九年级第一次月考卷

合集下载

2024-2025 学年九年级数学上学期第一次月考卷及答案

2024-2025 学年九年级数学上学期第一次月考卷及答案

2024-2025学年九年级数学上学期第一次月考卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:人教版九年级上册21.1-22.1。

6.难度系数:0.8。

第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则x2﹣x=()A.﹣2B.6或﹣2C.6D.32.方程中x(x﹣1)=0的根是()A.x1=0,x2=﹣1B.x1=0,x2=1C.x1=x2=0D.x1=x2=13.一次函数y=ax+b与二次函数y=ax2+bx在同一坐标系中的图象大致为()A.B.C.D.4.若关于x的一元二次方程kx2﹣2x+3=0有两个实数根,则k的取值范围是()A.B.C.且k≠0D.5.若方程x 2﹣4x ﹣2=0的两根为x 1,x 2,则+的值为()A .2B .﹣2C .D .6.俗语有云:“一天不练手脚慢,两天不练丢一半,三天不练门外汉,四天不练瞪眼看.”其意思是知识和技艺在学习后,如果不及时复习,那么学习过的东西就会被遗忘.假设每天“遗忘”的百分比是一样的,根据“两天不练丢一半”,则每天“遗忘”的百分比约为(参考数据:)()A .20.3%B .25.2%C .29.3%D .50%7.下列有关函数y =(x ﹣1)2+2的说法不正确的是()A .开口向上B .对称轴是直线x =1C .顶点坐标是(﹣1,2)D .函数图象中,当x <0时,y 随x 增大而减小8.若x =2是方程x 2﹣x +c =0的一个根,则c 的值为()A .1B .﹣1C .2D .﹣29.二次函数y =a (x ﹣t )2+3,当x >1时,y 随x 的增大而减小,则实数a 和t 满足()A .a >0,t ≤1B .a <0,t ≤1C .a >0,t ≥1D .a <0,t ≥110.在解一元二次方程时,小马同学粗心地将x 2项的系数与常数项对换了,使得方程也变了.他正确地解2,另一根等于原方程的一个根.则原方程两根的平方和是()A .B .C .D .第Ⅱ卷二、填空题:本题共5小题,每小题3分,共15分。

2024-2025学年九年级化学上学期第一次月考卷1-3

2024-2025学年九年级化学上学期第一次月考卷1-3

2024-2025学年九年级化学上学期第一次月考卷(考试时间:90分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:1-3单元(人教版2024)。

5.难度系数:0.75第Ⅰ卷(选择题共40分)一、选择题:本题共20个小题,每小题2分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.2024年5月3日,嫦娥六号探测器由长征五号运载火箭在中国文昌航天发射场成功发射,开启世界首次月球背面采集月壤样品之旅。

下列探月过程属于化学变化的是A.点火起航 B.箭器分离 C.月背着陆 D.采集月壤2.下列有关化学史的说法错误的是A.现在人们已经能通过先进的仪器探测物质中原子和分子的排列情况B.阿伏加德罗提出分子学说C.道尔顿发现元素周期律D.拉瓦锡等化学家发现质量守恒定律3.规范操作是实验成功的保障,如图操作正确的是A.检查气密性 B.液体的倾倒 C.给液体加热 D.处理实验废液4.小刚在量取液体时,开始俯视读数为15mL,倒出一定量液体后又仰视读数为5mL,则该同学倒出的液体的体积()A.大于10 mL B.小于10 mL C.等于10 mL D.无法确定5.科学家通过“祝融号”火星车探测器测得火星表面大气成分(体积分数)如图所示,下列说法正确的是A.火星大气中氮气的含量最高B.火星大气中二氧化碳的含量高于空气C.火星大气不含稀有气体D.火星大气属于纯净物6.下列物质在空气或氧气中燃烧时,现象描述正确的是A.红磷在空气中燃烧,产生大量的白色烟雾,放出热量B.木炭在氧气中燃烧,发出白光,放出热量,产生能使澄清石灰水变浑浊的气体C.铁丝在氧气中剧烈燃烧,火星四射,放出热量,生成四氧化三铁D.硫在氧气中燃烧,发出明亮的蓝紫色光,放出热量,有刺激性气味的气体产生7.教材中介绍了拉瓦锡用定量的方法研究了空气的成分(实验气装置如图所示)。

2024-2025 学年九年级语文上学期第一次月考卷及答案

2024-2025 学年九年级语文上学期第一次月考卷及答案

2024-2025学年九年级语文上学期第一次月考卷语文试卷注意事项:1.本试题卷共8页,答题卷共2页。

满分120分。

考试时间150分钟。

2.考生必须在答题卷上答题,在草稿纸、试题卷上答题无效。

3.测试范围:九年级上册第1~2单元。

4.难度系数:0.75。

一、古典之美(27分)1.在整理古诗词的过程中,小夏发现心怀家国、志在天下的家国情怀在中国历代诗人作品中都有所体现。

她整理了部分诗歌内容,请帮她完善下面表格。

(10分)点评:字体,描绘了大好河山的磅礴气势和壮丽景象。

A.端庄方正B.秀美飘逸C.蚕头雁尾D.龙飞凤舞在班级举行的学习经验交流会上,文志小组以下面的古诗文为例,带领大家学习古诗文。

请你参与并完成下面小题。

(15分)岳阳楼记(节选)范仲淹予观夫巴陵胜状,在洞庭一湖。

衔远山,吞长江,浩浩汤汤,横无际涯,朝晖夕阴,气象万千,此则岳阳楼之大观也,前人之述备矣。

然则北通巫峡,南极潇湘,迁客骚人,多会于此,览物之情,得无异乎?若尖淫雨霏霏,连月不开,阴风怒号,浊浪排空,日星隐曜,山岳潜形,商旅不行,樯倾楫摧,薄暮冥冥,虎啸猿啼。

登斯楼也,则有去国怀乡,忧谗畏讥,满目萧然,感极而悲者矣。

……嗟夫!予尝求古仁人之心,或异二者之为,何哉?不以物喜,不以己悲,居庙堂之高则忧其民,处江湖之远则忧其君。

是进亦忧,退亦忧。

然则何时而乐耶?其必曰“先天下之忧而忧,后天下之乐而乐”乎!噫!微斯人,吾谁与归?时六年九月十五日。

醉翁亭记(节选)欧阳修若夫日出而林霏开,云归而岩穴暝,晦明变化者,山间之朝暮也。

野芳发而幽香,佳木秀而繁阴,风霜高洁,水落而石出者,山间之四时也。

朝而往,暮而归,四时之景不同,而乐亦无穷也。

……已而夕阳在山,人影散乱,太守归而宾客从也。

树林阴翳,鸣声上下,游人去而禽鸟乐也。

然而禽鸟知山林之乐,而不知人之乐;人知从太守游而乐,而不知太守之乐其乐也。

醉能同其乐,醒能述以文者,太守也。

太守谓谁?庐陵欧阳修也。

2024-2025学年初中九年级上学期数学(第21-22章)第一次月考卷及答案(人教版)

2024-2025学年初中九年级上学期数学(第21-22章)第一次月考卷及答案(人教版)

2.对于二次函数()21y x =−−的图象,下列说法不正确的是( ) A .开口向下B .对称轴是直线xx =1C .当xx =1时,y 有最大值0D .当xx <1时,y 随x 的增大而减小A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .只有一个实数根4.将抛物线2y x 向左平移2个单位长度,再向上平移3个单位长度,所得抛物线的表达式为( ) A .()223y x =++ B .()223y x =+− C .()223y x =−+D .()223y x =−−5.设1x 、2x 是一元二次方程2320x x −−=的两个实数根,则2211223x x x x ++的值为( )A .4B .5C .6D .76.保障国家粮食安全是一个永恒的课题,任何时候这根弦都不能松.某农科实验基地,大力开展种子实验,让农民能得到高产、易发芽的种子.该农科实验基地两年前有81种农作物种子,经过两年不断的努力培育新品种,现在有100种农作物种子.若这两年培育新品种数量的平均年增长率为x ,则根据题意列出的符合题意的方程是( )A .()1001281x −=B .()1001281x +=C .()2811100x −=D .()2811100x +=7.函数y mx m =+和函数222y mx x =−++(m 是常数,且0m ≠)的图象可能是( )A .B .C .D .8.已知抛物线24(0)y ax ax c a =−++≠经过()()()1231,,2,,3,A y B y C y −三点,则下列说法正确的是( )9.某水利工程公司开挖的池塘,截面呈抛物线形,蓄水之后在图中建立平面直角坐标系,并标出相关数据1²525y x −10.对称轴为直线1x =的抛物线2y ax bx c ++(a ,b ,c 为常数,且0a ≠)如图所示,小明同学得出了以下结论:①0abc <,②24b ac >,③420a b c ++>,④30a c +>,⑤()a b m am b +≤+(m 为任意实数),⑥当1x <−时,y 随x 的增大而增大.其中结论正确的个数为( )A .3B .4C .5D .6二、填空题(本大题共5小题,每小题3分,共15分)11.若关于x 的方程()22140x m x m −+++=两根互为负倒数,则m 的值为 . 12.如图,在宽为20m ,长为30m 的矩形地面上修建两条宽均为m x 的小路(阴影),余下部分作为草地,草地面积为2551m ,根据图中数据,求得小路宽x 的值为 .13.如图为一座拱桥的部分示意图,中间桥洞的边界线是抛物线形,涝季的最高水位线在AB 处,此时桥洞中水面宽度AB 仅为4米,桥洞顶部点O 到水面AB 的距离仅为1米;旱季最低水位线在CD 处,此时桥洞中水面宽度CD 达12米,那么最低水位CD 与最高水位AB 之间的距离为 米.14.已知抛物线()20y ax bx c a ++≠的图象如图所示,抛物线的顶点坐标为()1,n −,且与x 轴的一个交点的横坐标在3−和2−之间,则下列结论正确的是 .①0abc <;②0a b c ++<;③30a c +>;④关于x 的方程210ax bx c n ++−+=有实根.15.抛物线,与x 轴的正半轴交于点A ,顶点C 的坐标为()2,4−.若点P 为抛物线上一动点,其横坐标为t ,作PQ x ⊥轴,且点Q 位于一次函数4y x =−的图像上.当4t <时,PQ 的长度随t 的增大而增大,则t 的取值范围是 .三、解答题(本大题共8小题,共75分)16.(7分)(1)以配方法解方程:22420x x +−=;17.(7分)关于x 的一元二次方程2610x x k −+−=.18.(8分)已知抛物线23(0)y ax bx a ++<.(1)求证:在平面直角坐标系中,该抛物线与x 轴总有两个公共点;(2)若点1(,)A m y ,2(8,)B y ,1(6,)C m y +都在抛物线上,且213y y <<,求m 的取值范围.19.(9分)如图,在长为10米,宽为8米的矩形土地上修建同样宽度的两条道路(互相垂直),其余部分种植花卉,并使种植花卉的总面积为63平方米.(1)求道路的宽度;(2)园林部门要种植A 、B 两种花卉共400株,其中A 种花卉每株10元,B 种花卉每株8元,园林部门采购花卉的费用不超过3680元,则最多购进A 种花卉多少株?20.(10分)春节期间,全国各影院上映多部影片,某影院每天运营成本为2000元,该影院每天售出的电影票数量y (单位:张)与售价x (单位:元/张)之间满足一次函数关系(3080x ≤≤,且x 是整数),部分数据如下表所示:电影票售价x (元/张)4050售出电影票数量y (张) 164 124(1)请求出y 与x 之间的函数关系式;(2)设该影院每天的利润(利润=票房收入−运营成本)为w (单位:元),求w 与x 之间的函数关系式; (3)该影院将电影票售价x 定为多少时,每天获利最大?最大利润是多少?21.(10分)如图,抛物线2y x mx =−+与直线y x b =+交于点A 和点B ,直线AB 与y 轴交于点()0,2C −.22.(12分)如图,抛物线22y x x c =−++经过坐标原点O 和点A ,点A 在x 轴上.(1)求此抛物线的解析式,并求出顶点B 的坐标; (2)连接OB ,AB ,求OAB S ;(3)若点C 在抛物线上,且8OAC S =△,求点C 的坐标.23.(12分)如图甲,直线3y x =−+与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线2y x bx c =++与x 轴的另一个交点为A ,顶点为P .(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M ,使以C 、P 、M 为顶点的三角形为等腰三角形?若存在,请求出所符合条件的点M 的坐标;若不存在,请说明理由;(3)当03x <<时,在抛物线上求一点E ,使CBE △的面积有最大值(图乙、丙供画图探究),并求出最大面积及E 点的坐标.2.对于二次函数()21y x =−−的图象,下列说法不正确的是( ) A .开口向下B .对称轴是直线xx =1C .当xx =1时,y 有最大值0D .当xx <1时,y 随x 的增大而减小【答案】D【详解】解:∵二次函数()21y x =−−, ∴该函数图象开口向下,故选项A 正确,不符合题意; 对称轴是直线1x =,故选项B 正确,不符合题意; 顶点坐标为10(,),故选项C 正确,不符合题意; 当1x <时,y 随x 的增大而增大,故选项D 错误,符合题意;故选:D .3.关于x 的一元二次方程22310x kx +−=根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .只有一个实数根【答案】A【详解】解:在关于x 的一元二次方程22310x kx +−=中,2a =,3b k =,1c =−,22Δ498b ac k =−=+,因为20k >,所以22Δ4980b ac k =−=+>,所以关于x 的一元二次方程22310x kx +−=根的情况是有两个不相等的实数根. 故选A .4.将抛物线2y x =向左平移2个单位长度,再向上平移3个单位长度,所得抛物线的表达式为( )5.设1x 、2x 是一元二次方程2320x x −−=的两个实数根,则2211223x x x x ++的值为( )A .4B .5C .6D .7【答案】D【详解】解:由题意得,123x x +=,122x x =−,所以2211223x x x x ++()21212x x x x =++()232=+−92=−7=,故选:D .6.保障国家粮食安全是一个永恒的课题,任何时候这根弦都不能松.某农科实验基地,大力开展种子实验,让农民能得到高产、易发芽的种子.该农科实验基地两年前有81种农作物种子,经过两年不断的努力培育新品种,现在有100种农作物种子.若这两年培育新品种数量的平均年增长率为x ,则根据题意列出的符合题意的方程是( )A .()1001281x −=B .()1001281x +=C .()2811100x −= D .()2811100x +=【答案】D【详解】解:∵两年前有81种种子,经过两年不断的努力,现在有100种种子, 281(1)100x ∴+=,故选:D .7.函数y mx m =+和函数222y mx x =−++(m 是常数,且0m ≠)的图象可能是( ). .. .故选:D .8.已知抛物线24(0)y ax ax c a =−++≠经过()()()1231,,2,,3,A y B y C y −三点,则下列说法正确的是( )9.某水利工程公司开挖的池塘,截面呈抛物线形,蓄水之后在图中建立平面直角坐标系,并标出相关数据(单位:m ),某学习小组探究之后得出如下结论,其中正确的为( )A .水面宽度为30m10.对称轴为直线1x =的抛物线2y ax bx c ++(a ,b ,c 为常数,且0a ≠)如图所示,小明同学得出了以下结论:①0abc <,②24b ac >,③420a b c ++>,④30a c +>,⑤()a b m am b +≤+(m 为任意实数),⑥当1x <−时,y 随x 的增大而增大.其中结论正确的个数为( )C .5 0<, 11.若关于x 的方程()22140x m x m −+++=两根互为负倒数,则m 的值为 .草地面积为2551m ,根据图中数据,求得小路宽x 的值为 .【答案】1【详解】解:根据题意得:()()3020551x x −−=, 化简得:250490x x −+=, 解得:11x =,249x =,∵当249x =时,20290x −=−<, ∴249x =舍去,13.如图为一座拱桥的部分示意图,中间桥洞的边界线是抛物线形,涝季的最高水位线在AB处,此时桥洞中水面宽度AB仅为4米,桥洞顶部点O到水面AB的距离仅为1米;旱季最低水位线在CD处,此时桥洞中水面宽度CD达12米,那么最低水位CD与最高水位AB之间的距离为米.为坐标原点建立平面直角坐标系,2,14.已知抛物线()20y ax bx c a ++≠的图象如图所示,抛物线的顶点坐标为()1,n −,且与x 轴的一个交点的横坐标在3−和2−之间,则下列结论正确的是 .15.抛物线,与x 轴的正半轴交于点A ,顶点C 的坐标为()2,4−.若点P 为抛物线上一动点,其横坐标为t ,作PQ x ⊥轴,且点Q 位于一次函数4y x =−的图像上.当4t <时,PQ 的长度随t 的增大而增大,则t三、解答题(本大题共8小题,共75分)16.(7分)(1)以配方法解方程:2+−=;x x2420(3)123,5x x ==; (6分)17.(7分)关于x 的一元二次方程2610x x k −+−=.(1)如果方程有实数根,求k 的取值范围;(2)如果1x ,2x 是这个方程的两个根,且221212324x x x x ++=,求k 的值. 【详解】(1)解:∵方程有实数根,∴()()26410k ∆=−−−≥,解得:10k ≤;(2分)(2)∵1x ,2x 是这个方程的两个根,∴126x x +=,121x x k =−,(4分) ∵221212324x x x x ++=,∴()2121224x x x x ++=,(6分)26124k +−=,解得:11k =−.(7分)18.(8分)已知抛物线23(0)y ax bx a ++<.(1)求证:在平面直角坐标系中,该抛物线与x 轴总有两个公共点;(2)若点1(,)A m y ,2(8,)B y ,1(6,)C m y +都在抛物线上,且213y y <<,求m 的取值范围.由图可得,8383m m m m > +−>+−,8m ∴>.(8分)作抛物线草图如图4:由图可得,688(3)6(3)8(3)3m m m m m m +<−−>+−+−+<+ ,12m ∴<<.综上所述,m 的取值范围是8m >或12m <<.(8分)19.(9分)如图,在长为10米,宽为8米的矩形土地上修建同样宽度的两条道路(互相垂直),其余部分(1)求道路的宽度;(2)园林部门要种植A 、B 两种花卉共400株,其中A 种花卉每株10元,B 种花卉每株8元,园林部门采购花卉的费用不超过3680元,则最多购进A 种花卉多少株? 【详解】(1)解:设道路的宽度为x 米,根据题意得:()()10863x x −−=.(2分) 解得:11x =,217x =,∵178>,故舍去.(4分)1x ∴=, 答:道路的宽度为1米.(5分)(2)解:设购进A 种花卉m 株,则购进B 种花卉()400m −株, 根据题意得:()1084003680m m +−≤.(7分) 解得:240m ≤.∴最多购进A 种花卉240株.(9分)20.(10分)春节期间,全国各影院上映多部影片,某影院每天运营成本为2000元,该影院每天售出的电影票数量y (单位:张)与售价x (单位:元/张)之间满足一次函数关系(3080x ≤≤,且x 是整数),部分数据如下表所示:电影票售价x (元/张)4050售出电影票数量y (张) 164 124(1)请求出y 与x 之间的函数关系式;(2)设该影院每天的利润(利润=票房收入−运营成本)为w (单位:元),求w 与x 之间的函数关系式; (3)该影院将电影票售价x 定为多少时,每天获利最大?最大利润是多少?答:该影院将电影票售价x 定为40元或41元时,每天获利最大,最大利润是4560元.(10分) 21.(10分)如图,抛物线2y x mx =−+与直线y x b =+交于点A 和点B ,直线AB 与y 轴交于点()0,2C −.(1)求抛物线的解析式及顶点坐标.(2)求点A 的坐标,并结合图象直接写出关于x 不等式2x mx x b −+≤+的解集.(3)若关于x 的方程2x mx n −+=在12x −≤≤的范围内只有一个实数根或两个相等的实数根,直接写出n 的取值范围.【详解】(1)解:将点()0,2C −代入y x b =+,得2b =−,∴2y x =−.当0y =时,20x −=, 解得2x =,∴点()2,0B .将点()2,0B 代入2y x mx =−+,得2220m −+=,解得2m =,∴抛物线的解析式为22y x x =−+.(2分) ∵222(1)1y x x x =−+=−−+, ∴顶点坐标为()1,1.(4分)(2)解:∵直线2y x =−与抛物线22y x x =−+的交点在第三象限, ∴222−+=−x x x ,解得2x =(不符合题意,舍去)或=1x −, ∴=1x −, ∴=3y −,∴点A 的坐标为()1,3−−.(6分)观察图象,得不等式2x mx x b −+≤+的解集为1x ≤−或2x ≥.(7分)(3)解:方程2x mx n −+=在12x −≤≤的范围内只有一个实数根,可以理解为抛物线22y x x =−+与直线y n =在12x −≤≤的范围内只有一个交点,如图,当30n −≤<时,直线y n =与抛物线22y x x =−+始终有一个交点; 当直线y n =经过抛物线顶点时,直线y n =与抛物线22y x x =−+有一个交点, ∴n 的取值范围为30n −≤<或1n =.(10分)22.(12分)如图,抛物线22y x x c =−++经过坐标原点O 和点A ,点A 在x 轴上.(1)求此抛物线的解析式,并求出顶点B 的坐标;(2)连接OB ,AB ,求OAB S ;(3)若点C 在抛物线上,且8OAC S =△,求点C 的坐标.综上所述,C 点坐标为()2,8−−或()4,8−.(12分)23.(12分)如图甲,直线3y x =−+与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线2y x bx c =++与x 轴的另一个交点为A ,顶点为P .(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M ,使以C 、P 、M 为顶点的三角形为等腰三角形?若存在,请求出所符合条件的点M 的坐标;若不存在,请说明理由;(3)当03x <<时,在抛物线上求一点E ,使CBE △的面积有最大值(图乙、丙供画图探究),并求出最大面积及E 点的坐标.。

九年级上册数学第一次月考试卷

九年级上册数学第一次月考试卷

九年级上册数学第一次月考试卷一、选择题(每题3分,共30分)1. 下列二次根式中,最简二次根式是()A. √(8a)B. √(2a/3)C. √(3a)D. √(a^2b^4)2. 下列函数中,是一次函数但不是正比例函数的是()A. y = 2xB. y = -x/2C. y = 3/xD. y = -2x + 13. 下列运算正确的是()A. 3a + 2b = 5abB. 5a^2 - 2b^2 = 3C. 7a + a = 7a^2D. (x - 1)^2 = x^2 - 14. 下列说法中,正确的是()A. 无限小数是无理数B. 绝对值等于它本身的数是非负数C. 垂直于同一直线的两条直线互相平行D. 相等的角是对顶角5. 下列方程中,是一元二次方程的是()A. x^2 + 2x = x^2 - 1B. (x + 1)^2 = 4xC. x^2 + y = 1D. 1/x^2 + x = 16. 已知直线y = kx + b 经过点(1, -2) 和(-2, 4),则k 的值为()A. -2B. 2C. -4/3D. 4/37. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 等边三角形B. 平行四边形C. 正五边形D. 圆8. 下列不等式组中,解集为x > 3 的是()A. { x > 2, x < 3 }B. { x > 3, x > 4 }C. { x ≤2, x > 3 }D. { x > 3, x ≥2 }9. 下列调查中,适合采用全面调查(普查)方式的是()A. 对全市中学生目前使用手机情况的调查B. 对某品牌电视机的使用寿命的调查C. 对乘坐飞机的旅客是否携带违禁物品的调查D. 对全国小学生课外阅读情况的调查10. 下列关于概率的描述性定义中正确的是()A. 必然发生的事件的概率是0B. 不可能发生的事件的概率是1C. 概率是1 的事件在一次试验中一定不会发生D. 概率是0.5 的事件在一次试验中有可能不发生二、填空题(每题3分,共18分)11. 计算:√(16) = _______。

人教版九年级上册数学第一次月考试题含答案

人教版九年级上册数学第一次月考试题含答案

人教版九年级上册数学第一次月考试卷一、选择题。

(每小题只有一个正确答案)1.下列是二次函数的是()A .22y x =+B .21y x =+C .11y x=-+D .220(0)ax a -=≠2.若关于x 的一元二次方程20x x m -+=的一个根是1x =,则m 的值是()A .1B .0C .-1D .23.关于x 的一元二次方程220(0,40)ax bx c a b ac ++=≠->的根是()A .2b a ±B .2b a -C .2b -D .2b a-±4.下列一元二次方程没有实数根的是()A .2210x x ++=B .220x x ++=C .210x -=D .2210x x --=5.用配方法解方程2640x x +-=时,配方结果正确的是()A .()235x +=B .()265x +=C .()2313x +=D .()2613x +=6.对于二次函数()212y x =--+的图象与性质,下列说法正确的是()A .对称轴是直线1x =,最大值是2B .对称轴是直线1x =,最小值是2C .对称轴是直线1x =-,最大值是2D .对称轴是直线1x =-,最小值是27.若关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根,则a 的取值范围是()A .a <-2B .a >-2C .-2<a <0D .-2≤a <08.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a 万件和b 万件,则()A .b=(1+22.1%×2)aB .b=(1+22.1%)2aC .b=(1+22.1%)×2aD .b=22.1%×2a9.将抛物线y=2x 2平移后得到抛物线y=2x 2+1,则平移方式为()A .向左平移1个单位B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位10.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论:①ac >0;②当x≥1时,y 随x 的增大而减小;③2a+b=0;④b 2-4ac <0;⑤4a-2b+c >0,其中正确的个数是()A .1B .2C .3D .4二、填空题11.方程x 2=9的解为_____.12.把一元二次方程2346x x =-化成一般式是__________.13.已知函数24y x x m =-+的图象与x 轴只有一个交点,则m 的值为_______.14.已知二次函数2y x =,在14x -≤≤内,函数的最小值为______________.15.抛物线y =(x -h )2-k 的顶点坐标为(-3,1),则h -k=______________16.已知关于x 的方程2x mx 60+-=的一个根为2,则这个方程的另一个根是__.17.二次函数y =ax 2+bx +c (a ≠0)的部分对应值如下表:则二次函数y =ax 2+bx +c 在x =2时,y =_________.X …-3-20135…y…7-8-9-57…三、解答题18.解方程,2230x x +-=.19.已知抛物线的顶点为(1,4),与y 轴交点为(0,3),求该抛物线的解析式.20.若关于x 的二次方程(m+1)x 2+5x+m 2﹣3m=4的常数项为0,求m 的值.21.关于x 的一元二次方程x 2+(2m +1)x +m 2-1=0有两个不相等的实数根.(1)求m 的取值范围;(2)写出一个满足条件的m 的值,并求此时方程的根.22.己知:二次函数y =ax 2+bx +6(a ≠0)与x 轴交于A ,B 两点(点A 在点B 的左侧),点A ,点B 的横坐标是一元二次方程x 2﹣4x ﹣12=0的两个根.(1)求出点A ,点B 的坐标.(2)求出该二次函数的解析式.23.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.24.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y (单位:m )与飞行时间x (单位:s )之间具有函数关系y=﹣5x 2+20x ,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m 时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?25.如图,已知抛物线y=-x2+4x+m与x轴交于A,B两点,AB=2,与y轴交于点C.(1)求抛物线的解析式;(2)若P为对称轴上一点,要使PA+PC最小,求点P的坐标.参考答案1.A【分析】直接利用二次函数以及一次函数的定义分别判断得出答案.【详解】A、y=x2+2,是二次函数,故此选项正确;B、y=-2x+1,是一次函数,故此选项错误;C 、y=1x-+1,不是二次函数,故此选项错误;D 、()2200x a -=≠,是一次二次方程,故此选项错误;故选A .【点睛】此题主要考查了二次函数与一次函数定义,正确把握相关定义是解题关键.2.B 【分析】根据一元二次方程的解的定义,把x=1代入一元二次方程可得到关于m 的一元一次方程,然后解一元一次方程即可.【详解】把x=1代入x 2-x+m=0得1-1+m=0,解得m=0.故选B .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.3.D 【详解】当20,40a b ac ≠->时,一元二次方程20ax bx c ++=的求根公式为x =2b b ac a-.故选D.4.B 【分析】通过计算方程根的判别式,满足0 即可得到结论.【详解】解:A 、2=2411=0-⨯⨯ ,方程有两个相等的实数根,故本选项错误;B 、2=1421=-70-⨯⨯ ,方程没有实数根,故本选项正确;C 、2=04(1)=40-⨯- ,方程有两个不相等的实数根,故本选项错误;D 、2=(-2)41(1)=80-⨯⨯- ,方程有两个不相等的实数根,故本选项错误;故答案为B.【点睛】本题考查了根的判别式,熟练掌握一元二次方程的根与判别式的关系是解题的关键.(1)当0 ,方程有两个不相等的两个实数根;(2)当=0 ,方程有两个相等的两个实数根;(3)当0 时,方程无实数根.5.C 【分析】将常数项移到等式的右边,再两边配上一次项系数的一半可得.【详解】∵x 2+6x=4,∴x 2+6x+9=4+9,即(x+3)2=13,故选C .【点睛】本题主要考查配方法解一元二次方程,熟练掌握配方法的基本步骤是解题的关键.6.A 【分析】根据抛物线的图象与性质即可判断.【详解】解:由抛物线的解析式:y=-(x-1)2+2,可知:对称轴x=1,开口方向向下,所以有最大值y=2,故选:A .【点睛】本题考查二次函数的性质,解题的关键是正确理解抛物线的图象与性质,本题属于基础题型.7.C【分析】由关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根可得2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭,解不等式即可求出a 的取值范围.【详解】∵关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根,∴2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭,解得:a >−2,∵a <0,∴−2<a <0.故选C .【点睛】本题考查一元二次方程根的判别式,掌握根的判别式的应用为解题关键.8.B 【详解】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a 万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a ,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a 万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a 万件,即b=(1+22.1%)2a 万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.9.C 【解析】根据二次函数图象的平移规律“上加下减,左加右减”,将原抛物线以各个选项描述的平移方式进行平移可以获得不同的解析式,与题目中给出的解析式一致的选项即为正确选项.A 选项:将原抛物线向左平移1个单位,平移后的抛物线应为y =2(x +1)2,故A 选项错误;B 选项:将原抛物线向右平移1个单位,平移后的抛物线应为y =2(x -1)2,故B 选项错误;C 选项:将原抛物线向上平移1个单位,平移后的抛物线应为y =2x 2+1,故C 选项正确;D 选项:将原抛物线向下平移1个单位,平移后的抛物线应为y =2x 2-1,故D 选项错误.因此,本题应选C.点睛:本题考查了二次函数图象平移的相关知识.二次函数图象向上或向下平移时,应将平移量以“上加下减”的方式作为常数项添加到原解析式中;二次函数图象向左或向右平移时,应先以“左加右减”的方式将自变量x 和平移量组成一个代数式,再用该代数式替换原解析式中的自变量x .要特别注意理解和记忆二次函数图象左右平移时其解析式的相关变化.10.B 【详解】(1)由图可知,0 0a c ><,,∴0ac <,故①错;(2)由图可知,当1≥x 时,y 随x 的增大而增大,故②错;(3)由图可知,抛物线的对称轴为直线:12bx a=-=,∴2b a =-,即20a b +=,故③正确;(4)由图可知,抛物线和x 轴有两个不同的交点,∴240b ac ->,故④错;(5)由图可知,当2x =-时,图象在x 轴上方,即当2x =-时,420y a b c =-+>,故⑤正确;∴有2个结论正确,故选B.11.x=±3【分析】直接用开平方法求解即可.【详解】解:∵29x =,∴x=±3.故答案为:x=±3.【点睛】本题考查了解一元二次方程-直接开平方法,解决本题的关键是理解平方根的定义,注意一个正数的平方根有两个,这两个数互为相反数.12.23460x x -+=【分析】方程整理为一般形式即可.【详解】方程整理得:3x 2-4x+6=0,故答案为3x 2-4x+6=0.【点睛】此题考查了一元二次方程的一般形式,其一般形式为ax 2+bx+c=0(a≠0).13.4【分析】由抛物线与x 轴只有一个交点,得到根的判别式等于0,即可求出m 的值.【详解】∵函数y=x 2-4x+m 的图象与x 轴只有一个交点,∴b 2-4ac=(-4)2-4×1×m=0,解得:m=4,故答案为4【点睛】此题考查了抛物线与x 轴的交点,熟练掌握二次函数的性质是解本题的关键.14.0【分析】根据二次函数的性质即可判断出函数的最小值.【详解】∵a=1>0,∴二次函数2y x =的图象开口向上,∴二次函数2y x =的图象在14x -≤≤内有最低点,为原点(0,0),故二次函数2y x =,在14x -≤≤内,函数的最小值为0,故答案为0.【点睛】本题主要考查了二次函数的图象与性质.熟记二次函数的图象与性质是解题关键.15.-2【分析】根据二次函数的顶点式可直接进行求解.【详解】解:由题意得:h=-3,k=-1,∴()312h k -=---=-;故答案为-2.【点睛】本题主要考查二次函数的顶点式,熟练掌握二次函数的性质是解题的关键.16.-3.【解析】∵方程2x mx 60+-=的一个根为2,设另一个为a ,∴2a=-6,解得:a=-3.17.-8【分析】观察表中的对应值得到x =−3和x =5时,函数值都是7,则根据抛物线的对称性得到对称轴为直线x =1,所以x =0和x =2时的函数值相等.【详解】解:∵x =−3时,y =7;x =5时,y =7,∴二次函数图象的对称轴为直线x =1,∴x =0和x =2时的函数值相等,∴x =2时,y =−8.故答案为:−8.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.18.1231x x ,=-=【分析】利用因式分解法求一元二次方程的解即可.【详解】原方程因式分解得:(3)(1)0x x +-=∴1231x x ,=-=【点睛】本题考查利用因式分解法求一元二次方程的解.熟练掌握因式分解法是解答本题的关键.19.y=-(x-1)2+4.【分析】根据顶点坐标设其顶点式,再将(0,3)代入求解可得.【详解】设抛物线的解析式为y=a (x-1)2+4,将点(0,3)代入,得a+4=3.解得a=-1,抛物线的解析式为y=-(x-1)2+4.【点睛】解题的关键是熟练掌握待定系数法求函数解析式.20.4【解析】试题分析:根据方程中常数项为0,求出m 的值,检验即可.试题解析:解:∵关于x 的二次方程(m+1)x 2+5x+m 2﹣3m ﹣4=0的常数项为0,∴m 2﹣3m ﹣4=0,即(m ﹣4)(m+1)=0,解得:m=4或m=﹣1,当m=﹣1时,方程为5x=0,不合题意;则m 的值为4.考点:一元二次方程的一般形式.21.(1)m >-54;(2)x 1=0,x 2=-3.【详解】试题分析:(1)由方程有两个不相等的实数根即可得出△>0,代入数据即可得出关于m 的一元一次不等式,解不等式即可得出结论;(2)结合(1)结论,令m=1,将m=1代入原方程,利用因式分解法解方程即可得出结论.试题解析:(1)∵关于x 的一元二次方程2x +(2m+1)x+2m ﹣1=0有两个不相等的实数根,∴△=()()2221411m m +-⨯⨯-=4m+5>0,解得:m >54-;(2)m=1,此时原方程为2x +3x=0,即x (x+3)=0,解得:1x =0,2x =﹣3.考点:根的判别式;解一元二次方程——因式分解法;解一元一次不等式.22.(1)A (-2,0),B (6,0),(2)y=-12x 2+2x+6.【分析】(1)利用因式分解法解方程x 2-4x-12=0即可得到A 点和B 点坐标;(2)设交点式y=a (x+2)(x-6)=ax 2-4ax-12a ,则-12a=6,解得a=-12,所以抛物线解析式为y=-12x 2+2x+6.【详解】(1)解方程x 2-4x-12=0得x 1=-2,x 2=6,所以A (-2,0),B (6,0),(2)因为抛物线与x 轴交于点A (2,0),B (6,0),则抛物线解析式为y=a (x+2)(x-6)=ax 2-4ax-12a ,则-12a=6,解得a=-12,所以y=-12x 2+2x+6.【点睛】本题考查了抛物线与x 轴的交点问题:从二次函数的交点式y=a (x-x 1)(x-x 2)(a ,b ,c 是常数,a≠0)中可直接得到抛物线与x 轴的交点坐标(x 1,0),(x 2,0).也考查了二次函数的性质.23.(1)20%;(2)10368万元.【解析】试题分析:(1)首先设该县投入教育经费的年平均增长率为x ,然后根据增长率的一般公式列出一元二次方程,然后求出方程的解得出答案;(2)根据增长率得出2017年的教育经费.试题解析:(1)设该县投入教育经费的年平均增长率为x.则有:6000=8640解得:=0.2=-2.2(舍去)所以该县投入教育经费的年平均增长率为20%(2)因为2016年该县投入教育经费为8640万元,且增长率为20%所以2017年该县投入教育经费为8640×(1+20%)=10368(万元)考点:一元二次方程的应用24.(1)在飞行过程中,当小球的飞行高度为15m 时,飞行时间是1s 或3s ;(2)在飞行过程中,小球从飞出到落地所用时间是4s ;(3)在飞行过程中,小球飞行高度第2s 时最大,最大高度是20m .【详解】分析:(1)根据题目中的函数解析式,令y=15即可解答本题;(2)令y=0,代入题目中的函数解析式即可解答本题;(3)将题目中的函数解析式化为顶点式即可解答本题.详解:(1)当y=15时,15=﹣5x 2+20x ,解得,x 1=1,x 2=3,答:在飞行过程中,当小球的飞行高度为15m 时,飞行时间是1s 或3s ;(2)当y=0时,0═﹣5x 2+20x ,解得,x 3=0,x 2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s ;(3)y=﹣5x 2+20x=﹣5(x ﹣2)2+20,∴当x=2时,y 取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s 时最大,最大高度是20m .点睛:本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.25.(1)243y x x =-+-;(2)P 点坐标为(2,-1)【分析】(1)设点A 的坐标为()1,0x ,点B 的坐标为()2,0x ,然后根据AB=2及抛物线的对称轴可求解A 、B 的坐标,进而抛物线解析式可求;(2)连接BC ,交直线x =2于点P ,则PA =PB ,则有PA +PC =PB +PC =BC ,所以此时PA +PC 最小,然后求出直线BC 的解析式,进而问题可求.【详解】解:(1)设点A 的坐标为()1,0x ,点B 的坐标为()2,0x ,2121222x x x x +⎧=⎪⎨⎪-=⎩,∴1213x x =⎧⎨=⎩,把点A 的坐标(1,0)代入24y x x m =-++得3m =-,所以抛物线的解析式为243y x x =-+-;(2)解:连接BC ,交直线x =2于点P ,则PA =PB,如图所示:∴PA +PC =PB +PC =BC ,∴此时PA +PC 最小,设直线BC 的解析式为y =kx +b ,把C (0,-3),B (3,0)代入得330b k b =-⎧⎨+=⎩,解得31b k =-⎧⎨=⎩,∴直线BC 的解析式为y =x -3,当x =2时,y =x -3=2-3=-1,∴P 点坐标为(2,-1).【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的性质是解题的关键.。

2024-2025学年九年级物理第一次月考卷+答案详解(教科版)

2024-2025学年九年级物理第一次月考卷+答案详解(教科版)

2024-2025学年九年级物理第一次月考卷+答案详解(教科版)(考卷部分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回一、单项选择题(每小题只有一个答案正确。

每题3分,共36分)1.九月,桂花飘香。

我们座在教室里也能闻到学校花园里的桂花香味,这说明()A.分子间有斥力B.分子在运动C.分子间有引力D.分子间有空隙2.中秋佳节,南方人有“打糍粑”的习俗。

打糍粑首先要将糯米蒸熟。

下列实例中与“蒸糯米”时改变糯米内能的方式相同的是()A.用热手袋暖手B.古时钻木取火C.冬天搓手取暖流行划过天空3. 通过相关观测的现象推测无法直接感知的事实,是物理研究的一种方法。

下列根据这种方法所做出的推测,不符合事实的是()A.汤姆生发现电子推测出原子是可分的B.酒精和水混合后总体积变小推出分子间有空隙C.固体很难被压缩推出组成固体的分子间无空隙D.红墨水在水中扩散推出分子在永不停息的无规则运动中4.关于温度、内能、热量间的关系,下列说法中正确的是()A.温度高的物体,含有的热量多B.物体吸收了热量,温度一定升高C.物体温度升高,一定吸收了热量D.物体温度升高,内能一定增加5. 下列关于燃料的热值说法中正确的是()A.燃料燃烧越充分,热值越大B.燃料热值越大,完全燃烧时产生的热量越多C.汽油的热值为4.6×107J/kg,其含义是完全燃烧1kg的汽油能放出4.6×107J的热量D.一瓶酒精,倒出一半后,热值变为原来的一半6.“水的比热容较大”的这个特点,在日常生活中有着广泛的应用。

下列实例中,与此无关的是()A.人们常用热水供暖B.人们常用水来冷却C.海边昼夜温度变化比沙漠地区小,适宜居住D.夏天人们游泳上岸后,风一吹感觉更凉快7. 下图是四冲程汽油机一个工作循环中的两个冲程,关于这两个冲程的说法中正确的是()A.甲是吸气冲程,乙是做功冲程B.甲冲程将机械能转化为内能,乙冲程将内能转化为机械能C.D.甲是做功冲程,乙是压缩冲程8.关于汽油机的说法中正确的有()A.吸气冲程吸入的物质只有空气B.一个工循环中,对外做功4次C.通过技术的不断革新,未来汽油机的效率可以达到100%D.汽油机的广泛使用会造成环境污染9.王丽同学在早餐时煮冻饺子,她通过观察发现其中蕴含着丰富的物理知识。

九年级上册第一次月考试卷【含答案】

九年级上册第一次月考试卷【含答案】

九年级上册第一次月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪种物质在空气中不能燃烧?A. 木炭B. 铁丝C. 硫磺D. 石蜡2. 地球公转的方向是?A. 自东向西B. 自西向东C. 自南向北D. 自北向南3. 下列哪个不是我国四大发明之一?A. 指南针B. 火药C. 印刷术D. 电话4. 下列哪个行星距离太阳最近?A. 金星B. 地球C. 水星D. 火星5. 下列哪种动物属于哺乳动物?A. 青蛙B. 鲨鱼C. 老虎D. 鳄鱼二、判断题(每题1分,共5分)1. 鸟类会游泳。

()2. 食物腐败是由于细菌和真菌引起的。

()3. 铁是合成血红蛋白的主要元素。

()4. 地球自转的方向是自东向西。

()5. 碳酸钙是一种有机物。

()三、填空题(每题1分,共5分)1. 我国的首都是______。

2. 地球上的淡水主要来自______、______和______。

3. 氧化物是由两种元素组成的化合物,其中一种元素是______。

4. 人体最大的消化腺是______。

5. 电阻的单位是______。

四、简答题(每题2分,共10分)1. 简述光合作用的过程。

2. 描述一下水循环的过程。

3. 请解释一下牛顿第一定律。

4. 简述电路的基本组成部分。

5. 请解释一下相对论的基本概念。

五、应用题(每题2分,共10分)1. 一辆汽车以60公里/小时的速度行驶,行驶了2小时后到达目的地。

请计算汽车行驶的总距离。

2. 一个长方体的长、宽、高分别是10厘米、5厘米和3厘米,请计算这个长方体的体积。

3. 一个班级有40名学生,其中有25名女生,请计算男生和女生的比例。

4. 一个数加上100后等于200,请计算这个数是多少。

5. 一个水池有50立方米的水,每分钟流出5立方米的水,请计算水流完需要多少时间。

六、分析题(每题5分,共10分)1. 请分析一下为什么会有春夏秋冬四季的变化。

2. 请分析一下为什么酸雨对环境有害。

2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)

2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)

2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:第1章~第3章(北师版)。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一.单项选择题(本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列方程中,是一元二次方程的是()A.xx2−3xx−5=−5B.2xx2−yy−1=0C.xx2−xx(xx+2.5)=0D.aaxx2+bbxx+cc=02.下列命题为真命题的是()A.有两边相等的平行四边形是菱形B.有一个角是直角的平行四边形是菱形C.对角线互相垂直的平行四边形是矩形D.有三个角是直角的四边形是矩形3.若关于xx的方程xx2+mmxx−6=2.则mm为()A.−2B.1 C.4 D.−34.a是方程xx2+2xx−1=0的一个根,则代数式aa2+2aa+2020的值是()A.2018 B.2019 C.2020 D.20215.如图,在正方形AAAAAAAA中,EE为AAAA上一点,连接AAEE,AAEE交对角线AAAA于点FF,连接AAFF,若∠AAAAEE=35°,则∠AAFFAA的度数为()A.80°B.70°C.75°D.45°6.有一块长40m,宽32m的矩形种植地,修如图等宽的小路,使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140 B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140 D.(40﹣2x)(32﹣2x)=11407.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.248.如图,在菱形AAAAAAAA中,对角线AAAA,AAAA相交于点OO,EE是AAAA的中点,若菱形的周长为20,则OOEE的长为()A.10 B.5 C.2.5D.19.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为xx人,则根据题意可列方程为()A.xx(xx−1)=110B.xx(xx+1)=110C.(xx+1)2=110D.(xx−1)2=11010.关于xx的一元二次方程kkxx2−2xx−1=0有两个不相等的实数根,则kk的取值范围是()A.kk>−1B.kk>−1且kk≠0C.kk<1D.kk<1且kk≠011.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.74B.95C.1910D.76�312.如图,在正方形AAAAAAAA中,AAAA=4,E为对角线AAAA上与点A,C不重合的一个动点,过点E作EEFF⊥AAAA于点F,EEEE⊥AAAA与点G,连接AAEE,FFEE,有下列结论:①AAEE=FFEE.②AAEE⊥FFEE.③∠AAFFEE=∠AAAAEE.④FFEE的最小值为3,其中正确结论的序号为()A.①②B.②③C.①②③D.①③④第Ⅱ卷二.填空题(本题共6小题,每小题3分,共18分.)13.一元二次方程5xx2+2xx−1=0的一次项系数二次项系数常数项.14.xx1,xx2为一元二次方程xx2−2xx−10=0的两根,则1xx1+1xx2=.15.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为.16.如图所示,菱形AAAAAAAA的对角线AAAA、AAAA相交于点OO.若AAAA=6,AAAA=8,AAEE⊥AAAA,垂足为EE,则AAEE的长为.17.如图,将一张长方形纸片AAAAAAAA沿AAAA折起,重叠部分为ΔΔAAAAEE,若AAAA=6,AAAA=4,则重叠部分ΔΔAAAAEE的面积为.18.如图,在正方形AAAAAAAA中,AAAA=6,点E,F分别在边AAAA,AAAA上,AAEE=AAFF=2,点M在对角线AAAA上运动,连接EEEE和EEFF,则EEEE+EEFF的最小值等于.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)3xx2−4xx−1=0;(2)2�xx−3�2=xx2−920.(8分)已知方程xx2+�kk+1−6=0是关于xx的一元二次方程.(1)求证:对于任意实数kk方程中有两个不相等的实数根.(2)若xx1,xx2是方程的两根,kk=6,求1xx1+1xx2的值.21.(8分)如图,在菱形AAAAAAAA中,对角线AAAA,AAAA交于点OO,AAEE⊥AAAA交AAAA延长线于EE,AAFF∥AAEE交AAAA延长线于点FF.(1)求证:四边形AAEEAAFF是矩形;(2)若AAEE=4,AAAA=5,求AAAA的长.22.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有______人,若该居民区有8000人,估计整个居民区爱吃D粽的有______人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.23.(8分)阅读材料,回答问题.材料1:为了解方程�xx2�2−13xx2+36=0,如果我们把xx2看作一个整体,然后设yy=xx2,则原方程可化为yy2−13yy+36=0,经过运算,原方程的解为xx1,2=±2,xx3,4=±3,我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数mm,nn满足mm2−mm−1=0,nn2−nn−1=0,且mm≠nn,显然mm,nn是方程xx2−xx−1=0的两个不相等的实数根,由韦达定理可知mm+nn=1,mmnn=−1.根据上述材料,解决以下问题:(1)为解方程xx4−xx2−6=0,可设yy=____,原方程可化为____.经过运算,原方程的解是____.(2)应用:若实数aa,bb满足:2aa4−7aa2+1=0,2bb4−7bb2+1=0且aa≠bb,求aa4+bb4的值;24.(10分)中秋期间,某商场以每盒140元的价格购进一批月饼,当每盒月饼售价为180元时,每天可售出60盒.为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每盒月饼降价2元,那么商场每天就可以多售出5盒.(1)设售价每盒下降xx元,则每天能售出______盒(用含xx的代数式表示);(2)当月饼每盒售价为多少元时,每天的销售利润恰好能达到2550元;(3)该商场每天所获得的利润是否能达到2700元?请说明理由.25.(12分)在数学实验课上,老师让学生以“折叠筝形”为主题开展数学实践探究活动.定义:两组邻边分别相等的四边形叫做“筝形”.(1)概念理解:如图1,将一张纸对折压平,以折痕为边折出一个三角形,然后把纸展平,折痕为四边形AAAAAAAA.判断四边形AAAAAAAA的形状:筝形(填“是”或“不是”);(2)性质探究:如图2,已知四边形AAAAAAAA纸片是筝形,请用测量、折叠等方法猜想筝形的角、对角线有什么几何特征,然后写出一条性质并进行证明;(3)拓展应用:如图3,AAAA是锐角△AAAAAA的高,将△AAAAAA沿边AAAA翻折后得到△AAAAEE,将△AAAAAA沿边AAAA翻折后得到△AAAAFF,延长EEAA,FFAA交于点G.①若∠AAAAAA=50°,当△AAAAEE是等腰三角形时,请直接写出∠AAAAAA的度数;②若∠AAAAAA=45°,AAAA=2,AAAA=5,AAEE=EEEE=FFEE,求AAAA的长.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组学习正方形以后做了以下探究:在正方形AAAAAAAA中,E,F为平面内两点.【初步感知】(1)如图1,当点E在边AAAA上时,AAEE⊥AAFF,且B,C,F三点共线.请写出AAEE与FFAA的数量关系______;【深入探究】(2)如图2,当点E在正方形AAAAAAAA外部时,AAEE⊥AAFF,AAEE⊥EEFF,E,C,F三点共线.若AAEE=2,AAEE=4,求AAEE的长;【拓展运用】(3)如图3,当点E在正方形AAAAAAAA外部时,AAEE⊥EEAA,AAEE⊥AAFF,AAEE⊥AAEE,且D,F,E三点共线,猜想并证明AAEE,AAEE,AAFF之间的数量关系.2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

2024-2025学年九年级物理第一次月考卷02+答案详解(人教)

2024-2025学年九年级物理第一次月考卷02+答案详解(人教)

2024-2025学年九年级物理第一次月考卷02+答案详解(人教)(考卷部分)考试时间:90分钟试卷满分:100分注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:第十三、十四章(人教版九年级全一册)。

5.难度系数:0.76.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题)一、单选题(本题共20小题,每小题2分,共40分.每小题给出的四个选项中只有一个....选项最正确)1.下列现象中,能说明分子在不停地运动的是()A.荷花飘香B.雪花飞舞C.列车疾驰D.飞船翱翔太空2.端午节煮粽子时,厨房飘满了粽子的清香,这说明()A.分子间存在吸引力B.分子间存在排斥力C.分子在无规则运动D.液体分子连续分布,气体分子间有间隙3.关于同一种物质的比热容,下列说法正确的是()A.若物体质量增大一倍,则比热容减小一半B.若物体温度升高一倍,则比热容增大一倍C.比热容与物体质量多少、温度变化大小、吸热或放热的多少都无关D.若物体吸收的热量增大一倍,比热容增大一倍4.关于温度、热量和内能,下列说法正确的是()A.一块0℃的冰块,它的内能为零B.温度高的物体含有的热量一定多C.热胀冷缩中的“冷热”是指内能D.物体的温度升高,内能一定增大5.对于下列常见生活现象的物理解释,正确的是()A.花香四溢,是因为分子在不停地运动B.物体热胀冷缩,是因为分子的大小随温度的变化而改变C.水往低处流,是因为分子在不停地运动D.破镜难圆,是因为分子间只有斥力6.汽油机工作过程中的某个冲程如图所示。

下列说法正确的是()A.该冲程为排气冲程B.该冲程将机械能转化为内能C.若飞轮转速为1200r/min,则该汽油机1s对外做功10次D.该冲程中有热量散失,所以不遵循能量守恒定律7.如图所示,抽动活塞,使注射器吸入少量乙醚;堵住注射器的管口,继续向后抽动活塞,可以见到液态的乙醚消失不见;反方向推动活塞,压缩管内气体,可以观察到管内再次出现液态的乙醚.这个实验说明()A.压缩气体的体积可以使气体液化B.压缩气体的体积可以使气体凝华C.通过压缩,可以使所有气体液化D.通过压缩,可以使所有气体凝华8.下列关于热现象的一些说法,错误的是()A.冰熔化成水时,温度不变,内能增大B.沿海地区通常比内陆地区昼夜温差小,原因之一是水的比热容比砂石的比热容大C.雨水顺着沙粒缝隙渗入土壤属于扩散现象D.刚炒出来的菜散发出浓浓的香味,是因为温度越高,分子热运动越剧烈9.如图所示,糖画是我国传统民间艺术,它的制作过程如下:先将糖加热成糖浆,然后用糖浆在平板上“画成”各种图案,糖浆慢慢变硬后就制作成了栩栩如生的糖画。

2024-2025学年九年级数学上学期第一次月考卷(测试范围:第1-2章)(北师大版)(解析版)

2024-2025学年九年级数学上学期第一次月考卷(测试范围:第1-2章)(北师大版)(解析版)

2024-2025年九年级数学上册第一次月考卷(测试范围:第1-2章)一、单选题1.下列方程中,关于x 的一元二次方程是( )A .20ax bx c ++=B .2210x y --=C .()270x x x -+=D .223x x -=A .231416x æö+=ç÷èøB .231248x æö-=ç÷èøC .23148x æö+=ç÷èøD .2311416x æö+-=-ç÷èø故选:A .3.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,若3OA =,则BD 的长为( )A .3B .6C .D .4.若关于x 的一元二次方程2(1)230k x kx k --+-=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且1k ¹C .34k ≥D .34k ≥且1k ¹5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂第二季度平均每月的增长率为x ,那么x 满足的方程是( )A .()251182x +=B .()()250501501182x x ++++=C .()()2501501182x x +++=D .()50501182x ++=【答案】B【分析】本题考查一元二次方程的实际应用,根据增长率的等量关系()21a x b +=,结合题意,列出方程即可.【解析】解:设该厂第二季度平均每月的增长率为x ,由题意,得:()()250501501182x x ++++=;故选B .6.三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为( )A .12B .14C .12或14D .247.如图,四边形ABCD 是菱形,对角线8cm 6cm AC DB DH AB ==^,,于点H ,则DH 的长为( )A .5cmB .10cmC .24cm 5D .48cm 5【答案】C 【分析】此题考查了菱形的性质,勾股定理,根据菱形的性质结合勾股定理求出AB ,再根据菱形的面积计算公式即可求出DH ,熟练掌握菱形的性质是解题的关键.【解析】解:∵四边形ABCD 是菱形,13,,则AC的长是()8.如图,在直角坐标系中,矩形OABC,点B的坐标是()A.3B C D.413,,∵点B的坐标是()∴22=+=OB,1310∵四边形OABC是矩形,∴10AC OB==,故选:C.9.如图,在矩形ABCD 中,点F 是CD 上一点,连结BF ,然后沿着BF 将矩形对折,使点C 恰好落在AD 边上的E 处.若41AE ED =::,则EF BE的值为( )A .4B .3C .13D10.如图,正方形ABCD 中,1AB =,点E 、F 分别在边BC CD 、上,45EAF Ð=°,连接AE EF AF 、、,下列结论:①BE DF EF +=;②AE 平分BEF Ð;③CEF △的周长为2;④CEF ABE ADF S S S =+△△△,其中正确的是( )A .①②B .①②③C .①③④D .②③④【答案】B 【分析】延长CB 到T ,使得BT DF =,连接AT ,证明ADF ABT△≌△,EAF EAT △≌△,可判定①②,利用等量代换,可判③,利用面积公式解答即可,本题考查了正方形的性质,三角形全等的判定和性质,熟练掌握正方形的性质,三角形全等的判定和性质是解题的关键.【解析】延长CB 到T ,使得BT DF =,连接AT∵四边形ABCD 是正方形,∴90D ABE ABT Ð=Ð=Ð=°,AD AB =,∵DF BT ABT ADF AB AD =ìïÐ=Ðíï=î,∴ADF ABT △≌△(SAS ),∴AF AT =,DAF BAT Ð=Ð,∴90FAT DAB Ð=Ð=°,∵45EAF Ð=°,∴45EAF EAT Ð=Ð=°,∵AF ABT TAE FAE AE AE =ìïÐ=Ðíï=î,二、填空题11.已知()211350mm x x +-+-=是关于x 的一元二次方程,则m 的值为 .【答案】1-【分析】此题主要考查了一元二次方程的定义:含有一个未知数,且未知数的最高次幂是2次的整式方程,特别注意二次项系数不为0,正确把握定义是解题关键.直接利用一元二次方程的定义知道二次项系数不为0同时x 的最高次幂为2,得出m 的值进而得出答案.【解析】解:由题意知:212m +=且10m -¹,解得1m =-,故答案为:1-.12.平行四边形ABCD 的对角线AC 、BD 相交于点O ,要使平行四边形ABCD 是矩形请添加一个条件 .【答案】AC BD =(答案不唯一)【分析】本题考查了矩形的判定定理,根据对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形即可得出答案,熟练掌握矩形的判定定理是解此题的关键.【解析】解:要使平行四边形ABCD 是矩形,可添加的条件是AC BD =(对角线相等的平行四边形是矩形)【答案】25320x x +-=【解析】本题考查了公式法解一元二次方程,根据求根公式确定出方程即可.【解答】解:根据题意得:532a b c ===-,,,则该一元二次方程是25320x x +-=,故答案为:25320x x +-=.14.如图,已知四边形ABCD 是矩形,6AB =,点E 在AD 上,2DE =.若EC 平分BED Ð,则BC 的长为 .【答案】10【分析】由矩形的性质可得AD BC ∥,AD BC =,由角平分线和平行线的性质可证BE BC =,由勾股定理可求解.本题考查了矩形的性质,角平分线的性质,勾股定理,掌握矩形的性质是解题的关键.【解析】解:EC Q 平分BED Ð,BEC CED \Ð=Ð,Q 四边形ABCD 是矩形,AD BC \∥,AD BC =,DEC BCE \Ð=Ð,BEC BCE \Ð=Ð,BE BC \=,222BE AB AE =+Q ,2236(2)BC BC \=+-,10BC \=,故答案为:10.15.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,2AB =,2AC =,则BD 的长为 .∵两条纸条宽度相同,∴AE AF =,∵AB CD ∥,AD BC ∥,∴四边形ABCD 是平行四边形,16.已知a 是方程22202310x x -+=的一个根,则代数式220232121a a +++的值为 .17.如图,ABCD 绕点C 顺时针旋转后得到正方形EFCG , EF 交于点H ,则AH的长是 .边长为的正方形按顺时针方向旋转后得到正方形30,DCG CFH \Ð=°Ð∴60DCF Ð=°,在 Rt CHF V 和 R t CHD V CH CH CF CD=ìí=î,18.定义:20cx bx a ++=是一元二次方程20ax bx c ++=的倒方程.则下列四个结论:①如果2x =是220x x c ++=的倒方程的解,则54c =-;②如果0ac <,那么这两个方程都有两个不相等的实数根;③如果一元二次方程220ax x c -+=无解,则它的倒方程也无解;④如果一元二次方程20ax bx c ++=有两个不相等的实数根,则它的倒方程也有两个不相等的实数根。

江苏省九年级上学期【第一次月考卷】(解析版)

江苏省九年级上学期【第一次月考卷】(解析版)

江苏省九年级上学期【第一次月考卷】(测试时间:120分钟满分:120分测试范围:第1章-第2章)一、选择题(本大题共10小题,每小题3分,共30分.)1.(2022秋•金坛区校级月考)下列方程中,关于x的一元二次方程是( )A.3(x+1)2=2(x+1)B.C.ax2+bx+c=0D.x2+2x=x2﹣1【分析】根据一元二次方程的概念判断即可.只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.【解答】解:A.该方程是关于x的一元二次方程,故本选项符合题意;B.该方程是分式方程,故本选项不符合题意;C.ax2+bx+c=0,a=0,b≠0时是一元一次方程,故本选项不符合题意,;D.该方程整理可得2x+1=0,是一元一次方程,故本选项不符合题意;故选:A.【点评】本题考查的是一元二次方程的概念,掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解题的关键.2.(2021秋•东台市月考)电影《长津湖》讲述了一段波澜壮阔的历史,一上映就获得全国人民的追捧,某地第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后票房收入累计达10亿元,若把增长率记作x,则方程可以列为( )A.3(1+x)=10B.3(1+x)2=10C.3+3(1+x)2=10D.3+3(1+x)+3(1+x)2=10【分析】若把增长率记作x,则第二天票房约为3(1+x)亿元,第三天票房约为3(1+x)2亿元,根据三天后票房收入累计达10亿元,即可得出关于x的一元二次方程,此题得解.【解答】解:若把增长率记作x,则第二天票房约为3(1+x)亿元,第三天票房约为3(1+x)2亿元,依题意得:3+3(1+x)+3(1+x)2=10.故选:D.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.3.(2021秋•丰县校级月考)若一元二次方程x2﹣2kx+k2=0的一根为x=﹣1,则k的值为( )A.﹣1B.0C.1或﹣1D.2或0【分析】把x=﹣1代入方程计算即可求出k的值.【解答】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.【点评】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.(2020秋•滨海县月考)关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是( )A.k>﹣1B.k>﹣1且k≠0C.k<1D.k<1且k≠0【分析】由关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,知Δ=22﹣4×k×(﹣1)>0且k≠0,解之可得答案.【解答】解:∵关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,∴Δ=22﹣4×k×(﹣1)>0且k≠0,解得k>﹣1且k≠0,故选:B.【点评】本题主要考查根的判别式及一元二次方程的定义,一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:①当Δ>0时,方程有两个不相等的实数根;②当Δ=0时,方程有两个相等的实数根;③当Δ<0时,方程无实数根.5.(2022秋•邗江区月考)⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与⊙O的位置关系为( )A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.无法确定【分析】根据点与圆的位置关系的判定方法进行判断.【解答】解:∵⊙O的半径为5cm,点A到圆心O的距离为3cm,即点A到圆心O的距离小于圆的半径,∴点A在⊙O内.故选:B.【点评】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.6.(2022秋•洪泽区校级月考)若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为A.25°B.35°C.45°D.65°【分析】连接AD,由AB是⊙O的直径得到∠ADB=90°,再根据互余计算出∠A的度数,然后根据圆周角定理即可得到∠C的度数.【解答】解:连接AD,如图,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=55°,∴∠A=90°﹣55°=35°,∴∠BCD=∠A=35°.故选:B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.7.(2021秋•灌云县月考)若关于x的一元二次方程ax2+bx+5=0(a≠0)的一个解是x=1,则2021﹣a﹣b 的值是( )A.2016B.2020C.2025D.2026【分析】利用一元二次方程解的定义得到a+b=﹣1,然后把2021﹣a﹣b变形为2021﹣(a+b),再利用整体代入的方法计算.【解答】解:把x=1代入方程ax2+bx+5=0得a+b+5=0,所以a+b=﹣5,所以2021﹣a﹣b=2021﹣(a+b)=2021+5=2026.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.8.(2021秋•工业园区校级月考)如图,AB为⊙O的直径,点C、D、E在⊙O上,且=,∠E=70°,则∠ABC的度数为( )A.30°B.40°C.35°D.50°【分析】如图,连接OD,BD.利用圆周角定理求出∠DOB,再求出∠OBD=20°,可得结论.【解答】解:如图,连接OD,BD.∵=,∴∠ABD=∠CBD,∵∠DOB=2∠DEB=140°,∴∠OBD=∠ODB=20°,∴∠ABC=2∠OBD=40°,故选:B.【点评】本题考查圆周角定理,等腰三角形的性质,三角形内角和定理等知识,解题的关键是掌握圆周角定理,属于中考常考题型.9.(2022秋•江阴市校级月考)如图,AB是⊙O的直径,若AC=2,∠D=60°,则BC长等于( )A.4B.5C.D.2【分析】根据圆周角定理得出∠ACB=90°,∠CAB=∠D=60°,解直角三角形求出BC即可.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠D=60°,∴BC=AC=2,故选:D.【点评】本题考查了圆周角定理和解直角三角形等知识,能熟记圆周角定理是解此题的关键.10.(2022秋•洪泽区校级月考)如图,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,⊙D经过A,B,O,C四点,∠ACO=120°,AB=4,则圆心点D的坐标是( )A.B.C.D.【分析】先利用圆内接四边形的性质得到∠ABO=60°,再根据圆周角定理得到AB为⊙D的直径,则D 点为AB的中点,接着利用含30度的直角三角形三边的关系得到OB=2,OA=,所以A(,0),B(0,2),然后利用线段的中点坐标公式得到D点坐标.【解答】解:∵四边形ABOC为圆的内接四边形,∴∠ABO+∠ACO=180°,∴∠ABO=180°﹣120°=60°,∵∠AOB=90°,∴AB为⊙D的直径,∴D点为AB的中点,在Rt△ABO中,∠ABO=60°,∴OB=AB=2,∴OA=OB=∴A(,0),B(0,2),∴D点坐标为(,1).故选:B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了坐标与图形性质.二、填空题(本大题共8小题,每小题3分,共24分.)11.(2020秋•宿城区校级月考)已知方程x2﹣5x﹣2=0的两根分别为x1,x2,则= 15 .【分析】根据方程x2﹣5x﹣2=0的两根分别为x1,x2,得出x1+x2=5,x12﹣5x1=2,再把要求的式子变形为x12﹣5x1+x1+x2+8,最后代入计算即可.【解答】解:∵方程x2﹣5x﹣2=0的两根分别为x1,x2,∴x1+x2=5,x12﹣5x1﹣2=0,∴x12﹣5x1=2,∴x12﹣4x1+x2+8=x12﹣5x1+x1+x2+8=2+5+8=15;故答案为:15.【点评】此题考查了根与系数的关系,一元二次方程ax2+bx+c=0(a≠0),当方程有解,即b2﹣4ac≥0时,设方程的两根分别为x1,x2,则有x1+x2=﹣,x1x2=.12.(2022秋•沭阳县月考)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x,则根据题意可列方程为 200(1+x)2=242 .【分析】利用第三天揽件数量=第一天揽件数量×(1+设该快递店揽件日平均增长率)2,即可得出关于x的一元二次方程,此题得解.【解答】解:依题意得200(1+x)2=242.故答案为:200(1+x)2=242.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.13.(2020秋•沭阳县校级月考)若圆锥的底面半径为3cm,母线长为4cm,则圆锥的侧面积为 12π cm2.(结果保留π)【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面圆的半径为3,则底面周长=6π,侧面面积=×6π×4=12πcm2.故答案为:12π.【点评】本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式求解.14.(2021秋•滨湖区校级月考)已知关于x的方程x2+3x+a=0有一个根为﹣1,则a的值为 2 .【分析】把x=﹣1代入方程x2+3x+a=0得1﹣3+a=0,然后解关于a的方程.【解答】解:把x=﹣1代入方程x2+3x+a=0得1﹣3+a=0,解得a=2.故答案为:2.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.(2022秋•浦口区校级月考)当a=1,b=m,c=﹣15时,若代数式的值为3,则代数式的值为 ﹣5 .【分析】根据一元二次方程根与系数的关系即可求得.【解答】解:∵一元二次方程为ax2+bx+c=0的两个根为x1=,x2=,∴x1x2=•===﹣15,∵代数式的值为3,∴代数式的值为﹣5,故答案为:﹣5.【点评】本题考查了解一元二次方程﹣公式法,熟练掌握根与系数的关系是解题的关键.16.(2022秋•江都区月考)如图,在边长为4的正方形ABCD中,点E、点F分别在边AD、BC上,分别从A、C同时出发以相同的速度向终点D、B移动,连接EF,O是EF中点,过点D作DG⊥EF于点G,连接AG,则线段AG长的最小值是 ﹣ .【分析】连接AC、BD,由正方形的对称性可知,O为AC,BD的交点,取OD中点M,连接AM,GM,则AM,GM为定长,利用三角形三边关系解决问题即可.【解答】解:连接AC,BD,取OD的中点M,连接AM,GM,如图:由正方形的对称性可知,O为AC,BD的交点,∵正方形ABCD的边长是4,∴OD=OA=2,∠AOM=90°,∵M是OD中点,∴OM=,∴AM===,∵DG⊥EF,∴△DGO是直角三角形,∴GM=OD=,在△AGM中,AG>AM﹣GM,即AG>﹣,∴当A,G,M不能构成三角形,即A,G,M共线时,AG最小,如图:此时AG=AM﹣GM=﹣,故答案为:﹣.【点评】本题主要考查了正方形的性质,构造定长线段AM和GM,利用三角形三边关系解决问题是解决本题的关键.17.(2023•宿迁模拟)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心,若∠B=25°,则∠C的度数为 40 °.【分析】连接OA,根据切线的性质,结合等腰三角形的性质,即可求得∠C的度数.【解答】解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故答案为:40.【点评】本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.18.(2023春•亭湖区校级期末)如图,AB是半径为2的⊙O的弦,将沿着弦AB折叠,正好经过圆心O,点C是折叠后的上一动点,连接并延长BC交⊙O于点D,点E是CD的中点,连接AC,AD,EO.则EO的最小值为 ﹣1 .【分析】首先证明△ACD是等边三角形,再证明AE⊥CE,求出OF,EF,可得结论.【解答】解:连接OA和OB,作OF⊥AB.连接AE,EF.由题知:沿着弦AB折叠,正好经过圆心O,∴OF=OA=OB,∴∠AOF=∠BOF=60°,∴∠AOB=120°,∴∠ACB=120°,∠D=∠AOB=60°,∴∠ACD=180°﹣∠ACB=60°,∴△ACD是等边三角形,∵E是CD中点,∴AE⊥BD,又∵OF⊥AB,∴F是AB中点,即,EF是△ABE斜边中线,∴AF=EF=BF,即,E点在以AB为直径的圆上运动.所以,当E、O、F在同一直线时,OE长度最,此时,AE=EF,AE⊥EF,∵⊙O的半径是2,即OA=2,OF=1,∴AF=(勾股定理),∴OE=EF﹣OF=AF﹣OF=﹣1.故答案为:﹣1.【点评】本题考查圆周角定理,垂径定理,等边三角形的判定和性质,直角三角形斜边中线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本大题共8小题,共66分.)19.(2023秋•鼓楼区校级月考)用指定方法解下列一元二次方程(1)3(2x﹣1)2﹣12=0(直接开平方法)(2)2x2﹣4x﹣7=0(配方法)(3)x2+x﹣1=0(公式法)(4)(2x﹣1)2﹣x2=0(因式分解法)【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用配方法求出解即可;(3)方程利用公式法求出解即可;(4)方程利用因式分解法求出解即可.【解答】解:(1)3(2x﹣1)2﹣12=0,移项,得3(2x﹣1)2=12,两边都除以3,得(2x﹣1)2=4,两边开平方,得2x﹣1=±2,移项,得2x=1±2,解得:x1=,x2=﹣;(2)2x2﹣4x﹣7=0,两边都除以2,得x2﹣2x﹣=0,移项,得x2﹣2x=,配方,得x2﹣2x+1=,即(x﹣1)2=,解得:x﹣1=±,即x1=1+,x2=1﹣;(3)x2+x﹣1=0,这里a=1,b=1,c=﹣1,∵b2﹣4ac=12﹣4×1×(﹣1)=5,∴x=,解得:x1=,x2=;(4)(2x﹣1)2﹣x2=0,方程左边因式分解,得(2x﹣1+x)(2x﹣1﹣x)=0,即(3x﹣1)(x﹣1)=0,解得:x1=,x2=1.【点评】此题考查了解一元二次方程﹣因式分解法,公式法与直接开平方法,熟练掌握各种解法是解本题的关键.20.(2022秋•滨海县月考)已知关于x的一元二次方程x2﹣4mx+3m2=0.(1)求证:该方程总有两个实数根;(2)若m>0,且该方程的两个实数根的平方和为10,求m的值.【分析】(1)根据方程的系数,结合根的判别式可得出Δ=4m2,利用偶次方的非负性可得出4m2≥0,即Δ≥0,再利用“当Δ≥0时,方程有两个实数根”即可证出结论;(2)利用根与系数的关系可求出答案.【解答】(1)证明:∵a=1,b=﹣4m,c=3m2,∴Δ=b2﹣4ac=(﹣4m)2﹣4×1×3m2=4m2.∵无论m取何值时,4m2≥0,即Δ≥0,∴原方程总有两个实数根.(2)解:设方程的两根为x1,x2,则x1+x2=4m,x1•x2=3m2,∵(x1+x2)2﹣2x1x2=10,∴(4m)2﹣2×3m2=10,∴m=±1,又m>0,∴m=1.【点评】本题考查了根的判别式、偶次方的非负性以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当Δ≥0时,方程有实数根”;(2)利用因式分解法求出方程的解.21.(2022秋•盐都区月考)石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为.桥的跨度(弧所对的弦长)AB=24m,设所在圆的圆心为O,半径OC⊥AB,垂足为D.拱高(弧的中点到弦的距离)CD=5m.连接OB.求这座石拱桥主桥拱的半径.(精确到1m).【分析】设主桥拱半径为R,在Rt△OBD中,根据勾股定理列出R的方程便可求得结果.【解答】解:∵OC⊥AB,∴AD=BD,设主桥拱半径为R,由题意可知AB=24,CD=5,∴BD=AB=12,OD=OC﹣CD=R﹣5,∵∠ODB=90°,∴OD2+BD2=OB2,∴(R﹣5)2+122=R2,解得R=16.9≈17,答:这座石拱桥主桥拱的半径约为17m.【点评】此题考查了垂径定理、勾股定理.解题的关键是方程思想的应用.垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.这类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.22.(2022秋•东台市月考)已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当一矩形ABCD的对角线长为AC=,且矩形两条边AB和BC恰好是这个方程的两个根时,求矩形ABCD的周长.【分析】(1)计算判别式的值得到Δ=(2k﹣3)2+4,利用非负数的性质得到Δ>0,从而根据判别式的意义得到结论;(2)利用根与系数的关系得到AB+BC=2k+1,AB•BC=4k﹣3,利用矩形的性质和勾股定理得到AB2+BC2=AC2=()2,则(2k+1)2﹣2(4k﹣3)=31,解得k1=3,k2=﹣2,利用AB、BC为正数得到k 的值为3,然后计算AB+BC得到矩形ABCD的周长.【解答】(1)证明:Δ=(2k+1)2﹣4(4k﹣3)=4k2+4k+1﹣16k+12=4k2﹣12k+13=(2k﹣3)2+4,∵(2k﹣3)2≥0,∴Δ>0,∴无论k取什么实数值,该方程总有两个不相等的实数根;(2)根据题意得AB+BC=2k+1,AB•BC=4k﹣3,而AB2+BC2=AC2=()2,∴(2k+1)2﹣2(4k﹣3)=31,整理得k2﹣k﹣6=0,解得k1=3,k2=﹣2,而AB+BC=2k+1>0,AB•BC=4k﹣3>0,∴k的值为3,∴AB+BC=7,∴矩形ABCD的周长为14.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.23.(2022秋•靖江市校级月考)超市销售某种商品,每件盈利50元,平均每天可达到30件.为尽快减少库存,现准备降价以促进销售,经调查发现:一件商品每降价1元平均每天可多售出2件.(1)当一件商品降价5元时,每天销售量可达到 40 件,每天共盈利 1800 元;(2)在上述条件不变,销售正常情况下,每件商品降价多少元时超市每天盈利可达到2100元?(3)在上述条件不变,销售正常情况下,超市每天盈利可以达到2200元吗?如果可以,请求出销售价;如果不可以,请说明理由.【分析】(1)降价1元,可多售出2件,降价5元,可多售出2×5件,盈利的钱数=原来的盈利﹣降低的钱数;(2)根据日盈利=每件商品盈利的钱数×(原来每天销售的商品件数30+2×降价的钱数),列出方程求解即可;(3)根据题意列出方程,利用根的判别式进行判断即可.【解答】解:(1)降价5元,销售量达到30+2×5=40件,当天盈利:(50﹣5)×40=1800(元);故答案为:40,1800;(2)根据题意,得:(50﹣x)×(30+2x)=2100,解得:x=15或x=20,∵该商场为了尽快减少库存,∴降的越多,越吸引顾客,∴选x=20,答:每件商品降价20元,商场日盈利可达2100元;(3)根据题意可得(30+2x)(50﹣x)=2200,整理得到:x2﹣35x+350=0.由于△=b2﹣4ac=1225﹣1400=﹣175<0,所以该方程无解.故商场日盈利不可以达到2200元.【点评】此题主要考查了一元二次方程的应用;得到日盈利的等量关系是解决本题的关键.24.(2022秋•兴化市月考)如图,一扇形纸扇完全打开后,AB和AC的夹角为120°,AB长为30cm,贴纸部分的宽BD为18cm,求纸扇上贴纸部分的面积.【分析】先求出AD的长度,再根据扇形的面积公式分别求出扇形DAE和扇形BAC的面积即可.【解答】解:∵AB=30cm,BD=18cm,∴AD=AB﹣BD=30﹣18=12(cm),∴纸扇上贴纸部分的面积S=S扇形BAC ﹣S扇形DAE=﹣=300π﹣48π=252π(cm2).【点评】本题考查了扇形的面积公式,能熟记扇形的面积公式是解此题的关键,注意:半径为r,圆心角为n°的扇形的面积为.25.(2021春•邗江区月考)如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,OC交AB于点P,交⊙O 于点D,且CP=CB.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若∠A=30°,OP=,求图中阴影部分的面积.【分析】(1)连接OB,根据等腰三角形的性质得出∠A=∠OBA,∠CPB=∠CBP,求出∠AOC=∠OBC =90°,再根据切线的判定得出即可;(2)根据含30°角的直角三角形的性质求出AP,求出AO,求出∠COB=30°,根据含30°角的直角三角形的性质求出OC=2BC,求出BC,再求出答案即可.【解答】解:(1)直线BC与⊙O的位置关系是相切,理由是:连接OB,∵CP=CB,OA=OB,∴∠A=∠OBA,∠CPB=∠CBP,∵∠APO=∠CPB,∴∠APO=∠CBP,∴∠A+∠APO=∠CBP+∠OBA,∵OC⊥OA,∴∠AOP=90°,∴∠CBP+∠OBA=∠A+∠APO=180°﹣90°=90°,即∠OBC=90°,∴OB⊥BC,∵OB过O,∴直线BC与⊙O的位置关系是相切;(2)∵∠AOP=90°,∠A=30°,OP=,∴AP=2OP=2,AO===3,即OB=3,∵∠A=∠OBA=30°,∴∠AOB=180°﹣∠A﹣∠OBA=120°,∵∠AOC=90°,∴∠COB=∠AOB﹣∠AOC=120°﹣90°=30°,∴OC=2BC,由勾股定理得:OC2=CB2+OB2,即BC2=(2BC)2+32,解得:BC=,∴阴影部分的面积S=S△OBC ﹣S扇形OBD=3×﹣=﹣π.【点评】本题考查了圆周角定理,等腰三角形的性质,含30°角的直角三角形的性质,勾股定理,切线的判定,扇形的面积计算和三角形的面积等知识点,能综合运用知识点进行推理和计算是解此题的关键.26.(2022秋•江都区月考)如图,已知△ABC中,AB=AC,∠A=45°,AB为⊙O的直径,AC交⊙O于点E,连接BE(1)求∠EBC的度数;(2)求证:BD=CD.【分析】(1)由AB为圆O的直径,利用直径所对的圆周角为直角得到∠AEB=90°,再由∠A=45°,利用直角三角形两锐角互余的性质得到∠ABE=45°,由AB=AC,由顶角的性质求出底角∠ABC的度数,由∠ABC﹣∠ABE即可求出∠EBC的度数.(2)连接AD,由AB为圆O的直径,利用直径所对的圆周角为直角得到AD⊥BC,再根据等腰三角形三线合一的性质即可证得结论.【解答】解:∵AB为圆O的直径,∴∠AEB=90°,∴∠ABE=90°﹣45°=45°,∵AB=AC,∴∠ABC=∠ACB==67.5°,∴∠EBC=∠ABC﹣∠ABE=22.5°.(2)连接AD,∵AB是直径,∴AD⊥BC,∵AB=AC,∴BD=DC.【点评】此题考查了圆周角定理,以及等腰三角形的性质,熟练掌握圆周角定理是解本题的关键.。

湖北省部分学校2024-2025学年九年级数学第一次月考卷(word版含答案)

湖北省部分学校2024-2025学年九年级数学第一次月考卷(word版含答案)

2024-2025学年九年级数学上学期第一次月考卷(考试时间:120分钟 满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版九上第21~22章(一元二次方程+二次函数)。

5.难度系数:0.65。

第一部分(选择题 共30分)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.一元二次方程中一次项系数、常数项分别是( )A .2,B .0,C .1,D .1,02.解方程(x+1)2=3(1+x )的最佳方法是( )A .直接开平方法B .配方法C .公式法D .因式分解法3.抛物线与轴的交点坐标为( )A .B .C .D .4.若关于的一元二次方程有实数根,则的取值范围是( )A .B .C .且D .且5.若关于的方程的一个根是,则的值是( )A .B .2C .D .6.关于x 的方程|x 2﹣2x ﹣3|=a 有且仅有两个实数根,则实数a 的取值范围是( )A .a =0B .a =0 或a =4C .a >4D .a =0 或a >42430x x +-=3-3-3-2321y x x =-+-y ()0,1()0,1-()1,0-()1,0()2110k x x -++=54k ≥54k >54k >1k ≠54k ≤1k ≠230x kx --=3x =2-12-127.在手拉手学校联谊活动中,参加活动的每个同学都要给其他同学发一条励志短信,总共发了110条,设参加活动的同学有x 个,根据题意,下面列出的方程正确的是( )A.B .C .D .8.已知函数图象如图所示,则关于x 的方程根的情况是( )A .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根9.二次函数,若,,点,在该二次函数的图象上,其中,,则( )A .B .C .D .、的大小无法确定10.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,有下列4个结论:①abc <0;②b >a+c ;③2a-b=0;④b 2-4ac <0.其中正确的结论个数是( )A .1个B .2个C .3个D .4个第二部分(非选择题 共90分)二、填空题:本题共5小题,每小题3分,共15分。

2024届九年级语文上学期第一次月考卷附答案解析

2024届九年级语文上学期第一次月考卷附答案解析

2024届九年级语文上学期第一次月考卷(满分150分)一、(18分)阅读下面的文字,完成1~2题。

北方无雪不成冬。

每当天降大雪时,乱云便早早落下帷幕,把天空酝.酿成一片cānɡmánɡ。

不久,雪花翩跹.而至。

冬雪覆盖的小屋,伫.立在原野里,如痴痴守望的老者。

原野是动物的天堂,野兔qīnɡ yínɡ跳跃,在雪地觅食;狐狸狡黠.地四处张望,找寻目标……冬,正在频频为大地着色,描摹着简约流畅的线条,用圣洁的飞花,将xuān nào的凡尘冰封素裹。

皑皑白雪,是北国“特产”的安琪儿,与北方人溶为一体,共同经营着整个冬季,与其他地域那些转瞬即融的雪,有着tiān rǎnɡ zhī bié。

1.文中加点字的读音完全正确....的一项是( )(3分)A.yún xiān zhùxiáB.yùn xiān chùxiáC.yùn xiān zhùjiéD.yùn xiān zhùxiá2.文中拼音处所填的词语书写完全正确....的一项是( )(3分)A.苍茫 轻盈 喧闹天壤之别B.沧茫 轻盈 喧闹天壤之别C.苍茫 轻盈 暄闹天壤之别D.苍茫 轻盈 喧闹天嚷之别3.请选出加点成语使用正确....的一项()(3分)A.小伙子酷爱摄影,总利用周末时间约上几位好朋友到小梅沙、玫瑰海岸等地方去浮光掠影....。

B.全世界所有国家要联合起来,共抗锐.不可当...的新冠病毒,让世界早日恢复正常的生活状态!C.她非常出色,能歌善舞,品学兼优,就像一颗璀璨的明星,令周围的同学自.惭.形.秽.。

D.面对妈妈精心烹制的一桌美味菜肴,求职失利的他吃着却味同嚼蜡....,毫无食欲。

4.下列各句没有语病的一项是( )(3分)A.第12版《新华字典》收录了“拼购”“刷屏”等词语,意味着一些网络词语被更广泛地使用和接受。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22、(10 分)某商店经销一种销售成本为每千克 40 元的水产品,据市场分析,若每千克 50 元 销售,一个月能售出 500 千克,销售单价每涨 1 元,月销售量就减少 10 千克,针对这种水产品 情况,请解答以下问题: (1)当销售单价定为每千克 55 元时,计算月销售量和月销售利润; (2)设销售单价为每千克 x 元,月销售利润为 y 元,求 y 与 x 的关系式; (3)商店想在月销售成本不超过 10000 元的情况下,使得月销售利润达到 8000 元,销售单价应定 为多少?
2、关于 x 的方程 ax2 3x (a 2) 0 是一元二次方程,则(

A、a>0
B、a≠0 C、a=0 D、 a 0
3、若 2x 3 有意义,则 (
A、 x 3 2
B、x 3 2
) C、 x 2
3
D、 x 2 3
4、化简 ( 2 a)2 a 2 的结果是
A、0
B、2a -4
B、x2-4x+15=0
C、 x2+4x+15=0
D、x2-4x-15=0
7、如图,已知正方形 ABCO 各顶点坐标分别为 A(-1,0),B(-1,-1),
C(0,-1),O(0,0),把正方形沿 OP 对折,使 A 点落在对角线 OB 上
的 A 处,折痕交 AB 于 P,则 P 点坐标为( )
A、(-1, 1 ) 2
B、(-1, 2 ) C、(-1, 1 2 ) D、(-1, 2 1) 2
8、如图,已知 A 点的坐标为 A( 2 ,0),点 B 在直线 y=-x 上运动,当
线段 AB 最短时,B 点的坐标为(

A、(0,0)
B、( 2 , 2 )
2
2
C、(1,-1)
二、填空题:(每小题 3 分,共 21 分)
23、(9 分)反比例函数 y k 的图像经过点 A( 3 ,b),过点 A 作 AB⊥x 轴于 B,△AOB 的面积为 3 。 x
(1)求 k 和 b 的值; (2)若一次函数 y=ax+1 的图像经过点 A,并且与 x 轴交于 M,求 OA:AM 的值。
在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点 B 按逆时针方向旋转,得到 △A1BC1. (1)如图 1,当点 C1 在线段 CA 的延长线上时,求∠CC1A1 的度数; (2)如图 2,连结 AA1,CC1.若△ABA1 的面积为 4,求△CBC1 的面积; (3)如图 3,点 E 为线段 AB 中点,点 P 是线段 AC 上的动点,在△ABC 绕点 B 按逆时针 方向旋转过程中,点 P 的对应点是点 P1,求线段 EP1 长 度的最大值与最小值.
13、关于 x 的方程 2x2+(m2–9)x+m+1=0,当 m=
把 m 1 根号外的因式移到根号内, m
+ 的值为

时,两根互为倒数;
当 m=
时,两根互为相反数;当 m=
时,有一根为 0.
14、某校九年级学生毕业时,每个同学都将自己的照片向全班其他同学各送一张表示留念,全班
共送了 2450 张照片,如果全班有 x 名学生,根据题意,列出方程为
15.如图,一只密封的长方体盒子,长、宽、高分别是 5cm、4cm、3cm.现在一只蚂蚁由 A 点出
发去 G 点觅食,则这只蚂蚁从 A 点爬行到 G 的最短路线的
路程是

三、解答题(本大题共 8 个小题,满分 75 分)
16、解方程(12 分)
(1) (2x 1)2 9 (直接开平方法)
(2) 3x(x 1) 2 2x (因式分解法)
D、( 2 , 2 ) 22
9、计算:(1)
2
3
; (2) 8 = 3a
;(3) 2xy 8y
10、某商场销售额 3 月份为 16 万元,5 月份为 25 万元,该商场这两个月销售额的平均增长率


11.化简 ① 5 2 6 = 得
② 72 6 =
12、已知方程 x2+3x+1=0 的两个根为α、β,则
(3) 3x2–4x–1=0(公式法)
(4)4x2–8x+1=0(配方法)
1 1 2 1; 2 1 3 1; 3 1 4 1
17(8 分)、观察下列各式: 3
3
4
4
5
5 ……,请你将猜想:
41
5 1
(1)
6
,
7
.
(2) 计算(请写出推导过程)
13 1 15
(3) 请你将猜想到的规律用含有自然数 n(n≥1)的代数式表达出来:
C、4
() D、4-2a
5、已知 A、1
x1 B、x -1
5
,那么 x 1 的值是 C、±1 x D、4
(
)
6、甲、乙两个同学分别解一道一元二次方程,甲因把一次项系数看错了,而解得方程两根为-3
和 5,乙把常数项看错了,解得两根为 2+ 6 和 2- 6 ,则原方程是( )
A、 x2+4x-15=0
2013——2014 学年度上学期九年级第一次月考试卷
数学
班级
(试卷满分:120 分,完卷时间:100 分钟)
座号
姓名
成绩
.
一、选择题:(每小题 3 分,共 24 分)
1、方程 x2 kx 1 0 的根的情况是(

A、方程有两个不相等的实数根 C、方程没有实数根
B、方程有两个相等的实数根 D、方程的根的情况与 k 的取值有关
(2)若
x1、x2
是该方程的两个根,且
x12 x2
x1x22
1 8
,求实数
m
的值。
20、(8 分)有一人患了流感,经过两轮传染后共有 100 人患了流感,那么每轮传染中平均一个 人传染的人数是多少?
21、(8 分)如图所示,在宽为 20m,长为 32m 的矩形耕地上,修筑同样宽的三条道路,(互相垂 直),把耕地分成大小不等的六块试验田,要使试验田的面积为 570m2,道路应为多宽?
4 3
4 3 ;……
4 3 ( 4 3)( 4 3)
回答下列问题:
⑴ 化简:
1
=
n1 n
;(n 为正整数)
⑵ 利用上面所揭示的规律计算:
1 1 1
1
1
1 2 2 3 3 4
2008 2009 2009 2010
19(8 分)、已知关于 x 的方程 (m 1)x2 x 2 0 ,(1)若方程有实数根,求 m 的取值范围;
18、计算(12 分)(1) 2 18 4 1
2 1
2
(2) (5 48 6 27 4 15 ) 3
(3) (6 x 2x 1 ) 3 x
4ห้องสมุดไป่ตู้
x
(4)观察下列等式:
① 1
2 1 2 1 ;② 1
3 2
3 2;
2 1 ( 2 1)( 2 1)
3 2 ( 3 2)( 3 2)
③ 1
相关文档
最新文档