流体力学势流
流函数和势函数公式
流函数和势函数公式流函数与势函数是描述流体运动的两个重要概念,在流体力学中被广泛应用。
本文将介绍流函数和势函数的基本概念、性质以及求解方法。
1.流函数的概念和性质流函数是描述在二维定常流动中,各个流线上速度矢量的旋转情况的函数。
对于二维流动,假设流体流动的速度场为V(x,y),则流函数Ψ(x,y)定义为:V=∇Ψ=(∂Ψ/∂x,∂Ψ/∂y)其中,∇Ψ是流函数Ψ的梯度向量。
流函数的性质如下:1)斜率定理:沿着流线的方向,流函数的局部斜率等于流体的速度分量。
2)流线定理:流线上的流函数值保持不变,即Ψ为常数。
3)流函数的连续性:在空间中的流函数是连续的,除非在相应的流体内有边界。
4)流函数的耗散性:流函数对时间是线性的,即流函数在时间方向上是耗散的。
2.势函数的概念和性质势函数是描述流体在无旋力场中流动时所具备的性质的函数。
无旋力场是指速度场的旋度等于零。
对于二维流动,假设流体流动的速度场为V(x,y),则势函数φ(x,y)定义为:V=∇φ=(∂φ/∂x,∂φ/∂y)其中,∇φ是势函数φ的梯度向量。
势函数的性质如下:1)势函数的梯度向量是速度向量。
2)势流是不可压缩的,即∇·V=0。
3)势函数满足拉普拉斯方程,即∇²φ=0。
4)由于速度场的旋度等于零,势函数是无旋的。
3.流函数和势函数的关系在二维流动中,流函数和势函数之间存在一种特殊的关系,称为流函数-势函数耦合关系。
根据流函数和势函数的定义,可以得到流函数和势函数的关系:Ψ = ∫(∂φ/∂y)dx + f(y)φ = ∫(∂Ψ/∂x)dy + g(x)其中,f(y)和g(x)是任意常数函数。
根据流函数-势函数耦合关系可以求解流体的速度场,并且满足连续性方程和运动方程。
4.求解流函数和势函数的方法求解流函数和势函数的方法有多种,常用的方法有分离变量法、解析法和数值法。
4.1分离变量法分离变量法是将流函数和势函数分解为各自的变量函数,并通过解偏微分方程的边值问题来确定这些变量函数。
《工程流体力学》第六章 不可压缩流体平面有势流动
3) y = 0 将 y=0 代入
驻点:
把驻点坐标代入流函数y:
过驻点流函数值:y = 0
物体轮廓线方程为:
求物体半宽b/2: 把 x=0 代入物体轮廓线方程:
y:物体半宽b/2
已知流函数 -> 速度场,压强场 在物体前部:附面层很薄 粘性影响大的流动区域:很薄 计算结果:与实验较符合
在物体后部:附面层增厚 形成:尾部旋涡 无粘流势流理论:不再适用
2)在源点左边x轴上,y=0:存在一点s 该点处:源点与直匀流速度:大小相等
方向相反
该点:驻点,复合流场合速度 = 0
求驻点,令: 驻点确在x负轴上
3)从源点流出流体到达驻点s后:不能继续向左流动 被迫分成上下两路 形成绕物体流动轮廓线—— 半无限体
现求半无限体轮廓线方程: 把驻点极坐标: 代入流函数中:
一般称零流线
粘性流体切向速度:0 理想流体切向速度:不受限制
第三节 基本解叠加原理 线性方程叠加原理:两个解的和或差也是该方程的解 平面不可压势流势函数和流函数方程:拉普拉斯方程 拉普拉斯方程:线性方程,可以应用叠加原理
复杂流场的解:可由若干简单流场的解叠加得到
两个有势流动势函数: j1,j2
每一流动都满足拉普拉斯方程:
什么条件? 无旋条件 二维不可压连续方程:
不可压平面有势流动的流函数方程
不可压连续方程和无旋条件 -> 流函数方程 流函数方程-拉普拉斯方程:仅适用于不可压平面有势流 动
不可压平面有旋流动或可压缩平面有势流动: 不存在流函数方程
三、边界条件: 流体:从无穷远流向某物体 条件:不分离 物面法向流体速度:0,即物面是一条流线
都存在流函数
只有无Байду номын сангаас流动:才存在势函数 平面流动:流函数更普遍
船舶流体力学(打印)
二.速度势函数的性质:
1.若流体不可压缩,流速势函数满足拉普拉斯方程,是调和函数。
2.流线与等势面相互垂直。
可见,流速矢量与等势面垂直。而流速矢量与该点流线相切,故流线与等势面垂直。
若为平面流动,则流线与等势线垂直。
3.速度势对任一方向n的偏导数,等于流速矢量在该方向的投影。
三个基本解都具有奇异性。因为真实流场中不应该有无穷大的速度,所以通常要把它们布置在流场之外(物体区域内)。
例3:理想不可压缩流体作平面无旋流动。假设流场的复势是W(z) = az2( a > 0 ),并且在坐标原点处压强为p0,试求:(1)上半平面的流动图案;(2)沿y = 0的速度与压强。
解:令z = rei,于是:
2.螺旋流:
现研究点汇与点涡叠加所形成的流场:
等势线方程为:
流线方程为:
在流场任意两点1,2应用伯努利方程,有:
水轮机引水室中的旋转水流、旋风燃烧室中的旋转气流等都可以被近似地看成是此类流动。
若将点源与点涡叠加,则流体沿螺旋线由内向外流动,水泵压水室中的旋转水流就是这种流动。
例4.设在(-a,0)处有一平面点源,在(a,0)处有一平面点汇,他们的强度为Q。若平行于x轴的直线流动和这一对强度相等的点源和点汇叠加。试问:此流动表示什么样的流动并确定物面方程。
图片:
四.平面偶极子:
z = 0点:点汇–Qz0点:点源Q
叠加后得到:
令r0,Q,不变,并且:
---偶极子的方向角(由点汇指向点源的矢量的方向角)。
这里分析=的情况(即,点源沿x轴的正方向由左至右向点汇趋近)。
因为点源(点汇)流、点涡流和偶极子流在无穷远处的速度都趋于零。将这些基本解与别的解叠加时,在无穷远处速度具有渐近性,所以只需要考虑叠加后的物面边界条件,而不必担心叠加这些基本解会改变无穷远处的速度边界条件
高等流体力学讲义二维势流
在不可压缩流体条件下Φ满足拉普拉斯方程
势流基本方程组
2Φ = 0 Φ + p + 1 Φ Φ + gz = f(t) t ρ 2
边界条件
在静止固壁上 ,
Φ = 0 n
无穷远处, r , u u
势流方程组与一般理想不可压缩流动方程组相比在数学上有了较大旳简化:
•后者有四个方程,而前者只有两个方程。
ln
z
-
z0
点汇
以-m 替代 m 就得到点汇旳复位势,
F(z) -m ln z 2π
或
F( z )
-m 2π
ln
z
-
z0
4.4 点源(汇)和点涡
点涡:势函数 流函数
F(z) ic ln z ic ln(Reiθ )
cθ ic ln R
Φ = c θ Ψ = - c ln R 等势线 c , 从圆点出发旳射线族; 流线 R=c, 同心圆族。
点源: 速度场
4.4 点源(汇)和点涡
W(z) =
dF dz
=
c z
=
c R
e-iθ
=
uR
-i
uθ
e-iθ
uR
=
c R
uθ = 0
可看作在原点有一点源释放流体向四面均匀流出,速度只有R方向分量,离 开原点愈远速度愈小。根据连续方程,经过每个同心圆旳流体流量相等。
原点是奇点,速度无穷大 R 0, uR
F(z)=Φ+ iψ
z= x + i y F(z) 旳实数部分是速度势函数Φ,虚数部分是流函数Ψ。 Φ,Ψ 满足柯西-黎曼条件,根据复变函数理论,F(Z) 是解析函数。
船舶流体力学第六章 势流理论
= Vx
- iVy
= V
\W
(z)=
dW dz
dz
=
V dz
=
V
z
6.5.2 点源
Q向四周流出 +
Q从四周流入 -
Vq =0
Q
Vr = 2pr
pqp qp 公式6.4.6
dw dz
=(Vr
-
iV q
) e-iq
d w = ( Q - i 0 ) · e - i = Q = Q d z 2 r 2 r e i 2 z
=0
\ V 2 +-U = C 2
(关于流线的常数)
条件 3)无旋 柯西 —— 拉格朗日积分
V=(f)=f
t t
t
V t +V22
+ -U+VV=0
\ft +V22+ -U=0
f \
ft +V22
+ -U
6.2 不可压势流的基本方程和边界条件
6.2.1 .不可压势流的质量守恒方程
V x
+ Vy
+ Vz
=0
x y z
f
Vx = x \
2f 2f 2f
x2 + y 2 + z 2 = 0
2f = 0 (拉普拉斯算子 2 ) 调和函数叠加性
6.2.2 .拉普拉斯 边界条件 速度场 压力分布 流体对固体的力
在空间中不变,只是时间的函数
V 2 + - U + = C ( t )
2 t
4)定常 则 V 2 +- U = C 在全部空间适用
2
6.2.3 边界条件和解法概述
流体力学第六章 势流理论
2 r2 2
r2
Q ln(1 x cos1 )
2
r2
是个小量,利用泰劳展开得:
Q x cos1 2 r2
当δx→0时,Qδx→M, θ1 →θ,r2→r
利用泰劳展开: ln(1 z) z z2 z3
23
令 z x cos1
r2
展开后并略去δx 二阶以上小量,可得:
Q x cos1 2 r2
极坐标下: M cos
2 r
(6-10)
直角坐标下:
M
2
x x2 y2
(6-11)
对于流函数:
1
2
Q
2
(1
2)
Q
2
( )
这里:r2= x Sinθ1
所以
x sin 1
r2
代入上式得: Q x sin1
2 r2
当δx→0时,Qδx→M,r2→r,θ1→θ
等势线:圆心在x轴上,与y轴相切的一组圆。
这些圆与ψ=const正交
注意:
偶极子的轴线和方向
轴线:源和汇所在的直线
方向:由汇指向源的方向
图6-8(b)
偶极子的方向
为x轴负向
四、点涡(环流)
点涡:无界流场中坐标原点处一无穷长直线涡,
方向垂直于x0y平面,与xoy平面的交点 诱导速度沿点涡为中心的圆周切线方向,大小
第六章 势流理论
课堂提问:为什么上、下弧旋乒乓球的应对方法不同?
势流:理想流体绕物体的流动,或为无旋流动。 像波浪、机翼升力等问题用势流理论进行
研究可获得满意结果。
求解势流问题的思路如下: 1.流体力学最终目的是求流体作用于物体上的
力和力矩; 2.为求力和力矩,须知物面上压力分布,即
流体力学:第5章势流理论-上
c1
c2
5.2.1 复势的可叠加性 解析函数 W1(z) 1 i1 W2 (的z) 线性2 组i合2 ,
W (z) W1(z) W2 (z)
仍然是解析函数,仍然代表某一种流动的复势。简单 流动组合成复杂流动——叠加法
5.3 平面势流的基本解
目的:求解最简单的流动,为解决复杂势流奠定基础。 内容:均匀流、点源、点涡、偶极。
v 0 (R )
5.1.3 初始条件(initial condition)
初始时刻 t0速度势 (或 )在流 体域内
或边界上满足的条件。
例5-1 半径为R 的固定大球壳中充满不可压缩理想流体,半径为a
的小球以速度V(t) 在其中运动。试建立速度势定解问题。
解 : 取静坐标系o - xyz
z
2 0 (在流体中)
势流问题的数学描述—— Mathematical Model
5.1.1 基本方程——Laplace Equition
v 0
v
0
v
2 0 (in fluid)
Laplace方程是线性方程。要使 解唯一,需给出边界条件、初
v
p(x, y, z,t)
始条件。
R( M )
5.1.2 边界条件(Boundary Condition)
借助复变函数数学工具解平面势流问题。
平面势流:φ和ψ都是调和函数, 2 0, ,且2满足0
x y
y x
(C-R 条件)
5.2.1 复势与复速度(复平面)
1)复势函数:W (z) (x, y) i (x, y)
解析函数
平面势流
2)复速度(导数)与流体速度的关系:
z x iy
dW W W i i u iv Vei
《工程流体力学》第六章 不可压缩流体平面有势流动
粘性流体切向速度:0 理想流体切向速度:不受限制
第三节 基本解叠加原理 线性方程叠加原理:两个解的和或差也是该方程的解 平面不可压势流势函数和流函数方程:拉普拉斯方程 拉普拉斯方程:线性方程,可以应用叠加原理
复杂流场的解:可由若干简单流场的解叠加得到
两个有势流动势函数: j1,j2
无旋流动:才存在势函数 平面流动:流函数更普遍
流函数与势函数一样:可以用来描述整个流场 由流函数:就可求出流速和压强分布
-流线微分方程
y=c曲线,即等流函数线:流线
给定一组常数值:就可得流线族
流体:不能穿越流线,也不能穿越固体表面 固体表面:可看作流线,通常是零流线
即y=0的流线:代替物体表面
2)在源点左边x轴上,y=0:存在一点s 该点处:源点与直匀流速度:大小相等
方向相反
该点:驻点,复合流场合速度 = 0
求驻点,令: 驻点确在x负轴上
3)从源点流出流体到达驻点s后:不能继续向左流动 被迫分成上下两路 形成绕物体流动轮廓线—— 半无限体
现求半无限体轮廓线方程: 把驻点极坐标: 代入流函数中:
过驻点的流函数值: 轮廓线方程:
可见 源的作用:是提前将前方来流的直匀流推开,与物体头部 作用相同
不同强度的源流:沿轴线排列 并:与直匀流叠加 可得到:直匀流绕实际钝头体物体的流动
三、直匀流与一对等强度源汇的叠加:
源:在x轴(-a, 0)处,强度 Q 汇:在x轴(a, 0 )处,强度 -Q 复合流动:直匀流与该源、汇叠加
注意: 三维流动:不存在流函数
不存在等流函数线 但存在流线
流函数与流量关系: 流动:二维 任意曲线:连接a、b两点 某瞬时过微元段ab的流量:
或
流体力学第5章 平面势流理论
平面势流的流动复势已知时,便可以对复势求导,
若复势
W(z)i
对 z 进行微分,得
y
dW iiuiv
u+iv v
dz x x y y
O
x
复势导数的实部是 轴向的速度分量 ,
导数的虚部是y轴向的速度分量 的负值,
u-iv
如图5.2所示。
图5.2 复速度
工程流体力学
dW u iv
x2 y2 4的环量和通过这一围线的流量。
【解】 平面势流具有叠加原理,将两个或更多的简单 平面势流叠加成复杂的平面势流,复杂流动的复势只须 将原先简单流动的复势简单地代数相加即可。
工程流体力学
(1)解析下式:W (z)2lnz 2lnz2ln(z3)
z3
对于2lnz , 是源强度 m 4π 放置于(0,0)点的复势;
工程流体力学
2.源和汇
当将源或汇置于极坐标的原点时,复势
W(z)mlnrim
2π
2π
m (lnri)m (lnrlnei)
2π
2π
mlnrei mlnz
2π
2π
若源或汇置于复平面 z 0 处,则其复势
W(z)2m πln(zz0)
工程流体力学
3.环流
(1)点涡。点涡也称平面圆旋,是一团无限长的直圆 筒形流体,流体质点均绕本身的中心旋转,旋转的角速 度 ,大小是 ,方向是直圆筒轴线方向。涡束的半径
y
O
x
图5.6 绕 圆 柱 体 无 环 量 流 动
图5.6 绕圆柱体无环量流动
工程流体力学
(1)当均流叠加源流,会有半无限物体的流线形状, 如图5-7(a)所示。
流体力学-势流理论
第六章势流理论本章内容:1.势流问题求解的思路2.库塔----儒可夫斯基条件3. 势流的迭加法绕圆柱的无环绕流,绕圆柱的有环绕流4.布拉休斯公式5.库塔----儒可夫斯基定理学习这部分内容的目的有二:其一,获得解决势流问题的入门知识,即关键问题是求解速度势。
求出速度势之后,可按一定的步骤解出速度分布、压力分布,以及流体和固体之间的作用力。
其二,明确两点重要结论:1)园柱体在理想流体中作等速直线运动时,阻力为零(达朗贝尔疑题);升力也为零。
2)园柱本身转动同时作等速直线运动时,则受到升力作用(麦格鲁斯效应)。
本章重点:1、平面势流问题求解的基本思想。
2、势流迭加法3、物面条件,无穷远处条件4、绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位置,流线图谱,升力,阻力,环流方向等。
5、四个简单势流的速度势函数,流函数及其流线图谱。
6、麦马格鲁斯效应的概念7、计算任意形状柱体受流体作用力的卜拉修斯定理8、附加惯性力,附加质量的概念本章难点:1.绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位置,流线图谱,升力,阻力,环流方向等。
2.任意形状柱体受流体作用力的卜拉修斯定理3.附加惯性力,附加质量的概念§6-1 几种简单的平面势流平面流动:平面上任何一点的速度、加速度都平行于所在平面,无垂直于该平面的分量;与该平面相平行的所有其它平面上的流动情况完全一样。
例如:1)绕一个无穷长机翼的流动,2)船舶在水面上的垂直振荡问题,由于船长比宽度及吃水大得多,且船型纵向变化比较缓慢,可以近似认为流体只在垂直于船长方向的平面内流动,如图6-2所示。
如果我们在船长方向将船分割成许多薄片,并且假定绕各薄片的流动互不影响的话,则这一问题就可以按一、均匀流流体质点沿x轴平行的均匀速度Vo ,如图6-5所示,V x=V o , V y =0dx V dy V dx V dy ydx x d y x 0=+=∂∂+∂∂=ϕϕϕ 积分:φ=V ox (6-4)如图6-3流函数的全微分为,dy V dy V dx V dy ydx x d o x y =+-=∂∂+∂∂=ψψψ 积分:ψ=V o y (6-5 如图6-4由(6-4)和(6-5 流线:y=const ,一组平行于x轴的直线,如图6-3 等势线:x=const ,一组平行于y轴的直线,如图6-3中的虚线。
流体力学-势流理论
第六章势流理论本章内容:1.势流问题求解的思路2.库塔----儒可夫斯基条件3. 势流的迭加法绕圆柱的无环绕流,绕圆柱的有环绕流4.布拉休斯公式5.库塔----儒可夫斯基定理学习这部分内容的目的有二:其一,获得解决势流问题的入门知识,即关键问题是求解速度势。
求出速度势之后,可按一定的步骤解出速度分布、压力分布,以及流体和固体之间的作用力。
其二,明确两点重要结论:1)园柱体在理想流体中作等速直线运动时,阻力为零(达朗贝尔疑题);升力也为零。
2)园柱本身转动同时作等速直线运动时,则受到升力作用(麦格鲁斯效应)。
本章重点:1、平面势流问题求解的基本思想。
2、势流迭加法3、物面条件,无穷远处条件4、绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位置,流线图谱,升力,阻力,环流方向等。
5、四个简单势流的速度势函数,流函数及其流线图谱。
6、麦马格鲁斯效应的概念7、计算任意形状柱体受流体作用力的卜拉修斯定理8、附加惯性力,附加质量的概念本章难点:1.绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位置,流线图谱,升力,阻力,环流方向等。
2.任意形状柱体受流体作用力的卜拉修斯定理3.附加惯性力,附加质量的概念§6-1 几种简单的平面势流平面流动:平面上任何一点的速度、加速度都平行于所在平面,无垂直于该平面的分量;与该平面相平行的所有其它平面上的流动情况完全一样。
例如:1)绕一个无穷长机翼的流动,2)船舶在水面上的垂直振荡问题,由于船长比宽度及吃水大得多,且船型纵向变化比较缓慢,可以近似认为流体只在垂直于船长方向的平面内流动,如图6-2所示。
如果我们在船长方向将船分割成许多薄片,并且假定绕各薄片的流动互不影响的话,则这一问题就可以按平面问题处理。
这一近似方法在船舶流体力学领域内称为切片理论。
一、均匀流流体质点沿x轴平行的均匀速度Vo ,如图6-5所示,V x=V o , V y =0平面流动速度势的全微分为dx V dy V dx V dy ydx x d y x 0=+=∂∂+∂∂=ϕϕϕ 积分:φ=V ox (6-4) 如图6-3流函数的全微分为,dy V dy V dx V dy ydx x d o x y =+-=∂∂+∂∂=ψψψ 积分:ψ=V o y (6-5) 如图6-4由(6-4)和(6-5)可得: 流线:y=const ,一组平行于x轴的直线,如图6-3中的实线。
第六章 势流理论
第六章势流理论课堂提问:为什么上弧旋与下弧旋乒乓球的应对方法不同?本章内容:1.势流问题求解的思路2.库塔----儒可夫斯基条件3. 势流的迭加法绕圆柱的无环绕流,绕圆柱的有环绕流4.布拉休斯公式5.库塔----儒可夫斯基定理学习这部分内容的目的有二:其一,获得解决势流问题的入门知识,即关键问题是求解速度势。
求出速度势之后,可按一定的步骤解出速度分布、压力分布,以及流体和固体之间的作用力。
其二,明确两点重要结论:1)园柱体在理想流体中作等速直线运动时,阻力为零(达朗贝尔疑题);升力也为零。
2)园柱本身转动同时作等速直线运动时,则受到升力作用(麦格鲁斯效应)。
本章重点:1、平面势流问题求解的基本思想。
2、势流迭加法3、物面条件,无穷远处条件4、绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位置,流线图谱,升力,阻力,环流方向等。
5、四个简单势流的速度势函数,流函数及其流线图谱。
6、麦马格鲁斯效应的概念7、计算任意形状柱体受流体作用力的卜拉修斯定理8、附加惯性力,附加质量的概念本章难点:1.绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位置,流线图谱,升力,阻力,环流方向等。
2.任意形状柱体受流体作用力的卜拉修斯定理3.附加惯性力,附加质量的概念§6-1 几种简单的平面势流平面流动:平面上任何一点的速度、加速度都平行于所在平面,无垂直于该平面的分量;与该平面相平行的所有其它平面上的流动情况完全一样。
例如:1)绕一个无穷长机翼的流动,2)船舶在水面上的垂直振荡问题,由于船长比宽度及吃水大得多,且船型纵向变化比较缓慢,可以近似认为流体只在垂直于船长方向的平面内流动。
如果我们在船长方向将船分割成许多薄片,并且假定绕各薄片的流动互不影响的话,则这一问题就可以按平面问题处理。
这一近似方法在船舶流体力学领域内称为切片理论。
一、均匀流流体质点沿x轴平行的均匀速度Vo ,V x=V o , V y =0平面流动速度势的全微分为dx V dy V dx V dy ydx x d y x 0=+=∂∂+∂∂=ϕϕϕ积分: φ=Vox (6-4)流函数的全微分为,dy V dy V dx V dy ydx x d o x y =+-=∂∂+∂∂=ψψψ 积分: ψ=Vo y (6-5)由(6-4)和(6-5)可得: 流线:y=const ,一组平行于x轴的直线。
流体力学第五章(理想不可压缩流体的平面势流)
流体力学——理想不可压缩流体的平面势流内容¾基本方程组,初始条件及边界条件¾速度势函数及无旋运动的性质¾平面流动及其流函¾不可压缩流体平面无旋流动的复变函数表示¾基本的平面有势流动¾有势流动叠加P=Pa , Pa为大气压强。
在直角坐标系中有一个线性的二阶偏微分方程(拉普拉斯方程线性方程的一个优点是解的可叠加性对于定常流:则由伯努利方程得到理想不可压缩无旋流的基本方程为:边界条件静止固壁上自由面上:P = Pa 无穷远处:速度势函数及无旋运动的性质在无旋流中有若已知函数,则可求出若已知速度矢量V,则可由积分求出势函数上式中为任意常数,因此的值相对于不同的Mo点可以差一个,为某一常数,但并不影响流动的实质,因为当求流动的特征量ui, P时,常数的差别便消失不见了,所谓的结果完全一样φ涉及到单值和多值问题在单连通区域 与积分路线无关,而只与起点M0及终点M的位置 有关。
因而势函数为单值函数。
在多连通区域 , 是封闭曲线L绕某一点的圈数, 称为环量 势函数 为多值函数。
速度势函数及无旋运动的性质(已作介绍)内容 ¾ 基本方程组,初始条件及边界条件 ¾ 速度势函数及无旋运动的性质¾ ¾平面流动及其流函数 不可压缩流体平面无旋流动的复变函数表示 基本的平面有势流动 有势流动叠加¾ ¾平面流动及其流函数 平面问题是指 流动在平面内进行,即 u z = 0 ; 垂直平面的垂线上个物理量相 等即适用范围 无限长柱体,它的一个方向的尺寸比其它两个方向的尺寸大得 多,在长方向的速度分量很小,其它物理量的变化也很小。
如:低速机翼表面的压力分布问题的理论计算等,无限长的柱 体平板的绕流等研究平面无旋运动,在平面运动中,涡旋矢量Ω的三个分量为只有 而无旋,可推出存在着速度势函数 使得:速度势函数的性质我们已经讨论过了流函数的意义 如果能够找到某一函数Ψ,满足流动的可能判据 —— 连续性 方程,则称这一函数Ψ为流函数 在平面运动时,不可压缩流体的连续性方程为:若有一函数Ψ(x,y,t)并令 则连续性方程为称为流函数知道了流函数 •若与流速ux ,uy 之间的关系之后 求出流速场已知,可由• 若 ux ,uy 已知,可用积分速度势与流函数 平面流动垂直与z轴的每个平面流动 都相同,称平面流动速度势函数 速度势函数存在的条件∂w ∂v − = 0 ∂y ∂z ∂u ∂w − = 0 ∂z ∂x ∂v ∂u − = 0 ∂x ∂y此条件称 柯西—黎曼条件由高数知识可知,柯西—黎曼条件是使udx + vdy + wdz全微分的充要条件,即成为某一个函数ϕ(x ,y ,z ,t )d ϕ = udx + vdy + wdz而当 t 为参变量, ϕ(x ,y ,z ) 的全微分为∂ϕ ∂ϕ ∂ϕ dϕ = dx + dy + dz ∂x ∂y ∂z比较两式有∂ϕ u = ∂x ∂ϕ v = ∂y ∂ϕ w = ∂z∂ϕ 柱坐标 V r = ∂r 1 ∂ϕ Vθ = r ∂θ ∂ϕ Vz = ∂z把ϕ(x ,y ,z ) 称为速度势函数简称势函数无论流体是否可压缩,是否定常流只要满足无旋条件 ,总有 势函数存在。
流体力学4.4 简单流动的速度势、流函数及复势
第四章
不可压理想流体平面无旋流动
4.4若干简单流动的速度势
流体力学第四章
令通过原点的流函数及势函数的值为零,则
120
cos sin sin cos c c xV yV V x yV
i W V ze
cos sin sin cos cos sin W i xV yV i V x yV V i x iy
4C
相应的流动图谱如图4-4-7所示。
流体力学第四章
流体力学第四章
n
W Az
4.4.6 任意拐角绕流
已知复势
其中A 为实数,n >1/2
cos sin n in n
n
W Ar e
Ar n iAr n
cos sin n
n Ar n Ar n
此复势又可写成
与此相应的势函数与流函数为
上述复势代表下列物理平面上相交壁面上的流动(对
应为绕锐角或绕钝角的流动)。
流体力学第四章
这些复势除了均
匀流外,它们都
是具有奇点的复
势。
流体力学势流
r0
x
r
中心区的流动
速度分布
ux y, uy x
u0
r0
涡量处处为常数
z
u y x
ux y
2
绕 r r0 的速度环量 Γ0 2r0 u0
y
u0
Γ0
u
C
用涡通量计算得到
r0
x
同样的结果
Γ0
r02
2
u0 r0
2r0u0
r
流速分布
外围区的流动
u
r0 r
u0
ux
y r
u
r0u0
y r2
已知
例
速度场
ur 0,
u
Γ
2 r
r = 0 奇点
求证 此流动是不
可压缩流体的平 面势流,并求速 度势函数。
A
dA
Ω
I Ωn d A (u) n d A 2ωn d A
A
A
A
留下一个问题:为 什么可取任一截面
计算涡管强度
AΩ
• 速度环量、斯托克斯定理
速度环量 定义流速矢量 u 沿有向曲线 L 的线积分为速度环量
Γ udl
L
斯托克斯定理 n
Ωn d A u d l
A
L
dA
Ω
封闭曲线 L 是 A 的周界,
M 0 ( x0 , y0 , z0 )
u x
x
u y
y
u
z
z
无旋流动
有势流动
ij u
x x
x y
无旋流动
k 0 x
z
等价
u
有势流动
§5—2 理想不可压缩流体的旋涡动力学特性
流体势流与旋转流的特性研究
流体势流与旋转流的特性研究引言:流体力学是研究流体行为和性质的学科,涉及到流体的运动、力学、热力学和控制等方面。
在流体力学中,流体可以分为势流和旋转流。
势流指的是流体运动中速度场存在势函数的情况,这种流动是无旋的,旋转流则是速度场存在旋度的情况,这种流动是有旋的。
本文将分别讨论势流与旋转流的特性,并对其进行研究,以深入理解流体力学中的基本概念和原理。
一、势流的特性与研究1. 定义与基本特性:势流是指速度场存在势函数的流动。
在势流中,速度场满足无旋的条件,即旋度等于零。
势流的基本方程为拉普拉斯方程,该方程可以用于描述流体势流的运动行为。
2. 研究方法与应用:研究势流的特性常用的方法包括:- 叠加原理:根据速度势线性叠加原理,可以通过汇总各个速度势的贡献,求得整个流体势流的速度势分布。
- 边界条件:边界条件是研究势流的重要手段,通过给定边界条件,可以确定势函数的分布和速度场。
势流的研究在工程实践中有广泛的应用。
例如,在空气动力学中,通过分析势流可研究飞行器的空气动力学性能;在船舶工程中,势流的研究可用于计算水动力性能和推进装置的优化设计。
二、旋转流的特性与研究1. 定义与基本特性:旋转流,又称涡流,是指速度场存在旋度的流动。
旋转流的旋度不为零,表示流体在运动过程中具有涡旋运动。
旋转流通常包括涡旋、涡旋街、涡旋尾等现象。
2. 研究方法与应用:研究旋转流的特性需要考虑旋度,相比势流更加复杂。
旋转流的研究常用的方法包括:- 涡函数法:通过定义涡函数,可以描述流体速度的旋转情况和涡旋的分布。
- 动量方程法:通过对流体动力学方程进行分析,可以推导出旋转流的特性和运动规律。
旋转流的研究在涡流以及湍流模拟、风洞试验、地下水流动、海洋环流等领域中有广泛应用。
对旋转流的研究有助于理解自然界中的环境现象,并为相关工程提供参考和优化设计。
结论:势流和旋转流作为流体力学的两个重要概念,各自具有特定的特性和研究方法。
势流在流场分析和工程实践中有广泛应用,而旋转流的研究在许多自然现象和工程设计中也起着重要作用。
流函数和势函数公式
流函数和势函数公式一、流函数的公式流函数是描述二维流动中速度分布情况的数学函数。
在笛卡尔坐标系下,流函数的公式可以表示为:Ψ(x,y)=Ψ(x(x,y),y(x,y))其中,(x,y)表示流体的位置坐标,Ψ表示流函数。
流函数的物理意义是沿着流线的流体质点速度分量的积分,即在流体的其中一位置,流函数的数值表示沿着该位置流线的任一质点在单位时间内浸入或流出以单位长度为界的穿过该位置的流线的质量。
在极坐标系下,流函数的公式为:Ψ(r,θ)=Ψ(r(r,θ),θ(r,θ))其中,(r,θ)表示流体的极坐标,Ψ表示流函数。
流函数具有以下性质:1.流函数是速度场的偏微分方程的解;2.流函数在各处连续可微,即满足流函数的充要条件为满足连续性方程的速度场。
二、势函数的公式势函数是描述速度场的另一种数学函数。
在二维流动中,势函数的公式可以表示为:φ(x,y)=φ(x(x,y),y(x,y))其中,(x,y)表示流体的位置坐标,φ表示势函数。
势函数的物理意义是在流体中任意一点,流速的大小等于该点的势函数的梯度的模,即V=∇φ。
在极坐标系下,势函数的公式为:φ(r,θ)=φ(r(r,θ),θ(r,θ))其中,(r,θ)表示流体的极坐标,φ表示势函数。
势函数具有以下性质:1.势函数是速度场的偏微分方程的解;2.势函数在各处连续可微,即满足势函数的充要条件为满足无旋条件的速度场。
三、流函数和势函数的关系υ=r∂Ψ/∂rυ=−1/r∂φ/∂θ其中,υ表示速度场的极坐标下的径向速度分量。
根据以上关系,可以得出以下推论:1.如果流函数为常数,则速度场满足旋度为零,即速度场满足无旋条件;2.如果势函数为常数,则速度场满足收敛性条件,即速度场满足连续性方程。
因此,流函数和势函数可以分别用于描述无旋的速度场和无散的速度场。
总结起来,流函数和势函数是描述二维流动中速度场的重要数学函数。
流函数描述流体沿流线方向的速度分布情况,势函数描述速度的梯度与流速的关系。
流体力学ppt课件-恒定平面势流
在圆柱坐标系统中,流速各项可表示为:
vr r
v
1 r
vz
z
圆柱坐标系统下拉普拉斯方程:
1 r
r
r
r
1 r2
2 2
2
z 2
0
6.2 流函数
恒定不可压缩平面二维流连续性方程表达式:
u v 0 x y
x
根据质量守恒定律,流进任意过流断面AC的流量dq应等于过 流断面AB和BC流出的流量,因此:
又因为:
dq udy vdx
dq d
对上式积分可得两条流线之间的流量q:
1 2
1 2
q
2 d
1
2
1
q0 q0
流向
左
右
流向
左
右
q
2
1
6.3几种简单的平面势流
速度势为:
m ln r 2
如果m为正,流动径向向外流,这种流动称为源流,例如泉眼向各方向的流动可作 为源流的例子,又如,离心式水泵,在某种情况下,叶轮内的流体运动可视为源流等。 如果m为负,流动流向源,这种流动称为汇流,例如地下水向井中的流动可作为汇流 的例子。流量m表示源流和汇流的强度。
u
x
v
y
w
z
不可压缩流体质量守恒定律表示如下:
V 0
不可压缩无旋流可表示为:
2 0
2 为Laplacian 算子,用笛卡尔坐标系表示为:
2 2 2
0 x2 y 2 z 2
这个微分方程在物理和工程方面经常出现,被称为拉普拉斯方 程(Laplace’s equation)。因此,无粘性不可压缩无旋流的控制 方程为拉普拉斯方程。这种类型的流动通常称为有势流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
旋涡随时间的变化规律
加速度环量
Γ udl
L
dΓ du dl dt L dt
速度 环量对 时间的 全导数 t
t+dt
封闭流体线 上的速度环量 对于时间的变 化率等于此封 闭流体线上的 加速度环量。
u(t+dt) L(t) u(t)
L是由确定流体质点组成的封闭线,是 一个系统,在流动中会改变位置和形状。
有旋流动
无旋流动
判别的唯一标准是看流速场的旋度是否为零
•
涡量、涡线、涡管和涡通量 对于有旋流动,将流速场的旋度 称为涡量,它是流体微团旋转角速 度矢量的两倍。涡量场是矢量场。
涡量
Ω u 2ω
涡线
涡线是涡量场的矢量线,是某瞬时对应的流场中的曲线, 该瞬时位于涡线上各点对应的涡量都沿着涡线的切向。与流线 一样,涡线是与欧拉观点相对应的概念。
ux d x u y d y uz d z
( x , y0 , z 0 ) ( x, y , z0 )
( x, y , z0 )
-Γ
U
d
h/2 h/2 Γ L/2 L/2
卡门的分析研究表明,当涡列的空间尺度为 h / L 0.281 时, 涡列对于小扰动才是稳定的,实测证实了这一点。
§5—4 有势流动及解法概述
由开尔文定理可知,理想不可压缩流体从静止或无旋状态开始 的流动将保持为无旋流动。所以无旋流动往往是以理想流体为前 提条件的。无旋流动即为有势流动。 一. 无旋流动的速度势函数
兰肯涡是比较接近实际的 平面旋涡模型,其中心部分 的流体象刚体一样旋转,需 有外力不断推动,中心部分 也可用圆柱形刚体的转动来 代替。外围部分流体的运动 在开始时是由中心部分的转 动通过粘性的作用形成的, 在流动稳定以后,则无须再 加入能量,粘性也就不再起 作用。
y u0 Γ0
C
u r0 r
x
中心区的流动
r0
r
x
2 u0
r0
2
2 u0
p
1 p p 2 r 2 2 r02 2
压强分布
2
p0
pC
y
中心区 1 p p 2 r 2 2 r02 的压强
速度分布 u0 u
2
Γ0
C
抛物线分布,涡心处最低
r0
x
r
pC p 2 r02
中心区速度越快,压 强越高,速度越慢,压 强越低。与无旋区有本 质的不同。 压强分布
简要的证明
dΓ dt
d u δ l dt L d d t (u δ l) L du dl d t δ l u δ d t L L
du dt dl L
d 表 示 对 时 间 微 分 δ 表 示 对 空 间 微 分
u2 du d t δ l δ 2 L L
求涡量场
求
涡线方程及 沿封闭围线 x 2 y 2 b 2 z 0 的速度环量
u z u y x y z 0 u x u z az y z x y2 z2 ay u y u x z x y y2 z2
p p
u
2
r0 r
x
2 u0
r0
2
2 u0
p
压强分布
2
p0
pC
中心区 的压强
1 dp r dr
2
y u0 Γ0
速度分布 u
向心 力
压差 力
C
1 1 2 2 2 p r C u C 2 2 2 u0 2 定 C p u0 由 p0 p 2 1 2 2 p p u u0 2
求涡线
dx dy dz 0 z y
y 2 z 2 C1 x C2
求速度环量
在 z = 0 平面上,涡量为
x y 0, z sgn(y)a
Γ Ω n d A z d A sgn(y)a d A 0
h/2 h/2 Γ L/2 L/2 -Γ
旋涡从圆柱体上交替地脱落到下游,因而形成周期 性的振动,旋涡从柱体上脱落的频率 f 将以斯特劳 哈尔数表达,并由雷诺数决定
fd St F ( Re ) U
u
U d
h/2
h/2 Γ L/2
-Γ
L/2
从柱体上、下面分别脱落的旋涡,其旋转方向是彼 此相反的,同时所有旋涡都以相同速度(因有旋涡间 相互干扰,此速度比来流速度小)向下游移动。 u
涡量场是无源场(管形场) 矢量场的散度表示矢量场的源汇强度。散度为零的矢量场也 称无源场,其矢量线必成管状,所以也称管形场。 涡量的散度必为零
i Ω ( u) x ux
j y uy
k z uz
u z u y u x u z u y u x ( ) ( ) ( )0 x y z y z x z x y
速度分布
u x y, u y x
u x z 2 x y
Γ 0 2r0 u0
u0 r0
y Γ0
C
涡量处处为常数
u y
绕 r r0 的速度环量 用涡通量计算得到 同样的结果
u0
u r0 x
u0 Γ 0 r 2 2r0 u 0 r0
udl
M0
与路径无关,在起点固定的 条件下,是终点位置的函数。
定义
( x, y, z )
M ( x, y , z )
ux d x u y d y uz d z
M 0 ( x0 , y 0 , z 0 )
无旋流动
有势流动
i u x x
j x y
du d t δ l u δ u L L
•
无旋与有势 的等价性
无旋流动 速度势 φ
有势流动
Ω u 0
u
u d l Ω n d A 0
L
M
A
d u x d x u y d y u z d z
u x x u y y u z z
由于涡管侧壁没有涡 通量,所以根据涡量场是 无源场可得如下结论:
涡管 Ω
涡线
在同一时刻,穿 过同一涡管的各断面的涡 通量都是相同的。即同一 时刻,一根涡管对应一个 涡管强度。
回答了前面的问题
结论
这是个纯运动学 范畴的定理
涡管不能在流体 中产生与消失,要 么成环形,要么两 端位于流场的自由 面或固体边界。
速度环量
Γ udl
L
斯托克斯定理
n dA Ω
L
Ω n d A u d l
A
封闭曲线 L 是 A 的周界, L 的方向 与 n 成右手系。 沿 L 的速度环量
dl
u
=
通过 A 的涡通量
例
已知 不可压缩流体速度分布
ux a y 2 z 2 , u y uz 0
u 0
速度势函 数的定义
M M ( x, y , z )
u
( x, y, z ) u d l
M0
ux d x u y d y uz d z
M 0 ( x0 , y 0 , z 0 )
速度势函数 的求法(一)
M
( x, y, z )
( x , y0 , z 0 )
2 u0
r0
pC
2
2 u0
p
2
p0
•
卡门涡街 试验发现,定常来流 U 绕过直径为 d 的圆柱体时,在不同雷
诺数 Re
Ud
情况下,圆柱下游有不同的旋涡现象出现。当雷诺
数大于 90 后,可以看到有规则交错排列的双列线涡,称为卡门 涡列,其中尤以雷诺数等于 150 左右时最为典型。 u U d
A A A
A 关于 x 轴对称
•
旋涡随空间的变化规律 n A u
奥—高定理
u d V Байду номын сангаас u n d A
V A
dA
V
矢量场通过一封闭曲面的通量 (流出为正)等于矢量场的散度 在封闭曲面所围空间域上的积分。 根据不可压缩 流体连续方程 u 0
奥—高定理可解释为:不可 压缩流体通过任一封闭曲面的 体积流量为零。
=const
•
亥姆霍兹定理 某时刻组成涡 管的流体质点将 永远组成涡管。 涡管的强度在 流动中保持不变。 容易通过开尔文定理予 以证明,上述亥姆霍兹定 理成立的条件应与开尔文 定理相同。
t
Ω
Ω
t+dt
•
粘性对旋涡运动的影响
开尔文定理说明,若质量力有势,流体为理想不可 压缩流体,那么涡通量不会产生,初始时刻为无旋的流 动将永远保持无旋,而有旋流动的涡通量则有保持性, 既不会消失,也不会扩散。
第五章 有旋流动和有势流动
从运动学的角度对有旋流动的流场作进一步的讨论 和分析。
从动力学的角度介绍在质量力有势,流体为理想不 可压缩的条件下,有关涡通量的保持性定理。 论述势流理论的基本内容,引出不可压缩流体平面 流动的流函数概念,重点讨论不可压缩流体平面无旋 流动的速度势函数与流函数的关系以及求解势流问题 的奇点叠加方法。
第五章 有旋流动和有势流动
§5—1 有旋流动的运动学性质
§5—2 理想不可压缩流体的旋涡动力学特性 §5—3 兰肯涡和卡门涡街 §5—4 有势流动及解法概述 §5—5 理想不可压缩流体恒定平面势流的奇 点分布解法
§5—1 有旋流动的运动学性质