普遍公式,麦克斯韦电磁吸力公式;2、交流电磁吸力与分磁环的原理和特性配合。

通过本章节的学习,学生应掌握能量平衡电磁吸力计算公式和麦克斯韦电磁吸力计算公式各自的适用范围,从实用的观点出发,后者较前者更有意义;还应掌握交流电磁吸力的计算与分磁环所解决的问题;熟悉静态吸力特性与反力特性的配合,是决定电磁系统特性指标与工作性能优劣的重要因素。

第十章电磁系统的吸力计算和静特性第十章§10-1 磁场的能量L O G O第十章一、磁场具有能量,该能量由外界能源在磁场建立过程产生。

电磁系统磁场建立过程的电路示意图。

L O G O 图中,电路电压平衡方程为:d E iRe iR dtϕ=−=+将上式两端均乘以“idt ”,并对其积分,有左端项表示电源在过渡过程中供给电路的能量,右端的第一项表示电阻在过渡过程中的发热损耗,第二项表示储存在磁场中的能量。

电磁铁吸力的有关公式

电磁铁吸力的有关公式

电磁铁吸力的有关公式这里的所有的对象都应该是铁.1.F=B^2*S/(2*u0) 此式中,F=焦耳/厘米,B=韦伯/平方厘米,S= 平方厘米该式改变后成为:F=S*(B/5000)^2 此式中,F=Kg,B=高斯,S= 平方厘米当加入气隙后,F=(S*(B/5000)^2)/(1+aL) a是一个修正系数,一般是3--5,L是气隙长度.2.F=u0*S0*(N*i)^2/8(L^2)S0:空气隙面积 m^2N :匝数i :电流L :气隙长度3.F=(B^2*S*10^7)/(8*PI) 这个式子和第一个式子是相等的.当不存在气隙的时候,就应该是电磁铁在端面处所产生的力.1. u0就是μ0吧?2. 有这句话:“当加入气隙后...”,就意味着,原公式不是针对“空心线圈”?是吗?3. 我的理解是:上述公式是应用于“气隙比较于磁链长度相对较短的铁心线圈”。

如果不是针对"空心线圈",那么线圈内部的材质是什么呢?能在公式的哪里体现出来?应该在B里面体现出来.那么,我们是否可以这样做个假定,来匹配现在的情况?假定,悬浮体是一个通电圆导线,电流I,半径R.匀强磁场B垂直通过其所在平面.那么它所受到的力应该如何计算?由通电圆导线所形成的磁场,是否可以类比于悬浮磁体?假设电流I足够大,两者的半径R相等,从而达到两者所在平面的磁感应强度相等.那你的意思是:上述公式是针对"空心线圈"?若是,气隙如何定义?你的这个思路非常有趣。

让我慢慢来画一个图,配合这个思路。

(原文件名:思路非常有趣1.JPG)引用图片是这个意思吧?差不多就是这个意思.只不过两个线圈所产生的B不一样.而且右边线圈的半径要小于左边的线圈.作为第一步,我们可以将题目中的“磁铁”改成“铁块”,“电磁线圈”改成“无铁心电磁线圈”。

----------------------------------------------这样似乎更复杂了,因为“铁块”是被电磁线圈磁化产生磁性,才和电磁线圈产生力的,那“铁块被磁化”如何量化?下面说说我找的资料:库仑磁力定律:(原文件名:18864f550ffc2c29f8b9d79da17f2fa2.png)引用图片其中m1 m2是两个磁极的磁通量,单位韦伯,d是两磁极距离。

电磁铁磁感应强度及吸力计算(1)

电磁铁磁感应强度及吸力计算(1)

构成的平面为方位角 φ=0 的平面,计算比较方便。
圆电流 I 在 P(r,θ,0)点产生的磁感应强度 B 的大小为:
B 圆心 O 点与场点 P 之间的距离为:
µ Idl R 4π
r sinθcosθ
r sinθsinθ
r cosθ
r sinθ
cosθ
半径 a 矢量为:
π a sin 2 cosφ
π a sin 2 sinφ
24 0.45
Fe‐3.5Al
500 19000 1.51 24 0.47
Fe‐16Al
3000 55000 0.64 3.2 1.53
Permendur Fe‐50Co‐2V 650 6000 2.4 (珀明德铁 钴系高磁导 率合金)
仙台斯特合 Fe‐9.5Si‐5.5Al 30000 120000 1.1 金
二、磁介质的磁化
2 3sin θ
1、磁化强度 任何物质原子内部的电子总是沿轨道作公转运动,同事作自旋运动。电子运
动时所产生的效应与回路电流所产生的效应相同。物质分子内所有电子对外部所 产生的磁效应总和可用一个等效回路电流表示。这个等效回路电流称为分子电流, 分子电流的磁矩叫做分子磁矩。
在外磁场的作用下,电子的运动状态要产生变化,这种现象称为物质的磁化。 能被引起磁化的物质叫磁介质。磁介质分为三类:抗磁性磁介质;顺磁性磁介质; 铁磁性磁介质。这三类磁介质在外磁场的作用下,都要产生感应磁矩,且物质内 部的固有磁矩沿外磁场方向取向,这种现象叫做物质的磁化。磁化介质可以看作 是真空中沿一定方向排列的磁偶极子的集合。为了定量描述介质磁化程度的强弱,
软磁材料的主要特征是:A、高的初始磁导率µ 和最大磁导率µ 。这表明软磁 材料对外磁场的灵敏度高,其目的在于提高功能功率。B、低的矫顽力 Hc。这表 明软磁材料既容易被外部磁场磁化,又容易受外部磁场或其他因素退磁,而切磁

拍合式电磁铁电磁力计算

拍合式电磁铁电磁力计算

拍合式电磁铁电磁力计算电磁铁,这玩意儿听起来就很酷吧!大家都知道,电磁铁就是利用电流来产生磁场的工具。

想象一下,电流像是一位魔法师,挥舞着魔法杖,瞬间把周围的物体都吸引过来。

你可能会问,这样的魔法是怎么实现的?拍合式电磁铁的工作原理就像一个简化版的魔法秀,轻松搞定那些原本重得像小山一样的东西。

我们得先了解一下什么是拍合式电磁铁。

它是由一系列电线绕成的线圈,里面有个铁心,电流一进来,哗啦啦,磁场就出现了。

就好像把一颗小铁钉扔进了一个巨大的磁场里,它就会像被施了魔法一样,乖乖地被吸过来。

这个过程,不仅简单,还特别有效。

要是你见过那种强力吸尘器,你就知道什么叫“强大的吸力”了,电磁铁的工作效果也是差不多的。

电磁力到底是怎么计算的呢?哎,这个就有点复杂了。

听起来像是要用到那些让人头疼的公式,但其实我们只要知道几个关键点就行。

电磁力和电流、线圈的匝数、铁心的材料有很大关系。

想象一下,一个强壮的小伙子举起了更重的东西,那他得有足够的力气,这力气就是电流;再说了,线圈的匝数就像小伙子的肌肉,越多越强壮,能举起的东西也就越重;至于铁心材料,那就好比是小伙子的骨架,骨架越结实,他的力气就越大。

说到这里,大家可能会好奇,这些力的计算到底怎么来。

别着急,我来给你们解释。

电磁力的基本公式是 ( F = k cdot I cdot N cdot B )。

这是什么呢?F就是我们想要的电磁力,k是一个常数,I是电流强度,N是线圈的匝数,B是磁场强度。

听上去像外星语言,但其实也没那么复杂。

就像做菜,拿到配方,你只需要按照步骤来就行了。

说实话,计算电磁力的时候,脑袋里可能会冒出一些小疑问,像“这是不是跟我平常用的家电有什么关系?”当然有啊,电磁铁可不止是做实验室里的玩意儿。

咱们日常生活中也有很多地方用到它,比如说电动机、磁悬浮列车,还有各种各样的家电。

想想看,冰箱里的磁性门,空调里的风扇,这些可都是电磁力的“功劳”。

就像老话说的,“无米不成炊”,电磁力就是这些设备能正常工作的“米”。

电磁铁的基本公式及计算

电磁铁的基本公式及计算

电磁铁的基本公式及计算1.磁路基本计算公式B =μH,φ=ΛIW,∑φ=0IW=∑HL, Λ=μS/LB—磁通密度(T);φ—磁通〔Wb);IW—励磁安匝(A);Λ一磁导(H);L一磁路的平均长度(m) }S—与磁通垂直的截面积(m2);H一磁场强度(A/m);μ一导磁率(H/m) ,空气中的导磁率等于真空中的导磁率μ0=0 .4π×10-8 H/m。

2,电磁铁气隙磁导的计算电磁铁气隙磁导的常用计算公式列于表“气隙磁导的计算公式”中。

表中长度单位用crn,空气中的导磁率μ0为0 .4π×10-8 H/m。

气隙磁导的计算公式3·电磁铁吸力基本计算公式 (1)计算气隙较小时的吸力为10210S392.0⨯=φF式中:F —电磁铁吸力(N); φ—磁极端面磁通(Wb); S —磁极表面的总面积(cm 2)。

(2)计算气隙较大时的吸力为10210)a S(1392.0⨯+=δφF式中:a —修正系数,约为3~5;δ—气隙长度(cm )。

上式适用于直流和交流电磁铁的吸力计算。

交流时,用磁通有效值代入,所得的吸力为平均值。

例:某磁路如图所示。

已知气隙δ为0.04cm ,铁芯截面S 为4.4cm 2,线圈磁势IW 为1200安匝。

试求在气隙中所产生的磁通和作用在衔铁上的总吸力。

解:(1)一个磁极端面上的气隙磁导为000111004.04.4μμδμδ=⨯==S G 由于两个气隙是串联的,所以总磁导为G δ = G δ1/2=55μ0=55×0.4π×10-8=68.75×10-8(H ) (2)气隙中所产生的磁通为φδ=IW G δ =1 200×68.75×10-8 =8 .25×10-4 (Wb) (3)总吸力为)(1213104.425.8392.0210S 392.02102102N F =⨯⨯⨯=⨯⨯=δδφ 式中乘2是因为总吸力是由两个气隙共同作用所产生的。

悬浮电磁铁吸力的计算方法(解析法)

悬浮电磁铁吸力的计算方法(解析法)
值的公式为:
L 代入公式(5)得到磁通量:
0 N 2 A 2 SM
( 6)

进一步计算:
0 N A IM 2 SM
( 7)
d 0 N A 0 N 2 A I M IM S M 2 dt 2 SM 2 SM
将公式(2)代入公式(1)得到:
2 0 N 2 A I M FM 0 4 SM
( 3)
电磁铁的瞬时电压值为:
UM R IM N d dt
( 4)
此处:
为电磁铁截面磁通量。
根据磁通量计算公式,有:
L IM N

( 5)
此处: L 为电磁铁导线电感。 在电磁铁工作状态下,电磁值大小受截面积、匝数、气隙大小影响,求取电感
FM
此处:
2 1 BM A 2 0
( 1)
BM 为电磁铁气隙截面电磁感应强度。
0 为空气导磁率常数。
A 为电磁铁气隙处截面积。
电磁感应强度计算为:
BM 0
此处: N 为电磁铁绕线匝数。
N IM 2 SM
( 2)
I W 为电磁铁导线中通过电流。
式(4)得到电磁铁电压: UM
0 N A 0 N 2 A I M R IM IM S M 2 2 SM 2 SM
( 9)
至此,根据公式(3)和(9)可以计算出电磁铁吸力。
隙时的电导;SM 为电磁铁与轨道之间的气隙;SO 为我们设定的稳定气隙;S 为气隙的变化 值。模型中,通过外界电压激励 UM 的不同值时改变电磁力,使得 S 为零,控制电磁铁与轨 道之间的气隙稳定在 SO。
2、 电磁力方程推导

电磁力公式

电磁力公式

v B-
1
B2
nv]dS
S
2
v
B
单元面积dS外表面上的磁感应矢量
nv
单元面积dS是外法线单位矢量
物体外表面的磁感应强度B都近似垂直积分表面S,则:
Bvgnv
v B

B2nv
Ñ 麦克斯韦吸力公式变为:
v Fd

1
20
B2nvdS
S
若沿面积S磁力线分布是均匀的(例如:两个靠得很近的平行平面磁极间) 则上述麦克斯韦吸力公式可简化为:
方法一:
1.麦克斯韦吸力公式
2.吸引力=排斥力
3.
F

Fg

Fn

Bg2S +
20
Bn2S
20
(F——总磁力大小;Fg ——永磁体产生的磁力;Fn ——电磁铁产生的磁力; Bg ——永磁体产生的磁场强度;Bn ——电磁铁产生的磁场强度)
1.麦克斯韦吸力公式
Ñ v
Fd

1
0
[
Bvgnv
Wm

(mv

v B)
磁距:mv mxevx mzevz
磁场强度:Bv=- 0I 2 r
z x2
z2
evx

0I 2 r
x x2
z2
evz

-
0I 2
x2
z
z2
evx

0I 2
x2
x
z2
evz
mvgBv - 0Imx 2
z x2 z2
evx
取值在1~20之间,甚至更大。 3) kr的变化范围很小,取值在1.05~1.55之间,常取中
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我将有关电磁铁吸力的计算方法稍作整理,如下:
1、凡线圈通以直流电的电磁铁都称之为直流电磁铁。

通常,直流电磁铁的衔铁和铁心均由软钢和工程纯铁制成。

当电磁线圈接上电源时,线圈中就有了激磁电流,使电磁铁回路中产生密集的磁通。

该磁通作用于衔铁,使衔铁受到电磁吸力的作用产生运动。

从实践中发现,在同样大小的气隙δ下,铁心的激磁安匝IW越大,作用于衔铁的电磁吸力Fx就越大;或者说,在同样大小的激磁安匝IW下,气隙δ越小,作用于衔铁的电磁吸力Fx就越大。

通过理论分析可知,电磁吸力Fx与IW和δ之间的关系可用下式来表达:
Fx=5.1×I2×(dL/dδ)(其中L—线圈的电感) (1~1)
在电磁铁未饱和的情况下,可以近似地认为线圈电感L=W2Gδ(式中Gδ—气隙的磁导)。

于是式(1~1)又可写为Fx=5.1×(IW)2×d Gδ/dδ(1~3)这就是说,作用于衔铁的电磁吸力Fx是和电磁线圈激磁安匝数IW的平方以及气隙磁
导随气隙大小而改变的变化率d Gδ/dδ成正比。

气隙磁导Gδ的大小是随磁极的形状和气隙的大小而改变的。

如果气隙中的磁通Φδ为均匀分布,则气隙磁导可以表示为:
Gδ=μ0×(KS/δ)(亨)(1~4)
式中:μ0—空气的磁导率,=1.25×10-8(亨/厘米);
S-决定磁导和电磁吸力的衔铁面面积(厘米2);
δ—气隙长度,即磁极间的距离(厘米);
K—考虑到磁通能从磁极边缘扩张通过气隙的一个系数,它大于1,而且δ值越大,K值也就越大。

可以推导出:d Gδ/dδ=-μ0×(S/δ2)
于是有:F x=-5.1×{μ0 (IW)2S/δ}
式中的负号表示随着气隙δ的减小,电磁吸力Fx随之增大,若不考虑磁极边缘存在的扩散磁通的影响(K≈1),则气隙磁感强度为:
B=Φ/S={(IW)Gδ}/S={(IW)μ0S}/Sδ=(IWμ0)/δ所以电磁吸力的公式还可写为:F x=5.1B2S/μ0
式中B是以韦伯/厘米2为单位的,若改用高斯为单位,则上式又可写为:
F x=5.1×10-16B2S/1.25×10-8=(B/5000)2S
将Φ=BS代入上式,而以麦克斯韦为单位,则又可写为:
F x=(Φ/5000)2×(1/S)(1~56)
这就是电磁吸力的麦克斯韦简化公式。

通常,在衔铁气隙较大时,以采用式(1~3)进行计算为宜;而当气隙较小,即衔铁闭合或接近闭合时,则以采用式(1~56)进行分析计算为宜。

2、交流电磁铁
交流电磁铁就是激励电流为交流的电磁铁。

它与直流电磁铁不同之处在于:(1)以并激线圈而论,在电压已定的情况下,其电流不仅决定于线圈的电阻,更主要是决定于线圈的电抗(它是随着气隙的大小,即
随衔铁的行程而改变的);
(2)由于激磁电压是按正弦周期律变化的,因而磁通和电磁吸力也按正弦周期律变化。

于是,当电流过零时,电磁吸力也等于零,致
使电磁铁发生脉动,甚至发生振动。

这就要求采取特殊措施以消
除它,不然电磁铁就不能正常工作。

交流电磁铁的电磁关系远比直流电磁铁复杂,主要原因:对直流电磁铁来说,任何“电”的变化,(如电压,电阻)都将引起“磁”的变化,但“磁”的变化却不会引起“电”的变化。

但对于交流电磁铁来说,“电”的变化固然是“磁”变化的原因,而“磁”的变化又反过来影响“电”的变化。

直流:U(R)→I→IW→Φ交流:U~→I(IW)→Φ(ψ)→E
众所周知,交流电路的电压平衡方程式有:U=E+IR (1~6)
其中E是电路中电感元件上产生的感应电动势,其值为:
E=4.44fWΦm×10-8(伏) 式中f—电源频率(赫)
Φm—铁心中磁通的最大值(麦)
对于并激交流电磁铁来说,U≈E=4.44fWΦm×10-8(伏)
即,当外加电压一定时,铁心中磁通的幅值或磁链的幅值,基本上是一个恒值。

如果忽略线圈电阻(因为它常常比线圈的电抗小很多),则线圈电流为: I≈U/WL
L=W2G
δ=W2μ
S/δ,代入上式即,得:
I=U(δ/ W2μ
Sω)
当外加电压U线圈匝数W,电源角频率ω和磁极,截面积S均为定值时,激磁电流I与衔铁行程δ成正比。

交流电磁铁的吸力特性一般比较平坦,令B=BmSinωt,根据(1-5),有
Fx=(1/5000)2SBm2·Sin2ωt
=(1/5000)2SBm2{ (1-cos2ωt)/2}
若令电磁吸力最大值Fm=(Bm/5000)2S时,则上式可以写成:
Fx=Fm=(1-cos2ωt)/2= Fm/2- Fm/2 cos2ωt
= Fm/2时,则得
若令电磁吸力不变分量F
Fx=F
(1-cos2ωt)(1~8)
由此可见,交流电磁铁的电磁吸力是一个二倍电源频率的周期性变量。

它有
,其值为最大吸力值 Fm之半;另一个是交变分量两个分量:一个是恒定分量F
cos2ωt,其幅值变为最大吸力值之半,但以二倍电源频率变化。

总的电磁Fm= F
吸力Fx则在从0~Fm的范围内变化,这就是交流电磁铁产生脉动和噪声的原因。

电磁铁工作过程中,其衔铁始终受到释放弹簧及其它阻力之和F
的作用。

2一般F平均吸力>F阻力,但有时F吸力<F阻力,则产生脉动和噪声。

这就需要在铁心端部开一槽,嵌以分磁环(短路环)。

相关文档
最新文档