第四章 贝塞尔函数讲解
贝塞尔函数的有关公式
![贝塞尔函数的有关公式](https://img.taocdn.com/s3/m/30ca6c72f011f18583d049649b6648d7c1c708e9.png)
贝塞尔函数的有关公式贝塞尔函数是数学中一类特殊的函数,广泛应用于物理学、工程学和数学物理学等领域。
贝塞尔函数一族的定义包括第一类贝塞尔函数、第二类贝塞尔函数以及修正的贝塞尔函数。
本文将介绍这些贝塞尔函数的基本定义和性质,并给出一些常见的贝塞尔函数公式。
一、第一类贝塞尔函数(Bessel Function of the First Kind)第一类贝塞尔函数是非负整数阶的解特殊二阶常微分方程贝塞尔方程的解。
第一类贝塞尔函数通常用J_n(x)表示,其中n是阶数,x是实数。
它的定义为:J_n(x) = (1/π) ∫[0,π] cos(nθ - xsinθ) dθ其中,J_0(x)是常数函数。
第一类贝塞尔函数有一些重要的性质:1.对于所有的实数x和n≥0,J_n(x)是实函数。
2.J_0(x)在x=0处取得最大值,而在其他地方有若干个零点。
3.J_n(x)在x→0时的行为类似于x^n,即J_n(x)~(x/2)^n/(n!)。
第一类贝塞尔函数的递推公式:J_{n+1}(x)=(2n/x)J_n(x)-J_{n-1}(x)其中J_{1}(x)=(2/x)J_0(x)。
第一类贝塞尔函数的导数计算公式:dJ_n(x)/dx = J_{n-1}(x) - (n/x) J_n(x)利用这个公式可以计算贝塞尔函数的导数。
二、第二类贝塞尔函数(Bessel function of the second kind)第二类贝塞尔函数是贝塞尔方程的另一类解,通常用Y_n(x)表示,其中n是阶数,x是实数。
第二类贝塞尔函数的定义为:Y_n(x) = (1/π) ∫[0,π] sin(nθ - xsinθ) dθ其中,Y_0(x)是称作“诺依曼函数”。
第二类贝塞尔函数的性质如下:1.对于所有的实数x和n≥0,Y_n(x)是实函数。
2.Y_0(x)在x=0处不取得最大值,而在其他地方有若干个零点。
3. Y_n(x)在x→0时的行为类似于(2/π)(ln(x/2) + γ) + O(x^2)。
贝塞尔函数解读
![贝塞尔函数解读](https://img.taocdn.com/s3/m/2d62ea6dba1aa8114531d91c.png)
贝塞尔方程
当n不为整数时,例如
n v ,上式的通解可表示为如下两种形式:
y AJ v (x) BJ v (x)
其中和,A、yB为分任别A意称J实为v数(;阶x)和 B阶Y第v一(类x)Bessel函数;
称为 阶第二类Bessel函数。
Jv (x) J v (x)
v v
Yv (x)
1
0
x
J n (
x)J n (
x)d
x
Jn( )Jn () Jn()Jn ( ) 2 2
而
1
0
x
J n 2 (
x)d
x
1 2
J
本征函数系
J
n
(
(n) m R
)r
(m 1, 2,) 的正交性。
R
0
r
J
n
(
(n m
R
)
r
)
J
n
(
(n) k
R
r
)d
r
0 R
,
2
2
J
2 n1
(
m
(
n
)
)
R2 2
J
2 n1
(
m
(
n)
)
,
mk mk.
J
n
(
(n m
R
)
r
)
m1 在【0,R】上,带权重r正交。
贝塞尔函数的正交性
若λ和μ是两个不同的常数 , 可以证明
1.先求的
数值解,再用(1)式求
(v k 1)
2.非整数阶Bessel函数也可以通过递推关系得出。
Jv (x)
当n为正整数或零时, 表达式为
贝塞尔函数表0~2rad
![贝塞尔函数表0~2rad](https://img.taocdn.com/s3/m/f3efbb250a1c59eef8c75fbfc77da26924c59658.png)
贝塞尔函数表0~2rad摘要:一、贝塞尔函数简介1.贝塞尔函数的定义2.贝塞尔函数在数学和工程领域的应用二、贝塞尔函数表0~2rad1.贝塞尔函数表的构成2.贝塞尔函数值的变化规律3.贝塞尔函数的性质和特点三、贝塞尔函数表在实际问题中的应用1.贝塞尔函数表在数学问题中的应用2.贝塞尔函数表在工程问题中的应用正文:贝塞尔函数是一类在数学和工程领域有着广泛应用的函数。
它们以瑞士数学家卡尔·沃尔夫冈·贝塞尔的名字命名,并因其独特的性质和特点而受到学者们的关注。
贝塞尔函数可以表示为:BesselFunction(x, n, λ) = (1 / (2 * π * √(x^2 + n^2 * λ^2))) * ∫(exp(-(x^2 + n^2 * λ^2) / 2) * (x^2 - n^2 * λ^2) ^ (n - 1/2)) dλ其中,x表示函数的变量,n表示函数的阶数,λ表示函数的参数。
贝塞尔函数表0~2rad是一份详细列出贝塞尔函数值的表格,其中包含了不同阶数和参数下的贝塞尔函数值。
这个表格可以帮助学者们快速查找和计算贝塞尔函数值,为他们的研究和工程应用提供便利。
贝塞尔函数表0~2rad的构成主要包括两部分:一是表格的标题和表头,包括函数名、阶数、参数和函数值;二是表格的主体,详细列出了不同阶数和参数下的贝塞尔函数值。
这个表格是通过对贝塞尔函数进行数值积分计算得到的,因此具有较高的精度和可靠性。
贝塞尔函数值的变化规律可以通过观察贝塞尔函数表0~2rad得出。
一般来说,随着参数λ的增大,贝塞尔函数值会先增大后减小,呈现出一个波浪形的变化趋势。
而随着阶数n的增大,贝塞尔函数值会呈现出一个指数增长的趋势。
这些变化规律对于理解和掌握贝塞尔函数的性质和特点具有重要意义。
贝塞尔函数表0~2rad在实际问题中的应用非常广泛。
在数学领域,贝塞尔函数表可以帮助学者们快速计算贝塞尔函数值,为他们的理论研究和数值模拟提供数据支持。
贝塞尔函数
![贝塞尔函数](https://img.taocdn.com/s3/m/01af73ca2af90242a995e58c.png)
贝塞尔函数当我们采用极坐标系后,经过分离变量就会出现变系数的线性常微分方程。
在那里,由于只考虑圆盘在稳恒状态下的温度分布,所以得到了欧拉方程。
如果不是考虑稳恒状态而是考虑瞬时状态,就会得到一种特殊类型的常微分方程。
本章将通过在柱坐标系中对定解问题进行分离变量,引出在§2.6中曾经指出过的贝塞尔方程,并讨论这个方程解的一些性质。
下面将看到,在一般情况下,贝塞尔方程的解不能用初等函数表出,从而就导入一类特殊函数,称为贝塞尔函数。
贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用正交完备性。
§5.1 贝塞尔方程的引出下面以圆盘的瞬时温度分布为例推导出贝塞尔方程。
设有半径为R 的薄圆盘,其侧面绝缘,若圆盘边界上的温度恒保持为零摄氏度,且初始温度为已知,求圆盘内瞬时温度分布规律。
这个问题可以归结为求解下述定解问题:222222222222220(),,0, (5.1)(,),, (5.2)0, t x y R u u u a x y R t t x y u x y x y R u ϕ=+=∂∂∂=++<>∂∂∂=+≤= (5.3)⎧⎪⎪⎪⎨⎪⎪⎪⎩用分离变量法解这个问题,先令(,,)(,)()u x y t V x y T t =代入方程(5.1)得22222()V V VT a T x y ∂∂'=+∂∂ 或22222 (0)V V T x y a T Vλλ∂∂+'∂∂==-> 由此得到下面关于函数()T t 和(,)V x y 的方程20T a T λ'+= (5.4)22220V V V x yλ∂∂++=∂∂ (5.5) 从(5.4)得2()a t T t Ae λ-= 方程(5.5)称为亥姆霍兹(Helmholtz )方程。
为了求出这个方程满足条件2220x y R V +== (5.6)的非零解,引用平面上的极坐标系,将方程(5.5)与条件(5.6)写成极坐标形式得22222110,,02, (5.7)0,02, (5.8)R V v V V R V ρλρθπρρρρθθπ=⎧∂∂∂+++=<≤≤⎪∂∂∂⎨⎪=≤≤⎩再令 (,)()()V P ρθρθ=Θ,代入(5.7)并分离变量可得()()0θμθ''Θ+Θ= (5.9)22()()()()0P P P ρρρρλρμρ'''++-= (5.10)由于(,,)u x y t 是单值函数,所以(,)V x y 也必是单值得,因此()θΘ应该是以2π为周期的周期函数,这就决定了μ只能等于如下的数:2220,1,2,,,n对应于2n n μ=,有00()2a θΘ=(为常数) ()cos sin ,(1,2,)n n n a nb n n θθθΘ=+=以2n n μ=代入(5.10)得222()()()()0P P n P ρρρρλρρ'''++-= (5.11)这个方程与(2.93)相比,仅仅是两者的自变量和函数记号有差别,所以,它是n 阶贝塞尔方程。
贝塞尔公式讲解
![贝塞尔公式讲解](https://img.taocdn.com/s3/m/f0b971de6394dd88d0d233d4b14e852458fb39f1.png)
贝塞尔公式讲解
贝塞尔公式是用来计算贝塞尔函数(Bessel function)的数学公式。
贝塞尔函数是常见的特殊函数之一,它在物理学和工程学中有广泛的应用。
贝塞尔函数是由欧拉和贝塞尔在18世纪末和19世纪初研究振动问题时引入的。
它们是满足贝塞尔微分方程的解,该方程出现在许多物理问题中,如电磁波,声波和热传导等。
贝塞尔函数通常表示为J_n(x),其中n是整数,x是实数。
贝塞尔函数的计算可以使用贝塞尔公式,该公式可以表示为:
J_n(x) = (1/π) ∫_0^πcos(nθ- x sinθ) dθ
其中,θ是积分变量,cos和sin是三角函数,π是圆周率,n和x是函数的参数。
这个公式告诉我们如何计算任意x和n的贝塞尔函数。
它涉及积分,因此可能需要数值计算来获得精确的结果。
贝塞尔函数在微积分,波动问题和量子力学等领域中广泛使用。
贝塞尔函数
![贝塞尔函数](https://img.taocdn.com/s3/m/baf40a06312b3169a451a47e.png)
贝塞尔函数贝塞尔函数是贝塞尔方程的解,它们和其他函数组合成柱调和函数。
贝塞尔函数和初等函数是在物理和工程中最常用的函数。
贝塞尔函数是以19世纪德国天文学家F.W.贝塞尔的姓氏命名的,他在1824年第一次描述过它们。
贝塞尔函数(Bessel functions)是数学上的一类特殊函数的总称。
一般贝塞尔函数是一些常微分方程(一般称为'''贝塞尔方程''')的标准解函数。
贝塞尔方程是一个二阶常微分方程,必然存在两个线性无关的解。
针对各种具体情况,人们提出了这些解的不同形式。
下面分别介绍不同类型的贝塞尔函数。
这类方程的解无法用初等函数系统地表示。
但是可以运用自动控制理论中的相平面法对其进行定性分析。
这里被称为其对应贝塞尔函数的阶数。
实际应用中最常见的情形为是整数,对应解称为阶贝塞尔函数。
尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数。
这样做能带来好处,比如消除了函数在=0点的不光滑性。
几个正整数阶的贝塞尔函数早在18世纪中叶被瑞士数学家丹尼尔·伯努利在研究悬链振动时提出,当时引起了数学界的轰动。
雅各布·伯努利,莱昂哈德·欧拉|欧拉、约瑟夫·路易斯·拉格朗日|拉格朗日等数学大师对贝塞尔函数的研究作出过重要贡献。
1817年,德国数学家弗里德里希·威廉·贝塞尔在研究约翰内斯·开普勒提出的三体万有引力系统的运动问题时,第一次系统地提出了贝塞尔函数的理论框架,后人以他的名字来命名了这种函数。
贝塞尔函数在波动问题以及各种涉及有势场的问题中占有非常重要的地位。
因为贝塞尔方程是在柱坐标或球坐标下使用分离变量法求解拉普拉斯方程和亥姆霍兹方程时得到的。
最典型的问题有:在圆柱形波导中的电磁波传播问题;圆柱体中的热传导定律|热传导问题;以及圆形(或环形)薄膜的振动模态分析问题。
第4章-贝塞尔函数
![第4章-贝塞尔函数](https://img.taocdn.com/s3/m/aef76be755270722182ef7e6.png)
级数解的导数为: y '
k 0
(
k )ck
x k1
y"
k 0
(
k
)(
k
1)ck
x k 2
20
y x cn xn n0
( c0 0, 为常数)
代入方程(2),
y 1 y (1 2 ) y 0 (2)
x
x2
( v 为任意实数)
得到
(n )(n 1)cn xn2 (n )cn xn2 cn xn
利用级数的比值判别法(或达朗贝尔判别法)
可以判定这个级数在除 x=0 点外的整个实数轴 上收敛,因此,级数式是贝塞尔方程的解.
28
下面我们分两种情况,找出方程贝塞尔的两个线性无 关的解,得到方程贝塞尔的通解:
(1) 1 及 2 不是整数, 将 1 代入式
y(x) (1)n
1
( x)2n
n0
n!(n 1) 2
18
由定理2知, 在 x=0点的邻域 x 0 内至少存在
一个下面形式的级数解
y x cn xn n0
( c0 0, 为常数)
将此式代入方程
y
1 x
y
2
(1 x2
)y
0
(2)
( v 为任意实数)
19
y
1 x
y
(1
x
2 2
)y
0
(2)
( v 为任意实数)
y x cn xn n0
( c0 0, 为常数)
31
我们可用
J
(x)
(1) n
n0
1
n!(n
( x )2n 1) 2
统一表示第一类贝塞尔函数(也称为第一类柱函数)。
bessely函数
![bessely函数](https://img.taocdn.com/s3/m/19e7e4d6846a561252d380eb6294dd88d0d23dae.png)
bessely函数贝塞尔函数(Bessel function)是数学中的一类特殊函数,由德国数学家弗里德里希·贝塞尔(Friedrich Bessel)在19世纪初引入和研究的。
贝塞尔函数在物理学、工程学和数学中有广泛的应用。
贝塞尔函数可以分为第一类贝塞尔函数和第二类贝塞尔函数两类。
第一类贝塞尔函数一般记作Jn(z),其中n为阶数,z为自变量。
第二类贝塞尔函数一般记作Yn(z)。
贝塞尔函数满足贝塞尔方程,即二阶常微分方程:z^2 * d^2y/dz^2 + z * dy/dz + (z^2 - n^2) * y = 0贝塞尔函数的性质和特点使其在科学和工程领域中拥有广泛的应用,特别是在波动理论、电磁学、热力学和量子力学中。
以下是贝塞尔函数的一些重要应用:1.振动问题:贝塞尔函数可以描述弦、鼓膜、声音等的振动情况。
通过解贝塞尔方程,可以得到这些系统的振动模式和频率。
2.圆柱波:贝塞尔函数是描述无限长圆柱体中的波动现象的基本工具。
例如,电磁波在圆柱体中的传播可以用贝塞尔函数来描述。
3.散射和辐射问题:贝塞尔函数的特殊性质使其在散射和辐射问题中有重要应用。
例如,电磁波在球体上的散射和辐射问题可以通过贝塞尔函数来求解。
4.热传导问题:贝塞尔函数可以描述热传导问题中的温度分布。
例如,考虑一个半径为R的无限长圆柱体,在柱体表面施加边界条件后,可以通过贝塞尔函数来求解圆柱体内部的温度分布。
5.量子力学:贝塞尔函数在量子力学中有重要的应用,特别是在氢原子问题中。
贝塞尔函数可以用来描述氢原子中电子的径向波函数。
除了上述的应用,贝塞尔函数还在其他领域中发挥着重要的作用,如电磁场分析、激光传输、声学等。
贝塞尔函数的定义和性质可以通过级数展开、递归关系或微分方程等多种方法来推导和求解。
总结起来,贝塞尔函数是一类特殊函数,具有广泛的应用领域。
它可以用来描述振动问题、圆柱波、散射和辐射问题、热传导问题以及量子力学中的一些问题。
贝塞尔函数
![贝塞尔函数](https://img.taocdn.com/s3/m/c4c9ae65d5bbfd0a795673b0.png)
贝塞尔函数基本概念编辑是数学上的一类特殊函数的总称。
一般贝塞尔函数是下列常微分方程(一般称为贝塞尔方程)的标准解函数:这类方程的解无法用初等函数系统地表示。
贝塞尔函数的具体形式随上述方程中任意实数变化而变化(相应地,被称为其对应贝塞尔函数的阶数)。
实际应用中最常见的情形为是整数,对应解称为n阶贝塞尔函数。
尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在点的不光滑性)。
基本内容编辑贝塞尔函数(Bessel functions)是数学上的一类特殊函数的总称。
一般贝塞尔函数是下列常微分方程(一般称为'''贝塞尔方程''')的标准解函数。
这类方程的解无法用初等函数系统地表示。
但是可以运用自动控制理论中的相平面法对其进行定性分析。
这里,被称为其对应贝塞尔函数的阶数。
实际应用中最常见的情形为是整数,对应解称为阶贝塞尔函数。
尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在点的不光滑性)。
定义贝塞尔方程是一个二阶常微分方程,必然存在两个线性无关的解。
针对各种具体情况,人们提出了这些解的不同形式。
下面分别介绍不同类型的贝塞尔函数。
历史几个正整数阶的贝塞尔函数早在18世纪中叶被瑞士数学家丹尼尔·伯努利在研究悬链振动时提出,当时引起了数学界的轰动。
雅各布·伯努利,莱昂哈德·欧拉|欧拉、约瑟夫·路易斯·拉格朗日|拉格朗日等数学大师对贝塞尔函数的研究作出过重要贡献。
1817年,德国数学家弗里德里希·威廉·贝塞尔在研究约翰内斯·开普勒提出的三体万有引力系统的运动问题时,第一次系统地提出了贝塞尔函数的理论框架,后人以他的名字来命名了这种函数。
贝塞尔方程
![贝塞尔方程](https://img.taocdn.com/s3/m/9c980e651eb91a37f1115ce6.png)
第四章-贝塞尔方程
3
3
2u 2 u 回顾:二维拉普拉斯方程 u 2 2 0 x y 在极坐标系 (r , ) x r cos , y r sin ,
下转化为
u 1 u 1 u 2 0. 2 2 r r r r
2
2
于是在极坐标系下, 圆形膜瞬时温度的定解问题变为
4 3a4 2 a2 0 5 4a5 2 a3 0 2 (k 2)( k 1) ak 2 ak 0
第四章-贝塞尔方程
14
2 得递推关系 a2 a0 2 1 2 2 a4 a2 a0 43 4!
2k a2 k ( 1) k a0 (2k )!
贝塞尔方程
1. 贝塞尔方程的引出 2. 贝塞尔方程的求解 3. 贝塞尔函数的性质 4. 贝塞尔函数的应用
第四章-贝塞尔方程
2
贝塞尔方程的引出
问题:考虑固定边界的圆膜瞬时温度的定解问题. 设 有一半径为 R0 的圆形薄膜, 其上下两面绝热, 圆膜边 界上的温度始终保持为零度, 初始温度分布为已知, 则圆膜的瞬时温度分布归结为下面的定解问题
第四章-贝塞尔方程
6
R (r ) R (r ) ( ) 2 r r b 则有 r R(r ) R (r ) ( )
2
于是又得到下面两个方程:
( ) b( ) 0, r 2 R(r ) rR(r ) ( r 2 b) R(r ) 0
2 2 u u u 2 2 2 2 a 0 x y R 2 0, 2 t x y u ( x, y, t ) x2 y 2 R02 0, t 0 u ( x, y, t ) t 0 ( x, y ), t 0
物理方程中的贝塞尔函数解析振动与波动问题
![物理方程中的贝塞尔函数解析振动与波动问题](https://img.taocdn.com/s3/m/65a081c970fe910ef12d2af90242a8956aecaa45.png)
物理方程中的贝塞尔函数解析振动与波动问题物理学中的方程描述了自然界中发生的各种现象和规律。
其中,贝塞尔函数在解析振动和波动问题中具有重要的应用。
贝塞尔函数是一类特殊的数学函数,它的形式可以通过贝塞尔微分方程得到。
本文将介绍贝塞尔函数的定义、性质以及在物理学中的应用。
一、贝塞尔函数的定义与性质1. 贝塞尔函数的定义贝塞尔函数可由贝塞尔微分方程推导而得,它的一般形式为:\[J_n(x) = \sum_{m=0}^{\infty}\frac{(-1)^m}{m!(m+n)!}\left(\frac{x}{2}\right)^{2m+n}\]其中,\(J_n(x)\)表示贝塞尔函数,\(n\)为整数阶,\(x\)为自变量。
贝塞尔函数常被用来描述振动和波动问题。
2. 贝塞尔函数的性质贝塞尔函数具有以下几个重要的性质:(1)零点:贝塞尔函数\(J_n(x)\)有无穷多个零点,其中第一个正零点记作\(x_{n1}\),第二个正零点记作\(x_{n2}\),以此类推。
(2)正交性:不同阶的贝塞尔函数在一定区间内满足正交条件,即:\[\int_0^1 J_n(x)J_m(x)x\,dx = 0 \quad (n \neq m)\]这个性质在求解物理问题中起到重要的作用。
(3)递推关系:贝塞尔函数满足递推关系,即\[J_{n-1}(x) - \frac{2n}{x}J_n(x) + J_{n+1}(x) = 0 \]二、贝塞尔函数在振动问题中的应用贝塞尔函数在振动问题中广泛应用,尤其是在圆形薄膜和圆柱薄壳的振动中。
通过求解贝塞尔函数的特征值问题,可以得到薄膜或薄壳的固有频率和振动模态。
以圆形薄膜的振动为例,假设薄膜的边界固定,可推导出薄膜的振动方程。
通过将边界条件代入振动方程,并求解贝塞尔函数的特征方程,可以得到薄膜的固有频率和振动模态,这对于研究薄膜的声学性质和结构特性非常重要。
三、贝塞尔函数在波动问题中的应用贝塞尔函数在波动问题中也有广泛的应用。
Bessel函数
![Bessel函数](https://img.taocdn.com/s3/m/72140ab1284ac850ad0242e6.png)
贝塞尔函数课件
![贝塞尔函数课件](https://img.taocdn.com/s3/m/42dca4c370fe910ef12d2af90242a8956becaaa7.png)
3
正交性
贝塞尔函数之间具有正交性质,适合用于展开函数。
贝塞尔函数的计算方法
级数展开求解
可以使用贝塞尔函数的级数展开 式近似求解。
径向波动方程求解
使用贝塞尔函数表(示例)
贝塞尔函数是径向波动方程的解, 可用于求解相关问题。
通过查表,可以直接获取贝塞尔 函数的数值。
贝塞尔函数的在物理学中的应用
电磁场问题中的应用
贝塞尔函数用于描述电磁场分 布、辐射和散射等问题。
圆形共振问题中的应 用
贝塞尔函数用于解决圆形共振 腔中的电磁波问题。
量子力学中的应用
贝塞尔函数用于描述量子力学 中的球对称问题和径向波函数。
总结
在本课件中,我们介绍了贝塞尔函数的定义和基本类型,讨论了贝塞尔函数的性质和计算方法,以及它在物理 学中的应用。希望通过这些内容,您对贝塞尔函数有更全面的了解。
贝塞尔函数PPT课件
贝塞尔函数是一种数学函数,常用于解决各种科学领域中的物理和数学问题。 本课件将介绍贝塞尔函数的定义、类型、性质、计算方法以及在物理学中的 应用。
什么是贝塞尔函数
贝塞尔函数是一类特殊的数学函数,它是贝塞尔微分方程的解。它广泛应用 于物理学、工程学和数学等领域,例如波动理论、振动问题和量子力学。
下一步研究方向
贝塞尔函数作为一种重要的数学工具,在各个领域中仍有许多未解决的问题 和有待深入研究的方向。我们鼓励您继续探索和应用贝塞尔函数。
参考文献
1. Jiang, X., & Li, X. (2019). Applications of Bessel functions in physics. Physics Education, 54(6), 065010.
贝塞尔函数的应用
![贝塞尔函数的应用](https://img.taocdn.com/s3/m/358d352d01f69e31433294e2.png)
贝塞尔函数的应用1ω1二、按贝塞尔函数展开求定解问题的解下面将举例说明如何用贝塞尔函数求定解问题的解。
例2:有一质量均匀的金属圆柱体,半径为,0r 柱高为l ,圆柱侧面绝热,而上下两底面的温度分别保持为和,)(2r f )(1r f 试求圆柱体内部稳定时的温度分布。
解:由于温度分布趋于稳定,圆柱体内部温度函数),,(z r u 满足定解问题由于边界条件与无关,所以定解问题的解也与无关,只能取常数,这对应于m=0的情况。
ϕϕ)(ϕΦ事实上把),,(z r u ϕ代入边界条件可得12()()(0)(),()()()().R r Z f r R r Z l f r ϕϕΦ=Φ=根据上两个等式可知()ϕΦ只能取常数。
2''()()0(4.3)()(2),'()'(2)m ϕϕϕϕϕϕππ⎧Φ+Φ=⎨Φ=Φ+Φ=Φ+⎩固有值问题求解可得固有值为22,0,1,2,...n n m ==求解可得固有函数为()cos sin n n n n n A B ϕϕϕ=+Φ方程(4.5)的解为),3,2,1(,)(:0,)(:00000 =+=≠+==-n eD eC z ZD z C z Z zn zn n n n n ωωωω根据线性叠加原理,原定解问题(4.2)的一般解为''()()0,(4.5)Z z Z z λ-=2000,0,n nn λλωω=≥==0001(,,)()(),(4.6)n n zzn n n n u r z C z D C eD eJ r ωωϕω∞-==+++∑其中系数将由上下两底面的边界条件确定。
n n D C ,注:例3:设有半径为1的均匀薄圆盘,边界温度为零,ϕ1⎧11441 1比较等式两边系数,得22 21R tω。
贝塞尔函数的基本概念及其实际应用
![贝塞尔函数的基本概念及其实际应用](https://img.taocdn.com/s3/m/db967d16bdd126fff705cc1755270722192e591c.png)
贝塞尔函数的基本概念及其实际应用贝塞尔函数是数学分析中的一类特殊函数,是解决物理、工程、数学等领域中一些具有圆对称性问题的有力工具。
在本文中,我们将介绍贝塞尔函数的基本概念及其实际应用。
一、贝塞尔函数的定义及性质贝塞尔函数最初是由德国数学家贝塞尔在求解一个普遍的圆形问题时发现的。
贝塞尔函数有两类,即第一类和第二类,一般用Jn(x)和Yn(x)表示。
其中Jn(x)表示第一类贝塞尔函数,Yn(x)表示第二类贝塞尔函数。
贝塞尔函数和它们的导数满足贝塞尔微分方程:x^2*d^2y/dx^2 + x*dy/dx + (x^2-n^2)y = 0其中n为贝塞尔函数的度数,它的值可以是任意实数或零。
当n为整数时,贝塞尔函数是一种完整的函数,当n为小数或分数时,贝塞尔函数是一种不完整的函数。
贝塞尔函数具有一些特殊的性质,例如:对于第一类贝塞尔函数Jn(x),当x→0时Jn(x)≠0;当x→∞时,Jn(x)是振荡型函数,即Jn(x)近似于sin(x-nπ/2)。
而对于第二类贝塞尔函数Yn(x),当x→0时Yn(x)是无穷大;当x→∞时,Yn(x)也是振荡型函数。
二、贝塞尔函数的实际应用1.电学中的应用:贝塞尔函数可以用来描述无限长圆筒形导线和矩形波导内部电磁场的分布。
此外,在计算电磁波在介质中传播时,也可以用到第一类贝塞尔函数。
2.声学中的应用:贝塞尔函数可以用来表示大气中声波的传播过程。
同时,它还可以描述圆形共振腔内空气的压力分布和管道内的声波传输。
3.视觉中的应用:贝塞尔函数可以用来刻画景深和焦距。
此外,它还可以指导图像的锐化和去噪。
4.计算机图形学中的应用:贝塞尔函数可以被用来构建连续的Bézier曲线,从而描述出计算机图形学中重要的对于帧的插值和物体的平滑变形。
结语贝塞尔函数是一种特殊的函数,在各个领域中都有着重要的应用,特别是在电学中、声学中、视觉中以及计算机图形学中。
了解贝塞尔函数的基本概念和性质,对于掌握这些领域的相关知识非常重要。
第4章贝塞尔函数_728908945
![第4章贝塞尔函数_728908945](https://img.taocdn.com/s3/m/a5530bcdce2f0066f5332263.png)
[2(2 k )uk (s) k (22 k )uk (s)]eks uk 2 (s)e ks 0
k n2 0 .比较系数,可得
0 22u0 (22 1)u1 0 2(2 1)u1 k (22 k )uk uk 2 0, k 2 2(2 k )uk
0, k 2n 1 k(k2n1)= 0, k 2n 1
(4.1.14)
于是,当 k 2n 1 时,由(4.1.9)
k (k 2n 1)ck ck 2 0
解出
(4.1.15)
c1 c3 = c5 =
= c2 n 1 =0
(4.1.16)
(4.1.25)
对 k 2n ,我们有
n 0u2n u2n2 0 2nu2
5
由此解出
u2n 0 (s 0 )
其中
c0 1
当取 1 时,(4.1.5)式写成
(4.1.8)
k (k 2 )ck ck 2 0, k 2
由此可见
ck
可令
ck 2 0, k 0 k (k 2 )
(4.1.9)
c0 1 , c2 m
c2 c2 m
c2( m1) 4m(m )
将 2 n 代入. (4.1.23a)
0 2nu0 (1 2n)u1 0 2(1 n)u1 k (k 2n)uk uk 2 0, k 2 2(k n)uk
显然,
(4.1.23b)
u1 0
并因此有
u1 u3 = u5 =
=0
(4.1.24)
k (k 2 )ck ck 2 0, k 2
贝塞尔函数的性质
![贝塞尔函数的性质](https://img.taocdn.com/s3/m/b91d35a8284ac850ad0242e6.png)
2 k 1 2( k 1) x (1)k 1 2 k 2 ( k 1)! ( k 2) 2 k 0 2 k 1 1 x J 1 ( x) k (1) . 2 k 1 k ! ( k 2) 2 x k 0
12
12
此外,由于
J 1 ( x ) cos( ) J 1 ( x) 2 2 2 2 N 1 ( x) J 1 ( x) sin x (11) x 2 2 sin( ) 2
J 1 ( x) cos J 1 ( x) 2 2 2 2 N 1 ( x) J 1 ( x) cos x (12) x 2 2 sin 2
解: J 2 ( x) J 0 ( x) 2J1 ( x),
d ( xJ1 ( x)) xJ 0 ( x) dx
xJ
2
( x)dx xJ 0 ( x)dx 2 xJ1( x)dx
xJ1 ( x) 2( xJ1 ( x) J1 ( x) dx)
( x)dx) xJ1 ( x) 2( xJ1 ( x) J 0
第四章-贝塞尔函数的性质
2
2
(n 1) (n ) (n )
J ( x)
n 0
(1) n
1 x ( ) 2 n n!(n 1) 2
d ( x J ( x)) x J 1 ( x) (2) dx
2 n 2 d d 1 x n ( J ( x ) x ) [ ( 1) ] 证明: 2 n dx dx n 0 n !(n 1) 2 2 n 2 1 2( n ) x (1) n 2 n n ! ( n 1) 2 n 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳大学电子科学与技术学院
定义:
(x) ett x1dt (x 0)
0
基本性质: (x 1) x(x)
证明:
(x 1) ett x11dt t xd (et ) t xet x ett x1dt x(x)
令t=u2
0
1
ett
1
2dt
eu2
三维热传导方程: t
a
2
2
x2
2
y 2
2
z 2
a22
分离变量: (r,t) u(r)T (t)
对u(r),
得到: 2u k 2u (0 亥姆霍兹方程)
球坐标下:
z
r
x
深圳大学电子科学与技术学院
x r sin cos
x
d dx
x
dy dx
m2 x
y xy
0
参数形式的 贝塞尔方程
=1
d dx
x
dy dx
m2 x
y
xy
0
贝塞尔方程
取: k(x) 1 x2、q 0、 1
d dx
(1
x2
)
dy dx
y
0
勒让德方程
二、伽马函数的基本知识
深圳大学电子科学与技术学院
''() m2() 0
Z''(z) 2Z(z) 0
2
d 2R
d 2
dR
d
(k 2
2 ) 2
m2
R
0
x (k 2 2) y(x) R()
贝塞尔方程
x2
d2y dx2
x
dy dx
x2
m2
球贝塞尔方程
k=0
欧拉方程
深圳大学电子科学与技术学院
1
s in
d
d
s in
d ( 2 d
m2 ) 0
sin 2
x cos y(x) ( )
连带勒让德方程:
d dx
(1
x2)
dy dx
( 2
m2 1 x2
)y
深圳大学电子科学与技术学院
德国天文学家,数学家,天体测量学的奠基人。1784 年7 月22日生于 明登 ,1846 年3月17日卒于柯尼斯堡。15岁辍学到布莱梅一家商行学徒,业 余学习天文、地理和数学。20岁时发表了有关彗星轨道测量的论文。1810年 任新建的柯尼斯堡天文台台长,直至逝世。1812年当选为柏林科学院院士。
0
m=0
勒让德方程:
d dx
(1
x2
)
dy dx
2
y
0
柱坐标下:
z
r
x
深圳大学电子科学与技术学院
x cos
y
sin
y
z z
2u k 2u 0
1
(
u )
1
2
2u
2
2u Βιβλιοθήκη z2 k 2u0
u(,, z) R()()Z(z)
0
0
0
0
(1) etdt et 1 0 0
(2) 1 (1) 1
(3) 2 (2) 2!
(4) 3(3) 3! (n 1) n!
深圳大学电子科学与技术学院
求证: 1 2
(x) ett x1dt
y
r
sin
sin
y z r cos
2u k 2u 0
1 r2
r
r 2
u r
1
r 2 sin
s in
u
1
r 2 sin 2
2u
2
k 2u
0
深圳大学电子科学与技术学院
设u(r, ,) R(r)( )(),代入原方程
1837年,贝塞尔发现天鹅座61正在非常缓慢地改变位置, 第二年,他宣布这颗星的视差是0.31弧秒,这是世界上最早 被测定的恒星视差之一。
一、几个微分方程的引入
深圳大学电子科学与技术学院
三维波动方程:
2
t 2
a
2
2
x2
2
y 2
2
z 2
a22
y0
另一途径:
d dx
k(x)
d d
y x
q
(x)
y
(x)
y
0
,
(a x b)
深圳大学电子科学与技术学院
Sturm-Liouville( 施 图姆-刘维尔)型方程
取:k(x) 1、q (x) 0、 (x) 1
d2y dx2
y
0
亥姆霍兹方程
取:k(x) x、q (x) m2 、 (x) x
深圳大学电子科学与技术学院
第四章:贝塞尔函数
深圳大学电子科学与技术学院
本章提要:
• 几个微分方程的引入 • 伽马函数的基本知识 • 贝塞尔方程的求解 • 贝塞尔函数的基本性质 • 贝塞尔函数应用举例
深圳大学电子科学与技术学院
参考了孙秀泉教授的课件
深圳大学电子科学与技术学院
贝塞尔函数是贝塞尔方程的解。除初等函数外, 在物理和工程中贝塞尔函数是最常用的函数,它们 以19世纪德国天文学家 F.W.Bessel 的姓氏命名,他 在1824年第一次描述过它们。
''() m2() 0
1
s in
d
d
s in
d ( 2 d
m2
sin 2 ) 0
d r 2 dR (k 2r 2 2 )R 0
dr dr
k=0
d r 2 dR 2R 0
dr dr