综合 数据放大器

合集下载

TI运算放大器仪表放大器电路设计说明书

TI运算放大器仪表放大器电路设计说明书

1ZHCA850–December 2018三级运算放大器仪表放大器电路Analog Engineer's Circuit:AmplifiersZHCA850–December 2018三级运算放大器仪表放大器电路设计目标输入V idiff (V i2-V i1)共模电压输出电源V i diff Min V i diff Max V cm V oMin V oMax V cc V ee V ref -0.5V+0.5V±7V–5V+5V+15V–15V0V设计说明此设计使用3个运算放大器构建分立式仪表放大器。

电路将差动信号转换为单端输出信号。

仪表放大器能否以线性模式运行取决于其构建块(即运算放大器)能否以线性模式运行。

当输入和输出信号分别处于器件的输入共模和输出摆幅范围内时,运算放大器以线性模式运行。

这些范围取决于用于为运算放大器供电的电源电压。

设计说明1.使用精密电阻器实现高直流CMRR 性能2.R 10设置电路的增益。

3.向输出级添加隔离电阻器以驱动大电容负载。

4.高电阻值电阻器可能会减小电路的相位裕度并在电路中产生额外的噪声。

5.能否以线性模式运行取决于所使用的分立式运算放大器的输入共模和输出摆幅范围。

线性输出摆幅范围在运算放大器数据表中A OL 测试条件下指定。

2ZHCA850–December 2018三级运算放大器仪表放大器电路设计步骤1.此电路的传递函数:2.选择反馈环路电阻器R 5和R 6:3.选择R 1、R 2、R 3和R 4。

要将Vref 增益设置为1V/V 并避免降低仪表放大器的CMRR ,R 4/R 3和R 2/R 1的比值必须相等。

4.计算R 10以实现所需的增益:(1)5.要检查共模电压范围,请从参考文献[5]中下载并安装程序。

通过为内部放大器具有所选放大器(在本例中为TLV172)所定义的共模范围、输出摆幅和电源电压范围的三级运算放大器INA 添加代码,对安装目录中的INA_Data.txt 文件进行编辑。

三运放仪表放大器

三运放仪表放大器

三运放仪表放大器摘要本系统采用三个OP07双电源单集成运放芯片构成仪表放大器,此放大器能调节将输入差模信号放大100至200倍,同时具有高输入电阻和高共模抑制比,对不同幅值信号具有稳定的放大倍数;电源部分由变压器、整流桥、7812、7912、7805等线性电源芯片组成,可输出+5V、+12V、-12V三路电压。

一、方案论证与比较1.放大器电源的制作方法方案一:本三运放仪表放大器系统采用集成运放OP07,由于OP07是双电源放大器,典型电源电压为,可方便采用市售开关电源或者开关电源芯片制作电源作为OP07的电源输入,开关电源具有的效率高,体积小,散热小,可靠性高等特点,但是因为其内部构造特性,使输出电压带有一定的噪声干扰,不能输出纯净稳定的电压。

方案二:采用线性电源稳压芯片78系列和79系列制作线性电源,使用多输出抽头变压器接入整流桥再接入稳压芯片,输出纯净的线性电源。

2.电源方案论证本系统是一个测量放大系统,其信号要求纯净无噪声干扰,在系统中加入滤波器消除干扰的同时,我们应该考虑系统本身的干扰源并尽量降低干扰。

考虑到开关电源的输出电压不是十分纯净的,带有许多噪声干扰,而线性电源可以稳定输出电压值,虽然线性电源体积较大,效率较低,但是作为测量系统中,我们采用方案二来提高测量的精准度。

3.放大器制作方法方案一:题目要求使输入信号放大100至200倍,可使用单运放构成比例运算放大电路,按负反馈电阻比例运算进行放大,输出电压,此放大电路可以达到预定的放大倍数,但是其对共模信号抑制较差,容易出现波形失真等问题。

方案二:采用三运放构成仪表放大器,这是一种对弱信号放大的一种常用放大器,输出电压。

4.放大器方案论证在测量系统中,通常被测物理量均通过传感器转换为电信号,然后进行放大,因此,传感器的输出是放大器的信号源。

然而,多数传感器的等效电阻均不是常量,他们随所测物理量的变化而变。

这样,对于放大器而言信号源内阻是变量,放大器的放大能力将随信号的大小而变。

Freescale 双极性LDMOS宽带集成功率放大器数据表说明书

Freescale 双极性LDMOS宽带集成功率放大器数据表说明书

MW7IC008NT1MW7IC008NT11RF LDMOS Wideband Integrated Power AmplifierThe MW7IC008N wideband integrated circuit is designed with on--chip matching that makes it usable from 20to 1000MHz.This multi--stage structure is rated for 24to 32volt operation and covers most narrow bandwidth communication application formats.Driver Applications∙Typical CW Performance:V DD =28Volts,I DQ1=25mA,I DQ2=75mAFrequency G ps (dB)PAE (%)100MHz @11W CW 23.555400MHz @9W CW 22.541900MHz @6.5W CW23.534∙Capable of Handling 10:1VSWR,@32Vdc,900MHz,P out =6.5Watts CW (3dB Input Overdrive from Rated P out )∙Stable into a 5:1VSWR.All Spurs Below --60dBc @1mW to 8Watts CW P out @900MHz∙Typical P out @1dB Compression Point ≃11Watts CW @100MHz,9Watts CW @400MHz,6.5Watts CW @900MHz Features∙Broadband,Single Matching Network from 20to 1000MHz∙Integrated Quiescent Current Temperature Compensation with Enable/Disable Function (1)∙Integrated ESD Protection∙In Tape and Reel.T1Suffix =1,000Units,16mm Tape Width,13--inch Reel.Figure 2.Pin Connections123456789101112181716151413242322212019NC V T T S 1V G L S 2N CR F i n S 2R F o u t S 1/V D S 1N C N CN C N CRF outS2/V DS2NC V G S 2V T T S 2NC NC NC NCN C V GS1RF inS1NC NC V GLS11.Refer to AN1977,Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987,Quiescent Current Control for the RF Integrated Circuit Device Family .Go to /rf.Select Documentation/Application Notes --AN1977or AN1987.Document Number:MW7IC008NRev.3,12/2013Freescale Semiconductor Technical Data100--1000MHz,8W PEAK,28V RF LDMOS WIDEBANDINTEGRATED POWER AMPLIFIERMW7IC008NT12RF Device DataFreescale Semiconductor,Inc.MW7IC008NT1Table 1.Maximum RatingsRatingSymbol Value Unit Drain--Source Voltage V DSS --0.5,+65Vdc Gate--Source Voltage V GS --6.0,+12Vdc Operating VoltageV DD 32,+0Vdc Storage Temperature Range T stg --65to +150︒C Operating Junction Temperature T J 150︒C 100MHz CW Operation @T A =25︒C (3)400MHz CW Operation @T A =25︒C (3)900MHz CW Operation @T A =25︒C (3)CW1165W W W Input Power100MHz 400MHz 900MHzP in 272338dBmTable 2.Thermal CharacteristicsCharacteristicSymbol Value (1,2)Unit Thermal Resistance,Junction to Case (CW Signal @100MHz)(Case Temperature 82︒C,P out =11W CW)Stage 1,28Vdc,I DQ1=25mA Stage 2,28Vdc,I DQ2=75mA (CW Signal @400MHz)(Case Temperature 87︒C,P out =9W CW)Stage 1,28Vdc,I DQ1=25mA Stage 2,28Vdc,I DQ2=75mA (CW Signal @900MHz)(Case Temperature 86︒C,P out =6.5W CW)Stage 1,28Vdc,I DQ1=25mA Stage 2,28Vdc,I DQ2=75mAR θJC5.34.94.42.73.53.2︒C/WTable 3.ESD Protection CharacteristicsTest MethodologyClass Human Body Model (per JESD22--A114)1B Machine Model (per EIA/JESD22--A115)A Charge Device Model (per JESD22--C101)IIITable 4.Moisture Sensitivity LevelTest MethodologyRating Package Peak TemperatureUnit Per JESD22--A113,IPC/JEDEC J--STD--0203260︒C1.MTTF calculator available at /rf.Select Software &Tools/Development Tools/Calculators to access MTTF calculators by product.2.Refer to AN1955,Thermal Measurement Methodology of RF Power Amplifiers.Go to /rf.Select Documentation/Application Notes --AN1955.3.CW Ratings at the individual frequencies are limited by a 100--year MTTF requirement.See MTTF calculator (referenced in Note 1).MW7IC008NT13RF Device DataFreescale Semiconductor,Inc.Table 5.Electrical Characteristics (T A =25︒C unless otherwise noted)CharacteristicSymbolMinTypMaxUnitStage 1—Off CharacteristicsZero Gate Voltage Drain Leakage Current (V DS =65Vdc,V GS =0Vdc)I DSS ——10μAdc Zero Gate Voltage Drain Leakage Current (V DS =28Vdc,V GS =0Vdc)I DSS ——1μAdc Gate--Source Leakage Current (V GS =1.5Vdc,V DS =0Vdc)I GSS——10μAdcStage 1—On Characteristics Gate Threshold Voltage(V DS =10Vdc,I D =5.3μAdc)V GS(th) 1.32 2.8Vdc Gate Quiescent Voltage(V DD =28Vdc,I D =25mAdc,Measured in Functional Test)V GS(Q)22.83.5VdcStage 2—Off CharacteristicsZero Gate Voltage Drain Leakage Current (V DS =65Vdc,V GS =0Vdc)I DSS ——10μAdc Zero Gate Voltage Drain Leakage Current (V DS =28Vdc,V GS =0Vdc)I DSS ——1μAdc Gate--Source Leakage Current (V GS =1.5Vdc,V DS =0Vdc)I GSS——10μAdcStage 2—On Characteristics Gate Threshold Voltage(V DS =10Vdc,I D =23μAdc)V GS(th) 1.32 2.8Vdc Gate Quiescent Voltage(V DD =28Vdc,I D =75mAdc,Measured in Functional Test)V GS(Q)2 2.7 3.5Vdc Drain--Source On--Voltage(V GS =10Vdc,I D =3.6Adc)V DS(on)0.10.31VdcFunctional Tests (1)(In Freescale Test Fixture,50ohm system)V DD =28Vdc,I DQ1=25mA,I DQ2=75mA,P out =6.5W CW,f =900MHzPower GainG ps 21.523.531.5dB Power Added Efficiency PAE 3034—%Input Return LossIRL—--15--11dB Typical Broadband Performance (In Freescale Test Fixture,50ohm system)V DD =28Vdc,I DQ1=25mA,I DQ2=75mAFrequency G ps (dB)PAE (%)IRL (dB)100MHz @11W CW 23.555--20400MHz @9W CW 22.541--17900MHz @6.5W CW23.534--151.Part internally matched both on input and output.(continued)4RF Device DataFreescale Semiconductor,Inc.MW7IC008NT1Table 5.Electrical Characteristics (T A =25︒C unless otherwise noted)(continued)Characteristic Symbol Min Typ Max Unit Typical Performances (In Freescale Test Fixture,50ohm system)V DD =28Vdc,I DQ1=25mA,I DQ2=75mA,100--1000MHz BandwidthCharacteristicSymbol Min Typ Max Unit IMD Symmetry @6.8W PEP ,P out where IMD Third Order Intermodulation 30dBc (1)(Delta IMD Third Order Intermodulation between Upper and Lower Sidebands >2dB)IMD sym—0.1—MHzVBW Resonance Point (1)(IMD Third Order Intermodulation Inflection Point)VBW res —0.1—MHz Gain Flatness in 500--1000MHz Bandwidth @P out =6W Avg.G F — 1.35—dB Gain Variation over Temperature (--30︒C to +85︒C)∆G —0.024—dB/︒C Output Power Variation over Temperature (--30︒C to +85︒C)∆P1dB—0.005—dB/︒CTypical CW Performances —100MHz (In Freescale Test Fixture,50ohm system)V DD =28Vdc,I DQ1=25mA,I DQ2=75mA,P out =11W CW,f =100MHz Power GainG ps —23.5—dB Power Added Efficiency PAE —55—%Input Return LossIRL —--20—dB P out @1dB Compression Point,CWP1dB—11—WTypical CW Performances —400MHz (In Freescale Test Fixture,50ohm system)V DD =28Vdc,I DQ1=25mA,I DQ2=75mA,P out =9W CW,f =400MHz Power GainG ps—22.5—dB Power Added Efficiency PAE —41—%Input Return LossIRL —--17—dB P out @1dB Compression Point,CWP1dB—9—WTypical CW Performances —900MHz (In Freescale Test Fixture,50ohm system)V DD =28Vdc,I DQ1=25mA,I DQ2=75mA,P out =6.5W CW,f =900MHz Power GainG ps —23.5—dB Power Added Efficiency PAE —34—%Input Return LossIRL —--15—dB P out @1dB Compression Point,CWP1dB—6.5—W1.Not recommended for wide instantaneous bandwidth modulated signals.MW7IC008NT15RF Device DataFreescale Semiconductor,Inc.Figure 3.MW7IC008NT1Test Circuit Component LayoutTable 6.MW7IC008NT1Test Circuit Component Designations and ValuesPartDescriptionPart NumberManufacturer C10.01μF Chip Capacitor GRM3195C1E103JA01Murata C2,C150.1μF Chip Capacitors GRM219F51H104ZA01Murata C3,C1610μF Chip Capacitors GRM55DR61H106KA88L Murata C4,C5,C7,C8,C10,C11,C12,C140.01μF Chip Capacitors C0805C103K5RAC Kemet C6,C171μF,35V Tantalum Capacitors TAJA105K035R AVX C9 2.2pF Chip Capacitor ATC600S2R2CT250XT ATC C13 3.3pF Chip CapacitorATC600S3R3BT250XT ATC L1,L7150nH Ceramic Chip Inductors LL2012--FHLR15J Toko L2,L6180nH Ceramic Chip Inductors LL2012--FHLR18J Toko L3 1.6nH Inductor 0603HC--1N6XJLW Coilcraft L4,L5 5.1nH Inductors0603HP--5N1XJLW Coilcraft R1,R12510Ω,1/10W Chip Resistors RR1220P--511--B--T5Susumu R2,R3,R491Ω,1/8W Chip Resistors CRCW080591R0FKEA Vishay R5*,R9*0Ω,2.5A Chip Resistors CRCW08050000Z0EA Vishay R610K Ω,1/8W Chip Resistor CRCW080510K0JNEA Vishay R7,R1112K Ω,1/8W Chip Resistors CRCW080512K0JNEA Vishay R843Ω,1/8W Chip Resistor CRCW080543R0FKEA Vishay R1015K Ω,1/8W Chip Resistor CRCW080515K0JNEA Vishay PCB0.020",εr =3.66RO4350BRogers*Add for temperature compensation6RF Device DataFreescale Semiconductor,Inc.MW7IC008NT1TYPICAL CHARACTERISTICSG p s ,P O W E R G A I N (d B )1000100f,FREQUENCY (MHz)Figure 4.Broadband Performance @P in =14.6dBm CW600400300--307060504030--5--10--15I R L ,I N P U T R E T U R N L O S S (d B )4121086P A E ,P O W E R A D D E D E F F I C I EN C Y (%)500200800700--20--2514P o u t ,O U T P U T P O W E R (W A T T S )900Figure 5.Intermodulation Distortion Productsversus Two--Tone SpacingTWO--TONE SPACING (MHz)10--20--401200I M D ,I N T E R M O D U L A T I O N D I S T O R T I O N (d Bc )--60--30--50--10P out ,OUTPUT POWER (WATTS)CWFigure 6.Power Gain and Power AddedEfficiency versus Output Power18109080706050P A E ,P O W E R A D D E D E F F I C I E N C Y (%)G p s ,P O W E R G A I N (d B )2625402423222120193020100MW7IC008NT17RF Device DataFreescale Semiconductor,Inc.TYPICAL CHARACTERISTICSFigure 7.Broadband Frequency Responsef,FREQUENCY (MHz)200G A I N (d B )4006008001000120014001600-36I R L (d B )8RF Device DataFreescale Semiconductor,Inc.MW7IC008NT1V DD =28Vdc,I DQ1=25mA,I DQ2=75mAP out =11W @100MHz,9W @400MHz,6.5W @900MHz f MHz Z in ΩZ load Ω10049.78+j1.0747.87--j9.8515048.96+j1.4449.12--j5.4420048.00+j1.5449.09--j2.6625046.67+j1.3648.63--j0.7930045.30+j0.9147.73+j0.4935043.93+j0.1146.60+j1.2240042.53--j0.8645.63+j1.4345041.38--j2.1644.97+j1.1350040.30--j3.7145.04+j0.7055039.38--j5.4445.23+j0.7760038.43--j7.1144.80+j1.2965037.94--j8.7144.32+j1.4870037.49--j10.5243.57+j1.5175037.31--j12.4243.19+j1.3280037.00--j14.0342.61+j0.7785036.74--j15.6442.25+j0.3990036.57--j17.0941.90+j0.0395036.37--j18.5941.67--j0.41100036.12--j20.0641.77--j1.10105035.58--j21.4341.82--j1.60110035.00--j22.7941.90--j2.01115034.53--j24.3942.26--j2.43120033.53--j25.9742.51--j2.80125032.67--j27.8442.74--j2.99130031.61--j29.8943.10--j3.11135030.61--j32.3443.52--j3.19140029.55--j34.8143.86--j3.13145028.23--j37.6144.03--j3.03150027.34--j40.5944.33--j2.67Z in=Device input impedance as measured from gate to ground.Z load =Test circuit impedance as measured from drain to ground.Figure 8.Series Equivalent Input and Load ImpedanceZinZloadOutput Matching NetworkMW7IC008NT19RF Device DataFreescale Semiconductor,Inc.PACKAGEDIMENSIONS10RF Device Data Freescale Semiconductor,Inc.MW7IC008NT1MW7IC008NT111RF Device Data Freescale Semiconductor,Inc.12RF Device Data Freescale Semiconductor,Inc.MW7IC008NT1PRODUCT DOCUMENTATION AND SOFTWARERefer to the following documents and software to aid your design process.Application Notes∙AN1955:Thermal Measurement Methodology of RF Power Amplifiers∙AN1977Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family∙AN1987Quiescent Current Control for the RF Integrated Circuit Device FamilyEngineering Bulletins∙EB212:Using Data Sheet Impedances for RF LDMOS DevicesSoftware∙Electromigration MTTF Calculator∙RF High Power Model∙.s2p FileFor Software,do a Part Number search at ,and select the “Part Number”link.Go to the Software &Tools tab on the part’s Product Summary page to download the respective tool.REVISION HISTORYThe following table summarizes revisions to this document.RevisionDate Description 0Aug.2009∙Initial Release of Data Sheet 1Sept.2009∙Modified Fig.3,Test Circuit Component Layout and Table 6,Test Circuit Component Designations andValues to include temperature compensation options,p.5∙Fig.3,Test Circuit Component Layout,corrected V DD1to V GG1,p.5∙Table 6,Test Circuit Component Designations and Values,C6,C17:updated description from “1μF Tantalum Capacitors”to “1μF,35V Tantalum Capacitors”;L1,L7,L2,L6:corrected manufacturer fromCoilcraft to Toko;L3:corrected part number from “0603HC--1N6XJLC”to “0603HC--1N6XJLW”;L4,L5:corrected part number from “100B100JT500XT”to “0603HP--5N1XJLW”;R1,R12:updated descriptionfrom “510ΩChip Resistors”to “510Ω,1/10W Chip Resistors”,p.52Mar.2011∙Updated frequency in overview paragraph from “100to 1000MHz”to “20to 1000MHz”to reflect lower20MHz capability and narrow bandwidth modulation,p.1∙Updated IMD sym Typical value from 180MHz to 0.1MHz and VBW res Typical value from 210MHz to0.1MHz;modified Footnote 1to reflect limited device capability regarding wide video bandwidth,TypicalPerformance table,p.42.1Mar.2012∙Table 3,ESD Protection Characteristics,removed the word “Minimum”after the ESD class rating.ESDratings are characterized during new product development but are not 100%tested during production.ESDratings provided in the data sheet are intended to be used as a guideline when handling ESD sensitivedevices,p.23Dec.2013∙Table 6,Test Circuit Component Designations and Values:updated PCB description to reflect mostcurrent board specifications from Rogers,p.5∙Replaced Case Outline 98ASA10760D,Rev.O with Rev.A,pp.9--11.Mechanical outline drawing modified to reflect the correct lead end features.Format of the mechanical outline was also updated to thecurrent Freescale format for Freescale mechanical outlines.MW7IC008NT113Informationin this document is provided solely to enable system and software implementers to use Freescale products.There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.Freescale reserves the right to make changes without further notice to any products herein.Freescale makes no warranty,representation,or guarantee regarding the suitability of its products for any particular purpose,nor does Freescale assume any liability arising out of the application or use of any product or circuit,and specifically disclaims any and all liability,including without limitation consequential or incidental damages.“Typical”parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications,and actual performance may vary over time.All operating parameters,including “typicals,”must be validated for each customer application by customer’s technical experts.Freescale does not convey any license under its patent rights nor the rights of others.Freescale sells products pursuant to standard terms and conditions of sale,which can be found at the following address:/SalesTermsandConditions.Freescale and the Freescale logo are trademarks of Freescale Semiconductor,Inc.,Reg.U.S.Pat.&Tm.Off.All other product or service names are the property of their respective owners.E 2009,2011--2013Freescale Semiconductor,Inc.How to Reach Us:Home Page: Web Support:/supportMW7IC008NT1。

数字放大器工作原理

数字放大器工作原理

数字放大器工作原理
数字放大器是一种用来放大数字信号的设备,其工作原理主要包括以下几个方面:
1. 数字信号转模拟信号
数字放大器的输入信号是数字信号,但放大器内部的放大电路却是模拟电路。

因此,放大器需要将数字信号转换成模拟信号。

这一过程通常称为数字模拟转换(digital-to-analog conversion,简称DAC)。

数字模拟转换器接收数字信号,并根据数字信号的数值大小,产生相应的模拟电压信号。

模拟电压信号的大小和数字信号的数值成正比,即数字信号越大,模拟电压信号就越大。

2. 信号放大
经过数字模拟转换后,数字信号被转换成了模拟信号,这时放大器会对信号进行放大。

放大器通常采用放大器芯片进行放大,芯片内部电路通过电压增益和电流增益等方式将信号进行放大。

3. 滤波
放大器对信号进行放大后,信号中可能会出现一些杂散信号。

这些杂散信号可能与原信号混在一起,造成信号失真。

为了避免信号失真,
放大器通常会加入滤波电路。

滤波电路可以滤除信号中某些频段的杂波,保证放大后的信号纯净。

4. 输出
经过放大和滤波的处理,信号已经被放大到一定的范围。

这时,信号就可以输出到音频设备中,如扬声器等。

以上就是数字放大器的工作原理。

通过数字模拟转换、放大、滤波等过程,将数字信号转换成可用的模拟信号,并对其进行放大和滤波,使其能够输出到音频设备中,从而达到音频放大的效果。

集成运算放大器的基本应用实验数据

集成运算放大器的基本应用实验数据

文章标题:深度解析集成运算放大器的基本应用实验数据在电子电路领域中,集成运算放大器(简称运放)是一种非常重要的器件。

它具有高增益、高输入阻抗、低输出阻抗等特点,被广泛应用于信号放大、滤波、比较、积分等电路中。

本文将结合实验数据,深入探讨集成运算放大器的基本应用,并分析其在电子电路中的重要性。

1. 实验数据搜集与整理在进行深度分析之前,我们首先需要收集和整理一些集成运算放大器的基本应用实验数据。

通过搭建不同的电路实验,我们可以得到运放在不同工作条件下的输入输出特性、增益、频率响应等数据。

这些实验数据将为我们进一步的分析提供有力的支持。

2. 电压跟随器实验数据分析我们进行了电压跟随器实验,并记录了不同输入电压条件下的输出电压。

通过分析这些实验数据,我们可以得到电压跟随器的输入输出特性曲线,了解其在不同输入条件下的响应情况。

从实验数据中我们可以发现,电压跟随器在一定范围内能够有效地跟随输入电压变化,从而实现信号放大和跟随的功能。

3. 反相放大器实验数据分析接下来,我们进行了反相放大器的实验,并记录了其在不同输入信号下的输出情况。

通过对实验数据的分析,我们可以得到反相放大器在不同增益下的输出特性曲线,以及其在不同频率下的响应情况。

实验数据表明,反相放大器具有良好的线性放大特性,并且在一定频率范围内能够实现稳定的放大功能。

4. 比较器实验数据分析除了常见的放大功能外,运放还可以被应用于比较器电路中。

我们进行了比较器实验,并记录了不同输入信号下的输出情况。

通过对比实验数据,我们可以得到比较器的阈值电压、输出翻转情况以及在不同工作条件下的响应特性。

实验数据显示,比较器能够快速、准确地对输入信号进行比较,并输出相应的逻辑信号。

5. 总结与个人观点通过对集成运算放大器的基本应用实验数据进行深入分析,我们可以更好地理解其在电子电路中的重要作用。

实验数据的分析为我们提供了直观、具体的数据支持,帮助我们更全面、深入地了解运放的工作特性。

9100 系列微波放大器数据手册说明书

9100 系列微波放大器数据手册说明书

Frequency Power Ripple Duty CycleGain (for rated output)Output Peak PowerLoad VSWR RF SamplingRF Output Pulse Video SampleRF Output Power SampleRF Interstage Power SampleRF Input Power SampleInput Power (for Rated Output )Spurious Output0-250 Hz> 250 Hz Output VSWR ProtectionGain Stability*Optionally customer may specify maximum input power.4.00 - 8.00 GHz 0 dBm (typical)+/- 0.1 dB (maximum)-55 dBc (minimum)-60 dBc (minimum)+67 dBm (minimum)100%2:1 (maximum)0.25 dB/24 hours (typical)6% (maximum)67 dB (adjustable)+ 10 mv/kw into 50Ω-20 dB -40 dB-20 dBMODEL 9114/96706-G40H80EnvironmentalOperating Temperature Storage TemperatureHumidity AltitudeCoolingRS-232 interface provides ability to remotely operate, monitor, control and adjust thesystem. IEEE-488, an optional feature, provides the ability to remotely operate, monitor and control operation of the amplifier. Any fault condition latches information. Ethernet (LAN) and RS-422 are also available. Software is provided to operate with MS Windows.DIGITAL INTERFACE RS-232Self Contained Forced Air0.1 to +50C | Derate to 10C for 10,000 foot Operation -40 to +85C0 to 95% non-condensing0 to 10,000 feet above sea level, 50,000 non-operatingMODEL 9114/96706-G40H80CONNECTORSTYPERF Input (Rear Panel )RF Output (Rear Panel )RF Samples (Front Panel )RF Output Pulse Video Sample (Front Panel )Modulation Input Panel (Front Panel )FRONT PANEL : Switches: Illuminated Status Monitor : Off/Standby /Operate /Reset: Warm-up /Standby /Operate /ResetACCESSORIES SUPPLIED 1-EACH •Maintenance Manual•Primary Input Power Mating Connector •CD ROM: Computing Operating SoftwareCONTROLS & INDICATORSCo-ax | Type "NF"Waveguide | WRD-350Co-ax | Type "NF"Co-ax | Type "BNCF"Co-ax | Type "BNCF"MODEL 9114/96706-G40H80MODEL 9114/96706-G40H80。

数据放大器设计实验报告

数据放大器设计实验报告

数据放大器设计实验报告XX:徐海峰班级:通信工程15-1班学号:2015211573同组者:蒲玉倩指导老师:孙锐许良凤一、设计题目:数据放大器设计 二、设计指标及要求放大倍数Avf ≥60dB ,共模抑制比60CMR K dB ≥,截止频率31H d f kHz =,带外衰减速率大于等于-30dB/10倍频。

三、原理分析与设计步骤 1.数据放大器电路结构选择数据放大器基本结构如图1.1所示,分为两个基本环节,即差分放大器,RC 有源滤波器。

据此确定欲设计的电路结构如图1.2所示(具体阻容参数已经标出)。

图1.1图1.22.差模信号产生交流源通过桥式电路,根据各电阻的分压产生差模信号,输入到放大器进行放大。

3.差分放大器两级差分放大器,第一级,电压串联负反馈,双端输入双端输出,提高共模抑制比,并有一定的差模电压放大作用。

第二级,差动式输入,双端输入,单端输出,电压放大。

1102(1)v R A R =+,523v R A R =,15032(1)v R R A R R =+⋅。

4. RC 有源滤波器电路中RC 网络起着滤波的作用,滤掉不需要的信号,这样在对波形的选取上起着至关重要的作用,通常主要由电阻和电容组成。

路中运用了同相输入运放,其闭环增益 RVF=1+R10/R9同相放大器具有输入阻抗非常高,输出阻抗很低的特点,广泛用于前置放大级。

截止频率781212H f R R C C π=,放大倍数9109()vf A R R R =+5.参数计算与器件选择 5.1 电路参数计算1) 桥式电路交流源通过桥式电路,根据各电阻的分压产生差模信号,o1R1V *V R1+R3=i,o2R2V *V R2+R5=i,故选择1 1.5=ΩR k ,3 1.5=ΩR k ,22=ΩR k ,5 1.5=ΩR k 。

2) 差分放大电路本实验需要四个运算放大器,在此我们选择含有四个运算放大器的的集成运算放大器LM324,LM324四运放管脚图。

四种常用放大器及应用

四种常用放大器及应用

四种常用放大器及应用常用的四种放大器是:运算放大器、功率放大器、音频放大器和射频放大器。

首先,运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子放大器,它有很多应用。

它具有高增益、高输入阻抗和低输出阻抗的特点。

运算放大器最常见的应用是运算放大电路,用于实现各种算法和信号处理。

运算放大器还可用于比较器、振荡器、多谐波振荡器等电路。

此外,运算放大器还常用于仪器仪表、模拟计算机、数据采集系统和传感器等领域。

其次,功率放大器(Power Amplifier)是用来放大输入信号的功率的放大器,用于驱动负载。

功率放大器通常分为A类、B类、AB类、C类和D类等。

功率放大器广泛应用于音频系统、无线电通信系统、雷达系统和太阳能系统等领域。

其中,音频功率放大器用于扬声器系统,提供足够的功率以产生高音质音乐;无线电通信系统和雷达系统中的功率放大器通常需要驱动天线以产生更大的发射功率;太阳能系统中的功率放大器用于将太阳能电池板的输出电压提高到适合之后的电路或网络使用的电压。

第三种常用放大器是音频放大器,用于增强音频信号的幅度。

音频放大器一般分为低功率放大器和高功率放大器两类。

低功率放大器通常用于便携式音频设备,如手机、MP3播放器等。

高功率放大器则广泛应用于音响系统和放大器组件,以获得更高的音响质量和音响功率。

音频放大器还有各种不同类型,例如A类、B类、AB类和D类音频放大器,它们在功率效率、失真和音质上存在差异。

最后,射频放大器(Radio Frequency Amplifier)是用于放大射频信号的放大器。

射频放大器广泛应用于通信系统、雷达系统、遥控系统、卫星通信系统等领域。

射频放大器通常要求具有高增益、低噪声和高线性度。

根据应用需求,射频放大器也可分为小功率放大器和高功率放大器两类。

小功率射频放大器通常用于低功率无线电设备和无线电接收机,而高功率射频放大器则用于要求更大发射功率的无线电设备。

TI PGA280 高精度仪表放大器数据手册说明书

TI PGA280 高精度仪表放大器数据手册说明书

ProductFolderOrderNowTechnicalDocumentsTools &SoftwareSupport &CommunityPGA280ZHCSL30B–JUNE2009–REVISED MARCH2020 PGA280零漂移、高电压、可编程增益仪表放大器1特性•宽输入电压范围:在±18V电源下,为±15.5V•二进制增益步长:128V/V至1/8V/V•额外比例缩放因子:1V/V和1⅜V/V•低失调电压:在G=128时为3μV•失调电压的近零长期漂移•近零增益温漂:0.5ppm/°C•出色的线性度:1.5ppm•出色的共模抑制比(CMRR):140dB•高输入阻抗•超低的1/f噪声•差分信号输出•过载检测•输入配置开关矩阵•断线测试电流•可扩展SPI™(具有校验和)•通用I/O端口•TSSOP-24封装2应用•模拟输入模块•数据采集(DAQ)•飞机发动机控制•电池测试3说明PGA280是一款高精度仪表放大器,具有数字控制增益和信号完整性测试功能。

该器件具有低失调电压,且失调电压、增益温漂和1/f噪声近乎为零,还具有出色的线性度、共模抑制比和电源抑制比,可支持高分辨率的精密测量。

36V电源电压和宽、高阻抗输入范围符合通用信号测量的要求。

特殊电路可防止多路复用器(MUX)开关产生浪涌电流。

另外,输入开关矩阵可实现在过载条件下轻松进行重新配置和系统级诊断。

可配置的通用输入/输出(GPIO)提供数种控制和通信功能。

SPI经扩展可与更多器件通信,仅需四个ISO耦合器即可实现隔离。

PGA280采用TSSOP-24封装,额定工作温度范围为–40°C至+105°C。

如需了解所有可用封装,请参阅数据表末尾的封装选项附录。

器件比较特性产品23位分辨率Δ-Σ模数转换器ADS1259斩波稳定仪表放大器,RR I/O,5V单电源INA333高精度PGA,G=1、10、100、1000PGA204高精度PGA,JFET输入,G=1、2、4、8PGA206典型应用PGA280ZHCSL30B–JUNE2009–REVISED 目录1特性 (1)2应用 (1)3说明 (1)4修订历史记录 (2)5Pin Configuration and Functions (3)6Specifications (4)6.1Absolute Maximum Ratings (4)6.2Electrical Characteristics (4)6.3Timing Requirements:Serial Interface (7)6.4Typical Characteristics (8)7Detailed Description (15)7.1Overview (15)7.2Functional Block Diagram (15)7.3Feature Description (16)7.4Device Functional Modes (24)7.5Programming (26)7.6Register Map (31)8Application and Implementation (38)8.1Application Information (38)9Power Supply Recommendations (39)10器件和文档支持 (41)10.1接收文档更新通知 (41)10.2支持资源 (41)10.3商标 (41)10.4静电放电警告 (41)10.5Glossary (41)11机械、封装和可订购信息 (41)4修订历史记录注:之前版本的页码可能与当前版本有所不同。

安华高 ABA-51563 3.5GHz 宽带硅 RFIC 放大器 数据表说明书

安华高 ABA-51563 3.5GHz 宽带硅 RFIC 放大器 数据表说明书

ABA-515633.5 GHz Broadband Silicon RFIC AmplifierData SheetDescriptionAvago’s ABA-51563 is an economical, easy-to-use, internally 50-ohm matched silicon monolithicb roadband amplifier that offers excellent gain and flat broadband response from DC to 3.5 GHz. P ackaged in an ultraminiature industry-standard SOT-363 package, it requires half the board space of a SOT-143 package.At 2 GHz, the ABA-51563 offers a small-signal gain of 21.5 dB, output P1dB of 1.8 dBm and 11.4 dBm outputthird order intercept point. It is suitable for use as buffer amplifiers for wideband applications. They are designed for l ow c ost g ain b locks i n c ellular a pplications, D BS t uners, LNB and other wireless communications systems.ABA-51563 is fabricated using Avago’s HP25 siliconbipolar process, which employs a double-diffused singlepolysilicon process with self-aligned submicron emitter geometry. The process is capable of s imultaneous high f T and high NPN breakdown (25 GHz f T at 6V BVCEO). The process utilizes i ndustry standard device oxide isolation technologies and submicron aluminum multilayer interconnect to achieve superior performance, high uniformity, and proven reliability.Features• Operating frequency: DC ~ 3.5 GHz • 21.5 dB gain• VSWR < 2.0 throughout operating frequency • 1.8 dBm output P1dB • 3.7 dB noise figure• Unconditionally stable • Single 5V supply (Id = 18 mA)• Lead-free option available Applications• Amplifier for cellular, cordless, special mobile radio, PCS,ISM, wireless LAN, DBS, TVRO, and TV tuner applicationsSurface Mount Package: SOT-363/SC70Pin Connections and Package MarkingSimplified SchematicNote:Top View. Package marking provides orientation and identification.“x” is character to identify date code.VccGND 3InputGND 1GND 2Output & VccAttention:Observe precautions for handling electrostatic sensitive devices.ESD Machine Model (Class A)ESD Human Body Model (Class 1A)Refer to Avago Application Note A004R: Electrostatic Discharge Damage and Control.ABA-51563 Absolute Maximum Ratings [1]Symbol ParameterUnits Absolute Max. V cc Device Voltage, RF output to ground (T = 25°C) V +7 P in CW RF Input Power (Vcc = 5V) dBm +20 P diss Total Power Dissipation [3] W 0.3 T j Junction Temperature °C 150 T STGStorage Temperature°C-65 to 150Notes:1. Operation of this device in excess of any of these limits may cause permanent damage.2. Thermal resistance measured using 150°C Liquid Crystal Measurement Technique.3. Board (package belly) temperature, Tb, is 25°C. Derate 2.3 mW/°C for Tb > 120.8°C.Electrical SpecificationsT c = +25°C, Z o = 50 Ω, P in = -30 dBm, V cc = 5V, Freq = 2 GHz, unless stated otherwise.Symbol Parameter and Test Condition Units Min. Typ. Max. Std Dev.Gp [1] Power Gain (|S 21|2)dB 20 21.5 0.2 ∆Gp Power Gain Flatness, f = 0.1 ~ 2.5 GHz dB 1.0 f = 0.1 ~ 3.5 GHz 1.3 NF [1] Noise FiguredB 3.7 4 0.12 P1dB [1] Output Power at 1dB Gain Compression dBm 1.8 0.13 OIP3[1] Output Third Order Intercept Point dBm 11.4 0.24 VSWR in [1] Input VSWR 1.2 VSWR out [1] Output VSWR 1.2 Icc [1] Device Current mA 18 280.3td [1]Group Delayps140Notes:1. Measurements taken on 50Ω test board shown on Figure 1. Excess circuit losses had been de-embedded from actual measurements. Standard deviation and typical data based on at least 500 parts sample size from 6 wafer lots. Future wafers allocated to this product may have nominal values anywhere within the upper and lower spec limits.Figure 1. ABA-51563 Production Test Circuit.RF OutputRF InputVccC Thermal Resistance [2] (Vcc = 5V) θjc = 104°C/WABA-51563 Typical PerformanceT c = +25°C, Z o = 50Ω, V cc= 5V unless stated otherwise.FREQUENCY (GHz)Figure 8. Output IP3 vs. Frequency and Voltage.O I P 3 (d B m )020161284410.52 2.531.5 3.5FREQUENCY (GHz)Figure 10. Input and Output VSWR vs. Frequency. V S W R1.81.71.61.51.41.31.21.11.00.90.81VOLTAGE (V)Figure 11. Supply Current vs. Voltage and Temperature.I c c (m A )60504030201001ABA-51563 Typical Performance, continuedT c = +25°C, Z o = 50Ω, V cc = 5V unless stated otherwise.FREQUENCY (GHz)Figure 7. Output Power for 1 dB GainCompression vs. Frequency and Temperature.0-4-6410.52 2.531.5 3.5FREQUENCY (GHz)Figure 6. Output Power for 1 dB Gain Compression vs. Frequency and Voltage. 0.5FREQUENCY (GHz)Figure 5. Noise Figure vs. Frequency and Temperature.ABA-51563 Typical Scattering ParametersT C = +25°C, V CC = 5V, Z O = 50 Ω, unless stated otherwiseFreq S11S11S21S21S21S12S12S12S22S22K (GHz) Mag. Ang. dB Mag. Ang. dB Mag. Ang. Mag. Ang. Factor 0.05 0.06 175.8 20.8 10.93 -2.3 -27.3 0.04 -0.8 0.08 -2.3 1.294 0.10 0.06 174.1 20.7 10.88 -4.4 -27.3 0.04 -1.4 0.08 -6.0 1.297 0.20 0.06 170.4 20.8 10.93 -8.6 -27.5 0.04 -2.5 0.07 -11.5 1.313 0.30 0.06 166.0 20.8 10.93 -12.8 -27.5 0.04 -3.3 0.07 -15.1 1.313 0.40 0.06 160.6 20.8 10.97 -17.1 -27.7 0.04 -3.8 0.07 -17.7 1.331 0.50 0.07 161.9 20.8 10.97 -21.4 -27.7 0.04 -4.1 0.07 -17.7 1.330 0.60 0.07 160.0 20.8 10.99 -25.6 -28.0 0.04 -4.6 0.07 -17.8 1.351 0.70 0.07 155.8 20.9 11.04 -30.0 -28.0 0.04 -4.8 0.07 -18.9 1.346 0.80 0.08 153.5 20.9 11.10 -34.2 -28.2 0.04 -5.0 0.07 -18.5 1.3650.90 0.08 150.4 20.9 11.13 -38.6 -28.2 0.04 -4.9 0.07 -14.7 1.3611.00 0.08 148.0 21.0 11.20 -43.0 -28.4 0.04 -4.9 0.08 -9.9 1.380 1.20 0.08 132.5 21.1 11.35 -52.0 -28.6 0.04 -4.4 0.08 11.6 1.391 1.40 0.09 118.9 21.2 11.51 -61.1 -28.9 0.04 -3.8 0.08 26.1 1.403 1.60 0.09 102.9 21.4 11.69 -70.7 -28.9 0.04 -2.7 0.08 37.7 1.3861.80 0.10 86.5 21.5 11.85 -80.6 -29.1 0.04 -1.3 0.09 44.3 1.3992.00 0.10 69.6 21.5 11.94 -90.7 -29.1 0.04 0.3 0.10 47.9 1.391 2.20 0.11 50.6 21.6 12.04 -101.2 -29.1 0.04 1.9 0.11 45.1 1.382 2.40 0.10 38.4 21.7 12.15 -112.1 -29.1 0.043.0 0.13 41.1 1.369 2.60 0.10 30.1 21.7 12.14 -123.5 -28.9 0.044.3 0.16 36.7 1.3392.80 0.10 17.8 21.6 12.00 -135.3 -28.9 0.04 5.7 0.19 31.6 1.3413.00 0.09 10.2 21.4 11.70 -147.3 -28.9 0.04 7.4 0.21 26.7 1.354 3.20 0.10 -1.1 21.0 11.27 -158.9 -28.6 0.04 9.8 0.24 21.4 1.352 3.40 0.09 -15.7 20.6 10.73 -170.5 -28.2 0.04 10.8 0.25 14.4 1.3433.50 0.08 -20.5 20.4 10.45 -176.2 -28.0 0.04 11.4 0.26 11.2 1.3374.00 0.05 -52.8 18.9 8.86 157.4 -27.1 0.04 12.4 0.27 -4.6 1.3894.50 0.00 -179.7 17.4 7.40 133.1 -26.2 0.05 12.3 0.27 -18.4 1.4575.00 0.04 127.8 15.66.06 112.1 -25.2 0.06 11.0 0.24 -32.2 1.5685.50 0.10 114.7 14.1 5.09 92.7 -24.0 0.06 7.2 0.24 -47.4 1.5976.00 0.16 105.3 12.7 4.30 75.7 -23.0 0.07 1.9 0.20 -62.0 1.657Device Models Refer to Avago’s web site /view/rfPackage Dimensions Outline 63 (SOT-363/SC-70)Recommended PCB Pad Layout for Avago’s SC70 6L/SOT-363 ProductsDimensions in inches. Ordering InformationPart Number Devices per Container ContainerABA-51563-TR1 3000 7” reelABA-51563-TR2 10000 13” reelABA-51563-BLK 100 antistatic bagABA-51563-TR1G 3000 7” reelABA-51563-TR2G 10000 13” reelABA-51563-BLKG 100 antistatic bagNote: For lead-free option,the part number will have the character “G” at the end.For product information and a complete list of distributors, please go to our web site: Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.Data subject to change. Copyright © 2005-2009 Avago Technologies. All rights reserved. Obsoletes 5989-1970EN AV02-1784EN - February 11, 2009Device OrientationTape Dimensions and Product Orientation for Outline 63USER FEEDEND VIEWTOP VIEW (Package marking example orientation shown.)(COVER TAPE THICKNESS)DESCRIPTIONSYMBOL SIZE (mm)SIZE (INCHES)LENGTH WIDTH DEPTH PITCHBOTTOM HOLE DIAMETER A 0B 0K 0P D 1 2.40 ± 0.102.40 ± 0.101.20 ± 0.104.00 ± 0.101.00 + 0.250.094 ± 0.0040.094 ± 0.0040.047 ± 0.0040.157 ± 0.0040.039 + 0.010CAVITYDIAMETER PITCH POSITION D P 0E 1.50 ± 0.104.00 ± 0.101.75 ± 0.100.061 + 0.0020.157 ± 0.0040.069 ± 0.004PERFORATIONWIDTHTHICKNESS W t 18.00 + 0.30 - 0.100.254 ± 0.020.315 + 0.0120.0100 ± 0.0008CARRIER TAPE CAVITY TO PERFORATION (WIDTH DIRECTION)CAVITY TO PERFORATION (LENGTH DIRECTION)F P 23.50 ± 0.052.00 ± 0.050.138 ± 0.0020.079 ± 0.002DISTANCEWIDTHTAPE THICKNESSC T t 5.40 ± 0.100.062 ± 0.0010.205 + 0.0040.0025 ± 0.0004COVER TAPE。

测量放大器实验报告

测量放大器实验报告

测量放大器实验报告一、系统功能及性能指标500~1A VD = V 10U 0±= f =0~10HZ ΩM R id 2≥id U =V V 5.7~5.7-+时,510>CMR K 500=VD A 时,噪声电压峰峰值< 1V电路类型:测量放大器二、实验目的本实验是学习测量放大器的设计方法和掌握测量放大器的调试方法。

其中,测量放大器称为仪表放大器或数据放大器,是对微信号进行测量,主要通过运用集成运放组成测量放大电路实现对微弱电压信号的放大,要求有较高的输入电阻来减少测量的误差和被测电路的影响。

通过实验,熟悉OP07的参数和应用,掌握电路设计调试的基本流程和方法,通过分析和计算完成实验的内容。

三、实验要求图(1)1、差模电压放大倍数500A=,可手动调节;1~VD2、最大输出电压为±10V,非线性误差< 0.5%;3、在输入共模电压+7.5V~-7.5V范围内,共模抑制5K;>10CMR4、在500=A时,输出端噪声电压的峰-峰值小于1V;VD4、通频带0~10Hz;5、直流电压放大器的差模输入电阻≥2MΩ(可不测试,由电路设计予以保证)。

四、方案论证在测量放大器的设计中,第一级应采用两个集成运放OP07同向并联接入,组成同相的差动放大器,因为这样可以增强共模抑制能力。

其中,要求两个运放的输入阻抗,共模抑制比,开环增益一致,这样才能保证具有差模和共模电阻大,还能保证使两运放的共模增益和失调及漂移产生的误差相互的抵消。

在第二级中,为了阻止共模信号的传递,差分放大电路在同向并联电路之后再接上一个OP07,从而使双端输出变成单端输出。

在输出端接一个电位器,使得电压放大倍数改变,实现放大倍数500A1~=可调,从而完成本实验的要求。

VD六、OP07芯片手册OP07简介:OP07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。

具有低失调、低漂移、低噪声、偏置电流小等优点。

数据放大器设计实验报告

数据放大器设计实验报告

数据放大器设计实验报告姓名:徐海峰班级:通信工程15-1班学号:2015211573同组者:蒲玉倩指导老师:孙锐许良凤一、设计题目 : 数据放大器设计 二、设计指标及要求放大倍数Avf ≥60dB ,共模抑制比60CMR K dB ≥,截止频率31H d f kHz =,带外衰减速率大于等于 -30dB/10倍频。

三、原理分析与设计步骤 1.数据放大器电路结构选择数据放大器基本结构如图1.1所示,分为两个基本环节,即差分放大器,RC 有源滤波器。

据此确定欲设计的电路结构如图1.2所示(具体阻容参数已经标出)。

图1.1图1.22.差模信号产生交流源通过桥式电路,根据各电阻的分压产生差模信号,输入到放大器进行放大。

3.差分放大器两级差分放大器,第一级,电压串联负反馈,双端输入双端输出,提高共模抑制比,并有一定的差模电压放大作用。

第二级,差动式输入,双端输入,单端输出,电压放大。

1102(1)v R A R =+,523v R A R =,15032(1)v R R A R R =+⋅。

4. RC 有源滤波器电路中RC 网络起着滤波的作用,滤掉不需要的信号,这样在对波形的选取上起着至关重要的作用,通常主要由电阻和电容组成。

路中运用了同相输入运放,其闭环增益 RVF=1+R10/R9同相放大器具有输入阻抗非常高,输出阻抗很低的特点,广泛用于前置放大级。

截止频率12H f =9109()vf A R R R =+5.参数计算与器件选择 5.1 电路参数计算1)桥式电路交流源通过桥式电路,根据各电阻的分压产生差模信号,o1R1V *V R1+R3=i,o2R2V *V R2+R5=i,故选择1 1.5=ΩR k ,3 1.5=ΩR k ,22=ΩR k ,5 1.5=ΩR k 。

2)差分放大电路本实验需要四个运算放大器,在此我们选择含有四个运算放大器的的集成运算放大器LM324,LM324四运放管脚图。

AD8606ARZ中文资料

AD8606ARZ中文资料
1
4
9 –IN C 8 OUT C
AD8605 ONLY
图3. 5引脚WLCSP(CB后缀)
图4. 14引脚SOIC_N(R后缀)
OUT A –IN A +IN A V+ +IN B –IN B OUT B 1 14 OUT D –IN D +IN D V– +IN C –IN C OUT C
7
8
图5. 8引脚MSOP(RM后缀)、 8引脚SOIC_N(R后缀)
V+ OUT B –IN B +IN B
AD8608
TOP VIEW (Not to Scale)
02731-003
元器件交易网
AD8605/AD8606/AD8608
目录
特性 ...................................................................................................... 1 应用 ...................................................................................................... 1 概述 ...................................................................................................... 1 引脚配置 ............................................................................................. 1 修订历史 ............................................................................................. 3 5 V电气规格 ....................................................................................... 4 2.7 V电气规格 .................................................................................... 6 绝对最大额定值 ................................................................................ 8 ESD警告 ......................................................................................... 8 典型性能参数 .................................................................................... 9 应用信息 ........................................................................................... 16 输出反相 ...................................................................................... 16 最大功耗 ...................................................................................... 16 输入过压保护 ............................................................................. 16 总谐波失真加噪声 .................................................................... 16 含源电阻的总噪声 .................................................................... 17 通道隔离 ...................................................................................... 17 容性负载驱动 ............................................................................. 17 光敏度 .......................................................................................... 18 WLCSP组装考虑 ........................................................................ 18 I-V转换应用 ..................................................................................... 19 光电二极管前置放大器应用................................................... 19 音频和PDA应用 ......................................................................... 19 仪表放大器 ................................................................................. 20 DAC转换...................................................................................... 20 外形尺寸 ........................................................................................... 21 订购指南 ...................................................................................... 24

放大器的作用与原理

放大器的作用与原理

放大器的作用与原理1. 引言放大器是电子设备中常见的一种电路,它的主要作用是将输入信号增强到更高的幅度,以便驱动其他设备或输出到负载中。

放大器广泛应用于音频、视频、通信等领域,成为现代电子技术中不可或缺的部分。

本文将详细介绍放大器的作用与原理,包括放大器的基本概念、分类、工作原理和常见应用等内容。

2. 放大器的基本概念放大器是一种能够增强信号幅度的电路。

在放大器中,输入信号被放大后输出,放大倍数由放大器的增益决定。

放大器通常由一个或多个电子器件(如晶体管、真空管等)组成,通过对输入信号施加适当的放大倍数,使信号得以放大。

放大器的基本概念可以用以下方程表示:Vout = Av * Vin其中,Vout为输出信号的幅度,Vin为输入信号的幅度,Av为放大倍数。

3. 放大器的分类根据放大器的不同特性和应用需求,放大器可以分为多种不同类型。

下面介绍一些常见的放大器分类。

3.1 按信号类型分类•音频放大器:用于放大音频信号,常见于音响设备、扬声器等。

•射频放大器:用于放大射频信号,常见于无线通信系统、雷达等。

3.2 按工作原理分类•线性放大器:输出信号与输入信号成比例关系,保持波形不失真。

•非线性放大器:输出信号与输入信号的关系非线性,常用于调制解调等应用。

3.3 按放大器结构分类•电压放大器:以电压为输入和输出的放大器,常见于音频设备。

•电流放大器:以电流为输入和输出的放大器,常见于电源控制、电机驱动等。

•功率放大器:以功率为输入和输出的放大器,常见于无线通信系统、音响设备等。

4. 放大器的工作原理放大器的工作原理是通过在电路中引入放大器器件,如晶体管、真空管等,利用它们的放大特性来实现信号的放大。

4.1 单管放大器原理以晶体管为例,晶体管放大器是一种常见的放大器类型。

晶体管分为三个区域:发射区、基极区和集电区。

晶体管工作时,通过控制基极电流来控制集电区的电流,从而实现信号的放大。

晶体管放大器的工作原理如下: 1. 输入信号通过耦合电容进入晶体管的基极区,控制基极电流。

亚德诺ADA4177-1 ADA4177-2 ADA4177-4运算放大器数据手册说明书

亚德诺ADA4177-1 ADA4177-2 ADA4177-4运算放大器数据手册说明书

提供OVP 和EMI 保护的精密、 低噪声、低偏置电流运算放大器 数据手册ADA4177-1/ADA4177-2/ADA4177-4Rev. DDocument FeedbackInformation furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks andregistered trademarks are the property of their respective owners.One Technology Way, P .O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 781.329.4700 ©2014–2017 Analog Devices, Inc. All rights reserved. Technical Support /cnADI 中文版数据手册是英文版数据手册的译文,敬请谅解翻译中可能存在的语言组织或翻译错误,ADI 不对翻译中存在的差异或由此产生的错误负责。

如需确认任何词语的准确性,请参考ADI 提供的最产品特性低失调电压:60 μV (最大值,25°C ,8引脚和14引脚SOIC ) 低失调电压漂移:1 μV/°C (最大值,8引脚和14引脚SOIC ) 低输入偏置电流:1 nA (最大值,25°C )低电压噪声密度:8 nV/√Hz (典型值,1 kHz )大信号电压增益(AVO):100 dB (最小值,全电源电压和工作温度范围)支持高于或低于供电轨电压32 V 的输入过压保护 集成EMI 滤波器70 dB (1000 MHz 下的典型抑制) 90 dB (2400 MHz 下的典型抑制) 轨到轨输出摆幅低供电电流:每个放大器500 µA (典型值) 宽带宽增益带宽积(A V = 100):3.5 MHz (典型值) 单位增益交越(A V = 1):3.5 MHz (典型值) −3 dB 带宽(A V = 1):6 MHz (典型值) 双电源供电额定电压±5 V 至±15 V ,工作电压±2.5 V 至±18 V 单位增益稳定 无反相长期失调电压漂移(10,000小时):2 µV (典型值) 温度迟滞:2 µV (典型值)应用无线基站控制电路 光纤网络控制电路 仪器仪表传感器和控制元件热电偶、RTD 、应变计、分流测量概述ADA4177-1单通道、ADA4177-2双通道和ADA4177-4四通道放大器具有低失调电压(2 μV 典型值)和低漂移(1 μV/°C 最大值)、低输入偏置电流、低噪声和低功耗(500 μA 典型值)特性。

TAS2555 5.7W D类单声道音频放大器数据手册说明书

TAS2555 5.7W D类单声道音频放大器数据手册说明书

ProductFolderSample &BuyTechnicalDocumentsTools &SoftwareSupport &CommunityTAS2555ZHCSE33A–AUGUST2015–REVISED AUGUST2015 TAS2555具有H类升压和扬声器感应功能的5.7W D类单声道音频放大器1特性•超低噪声、单声道升压D类放大器–在4Ω负载和4.2V电源电压条件下,THD+N为1%时的功率为5.7W,THD+N为10%时的功率为6.9W–在8Ω负载和4.2V电源电压条件下,THD+N为1%时的功率为3.8W,THD+N为10%时的功率为4.5W•数模转换器(DAC)+D类放大器的输出噪声(ICN)为15.9µV•1%THD+N/8Ω条件下的DAC+D类放大器的信噪比(SNR)为111dB•1W/8Ω条件下的THD+N为–90dB(具有平坦频率响应)•当频率为217Hz时,200mV pp纹波电压的电源抑制比(PSRR)为110dB•输入采样速率范围为8kHz至96kHz•内置扬声器感测–测量扬声器电流和电压–测量VBAT电压和芯片温度•通过专用实时数字信号处理器(DSP)提供扬声器保护–热量和偏移保护–检测漏音和损坏的扬声器•具有多级跟踪功能的高效H类升压转换器–500mW、8Ω、3.6V V BAT时的效率为86%–700mW、8Ω、4.2V V BAT时的效率为87%•内置自动增益控制(AGC)–限制电池流耗•可调D类开关边缘速率控制•电源–升压输入:2.9V至5.5V–模拟/数字:1.65V至1.95V–数字I/O:1.62V至3.6V•热保护、短路保护和欠压保护•I2S,左侧对齐,右侧对齐,DSP,时分复用(TDM)输入和输出接口,•用于寄存器控制的I2C或串行外设接口(SPI)• 3.47mm x3.23mm,0.5mm间距,42焊球晶圆级芯片封装(WCSP)•可使用两个TAS2555器件实现立体声配置2应用范围•移动电话•平板电脑•便携式音频底座•蓝牙扬声器3说明TAS2555是一款先进的D类音频放大器,也是一套功能完备的片上系统(SoC)。

ADI运算放大器选型指南

ADI运算放大器选型指南
运算放大器 选型指南
2011–2012
和内设含计产公品式选插型页
/zh/opamps
/zh/opamps | 1
ADI公司为每种应用都准备了合适的放大器
为什么会有如此之多不同类型的运算放大器?ADI公司的工程师 坚持不懈地追寻令人捉摸不定的理想运算放大器,虽然我们离实 现它仅几步之遥,但遗憾的是,它仍然只存在于书本中。因此, 我们致力于提供类型广泛的运算放大器,来满足客户的众多不同 需求。
工作电源电压范围 放大器在额定范围内工作时,能够施加于放大器的电源电压范 围。许多应用的运算放大器电路采用平衡的双电源,但有些应用 出于节能或其它原因而使用单电源。例如,汽车和轮船设备中的 电池电源仅提供一个极性。甚至线路供电的设备,如计算机等, 也可能只有单极性电源,为系统提供+5 V或+12 V直流电源,或者 低至1.8 V,较新的应用使用的电压甚至更低。
• 自稳零运算放大器:<1 µV • 精密运算放大器:50 µV至500 µV • 最佳双极性运算放大器:10 µV至25 µV • 最佳JFET输入运算放大器:100 µV至1000 µV • 最佳双极性高速运算放大器:100 µV至2000 µV • 未调整的CMOS运算放大器:>2 mV • DigiTrim® CMOS运算放大器:<100 µV至1000 µV
精密放大器 (带宽 < 50 MHz)
电流反馈...................................................... . . . . . . . 36
零漂移... . . . . . . . . . . . . . . . . . ....................................... ..... 10 高输出电流................................................... . . . . . . . 37

对数放大器的原理分析

对数放大器的原理分析

对数放大器的原理分析数据放大器(DA)是一种经常被用于放大信号的电子器件,是电子领域中技术的一种基础。

其具有广泛的应用,并且是电子系统和设备的组成部分。

在电子行业中,数据放大器也被称为模拟线性电路,具有灵敏度、动态范围、输出精度等性能参数。

它能够放大信号电压,并以增益比来表示其放大率大小。

其中,对数放大器是放大器中特殊的一类,其具有特殊的结构,放大性能也有许多有利的特点。

对数放大器的构造是一种放大电路,由正常的放大器构成,也可以将它称之为对数缩放器(LDS)。

它以一种特定的放大因子将输入电压缩放到一定范围,从而改变输出信号的大小。

LDS相对于常规数据放大器,具有更好的灵敏度特性和更广泛的动态范围。

为了更好地介绍它,本文将重点介绍其工作原理和应用场景。

对数放大器的工作原理是将输入电压放大到一个较大的范围,再将这个放大的范围分段,每段都建立一个函数关系,可以根据输入电压大小产生不同放大因子。

其中,放大因子的取值取决于输入信号的大小,若输入的信号越大,放大因子就越大。

而在应用场景上,对数放大器主要用于回声抑制系统中,能对输入的信号进行降噪处理。

它也可以用于增益控制、增强信号和获得线性输出。

因此,它往往被用来在特定的地方增加系统输出功率,以有效地改进输出速率。

总之,对数放大器由正常的放大器构成,能够以更高的灵敏度和动态范围来放大信号,从而有效地改善输出速率。

其中,它的工作原理是用来将输入的电压放大到一定的范围,然后分段,每段建立一个函数,根据电压大小产生不同的放大因子。

它的应用场景有增益控制、噪声抑制和获得线性输出,广泛应用在当今大多数电子系统和设备中。

LMV301 CMOS 操作放大器数据表说明书

LMV301 CMOS 操作放大器数据表说明书

DATA SHEET Operational Amplifier,Rail-to-Rail, Low Input BiasCurrent, 1.8 V to 5 VSingle-SupplyLMV301The LMV301 CMOS operational amplifier can operate over apower supply range from 1.8 V to 5 V and has a quiescent current ofless than 200 m A, maximum, making it ideal for portablebattery−operated applications such as notebook computers, PDA’s andmedical equipment. Low input bias current and high input impedancemake it highly tolerant of high source−impedance signal−sources suchas photodiodes and pH probes. In addition, the LMV301’s excellentrail−to−rail performance will enhance the signal−to−noiseperformance of any application together with an output stage capableof easily driving a 600 W resistive load and up to 1000 pF capacitiveload.Features•Single Supply Operation (or $V S/2)•V S from 1.8 V to 5 V•Low Quiescent Current: 185 m A, Max with V S = 1.8 V•Rail−to−Rail Output Swing•Low Bias Current: 35 pA, max•No Output Phase−Reversal when the Inputs are Overdriven•These are Pb−Free DevicesTypical Applications•Portable Battery−Powered Instruments•Notebook Computers and PDAs•Cell Phones and Mobile Communication•Digital Cameras•Photodiode Amplifiers •Transducer Amplifiers •Medical Instrumentation •Consumer ProductsORDERING INFORMATIONPIN CONNECTIONMARKING DIAGRAMSC70−5SQ SUFFIXCASE 419ASTYLES 3See detailed ordering and shipping information in the dimensions section on page 11 of this data sheet.+INV EE−INV CCOUTPUTSTYLE 3 PINOUT+−12354AAD M GGLMV301= Specific Device CodeM= Date CodeG= Pb−Free Package(Note: Microdot may be in either location)*Date Code orientation and/or position mayvary depending upon manufacturing location.MAXIMUM RATINGSSymbol Rating Value Unit V S Power Supply (Operating Voltage Range V S = 1.8 V to 5.0 V) 5.5V V IDR Input Differential Voltage±Supply Voltage V V ICR Input Common Mode Voltage Range−0.5 to (V+) + 0.5V Maximum Input Current10mA t So Output Short Circuit (Note 1)ContinuousT J Maximum Junction Temperature (Operating Range −40°C to 85°C)150°C J A Thermal Resistance (5−Pin SC70−5)280°C/W T stg Storage Temperature−65 to 150°C Mounting Temperature (Infrared or Convection (30 sec))260V ESD ESD ToleranceMachine ModelHuman Body Model 1001500VStresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.1.Continuous short−circuit to ground operation at elevated ambient temperature can result in exceeding the maximum allowed junctiontemperature of 150°C. Output currents in excess of 45 mA over long term may adversely affect reliability. Also, shorting output to V+ will adversely affect reliability; likewise shorting output to V− will adversely affect reliability.Parameter Symbol Condition Min Typ Max Unit Input Offset Voltage V IO T A = −40°C to +85°C 1.79mV Input Offset Voltage Average Drift T C V IO T A = −40°C to +85°C5m V/°C Input Bias Current (Note 2)I B335pAT A = −40°C to +85°C50Common Mode Rejection Ratio CMRR0 V v V CM v 0.9 V 5063dB Power Supply Rejection Ratio PSRR 1.8 V v V CC v 5 V,V O = 1 V, V CM = 1 V62100dBInput Common−Mode Voltage Range V CM For CMRR ≥ 50 dB0 to0.9−0.2to 0.9VLarge Signal Voltage Gain (Note 2)A V R L = 600W83100dBT A = −40°C to +85°C80R L = 2 k W83100T A = −40°C to +85°C80Output Swing V OH R L = 600 W to 0.9 VT A = −40°C to +85°C 1.651.63VV OL R L = 600 W to 0.9 VT A = −40°C to +85°C 75100120mVV OH R L = 2 k W to 0.9 VT A = −40°C to +85°C 1.51.41.76VV OL R L = 2 k W to 0.9 VT A = −40°C to +85°C 253540mVOutput Short Circuit Current (Note 2)I O Sourcing = V O = 0 VSinking = V O = 1.8 V102060160mASupply Current I CC T A = −40°C to +85°C185m A 1.8 V AC ELECTRICAL CHARACTERISTICS (Unless otherwise specified, all limits are guaranteed for T A = 25°C, V CC = 1.8 V, R L = 1 M W, V EE = 0 V, V O = V CC/2)Parameter Symbol Condition Min Typ Max Unit Slew Rate S R1V/m s Gain Bandwidth Product GBWP C L = 200 pF1MHz Phase Margin Q m60°Gain Margin G m10dB Input−Referred Voltage Noise e n f = 50 kHz50nV/√Hz Total Harmonic Distortion THD A V = +1, V − 1 V PP,R L = 10 kW, f = 1 kHz0.01% 2.Guaranteed by design and/or characterization.Parameter Symbol Condition Min Typ Max Unit Input Offset Voltage V IO T A = −40°C to +85°C 1.79mV Input Offset Voltage Average Drift T C V IO T A = −40°C to +85°C5m V/°C Input Bias Current (Note 2)I B335pAT A = −40°C to +85°C50Common Mode Rejection Ratio CMRR0 V v V CM v 1.35 V 5063dB Power Supply Rejection Ratio PSRR 1.8 V v V CC v 5 V,V O = 1 V, V CM = 1 V62100dBInput Common−Mode Voltage Range V CM For CMRR ≥ 50 dB0 to1.35−0.2to1.35VLarge Signal Voltage Gain (Note 2)A V R L = 600 W83100dBT A = −40°C to +85°C80R L = 2 k W83100T A = −40°C to +85°C80Output Swing V OH R L = 600 W to 1.35 VT A = −40°C to +85°C 2.552.532.62VV OL R L = 600 W to 1.35 VT A = −40°C to +85°C 78100280mVV OH R L = 2 k W to 1.35 VT A = −40°C to +85°C 2.652.642.675VV OL R L = 2 k W to 1.35 VT A = −40°C to +85°C 75100110mVOutput Short Circuit Current (Note 2)I O Sourcing = V O = 0 VSinking = V O = 2.7 V102060160mASupply Current I CC T A = −40°C to +85°C185m A 2.7 V AC ELECTRICAL CHARACTERISTICS (Unless otherwise specified, all limits are guaranteed for T A = 25°C, V CC = 2.7 V, R L = 1 M W, V EE = 0 V, V O = V CC/2)Parameter Symbol Condition Min Typ Max Unit Slew Rate S R1V/m s Gain Bandwidth Product GBWP C L = 200 pF1MHz Phase Margin Q m60°Gain Margin G m10dB Input−Referred Voltage Noise e n f = 50 kHz50nV/√Hz Total Harmonic Distortion THD A V = +1, V − 1 V PP,R L = 10 kW, f = 1 kHz0.01% 2.Guaranteed by design and/or characterization.Parameter Symbol Condition Min Typ Max Unit Input Offset Voltage V IO T A = −40°C to +85°C 1.79mV Input Offset Voltage Average Drift T C V IO T A = −40°C to +85°C5m V/°C Input Bias Current (Note 2)I B335pAT A = −40°C to +85°C50Common Mode Rejection Ratio CMRR0 V v V CM v 4 V 5063dB Power Supply Rejection Ratio PSRR 1.8 V v V CC v 5 V,V O = 1 V, V CM = 1 V62100dBInput Common−Mode Voltage Range V CM For CMRR ≥ 50 dB0 to 4−0.2to 4.2VLarge Signal Voltage Gain (Note 2)A V R L = 600 W83100dBT A = −40°C to +85°C80R L = 2 k W83100T A = −40°C to +85°C80Output Swing V OH R L = 600 W to 2.5 VT A = −40°C to +85°C 4.8504.840VV OL R L = 600 W to 2.5 VT A = −40°C to +85°C 150160mVV OH R L = 2 k W to 2.5 VT A = −40°C to +85°C 4.9354.900VV OL R L = 2 k W to 2.5 VT A = −40°C to +85°C 6575mVOutput Short Circuit Current (Note 2)I O Sourcing = V O = 0 VSinking = V O = 5 V101060160mASupply Current I CC T A = −40°C to +85°C200µA 5.0 V AC ELECTRICAL CHARACTERISTICS (Unless otherwise specified, all limits are guaranteed for T A = 25°C, V CC = 5.0 V, R L = 1 M W, V EE = 0 V, V O = V CC/2)Parameter Symbol Condition Min Typ Max Unit Slew Rate S R1V/m s Gain Bandwidth Product GBWP C L = 200 pF1MHz Phase Margin Q m60°Gain Margin G m10dB Input−Referred Voltage Noise e n f = 50 kHz50nV/√Hz Total Harmonic Distortion THD A V = +1, V − 1 V PP,R L = 10 kW, f = 1 kHz0.01% 2.Guaranteed by design and/or characterization.Figure 1. Open Loop Frequency Response (R L = 2 k W, T A = 255C, V S = 5 V)40506070809010010k100k1M10MFigure 2. Open Loop Phase Margin(R L = 2 k W, T A = 255C)FREQUENCY (Hz)PHASEMARGIN(°)100908070605040302010101001k10k100kFigure 3. CMRR vs. Frequency(R L = 5 k W, V S = 5 V)FREQUENCY (Hz)CMRR(dB)Figure 4. CMRR vs. Input Common ModeVoltageINPUT COMMON MODE VOLTAGE (V)CMRR(dB)−1012345Figure 5. CMRR vs. Input Common ModeVoltageINPUT COMMON MODE VOLTAGE (V)CMRR(dB)1009080706050403020101k10k100k1M10MFigure 6. PSRR vs. Frequency(R L = 5 k W, V S = 2.7 V, +PSRR)FREQUENCY (Hz)PSRR(dB)FREQUENCY (Hz)GAIN(dB)−90807060504030201001k10k100k 1M10MFigure 7. PSRR vs. Frequency (R L = 5 k W , V S = 2.7 V, −PSRR)FREQUENCY (Hz)P S R R (d B )10090807060504030201001k10k100k1M10MFigure 8. PSRR vs. Frequency (R L = 5 k W , V S = 5 V, +PSRR)FREQUENCY (Hz)P S R R (d B )10090807060504030201001k10k100k1M10MFigure 9. PSRR vs. Frequency (R L = 5 k W , V S = 5 V, −PSRR)FREQUENCY (Hz)P S R R (d B )Figure 10. V OS vs CMRV CM (V)V O S (m V )Figure 11. V OS vs CMRV CM (V)V O S (m V )Figure 12. Supply Current vs. Supply VoltageSUPPLY VOLTAGE (V)Q U I E S C E N T C U R R E N T (m A )01020304050607080901001.82.22.633.4 3.84.2 4.65Figure 13. THD+N vs Frequency(Hz)(%)−−−−−−−−−−Figure 14. Output Voltage Swing vs SupplyVoltage (R L = 10k)SUPPLY VOLTAGE (V)V O U T R E F E R E N C E D T O V + (V )Figure 15. Output Voltage Swing vs SupplyVoltage (R L = 10k)SUPPLY VOLTAGE (V)V O U T R E F E R E N C E D T O V − (V )−160−140−120−100−80−60−40−20000.51 1.52 2.5Figure 16. Sink Current vs. Output VoltageV S = 2.7 VV OUT REFERENCED TO V − (V)S I N K C U R R E N T (m A )−120−100−80−60−40−200012345Figure 17. Sink Current vs. Output VoltageV S = 5.0 VV OUT REFERENCED TO V − (V)S I N K C U R R E N T (m A )02040608010012000.5 1.0 1.5 2.0 2.5Figure 18. Source Current vs. Output VoltageV S = 2.7 VV OUT REFERENCED TO V+ (V)S O U R C E C U R R E N T (m A)0102030405060708090100110012345Figure 19. Source Current vs. Output VoltageV S = 5.0 VV OUT REFERENCED TO V+ (V)S O U R C E C U R R E N T (m A )Figure 20. Settling Time vs. Capacitive LoadFigure 21. Settling Time vs. Capacitive Load Figure 22. Step Response − Small SignalNon −Inverting (G = +1)Figure 23. Step Response − Small SignalInverting (G = −1)Figure 24. Step Response − Large SignalNon −Inverting (G = +1)R L = 2 k W AV = 150 mV/div 2 m s/divR L = 1 M W AV = 150 mV/div 2 m s/div50 mV/div 2 m s/divOutputInput50 mV/div 2 m s/divOutputInput1 V/div2 m s/divOutputInput1 V/div2 m s/divInverting (G = −1)InputOutput Figure 25. Step Response − Large SignalLMV301APPLICATIONSV VV V V HysteresisrefV OV refV Of o = 1.0 kHzR = 16 k W C = 0.01 m FFigure 26. Voltage Reference Figure 27. Wien Bridge OscillatorFigure 28. Comparator with HysteresisV O +2.5V(1)R2)V ref +12V +12p RCV in L +R1R1)R2(V OL *V ref))V refV in H +R1R1)R2(VOH *V ref))V refH +R1R1)R2(V OH *V OL )For less than 10% error from operational amplifier,((Q O f O )/BW) < 0.1 where f o and BW are expressed in Hz.If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.Given:f o =center frequencyA(f o )=gain at center frequency Choose value f o , CV inFigure 29. Multiple Feedback Bandpass FilterV OThen :R3+Qp f O CR1+R32A(f O )R2+R1R34Q 2R1*R3ORDERING INFORMATIONDevicePinout Style Marking Package Shipping †LMV301SQ3T2GStyle 3AADSC70−5(Pb −Free)3000 / Tape & Reel†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.NOTES:1.DIMENSIONING AND TOLERANCINGPER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: INCH.3.419A−01 OBSOLETE. NEW STANDARD419A−02.4.DIMENSIONS A AND B DO NOT INCLUDEMOLD FLASH, PROTRUSIONS, OR GATEBURRS.DIM AMIN MAX MIN MAXMILLIMETERS1.802.20 0.0710.087INCHESB 1.15 1.350.0450.053C0.80 1.100.0310.043D0.100.300.0040.012G0.65 BSC0.026 BSCH---0.10---0.004J0.100.250.0040.010K0.100.300.0040.012N0.20 REF0.008 REFS 2.00 2.200.0790.087STYLE 1:PIN 1.BASE2.EMITTER3.BASE4.COLLECTOR5.COLLECTOR STYLE 2:PIN 1.ANODE2.EMITTER3.BASE4.COLLECTOR5.CATHODEB0.2 (0.008)M MD 5 PLSTYLE 3:PIN 1.ANODE 12.N/C3.ANODE 24.CATHODE 25.CATHODE 1STYLE 4:PIN 1.SOURCE 12.DRAIN 1/23.SOURCE 14.GATE 15.GATE 2STYLE 5:PIN 1.CATHODEMON ANODE3.CATHODE 24.CATHODE 35.CATHODE 4STYLE 7:PIN 1.BASE2.EMITTER3.BASE4.COLLECTOR5.COLLECTORSTYLE 6:PIN 1.EMITTER 22.BASE 23.EMITTER 14.COLLECTOR5.COLLECTOR 2/BASE 1XXXM GGXXX= Specific Device CodeM= Date CodeG= Pb−Free PackageGENERIC MARKINGDIAGRAM*STYLE 8:PIN 1.CATHODE2.COLLECTOR3.N/C4.BASE5.EMITTERSTYLE 9:PIN 1.ANODE2.CATHODE3.ANODE4.ANODE5.ANODENote: Please refer to datasheet forstyle callout. If style type is not calledout in the datasheet refer to the devicedatasheet pinout or pin assignment.SC−88A (SC−70−5/SOT−353)CASE 419A−02ISSUE LDATE 17 JAN 2013SCALE 2:1(Note: Microdot may be in either location)*This information is generic. Please refer todevice data sheet for actual part marking.Pb−Free indicator, “G” or microdot “G”, mayor may not be present. Some products maynot follow the Generic Marking.TSOP −5CASE 483ISSUE NDATE 12 AUG 2020SCALE 2:115GENERICMARKING DIAGRAM*ǒmm inchesǓ*For additional information on our Pb −Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT**This information is generic. Please refer to device data sheet for actual part marking.Pb −Free indicator, “G” or microdot “ G ”,may or may not be present.XXX = Specific Device Code A = Assembly Location Y = YearW = Work Week G = Pb −Free Package15Discrete/Logic Analog(Note: Microdot may be in either location)XXX = Specific Device Code M = Date Code G = Pb −Free PackageNOTES:1.DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.2.CONTROLLING DIMENSION: MILLIMETERS.3.MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.4.DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLDFLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A.5.OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION.TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2FROM BODY .DIM MIN MAX MILLIMETERSA B C 0.90 1.10D 0.250.50G 0.95 BSC H 0.010.10J 0.100.26K 0.200.60M 0 10 S2.503.00__2XDETAIL ZTOP VIEW1.35 1.652.853.15PUBLICATION ORDERING INFORMATIONTECHNICAL SUPPORTLITERATURE FULFILLMENT:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模电实验报告
综合实验三数据放大器
实验原理:
放大电路比较简单的实现方法是集成运放组成的反相或同相等比例电路,虽然这些电路可以达到较高的精度,但仍不能满足某些特殊要求。

例如,在测量技术中常需把桥路的双端输出差模小信号放大并把它转换成单端输出信号,而且要求电路对共模信号具有相当强的抑制能力。

这种情况下,需采用图6-3-1所示的数据放大器。

图6-3-1 数据放大器
图中虚线的右边是数据放大器,左边是桥路,其中电路R(1+δ)是电阻型传感器(例如热敏电阻)的等效电阻,它的阻值(或者说δ)随被测物理量的大小变化,因
而U X也随之改变。

U X和参考电压U R分别送到数据放大器的两个输入端,作为数据放大器的输入信号,它含有差模成分,也含有共模成分,而已后者往往大于前者,因此数据放大器的共模抑制比必须足够大,才能将误差减小到足够小的程度。

由于本电路最后一级的差动电路在R f/R1和R3/R2不精确相等时,共模抑制比急剧下降。

所以必须在前级即A1、A2组成的电路中,设法将差模信号放大若干倍(例如1000倍)而对共模输入信号只起跟随作用,那么送到后级的差模信号与共模信号的幅值之比将得到提高。

因此,会降低后级差放电路对电阻匹配精度及芯片性能的要求。

图6-3-1电路可以实现上述意图。

电阻R1上的电流是:
运放A1与A2输出电压之差是:
则:
若取(R1=100Ω,R2=50kΩ),则U12=1000U Id(U Id=U i1-U i2),即可将差模信号放大1000倍。

对于共模信号U IC=(U i1+U i2)/2=U I1=U I2,电阻R1的电流等于零(设A1和A2的特性一致),因此U01=U02=U IC。

以上结果表明,A1和A2组成的电路能够将差模信号与共模信号之比提高了2R2/R1倍。

所以即使后一级电路的共模抑制比不高,电阻的匹配也不很好,仍然可以很好地抑制共模信号。

实验结果:
在multisim 中连接电路,得到的电路图如下:
一.仿真时,Vcc=5mV
1.在差模情况下,测得三个运放的输入和输出电压分别如下表(10p R K =Ω,接入15%):
Ui1 Uo1 Ui2 Uo2 Uo 2.472mV
-238.851mV
2.966mV
253.494mV
4.936V
由表中数据可得,前级差模电压放大倍数为
()o21
ud121253.494238.851U A 9972.966 2.472
o i i U U U ---=
==--。

整个数据放大器的差模放大倍数为321 4.936
A 1099922.966 2.472
o ud i i U U U =
=⨯=--。

2.调节滑变,使Ui1=Ui2,测得其在共模情况下时的输入和输出电压分别如下(10p R K =Ω,接入20%):
Ui1 Uo1 Ui2 Uo2 Uo 2.472mV
7.074mV
2.472mV
7.074mV
12.951mV
由表中数据可得,前级共模电压放大倍数为1uc117.074
A 2.862.472
o i U U =
==。

后级共模电压放大倍数为2112.951
A 1.837.074
o uc o U U =
==,整个数据放大器的共模放大倍数为12A 2.86 1.83 5.23uc uc uc A A =⋅=⨯=。

则综上,电路的共模抑制比为K /9992/5.231911CMRR ud uc A A ===。

二.实际电路操作, Vcc=5mV
1.在差模信号作用下,测得三个运放的输入和输出电压分别如下表: Ui1 Uo1 Ui2 Uo2 Uo
2.3mV
-321.2mV
3.0mV
313.3mV
6.16V
由表中数据可以得到,其前级差模电压放大倍数为
()o21ud121313.3321.2U A 9063.0 2.3
o i i U U U ---=
==--。

整个数据放大器的放大倍数为3021U 6.16
A 1088003.0 2.3
i i U U =
=⨯=--.
2.调节滑变,,使21i U i U =,测得其在共模作用下的输入输出电压值分别如下表所示: Ui1 Uo1 Ui2 Uo2 Uo 182mV
198mV
187mV
202mV
582mV
由表中数据可得,前级共模电压放大倍数为1uc11198
A 1.09182
o i U U =
==。

后级共模
电压放大倍数为21582
A 2.94198
o uc o U U =
==,整个数据放大器的共模放大倍数为12A 1.09 2.94 3.20uc uc uc A A =⋅=⨯=。

则综上,电路的共模抑制比为K /8800/3.202750CMRR ud uc A A ===。

从整个输入输出来看,该数据放大器仍然有较好的差模放大能力和共模抑制能力。

相关文档
最新文档