正弦定理和余弦定理知识点与题型归纳
正余弦定理知识点及题型归纳
正余弦定理是三角学中的重要知识点,用于解决与三角形相关的问题。
下面是对正余弦定理的知识点及题型归纳:一、正弦定理1. 定义:在任意三角形ABC中,设角A、B、C所对应的边分别为a、b、c,那么有sinA/a = sinB/b = sinC/c。
2. 性质:-等式两边同时乘以任意非零常数,等式仍然成立;-等式两边同时除以相同的角,等式仍然成立;-等式两边同时取反函数,等式仍然成立。
3. 应用:-已知三个角的度数,求边长;-已知两个边的长度,求第三个边的长度;-已知一个角和一条边的长度,求另外两个角的度数;-已知一个角和两条边的长度,求第三个角的度数。
二、余弦定理1. 定义:在任意三角形ABC中,设角A、B、C所对应的边分别为a、b、c,那么有cosA = (b ²+ c²- a²) / (2bc)。
2. 性质:-等式两边同时乘以任意非零常数,等式仍然成立;-等式两边同时除以相同的角,等式仍然成立;-等式两边同时取反函数,等式仍然成立。
3. 应用:-已知三个角的度数,求边长;-已知两个边的长度,求第三个边的长度;-已知一个角和一条边的长度,求另外两个角的度数;-已知一个角和两条边的长度,求第三个角的度数。
三、题型归纳1. 已知三个角的度数,求边长:-根据正弦定理或余弦定理,将已知的角度代入公式中,求解边长;-如果已知的是弧度制的角度,需要将其转换为角度制。
2. 已知两个边的长度,求第三个边的长度:-根据正弦定理或余弦定理,将已知的两个边的长度代入公式中,求解第三个边的长度;-如果已知的是弧度制的角度,需要将其转换为角度制。
3. 已知一个角和一条边的长度,求另外两个角的度数:-根据正弦定理或余弦定理,将已知的角度和边的长度代入公式中,求解另外两个角的度数;-如果已知的是弧度制的角度,需要将其转换为角度制。
4. 已知一个角和两条边的长度,求第三个角的度数:-根据正弦定理或余弦定理,将已知的角度和两条边的长度代入公式中,求解第三个角的度数;-如果已知的是弧度制的角度,需要将其转换为角度制。
正弦定理、余弦定理知识点
正弦定理、余弦定理1. 三角形常用公式:A +B +C =π;S =21ab sin C =21bc sin A ==21ca sin B ; 2.三角形中的边角不等关系:A>B ⇔a>b,a+b>c,a-b<c ;; 3.正弦定理:A a sin =B b sin =Ccsin =2R (外接圆直径); 正弦定理的变式:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2; a ∶b ∶c =sin A ∶sin B ∶sin C .4.正弦定理应用围:①已知两角和任一边,求其他两边及一角. ②已知两边和其中一边对角,求另一边的对角.③几何作图时,存在多种情况.如已知a 、b 及A ,求作三角形时,要分类讨论,确定解的个数. 已知两边和其中一边的对角解三角形,有如下的情况: (1)A 为锐角babaabaBACACA Ba=bsin A bsin A<a<b a b ≥一解 两解 一解(2)A 为锐角或钝角 当a>b 时有一解.5.余弦定理 a 2=b 2+c 2-2bccosA .c 2=a 2+b 2-2abcosC .b 2=a 2+c 2-2accosB . 若用三边表示角,余弦定理可以写为、6.余弦定理应用围:(1)已知三角形的三条边长,可求出三个角; (2)已知三角形的两边及夹角,可求出第三边. 7 . 三角形面积公式课堂互动知识点1 运用判断三角形形状例题1在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.【分析】利用正弦定理或余弦定理判断三角形形状,可以将三角形中的边用角表示,也可将角用边来表示.从中找到三角形中的边角关系,判断出三角形的形状.【答案】解法1:由扩充的正弦定理:代入已知式 2RsinAcosB=2RsinBcosAsinAcosB-cosAsinB=0 , sin(A-B)=0A-B=0 ∴A=B 即△ABC 为等腰三角形解法2:由余弦定理: 22222222bca cb b ac b c a a -+⋅=-+⋅22b a =∴b a = 即△ABC 为等腰三角形.巩固练习1.在∆ABC 中,若2222sin sin 2cos cos b C c B b B C +=,试判断三角形的形状.2.在ABC ∆中,已知a 2tanB=b 2tanA,试判断这个三角形的形状. 3.已知ABC ∆中,有cos 2cos sin cos 2cos sin A C BA B C+=+,判断三角形形状.知识点2 运用正、余弦定理解三角形解三角形问题中正、余弦定理的选择:(1)在下述情况下应首先使用余弦定理:①已知三条边(边边边),求三个角;②已知两边和它们的夹角(边角边),求其它一边和两角;(2)在下述情况下应首先使用正弦定理:①已知两边和一边的对角(边边角),求其它一边和两角;②已知两角和任一边(角角边、角边角),求其它两边和一角. 例题2 在△ABC 中,已知3=a ,2=b ,B=45︒ 求A 、C 及c .【分析】在解斜三角形应用过程中,注意要灵活地选择正弦定和余弦定理,解得其它的边和角【答案】解法1:由正弦定理得:23245sin 3sin sin === b B a A ∵B=45︒<90︒即b <a ∴A=60︒或120︒当A=60︒时C=75︒22645sin 75sin 2sin sin +===BCb c 当A=120︒时C=15︒22645sin 15sin 2sin sin -===B C b c解法2:设c =x 由余弦定理B ac c a b cos 2222-+=将已知条件代入,整理:0162=+-x x 解之:226±=x 当226+=c 时2)13(231226223)226(22cos 22221=++=+⋅⋅-++=-+=bc a c b A 从而A=60︒,C=75︒ 当226-=c 时同理可求得:A=120︒ C=15︒. 巩固练习1.已知在ABC ∆中,,6,45︒=∠A 在ABC ∆中,13,2tan tan +=-=c b b b c B A ,求三角3.在ABC ∆中,已知A 、B 、C 34,求三边a 、b 、c .4.在ABC ∆中,已知B C A 2=+3+,求又知顶点C 的对边C 上的高等于34,求三角形各边知识点3 例题3 已知A 、B 、C 为锐角,围确定角.本题应先求出A+B 和C A+B+C .【答案】 A B C 、、为锐角∴0°tan()tan tan tan tan A B A B A B +=+-⋅=-112[tan()tan ()A B C A B ++=+=-+⋅tan()tan A B C 1=--⨯133()所以A+B+C=πsin sin sin sin cos 22236ααββ-++=221336-+=(cos cos sin sin )αβαβ--=-25936cos()αβ∴-=cos()αβ5972巩固练习1.在∆ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,设a+c=2b,A-C=3π,求sinB 的值. 2.在∆ABC 中,a ,b ,c 分别是∠∠∠A B C ,,的对边长,已知a ,b ,c 成等比数列,且a c ac bc 22-=-,求∠A 的大小及b Bcsin 的值. 3.在ABC ∆中,若4,5==b a且3231)cos(=-B A ,求这个三角形的面积. 例题4 在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c,证明:C B A cb a sin )sin(222-=-.【分析】在用三角式的恒等变形证明三角形中的三角等式时,其解题的一般规律是:二项化积、倍角公式,提取公因式,再化积.遇有三角式的平方项,则利用半角公式降次.【答案】证法一:由正弦定理得C A B C B A c b a 2222222sin 22cos 2cos sin sin sin -=-=-=C A B A B 2sin 2)sin()sin(2-+-=CB AC 2sin )sin(sin -=C B A sin )sin(-.证法二:由余弦定理得a 2=b 2+c 2-2bccosA,则222c b a -=22cos 2c A bc c -=1-c b 2∙cosA,又由正弦定理得c b =C Bsin sin ,∴222c b a -=1-C B sin sin 2∙cosA=C A B C sin cos sin 2sin -=C A B B A sin cos sin 2)sin(-+=C A B B A sin cos sin cos sin -=C B A sin )sin(-. 证法三:C B A sin )sin(-=CAB B A sin cos sin cos sin -. 由正弦定理得cbC B c a C A ==sin sin ,sin sin ,∴CB A sin )sin(-=cAb B a cos cos -,又由余弦定理得CB A sin )sin(-=cbc a c b b ac b c a a 22222222-+⋅--+⋅=22222222)()(c a c b b c a -+--+=222c b a -.巩固练习1.已知锐角三角形ABC 中,3sin()5A B +=,1sin()5A B -=. (1)求证tan 2tan A B =;(2)设3AB =,求AB 边上的高.【考题再现】1.(04年全国Ⅲ)在ABC ∆中,3AB =,BC =4AC =,则边AC 上的高(A )3(B )2(C )32(D )2.(05年卷)已知在△ABC 中,sinA (sinB +cosB )-sinC =0,sinB +cos2C =0,求角A 、B 、C 的大小.3.(2005年春季)在△ABC 中,sin A +cos A =22,AC =2,AB =3,求tan A 的值和△ABC 的面积. 4. (05年卷)ABC ∆中,3A π=,3BC =,则ABC ∆的周长为(A )33B π⎛⎫++ ⎪⎝⎭ (B )36B π⎛⎫++ ⎪⎝⎭(C )6sin 33B π⎛⎫++ ⎪⎝⎭ (D )6sin 36B π⎛⎫++ ⎪⎝⎭ 5.(06年卷)若ABC ∆的角A 满足2sin 23A =,则sin cos A A +=B .C .53D .53- 6.(2006年卷)如果111A B C ∆的三个角的余弦值分别等于222A B C ∆的三个角的正弦值,则( )A .111ABC ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形 C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形【模拟训练】1.(2004年市区二模题)在∆ABC 中,cos2cos2B A >是A B >的() (A ) 充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件2.(04年市二模题)在∆ABC 中,A ,B ,C 为三角形的三个角,且A B C <<,4sin 5B =4cos(2)5A C +=-,求cos2A 的值3.(04年华南师大附中)在∆ABC 中,,,a b c 分别为角,,A B C 的对边,且274sin cos 222B C A +-= (1)求A ∠的度数(2)若a =3b c +=,求b 和c 的值4.(05年市基地学校联考) 在∆ABC 中,边AB 为最长边,且2sin sin 4A B ⋅=,则cos cos A B ⋅的最大值是5.(06年八校第二次联考)已知关于x 的方程22cos cos 2sin02Cx x A B -⋅+=的两根之和等于两根之积的一半,则ABC ∆一定是(A )直角三角形(B )钝角三角形(C )等腰三角形(D )等边三角形.6.(06年黄岗市荆州市高三年级模拟)已知ABC ∆的三个角为A 、B 、C 所对的三边为a 、b 、c ,若ABC ∆的面积为222()S a b c =--,则tan2A=__________. 教考在证明三角形问题或者三角恒等式时,要注意正弦定理、余弦定理的适用题型与所证结论的联系,并注意特殊正、余弦关系的应用,比如互补角的正弦值相等,互补角的余弦值互为相反数等;另外,在三角恒等式的证明或者三角形形状的判断,关键是正、余弦定理的边角互换.运用正、余弦定理求解三角形的有关问题,要非常熟悉了三角函数公式及三角形的有关性质,如三角函数的定义、勾股定理、正弦定理、余弦定理是常用的工具,同时注意三角形面积公式ah S 21=,C ab S sin 21=,还要注意三角形角和π=++C B A 的制约关系,此外,要对常见解题方法与解题技巧的总结,这样才能不断提高三角形问题的求解能力.参考答案课堂互动例题1 巩固练习1.【答案】[解法1]:由正弦定理2sin sin sina b cRA B C===,R为∆ABC外接圆的半径,将原式化为22228sin sin8sin sin cos cosR B C R B C B C=,sin sin0B C≠,sin sin cos cosB C B C∴=.即cos()0B C+=,90B C∴+=,90A=.故∆ABC为直角三角形[解法2]:将已知等式变为2222(1cos)(1cos)2cos cosb Cc B b B C-+-=,由余弦定理可得22222222222222a b c a c bb c b cab ac⎛⎫⎛⎫+-+-+-⋅-⋅⎪ ⎪⎝⎭⎝⎭222222222a cb a b cbcac ab+-+-=⋅⋅,即22b c+22222222()()4a b c a c ba⎡⎤+-++-⎣⎦=也即222b c a+=,故∆ABC为直角三角形.2.【答案】解法1:由已知得AAbBBacossincossin22=,由正弦定理得AABBBAcossinsincossinsin22=,∵sinAsinB≠0,∴sinAcosA=sinBcosB,即sin2A=sin2B,∴2A=2B或2A=1800-2B,即A=B或A+B=900.∴ABC∆是等腰三角形或直角三角形.解法2: 由已知得AAbBBacossincossin22=,由正弦定理得AabbacoscosB22=,即AbacoscosB=,又由余弦定理得bcacbba22acb-ca222222-+=+,整理得(a2-b2)(a2+b2-c2)=0,∴a=b,或a2+b2=c2,∴ABC∆是等腰三角形或直角三角形.3.解:由已知得例题2 巩固练习1.【答案】解法1:由正弦定理,得2345sin 26sin =︒=C 因3226sin =⨯=⋅A AB 6,2==AB BC 由623<<,则有二解,即︒=∠60C 或︒=∠120C︒=︒-︒-︒=∠754560180B 或︒=︒-︒-︒=∠1545120180B故13sin sin +=⇒⋅=AC B ABCAC 或13-=AC ,︒=∠︒=∠15,120B C ︒=∠︒=∠75,60B C解法2:令AC=b ,则由余弦定理222245cos 62)6(=︒-+b b 1302322±=⇒=+-b b b又C b b cos 222)6(222⋅-+=︒=∠±=⇒60,21cos C C 或︒=∠120C ︒=︒+︒-︒=∠⇒75)6045(180B 或︒=︒+︒-︒=∠15)12045(180B .2【答案】由已知有bcB A 21tan tan =+,化简并利用正弦定理: B C B A B A B A sin sin 2sin cos sin cos cos sin =+BCB A B A sin sin 2sin cos )sin(=+0cos sin 2sin =-AC C由0sin ≠,故︒=⇒=6021cos A A 由213+=cb,可设k c k b 2,)13(=+=,由余弦定理,得k a k k k a 6)13(24)13(22222=⇒+-++=由正弦定理Cc A a sin sin =得226232sin sin =⋅==kk a A c C 由b c <则C 是锐角,故︒=--︒=︒=75180,45C A B C3.【答案】由已知,得2C A B +=,又由︒=++180C B A ︒=⇒60B 故4160cos sin sin 2=︒=C A ① 又由B c a S ABC sin 2134⋅⋅==∆164334=⇒=⇒ac ac ② 故64)sin ()sin (sin sin 22===C c A a C A ac 8sin sin ==⇒Cc A a由3460sin 8sin 8sin sin =︒⋅=⋅==B AB a b则21260cos cos 222=-+=︒=ac b c a B即964848)(3)(222=+=+⇒=-+c a ac b c a 64=+⇒c a ③ 把③与②联立,得)26(2),26(2-=+=c a 或)26(2),26(2+=-=c a4.【答案】由已知B C A 2=+,及︒=+︒=⇒︒=++120,60180C A B C B A由CA CA C A tan tan 1tan tan )tan(-+=+及32tan tan ,3)tan(+=⋅-=+C A C A得33tan tan +=+C A ,以C A tan ,tan 为一元二次方程032)33(2=+++-x x 的两个根,解方程,得⎩⎨⎧+==32tan 1tan C A 或⎩⎨⎧=+=1tan 32tan C A ⎩⎨⎧︒=︒=⇒7545C A 或⎩⎨⎧︒=︒=4575C A 若︒=︒=75,45C A ,则860sin 34=︒=a ,6445sin 34=︒=b ,)13(445sin 75sin 8sin sin +=︒︒==A C a c若︒=︒=45,75C A ,则︒=60sin 34a ︒==75sin 34,8b )13(64-=)623(4-=)13(8sin sin -==B C b c 例题3 巩固练习1.【答案】由正弦定理和已知条件a+c=2b,得sinA+sinC=2sinB.由和差化积公式,得2sin 2C A +cos 2C A -=2sinB. 由A+B+C=π得sin 2C A +=cos 2B .又A-C=3π,得2cos 23B =sinB.∴2cos 23B=2sin 2B cos 2B ,∵0<2B <2π,∴cos 2B ≠0,∴sin2B =43.∴cos 2B =2sin 12B -=413,∴sinB=2sin 2B cos 2B =2∙43∙413=839. 2.【答案】(I ) a b c ,,成等比数列∴=b ac 2又a c ac bc 22-=-∴+-=b c a bc 222在∆ABC 中,由余弦定理得cos A b c a bc bc bc =+-==2222212∴∠=︒A 60(II )在∆ABC 中,由正弦定理得sin sin B b A a=∴=︒=︒=b B c b ca sin sin sin 2606032.3.【答案】解法1:由余弦定理得c c bc a c b A 892cos 2222-=-+=cc ac b c a B 1092cos 2222+=-+=由正弦定理得:B A B A sin 45sin sin 4sin 5=⇒=3231)cos 1(4510989222=-++⋅-⇒B c c c c3231])109(1[4580812224=+-+-c c c c 63632318016282222=⇒=⇒=-⇒c c cc故1694893689cos 2=-=-=c c A 7165sin =A 4715sin 21=⋅⋅=∆A c b S ABC 解法2:如图,作B A CAD -=∠,AD 交BC 于D ,令x CD = 则由5=a 知,x AD x BD -=-=5,5,在CAD ∆中由余弦定理3231)5(84)5()cos(222=--+-=-x x x B A 化简得199=⇒=x x ,在CAD ∆中由正弦定理 )sin(4)sin(sin )sin(sin B A B A CD ADC B A CD C AD -=-⋅=⇒-=783)(cos 142=--=B A 74158735421sin 21=⨯⨯⨯=⋅⋅=∆C BC AC S ABC例题4 巩固练习1.【答案】(1)证明:因为3sin()5A B +=,1sin()5A B -=, 所以3sin cos cos sin 51sin cos cos sin 5A B A B A B A B ⎧+=⎪⎪⎨⎪-=⎪⎩,2sin cos 51cos sin 5A B A B ⎧=⎪⎪⇒⎨⎪=⎪⎩,tan 2tan A B ⇒=.所以tan 2tan A B =(2)因为2A B ππ<+<,3sin()5A B +=, 所以3tan()4A B +=-,即tan tan 31tan tan 4A B A B +=--, 将tan 2tan A B =代入上式并整理得22tan 4tan 10B B --=.解得2tan 2B =,舍去负值得2tan 2B +=,从而tan 2tan 2A B ==. 设AB 边上的高为CD.则tan tan CD CD AB AD DB A B =+=+=AB=3,得CD=2+AB边上的高等于2考题再现1.【答案】由余弦定理,得1cos 2A =,60A ︒=,所以AC边上的高sin BD AB A =⋅=选B.2.【答案】解法1:由0sin )cos (sin sin =-+C B B A 得.0)sin(cos sin sin sin =+-+B A B A B A 所以.0sin cos cos sin cos sin sin sin =--+B A B A B A B A 即.0)cos (sin sin =-A A B 因为),,0(π∈B 所以0sin ≠B ,从而.sin cos A A =由),,0(π∈A 知.4π=A 从而π43=+C B . 由.0)43(2cos sin 02cos sin =-+=+B B C B π得即.0cos sin 2sin .02sin sin =-=-B B B B B 亦即由此得.125,3,21cos ππ===C B B 所以,4π=A .125,3ππ==C B 解法2: 由).223sin(2cos sin 02cos sin C C B C B -=-==+π得由B <0、π<c ,所以.22223ππ-=-=C B C B 或即.22232ππ=-=+B C C B 或由0sin )cos (sin sin =-+C B B A 得.0)sin(cos sin sin sin =+-+B A B A B A 所以.0sin cos cos sin cos sin sin sin =--+B A B A B A B A 即.0)cos (sin sin =-A A B 因为0sin ≠B ,所以.sin cos A A =由.4),,0(ππ=∈A A 知从而π43=+C B ,知B+2C=23π不合要求. 再由π212=-B C ,得.125,3ππ==C B 所以,4π=A .125,3ππ==C B .3.【答案】解法1:∵sin A +cos A =2cos (A -45°)=22,∴cos (A -45°)=21. 又0°<A <180°,∴A -45°=60°,A =105°. ∴tan A =tan (45°+60°)=3131-+=-2-3.∴sin A =sin105°=sin (45°+60°)=sin45°cos60°+cos45°sin60°=462+. ∴S △ABC =21AC ·AB sin A =21·2·3·462+=43(2+6).4.【答案】在ABC ∆,由正弦定理得3sin sin sin sin 3AC AB BC B C A π====∴(),3AC B AB C A B B ππ⎛⎫===-+=+⎡⎤ ⎪⎣⎦⎝⎭∴周长为AB AC BC ++sin sin 33B B π⎤⎛⎫=+++ ⎪⎥⎝⎭⎦3sin 322B B ⎫=++⎪⎪⎭6sin 36B π⎛⎫=++ ⎪⎝⎭ 5.【答案】由sin2A =2sinAcosA >0,可知A 这锐角,所以sinA +cosA >0,又25(sin cos )1sin 23A A A +=+=,故选A. 6.【答案】111A B C ∆的三个角的余弦值均大于0,则111A B C ∆是锐角三角形,若222A B C ∆是锐角三角形,由211211211sin cos sin()2sin cos sin()2sin cos sin()2A A A B B B C C C πππ⎧==-⎪⎪⎪==-⎨⎪⎪==-⎪⎩,得212121222A A B B C C πππ⎧=-⎪⎪⎪=-⎨⎪⎪=-⎪⎩,那么,2222A B C π++=,所以222A B C ∆是钝角三角形.故选D .模拟训练- .- -.可修编- 1.【答案】2222cos 2cos 212sin 12sin sin sin B A B A B A >⇔->-⇔<⇔sin sin A B A B >⇔>2.【答案】∵A B C <<,A B C π++=,∴0,022B A C ππ<<<+<,由4sin 5B = 得3cos 5B =,∴4sin()5A C +=,()3cos 5A C +=-又由4cos(2)5A C +=-得3sin(2)5A C += ∴()33447sin sin 2()555525A A C A C ⎛⎫⎛⎫=+--=⨯---⨯=⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭2527cos 212sin 625A A =-=. 3.【答案】由题意得[]2721cos()2cos 12B C A -+-+=()2721cos 2cos 12A θ+-+=∴1cos 2A =03A π<< 2221cos 22b c a A bc +-==()223b c a bc +-=将3a b c =+=代入得2,bc =由3b c +=及2bc =,得1,2b c ==或2,1b c ==.4.【答案】因为cos cos sin sin cos()1A B A B A B ⋅+⋅=-≤,易得cos cos A B ⋅. 5.【答案】由题意可知:211cos cos cos 2sin 222C C A B -=⋅⋅=,从而2cos cos 1cos()1cos cos sin sin A B A B A B A B =++=+-cos cos sin sin 1A B A B +=,cos()1A B -=又因为A B ππ-<-<所以0A B -=,所以ABC ∆一定是等腰三角形选C6.【答案】1sin 2S bc A =,222()S a b c =--,2222cos a b c bc A =+-, ∴1sin 22cos 2bc A bc bc A =-,∴22sin 11cos 2tan 4sin 22sin cos 22A A A A A A -===。
正余弦定理知识点及高考考试题型整理学生理
正、余弦定理一、知识总结 (一)正弦定理1.正弦定理:2,sin sin sin a b cR A B C===其中R 是三角形外接圆半径. 2.变形公式:(1)化边为角:(2)化角为边:(3)(4).3、正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(解唯一)(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. (解可能不唯一)在△ABC 中,已知a 、b 和A 时,解的情况如下:a =b sin A b sin A <a <b a ≥b a >b 1.余弦定理: 2222cos a b c bc A =+-2222cos c a b ab C =+-2222cos b a c ac B =+-2.变形公式:222222222cos ,cos ,cos .222b c a a c b a b c A B C ab ac ab+-+-+-===.注:2a >22c b +⇒A 是钝角;2a =22c b +⇒A 是直角;2a <22c b +⇒A 是锐角;2sin ,2sin ,2sin ;a R A b R B c R C ===sin ,sin ,sin ;222a b cA B C R R R ===::sin :sin :sin a b c A B C =2sin sin sin sin sin sin a b c a b c RA B C A B C ++====++3.余弦定理可以解决的问题:(1)已知三边,求三个角;(解唯一)(2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一):4.由余弦定理判断三角形的形状a2=b2+c2⇔A是直角⇔△ABC是直角三角形,a2>b2+c2⇔A是钝角⇔△ABC是钝角三角形,a2<b2+c⇔A是锐角/△ABC是锐角三角形。
(注意:A是锐角/ △ABC是锐角三角形,必须说明每个角都是锐角)(三) ΔABC的面积公式:(1)1() 2a aS a h h a= 表示边上的高;(2)111sin sin sin() 2224abcS ab C ac B bc A RR====为外接圆半径;(3)1()() 2S r a b c r=++为内切圆半径(四) 实际问题中的常用角1.仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图①)2.方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②)注:仰角、俯角、方位角的区别是:三者的参照不同。
(经典)正弦定理、余弦定理知识点总结及最全证明
正弦定理、余弦定理知识点总结及证明方法1.掌握正弦定理、 余弦定理,并能解决一些简单的三角形胸怀问题.2.能够运用正弦定理、 余弦定理等知识和方法解决一些与丈量和几何计算相关的实质问题.主要考察相关定理的应用、三角恒等变换的能力、运算能力及转变的数学思想.解三角形经常作为解题工具用于立体几何中的计算或证明,或与三角函数联系在一同求距离、高度以及角度等问题,且多以应用题的形式出现.1. 正弦定理(1) 正弦定理:在一个三角形中, 各边和它所对角的正弦的比相等, 即 .其 中 R 是三角形外接圆的半径.(2) 正弦定理的其余形式:, c① a = R A , b =2 sin=;a②sin A =2R , sin B =,sin C = ;③a ∶b ∶c =______________________.2. 余弦定理——王彦文 青铜峡一中(1) 余弦定理:三角形中任何一边的平方等于其余两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=,b 2=,c 2=.,即为勾若令 C =°,则 c 2=90股定理.(2) 余 弦 定 理 的 变 形 : cosA= , cosB = ,cosC = .若 C 为锐角,则 cosC>0,即 a 2+ b 2 ______c 2;若 C 为钝角,则 cosC<0,即 a 2+b 2______c 2. 故由 a 2 +b 2 与 c 2 值的大小比较,能够判断 C 为锐角、钝角或直角.(3) 正、余弦定理的一个重要作用是实现边角____________,余弦定理亦能够写成 sin 2A= sin 2B + sin 2C - 2sin Bsin CcosA ,近似地,sin 2B = ____________ ; sin 2C =__________________.注意式中隐含条件 A + B +C =π.3. 解斜三角形的种类(1) 已知三角形的随意两个角与一边,用____________定理.只有一解.(2) 已知三角形的随意两边与此中一边的对 角 , 用 ____________ 定 理 , 可 能 有___________________.如在△ ABC 中,已知 a , b 和 A 时,解的状况如表:A 为钝角A 为锐角或直角图 形关 a = b A aa ≥b a b 系 b A sin <b> 式 sin <解 的 ① ② ③ ④ 个 数(3) 已知三边,用 ____________定理.有1解时,只有一解.(4) 已知两边及夹角,用 ____________定理,必有一解.4. 三角形中的常用公式或变式(1) 三角形面积公式 S △= == ____________ = ____________ =____________.此中 R ,r 分别为三角形外接圆、内切圆半径.,(2) A + B + C =π,则 A =__________A= __________ , 从 而sin A =2____________,cosA = ____________ , tan A =____________;A Asin 2= __________, cos 2=__________,Atan 2 = ________.tan A + tan B + tan C =__________.(3) 若三角形三边 a ,b ,c 成等差数列,则b =____________? 2sin B =____________?2B A -C A + C A - C A2sin 2= cos2 ? 2cos 2 = cos 2 ? tan 2C 1tan 2=3.【自查自纠】. a bc R1(1)sin A = sin B =sin C = 2R BRC ② bc(2) ①2 si2 siRR2 2③ s in A ∶sin B ∶sin C2. (1) b 2+c 2-2bccosA c 2+a 2- 2cacosB a 2 +b 2-2abcosC a 2+ b 2b 2 +c 2-a 2c 2+a 2-b 2a 2 +b 2-c 2>(2)2ca2ab2bc<(3) 互化sin 2C +sin 2A -2sin Csin AcosBsin 2A + sin 2B -2sin Asin BcosC3.(1) 正弦 (2) 正弦 一解、两解或无解①一解 ②二解 ③一解 ④一解 (3) 余弦 (4) 余弦.11 1 abc(1) ab sin C bc s inA ac s in B2 22R412( a +b +c) rπ B +C(2) π- ( B + C)2 - 2sin( B +C-cos( B +C) )- tan( B + C cos B +CsinB + C) 2 21 B +Ctan 2A B C (3)a + csin A + sin C tan tan tan2在△ABC中, A B 是A B 的()>sin >sinA.充足不用要条件B.必需不充足条件C.充要条件D.既不充足也不用要条件解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选 C.在△ABC中,已知 b=, c=,B=°,则61030解此三角形的结果有 ()A.无解B.一解C.两解D.一解或两解解:由正弦定理知 sin C=c·sin B5b=6,又由c>b>csin B知, C有两解.也可依已知条件,画出△ ABC,由图知有两解.应选 C.( 2013·陕西 ) 设△ ABC的内角 A, B, C所对的边分别为 a, b, c,若b cos C+ c cos B=a sin A,则△ ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确立C+解:由已知和正弦定理可得BC B =A· A ,即sin cos=sin sin sin sin( B +C cos A)sinA A,亦即sinA=A因为Aπ,sin sin sin.0< <π所以 sin A=1,所以 A= 2.所以三角形为直角三角形.应选.B( 2012·陕西 ) 在△ ABC中,角 A,B,C 所对的π边分别为 a,b,c. 若 a=2,B=6,c=23,则 b=________.解:由余弦定理知b2=a2+c2- 2accosB=π222 +( 23)-2×2×2 3×cos 6= 4, b= 2.在△ABC中,角A,B,C 所对的边分别为a,b,c,若 a= 2,b=2,sin B+cosB= 2,则角 A 的大小为 ________.解:∵ sin B+ cosB=2,ππ∴2sin B+4= 2,即 sin B+4=1.πππ又∵ B∈(0 ,π ) ,∴ B+4=2, B=4 .a b依据正弦定理sin A=sin B,可得sin A=asin B1=.b2ππ∵a<b,∴ A<B. ∴ A=6 . 故填6 .种类一正弦定理的应用△ABC的内角A,B,C的对边分别为a,b,c,已知 A- C=90°, a+ c= 2b,求 C.解:由 a+c= b 及正弦定理可得sinA2+s in C= 2sin B.又因为 A- C=90°, B=180°- ( A+ C) ,故 cosC+ sin C= sin A+sin C= 2sin( A+ C) =2sin(90 °+ 2C) = 2sin2(45 °+ C) .∴2 sin(45° +C=2 2 sin(45° +)C)cos(45 °+ C) ,41即 cos(45 °+ C) =2.又∵ 0°< C<90°,∴ 45°+ C=60°,C =15°.【评析】利用正弦定理将边边关系转变为角角关系,这是解本题的重点.( 2012·江西 ) 在△ ABC中,角 A,B,C 的对边分别为a, b,c已知 A=π,bsinπ+C -.44c sinπ+B =a4.π(1)求证: B-C=2;(2)若 a= 2,求△ ABC的面积.解:(1)证明:对bπ+C-sin4csin π+ B= a应用正弦定理得4B π+ C -sinCπ+B =sinA,sin sin4sin422即sin B2 sin C+2 cosC-sinC222,整理得 B C2 sin B+2 cosB =2sin cos -s in CcosB= 1,即 sin ( B-C)=1.3ππ因为 B,C∈ 0,4,∴ B-C=2 .3π,又由 (1)知 B-C(2) ∵ B+ C=π- A=4π=2,5ππ∴B=8,C=8.∵a=2,A=πb=,∴由正弦定理知4a Bπa Cπsin5sinsin A= 2sin8,c=sin A=2sin 8 .115ππ∴S△ABC=2bcsin A=2×2sin8×2sin 8×225ππππ2= 2sin8 sin 8= 2cos8 sin8=2π 1sin 4=2.种类二 余弦定理的应用1 3 3∴S △ABC =2acsin B = 4 .【评析】①依据所给等式的构造特色利用余弦定理将角化边进行变形是快速解答本题的 重点.②娴熟运用余弦定理及其推论,同时还 要注意整体思想、方程思想在解题过程中的运 用.在△ ABC 中,a ,b ,c 分别是角 A ,B ,C 的对边,cosBb且cosC =- 2a +c .(1) 求 B 的大小;(2) 若 b = 13,a +c =4,求△ ABC 的面积.a 2+ c 2-b 2, 解:(1) 由余弦定理知, cosB =ac2cosC = a 2+b 2- c 2cosB b 2ab ,将上式代入cos C =- a +c2 得a 2 +c 2-b 2 abb2=- a +c , ac·a 2+b 2-c22整理得 a 2+c 2- b 2=- ac.a 2+c 2-b 2 -ac 1 ∴cosB = ac = ac =- .22 22∵B 为三角形的内角,∴ B = 3π.(2) 将 b = 13,a +c =4,B =23π 代入 b 2=a 2+ c 2-2accosB ,得 13=42- 2ac -2accos 2 3π,解得 ac =3.若△ ABC 的内角 A ,B ,C 所对的边 a ,b ,c 知足( a +b) 2- c 2=4,且 C =60°,则 ab 的值为 ( )4A. 3B .8-4 3C . 12D.3解:由余弦定理得 c 2= a 2 +b 2-2abcosC =a 2+b 2-ab ,代入 ( a + b) 2- c 2 =4 中得 ( a + b) 24- ( a 2+b 2-ab) = 4,即 3ab = 4,∴ ab =3. 应选A.6种类三正、余弦定理的综合应用以用余弦定理化边后用不等式求最值.( 2013·全国新课标Ⅱ ) △ ABC的内角A、B、 C的对边分别为 a,b,c,已知 a=bcosC+ csin B.(1)求 B;(2)若 b=2,求△ ABC面积的最大值.解: (1) 由已知及正弦定理得 sin A=sin BcosC+ sin Csin B. ①又 A=π- ( B+ C) ,故sin A = sin( B + C) = sin BcosC +cosBsin C. ②由①,②和 C∈(0 ,π ) 得 sin B= cosB.π又 B∈(0 ,π ) ,所以 B=4 .12(2) △ ABC的面积 S=2acsin B=4 ac.由已知及余弦定理得 4 = a2+ c2-π2accos 4 .又 a2+ c2≥2ac,故 ac≤4,2- 2当且仅当 a=c 时,等号成立.所以△ ABC面积的最大值为2+1.【评析】(1) 化边为角与和角或差角公式的正向或反向多次联用是常用的技巧; (2) 已知边及其对角求三角形面积最值是高考取考过多次的问题,既可用三角函数求最值,也可( 2013·山东 ) 设△ ABC的内角 A,B,C 所对的边分别为a,b,c,且 a+ c= 6, b= 2, cosB7=9.(1)求 a,c 的值;(2)求 sin( A- B) 的值.解: (1) 由余弦定理 b2=a2+ c2-2accosB,得 b2=( a+c) 2-2ac(1 +cosB) ,又 a+ c =6,b=2,7cosB=9,所以 ac=9,解得 a=3,c=3.242(2) 在△ ABC中, sin B= 1-cos B=9 ,asin B 22由正弦定理得 sin A=b= 3 .因为 a=c,所以 A 为锐角,21所以 cosA=1-sin A=3.所以 sin( A-B) =sin AcosB- cosAsin B=10 227.种类四 判断三角形的形状后进行三角函数式的恒等变形,找出角之间的 关系;或将角都化成边,而后进行代数恒等变 形,可一题多解,多角度思虑问题,进而达到 对知识的娴熟掌握.在三角形 ABC 中,若 tan A ∶tan B =a 2∶b 2,试判断三角形 ABC 的形状.a 2 sin 2A解法一:由正弦定理,得 b 2=sin 2B , tan A sin 2 A所以 tan B =sin 2 B ,A Bsin 2AA = Bsin cos2 ,即sin2所以cosAsin B =sinB sin2 . 所以 A = B ,或2 A +B =π,所以 A =B2 22π或 A + B = 2 ,进而△ ABC 是等腰三角形或直角三角形.a2sin 2A解法二:由正弦定理,得 b 2= sin 2B ,所以tan A sin 2A cosB sin Atan B =sin 2B,所以 cosA = sin B,再由正、余弦a 2+ c 2 -b 2aca a 2- b2c 2-定理,得 2 22 2 )( b + c -a = b ,化简得 (2bca 2-b 2 )= ,即 a 2= b 2 或c 2= a 2 +b 2. 进而△ ABC 是等腰三角形或直角三角形.【评析】由已知条件,可先将切化弦,再联合正弦定理,将该恒等式的边都化为角,然( 2012·上海 ) 在 △ABC 中 , 若 sin 2A +sin 2B 2C ,则△ ABC 的形状是 ( )<sin A .锐角三角形 B .直角三角形C .钝角三角形D .不可以确立解:在△ ABC 中,∵ sin 2A +sin 2 B<sin 2C ,∴由正弦定理知 a 2 +b 2<c 2. ∴cos C = a 2+b 2-c 22ab<0,即∠ C 为钝角,△ ABC 为钝角三角形. 应选 C.种类五 解三角形应用举例某港口 O 要将一件重要物件用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口 O北偏西 30°且与该港口相距20 n mile的A 处,并以 30 n mile/h的航行速度沿正东方向匀速行驶.假定该小艇沿直线方向以v n mile/h 的航行速度匀速行驶,经过 t h 与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假定小艇的最高航行速度只好达到 30 n mile/h ,试设计航行方案 ( 即确立航行方向和航行速度的大小 ) ,使得小艇能以最短时间与轮船相遇,并说明原因.解法一:(1) 设相遇时小艇航行的距离为 S n mile ,则S=900t 2+400-2·30t ·20·cos(90°- 30°)=t2-t +400=900600900 t -123+300,1103故当 t =3时,S min=103,此时 v=1=3 303.即小艇以 30 3 n mile/h的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在 B 处相遇,则v2 t 2=400+t 2-900 2·20·30t ·cos(90 °- 30°) ,2600400故 v = 900-t+t2.v≤,∴6004002-+≤,即∵0<30900t t900t3-t≤0,22解得 t ≥3. 又 t =3时,v=30. 故 v= 30 时,2t 获得最小值,且最小值等于3.此时,在△ OAB中,有 OA=OB=AB=20,故可设计航行方案以下:航行方向为北偏东30°,航行速度为 30 n mile/h ,小艇能以最短时间与轮船相遇.解法二:(1) 若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向.设小艇与轮船在C处相遇.在 Rt△OAC中, OC=20cos30°= 10 3,AC=20sin30 °= 10.又 AC=30t ,OC=vt ,101103此时,轮船航行时间 t =30=3,v=1=330 3.即小艇以 30 3 n mile/h的速度航行,相遇时小艇的航行距离最小.(2)假定 v= 30 时,小艇能以最短时间与轮船在 D处相遇,此时 AD=DO=30t .又∠ OAD=60°,所以 AD= DO=OA=20,2解得 t =3.据此可设计航行方案以下:航行方向为北偏东 30°,航行速度的大小为30 n mile/h. 这样,小艇能以最短时间与轮船相遇.证明以下:如图,由 (1) 得 OC=103, AC=10,故 OC>AC,且关于线段 AC上随意点 P,有OP≥ OC>AC.而小艇的最高航行速度只好达到30 n mile/h ,故小艇与轮船不行能在 A,C 之间 ( 包括 C) 的随意地点相遇.设∠ COD=θ (0 °<θ<90°) ,则在 Rt△COD 中,103CD=103tan θ, OD=cosθ .因为从出发到相遇,轮船与小艇所需要的10+10 3tan θ和 t =103,时间分别为 t =30vcosθ10+10 3tan θ10 3所以30=vcosθ.153由此可得,v=sin (θ+30°).3又 v≤30,故 sin( θ+30°) ≥2,进而,30°≤ θ<90°.因为θ=30°时, tan θ获得最小值,且3最小值为3 .10+103tan θ于是,当θ=30°时,t =302获得最小值,且最小值为3.【评析】①这是一道相关解三角形的实质应用题,解题的重点是把实质问题抽象成纯数学识题,依据题目供给的信息,找出三角形中的数目关系,而后利用正、余弦定理求解.②解三角形的方法在实质问题中,有宽泛的应用.在物理学中,相关向量的计算也要用到解三角形的方法.最近几年的高考取我们发现以解三角形为背景的应用题开始成为热门问题之一.③不论是什么种类的三角应用问题,解决的重点都是充足理解题意,将问题中的语言表达弄理解,画出帮助剖析问题的草图,再将其归纳为属于哪种可解的三角形.④本题用几何方法求解也较简易.10( 2012·武汉 5月模拟 ) 如图,渔船甲位于岛屿A的南偏西 60°方向的 B 处,且与岛屿 A 相距 12 海里,渔船乙以 10 海里 / 小时的速度从岛屿 A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,恰好用2 小时追上.(1)求渔船甲的速度;(2)求 sin α的值.解: (1)依题意,∠BAC=°,A B=,12012 AC=× =2,在△ ABC中,由余弦定理知 BC 1022022∠ BAC=2+2-=AB+ AC- AB·AC·12202cos2×12×20×cos120°= 784,BC= 28.所以渔船甲的速度为 v=28=14( 海里 / 小2时) .(2)在△ ABC中, AB=12,∠ BAC=120°,BC= 28,AB ∠BCA=α,由正弦定理得sinα=BC12=28,进而 sin α=,即sin120 °sin ∠ BAC sin α12sin120 °3328=14.1.已知两边及此中一边的对角解三角形时,要注意解的状况,提防漏解.2.在判断三角形的形状时,一般将已知条件中的边角关系利用正弦定理或余弦定理转变为角角关系 ( 注意应用 A+ B+ C=π 这个结论 ) 或边边关系,再用三角变换或代数式的恒等变形( 如因式分解、配方等 ) 求解,注意等式两边的公因式不要约掉,要移项提取公因式,不然有可能遗漏一种形状.3.要熟记一些常有结论,如三内角成等差数列,则必有一角为60°;若三内角的正弦值成等差数列,则三边也成等差数列;内角和定理与引诱公式联合产生的结论:sin A= sin( BA B+C +C) ,cosA=- cos( B+ C) ,sin 2=cos 2,sin2 A=- sin2( B+C) ,cos2A= cos2( B+C) 等.4.应用正、余弦定理解斜三角形应用题的一般步骤:(1)剖析:理解题意,分清已知与未知,画出表示图;(2)建模:依据已知条件与求解目标,把已11知量与求解量尽量集中到一个三角形中,成立一个解斜三角形的模型;(3)求解:利用正、余弦定理有序地解出三角形,求得数学模型的解;(4)查验:查验上述所求得的解能否切合实际意义,进而得出实质问题的解.5.正、余弦定理是应用极为宽泛的两个定理,它将三角形的边和角有机地联系起来,进而使三角与几何产生联系,为求与三角形相关的量( 如面积、外接圆、内切圆半径和面积等 ) 供给了理论依照,也是判断三角形形状、证明三角形中相关等式的重要依照.主要方法有:化角法,化边法,面积法,运用初等几何法.注意领会此中蕴涵的函数与方程思想、等价转变思想及分类议论思想.12。
1.1 正弦定理和余弦定理
1.1 正弦定理和余弦定理知识点归纳: 一.正弦定理:R CcB b A a 2sin sin sin ===(R 为△ABC 外接圆的半径) (1)变形公式 :1.化边为角:2sin 2sin 2sin a R A b R B c R C ===,,;2.化角为边:Rc C R b B R a A 2sin ,2sin ,2sin === 3.::sin :sin :sin a b c A B C = 4.三角形的内切圆半径cb a S r ABC++=∆2二.余弦定理:A bc c b a cos 2222-+=;变形:(1)bc a c b A 2cos 222-+=;B ac c a b cos 2222-+=; ac b c a B 2cos 222-+=;C ab b a c cos 2222-+=. abc b a C 2cos 222-+=变形:(2)A C B C B A cos sin sin 2sin sin sin 222-+=B C A C A B cos sin sin 2sin sin sin 222-+= C B A B A C cos sin sin 2sin sin sin 222-+=三.三角形中的边角关系和性质:(1)π=++C B A2222π=++C B A 在Rt △中,222c b a =+,C=A+B=900.(2)-tanC B)+(A tan -cosC, B)+cos(A sinC,=B)+sin(A ==(3)2cos 2sinC B A =+ 2sin 2cos CB A =+ 2c o t 2t a nC B A =+ (4)tanA+tanB+tanC= tanA ·tanB ·tanC(5)b a >⇔B A >⇔B A sin sin >.⇔cosA<cosB (6)21sin 21==C ab S ×底×高Rabc 4=.)(2c b a r ++=(三角形的内切圆半径r ,外接圆半径R )(7)ma+nb=kc ⇔msinA+nsinB=ksinC (8)ma=nb ⇔ msinA=nsinB(9)若A 、B 、C 成等差数列,则B 060=.(10)若三角形中三内角成等差数列,三边成等比数列⇔三角形为正三角形(11)余弦定理是勾股定理的推广:判断C ∠为锐角222c b a >+⇔,C ∠为直角222c b a =+⇔, C ∠为钝角222c b a <+⇔.课堂训练 一、选择题1.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于……………………....( ) A .30° B .30°或150° C .60° D .60°或120°2.已知△ABC 中,AB =6,∠A =30°,∠B =120°,则△ABC 的面积为…………..( ) A .9B .18C .93D .1833.已知△ABC 中,a ∶b ∶c =1∶3∶2,则A ∶B ∶C 等于………………………..( )A .1∶2∶3B .2∶3∶1C .1∶3∶2D .3∶1∶2 4.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k≠0),则k 的取值范围为…..( ) A .(2,+∞) ] B .(-∞,0) C .(-21,0)D .(21,+∞)5. 在△ABC 中,根据下列条件解三角形,其中有一解的是………………………..( ) A .b =7,c =3,C =30° B .b =5,c =42,B =45° C .a =6,b =63,B =60° D .a =20,b =30,A =30° * 6.在△ABC 中,A =60°,b =1,其面积为3,则sin sin sin a b cA B C++++等于….( )A .33B .3392C .338D .239二、填空题7.在△ABC 中,若∠B =30°,AB =23,AC =2,则△ABC 的面积是________. 8.设△ABC 的外接圆半径为R ,且已知AB =4,∠C =45°,则R =________.9.已知△ABC 的面积为23,且b =2,c =3,则∠A =________.10*.若三角形中有一个角为60°,夹这个角的两边的边长分别是8和5,则它的内切圆半径等于________,外接圆半径等于________. 三、解答题11.在△ABC 中,∠C =60°,BC =a ,AC =b ,a +b =16. (1)试写出△ABC 的面积S 与边长a 的函数关系式.(2)当a 等于多少时,S 有最大值?并求出这个最大值.12.在△ABC 中,已知a 2-a =2(b +c ),a +2b =2c -3,若sin C ∶sin A =4∶13,求a ,b ,c .13.在△ABC 中,求证2tan 2tanBA b a b a -=+-.14*.在一个三角形中,若有一个内角不小于120°,求证:最长边与最短边之比不小于3.同步提升 一、选择题:1、在△ABC 中,已知b =4 ,c =2 ,∠A=120°,则a 等于( )A .2B .6C .2 或6D .272、在△ABC 中,已知三边a 、b 、c 满足(a +b +c)(a +b -c)=3ab ,则∠C 等于 ( ) A .15° B .30° C .45° D .60°3、已知在△ABC 中:,sinA: sinB: sinC =3: 5 :7,那么这个三角形的最大角是 ( )A .135°B .90°C .120°D .150°4、在△ABC 中,若c 4-2(a 2+b 2)c 2+a 4+a 2b 2+b 4=0,则C 等于 ( )A .90°B .120°C .60°D .120°或60° 二、填空题:5、已知△ABC 中,A =60°,最大边和最小边是方程x 2-9x +8=0的两个正实数根,那么BC 边长______.6、△ABC 中,a 、b 分别是角A 和角B 所对的边,a =3,b =1,B 为30°,则角A 的值为______.7、在△ABC 中,cos A =135,sin B =53,则cos C 的值为______. 8、在△ABC 中,若sin A sin B =cos 22C ,则△ABC 为______.9、若三角形中有一个角为60°,夹这个角的两边的边长分别是8和5,外接圆半径等于_______. 三、解答题:10、在ABC ∆中,,15,8,2==+=+ac c a B C A 求b 的值。
正余弦定理知识点总结及高考考试题型
正余弦定理知识点总结及高考考试题型一、正余弦定理的概念正余弦定理,又称余正定理、角-边-角定理,是指用三角形中的一个角和与它相对的两边的长度,来表示三角形中的另外两个角与其对应的两边之间的关系的公式。
二、正余弦定理的形式对于一个三角形ABC,设三个边分别为a、b、c,对应的角分别为A、B、C,将角A所对应的边称为边a,角B所对应的边称为边b,角C所对应的边称为边c。
(1)正弦定理:$\frac{a}{\sin A}=\frac{b}{\sinB}=\frac{c}{\sin C}$(2)余弦定理:$a^2=b^2+c^2-2bc\cos A$$b^2=a^2+c^2-2ac\cos B$$c^2=a^2+b^2-2ab\cos C$三、正余弦定理的应用正余弦定理是基本的三角函数之一,它们在高中数学教育中被广泛应用。
通常在三角形的求面积过程中被使用。
考生还需能够将它们应用在其他相关的三角形求解问题中。
例如,可以用正余弦定理解决以下问题:(1)求三角形的面积。
(2)判断三角形是否为等腰三角形,是否为等边三角形。
(3)确定三角形的内角度数。
(4)求解三角形的未知边和角。
四、正余弦定理在高考考试中的出现形式正余弦定理在高考考试中经常作为解决三角形问题的关键公式。
它们常表现为单独的选择题或解答题,也可能是复合型题目的一部分。
(1)选择题样例:已知三角形ABC的边长分别为11、12、13,若$\angle C$ 的角度等于$\frac{\pi}{2}$,则$\sin A+\cos B$ 等于()A. $\frac{24}{13}$B. $\frac{22}{13}$C. $\frac{20}{13}$D. $\frac{18}{13}$(2)解答题样例:已知$\triangle ABC$,且$AB=8, AC=6,BC=10$,则$\triangle ABC$的面积是多少?解:由余弦定理,$\cos A=\frac{b^2+c^2-a^2}{2bc}=\frac{100-36-64}{2×10×8}=-\frac{1}{8}$由正弦定理,$2S=\frac{1}{2}bc\sin A=24\sin A=24\sqrt{1-\cos^2 A}=24\sqrt{1-\frac{1}{64}}=\frac{48}{\sqrt{3}}$因此,$\triangle ABC$ 的面积为$\frac{24}{\sqrt{3}}$。
正弦定理和余弦定理知识点讲解+例题讲解(含解析)
导数的概念及运算一、知识梳理1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2.S △ABC =2ab sin C =2bc sin A =2ac sin B =4R =2(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .3.在△ABC 中,已知a ,b 和A 时,解的情况如下:4.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C2.5.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 3.在△ABC 中,两边之和大于第三边,两边之差小于第三边, A >B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B .二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)三角形中三边之比等于相应的三个内角之比.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( )(4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形;当b 2+c 2-a 2=0时,△ABC 为直角三角形;当b 2+c 2-a 2<0时,△ABC 为钝角三角形.( ) 解析 (1)三角形中三边之比等于相应的三个内角的正弦值之比. (3)已知三角时,不可求三边.(4)当b 2+c 2-a 2>0时,三角形ABC 不一定为锐角三角形. 答案 (1)× (2)√ (3)× (4)×2.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC =( ) A.π6B.π3C.2π3D.5π6解析 在△ABC 中,设AB =c =5,AC =b =3,BC =a =7,由余弦定理得cos ∠BAC =b 2+c 2-a 22bc =9+25-4930=-12,由A ∈(0,π),得A =2π3,即∠BAC =23π. 答案 C3.在△ABC 中,a cos A =b cos B ,则这个三角形的形状为________. 解析 由正弦定理,得sin A cos A =sin B cos B , 即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B , 即A =B 或A +B =π2,所以这个三角形为等腰三角形或直角三角形. 答案 等腰三角形或直角三角形4.(2018·烟台质检)已知△ABC 中,A =π6,B =π4,a =1,则b 等于( ) A.2B.1C. 3D.2解析 由正弦定理a sin A =b sin B ,得1sin π6=bsin π4,∴112=b22,∴b = 2.答案 D5.(2018·全国Ⅱ卷)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( ) A.4 2B.30C.29D.25解析 由题意得cos C =2cos 2 C 2-1=2×⎝ ⎛⎭⎪⎫552-1=-35.在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ×BC ×cos C =52+12-2×5×1×⎝ ⎛⎭⎪⎫-35=32,所以AB =4 2.答案 A6.(2019·荆州一模)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =22,cos A =34,sin B =2sin C ,则△ABC 的面积是________. 解析 由sin B =2sin C ,cos A =34,A 为△ABC 一内角, 可得b =2c ,sin A =1-cos 2A =74, ∴由a 2=b 2+c 2-2bc cos A , 可得8=4c 2+c 2-3c 2, 解得c =2(舍负),则b =4.∴S △ABC =12bc sin A =12×2×4×74=7. 答案 7考点一 利用正、余弦定理解三角形【例1】 (1)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.(2)(2019·枣庄二模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若 (a +b )(sin A -sin B )=(c -b )sin C ,则A =( ) A.π6 B.π3 C.5π6 D.2π3(3)(2018·全国Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2B.π3C.π4D.π6解析 (1)由正弦定理,得sin B =b sin C c =6×323=22, 结合b <c 得B =45°,则A =180°-B -C =75°. (2)∵(a +b )(sin A -sin B )=(c -b )sin C ,∴由正弦定理得(a +b )(a -b )=c (c -b ),即b 2+c 2-a 2=bc . 所以cos A =b 2+c 2-a 22bc =12,又A ∈(0,π),所以A =π3.(3)因为a 2+b 2-c 2=2ab cos C ,且S △ABC =a 2+b 2-c24,所以S △ABC =2ab cos C 4=12ab sin C ,所以tan C =1.又C ∈(0,π),故C =π4. 答案 (1)75° (2)B (3)C【训练1】 (1)(2017·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( ) A.π12B.π6C.π4D.π3(2)(2019·北京海淀区二模)在△ABC 中,A ,B ,C 的对边分别为a ,b ,c .若2cos 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D.6(3)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A.1个 B.2个 C.0个 D.无法确定解析 (1)由题意得sin(A +C )+sin A (sin C -cos C )=0, ∴sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,则sin C (sin A +cos A )=2sin C sin ⎝ ⎛⎭⎪⎫A +π4=0,因为C ∈(0,π),所以sin C ≠0,所以sin ⎝ ⎛⎭⎪⎫A +π4=0,又因为A ∈(0,π),所以A +π4=π,所以A =3π4.由正弦定理a sin A =c sin C ,得2sin 3π4=2sin C ,则sin C =12,又C ∈(0,π),得C =π6.(2)由2cos 2A +B 2-cos 2C =1,可得2cos 2A +B 2-1-cos 2C =0,则有cos 2C +cos C =0,即2cos 2C +cos C -1=0,解得cos C =12或cos C =-1(舍),由4sin B =3sin A ,得4b =3a ,① 又a -b =1,②联立①,②得a =4,b =3, 所以c 2=a 2+b 2-2ab cos C =16+9-12=13,则c =13.(3)∵b sin A =6×22=3,∴b sin A <a <b . ∴满足条件的三角形有2个. 答案 (1)B (2)A (3)B 考点二 判断三角形的形状【例2】 (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cb <cos A ,则△ABC 为( ) A.钝角三角形 B.直角三角形 C.锐角三角形D.等边三角形(2)设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析(1)由cb<cos A,得sin Csin B<cos A,又B∈(0,π),所以sin B>0,所以sin C<sin B cos A,即sin(A+B)<sin B cos A,所以sin A cos B<0,因为在三角形中sin A>0,所以cos B<0,即B为钝角,所以△ABC为钝角三角形.(2)由正弦定理得sin B cos C+sin C cos B=sin2A,∴sin(B+C)=sin2A,即sin A=sin2A.∵A∈(0,π),∴sin A>0,∴sin A=1,即A=π2,∴△ABC为直角三角形.答案(1)A(2)B【训练2】若将本例(2)中条件变为“c-a cos B=(2a-b)cos A”,判断△ABC的形状.解∵c-a cos B=(2a-b)cos A,C=π-(A+B),∴由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,∴sin A cos B+cos A sin B-sin A cos B=2sin A cos A-sin B cos A,∴cos A(sin B-sin A)=0,∴cos A=0或sin B=sin A,∴A=π2或B=A或B=π-A(舍去),∴△ABC为等腰或直角三角形.考点三 和三角形面积、周长有关的问题 角度1 与三角形面积有关的问题【例3-1】 (2017·全国Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积. 解 (1)由sin A +3cos A =0及cos A ≠0, 得tan A =-3,又0<A <π,所以A =2π3.由余弦定理,得28=4+c 2-4c ·cos 2π3.即c 2+2c -24=0,解得c =-6(舍去),c =4.(2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6. 故△ABD 与△ACD 面积的比值为12AB ·AD sin π612AC ·AD=1.又△ABC 的面积为12×4×2sin ∠BAC =23,所以△ABD 的面积为 3. 角度2 与三角形周长有关的问题【例3-2】 (2018·上海嘉定区模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a sin B =3b cos A .若a =4,则△ABC 周长的最大值为________. 解析 由正弦定理a sin A =bsin B ,可将a sin B =3b cos A 转化为sin A sin B =3sin B cos A . 又在△ABC 中,sin B >0,∴sin A =3cos A , 即tan A = 3. ∵0<A <π,∴A =π3.由余弦定理得a 2=16=b 2+c 2-2bc cos A =(b +c )2-3bc ≥(b +c )2-3⎝⎛⎭⎪⎫b +c 22,则(b+c)2≤64,即b+c≤8(当且仅当b=c=4时等号成立),∴△ABC周长=a+b+c=4+b+c≤12,即最大值为12.答案12【训练3】(2019·潍坊一模)△ABC的内角A,B,C的对边分别为a,b,c,已知(a+2c)cos B+b cos A=0.(1)求B;(2)若b=3,△ABC的周长为3+23,求△ABC的面积.解(1)由已知及正弦定理得(sin A+2sin C)cos B+sin B cos A=0,(sin A cos B+sin B cos A)+2sin C cos B=0,sin(A+B)+2sin C cos B=0,又sin(A+B)=sin C,且C∈(0,π),sin C≠0,∴cos B=-12,∵0<B<π,∴B=23π.(2)由余弦定理,得9=a2+c2-2ac cos B.∴a2+c2+ac=9,则(a+c)2-ac=9.∵a+b+c=3+23,b=3,∴a+c=23,∴ac=3,∴S△ABC =12a a c sin B=12×3×32=334.三、课后练习1.△ABC的内角A,B,C的对边分别为a,b,c,若cos C=223,b cos A+a cosB=2,则△ABC的外接圆面积为()A.4πB.8πC.9πD.36π解析由题意及正弦定理得2R sin B cos A+2R sin A cos B=2R sin(A+B)=2(R为△ABC的外接圆半径).即2R sin C=2.又cos C=223及C∈(0,π),知sin C=13.∴2R=2sin C=6,R=3.故△ABC 外接圆面积S =πR 2=9π. 答案 C2.(2019·武汉模拟)在△ABC 中,C =2π3,AB =3,则△ABC 的周长为( ) A.6sin ⎝ ⎛⎭⎪⎫A +π3+3 B.6sin ⎝ ⎛⎭⎪⎫A +π6+3 C.23sin ⎝ ⎛⎭⎪⎫A +π3+3D.23sin ⎝ ⎛⎭⎪⎫A +π6+3解析 设△ABC 的外接圆半径为R ,则2R =3sin 2π3=23,于是BC =2R sin A =23sin A ,AC =2R sin B =23sin ⎝ ⎛⎭⎪⎫π3-A .于是△ABC 的周长为23⎣⎢⎡⎦⎥⎤sin A +sin ⎝ ⎛⎭⎪⎫π3-A +3=23sin ⎝ ⎛⎭⎪⎫A +π3+3. 答案 C3.(2019·长春一模)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若⎝ ⎛⎭⎪⎫12b -sin C cos A =sin A cos C ,且a =23,则△ABC 面积的最大值为________. 解析 因为⎝ ⎛⎭⎪⎫12b -sin C cos A =sin A cos C , 所以12b cos A -sin C cos A =sin A cosC ,所以12b cos A =sin(A +C ),所以12b cos A =sin B , 所以cos A 2=sin Bb , 又sin B b =sin A a ,a =23, 所以cos A 2=sin A 23,得tan A =3,又A ∈(0,π),则A =π3, 由余弦定理得(23)2=b 2+c 2-2bc ·12=b 2+c 2-bc ≥2bc -bc =bc ,即bc ≤12(当且仅当b =c =23时取等号), 从而△ABC 面积的最大值为12×12×32=3 3. 答案 334.(2018·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos ⎝ ⎛⎭⎪⎫B -π6.(1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值.解 (1)在△ABC 中,由正弦定理a sin A =bsin B , 得b sin A =a sin B , 又由b sin A =a cos ⎝ ⎛⎭⎪⎫B -π6, 得a sin B =a cos ⎝ ⎛⎭⎪⎫B -π6,即sin B =cos ⎝ ⎛⎭⎪⎫B -π6,可得tan B = 3. 又因为B ∈(0,π),可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3, 有b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =a cos ⎝ ⎛⎭⎪⎫B -π6,可得sin A =37. 因为a <c ,故cos A =27. 因此sin 2A =2sin A cos A =437, cos 2A =2cos 2A -1=17.所以,sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314.5.我国南宋著名数学家秦九韶发现了由三角形三边求三角形面积的“三斜公式”,设△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,面积为S ,则“三斜求积”公式为S =14⎣⎢⎡⎦⎥⎤a 2c 2-⎝ ⎛⎭⎪⎫a 2+c 2-b 222.若a 2sin C =4sin A ,(a +c )2=12+b 2,则用“三斜求积”公式求得△ABC 的面积为________. 解析 根据正弦定理及a 2sin C =4sin A ,可得ac =4, 由(a +c )2=12+b 2,可得a 2+c 2-b 2=4, 所以S △ABC =14⎣⎢⎡⎦⎥⎤a 2c 2-⎝ ⎛⎭⎪⎫a 2+c 2-b 222=14×(16-4)= 3. 答案3。
正弦定理和余弦定理考点与提醒归纳
正弦定理和余弦定理考点与提醒归纳一、基础知识1.正弦定理a sin A =b sin B =c sin C=2R (R 为△ABC 外接圆的半径).正弦定理的常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R; (3)a ∶b ∶c =sin A ∶sin B ∶sin C ; (4)a +b +c sin A +sin B +sin C =a sin A. 2.余弦定理a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C . 3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高);(2)S △ABC =12ab sin C =12bc sin A =12ac sin B ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).二、常用结论汇总——规律多一点 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.第一课时 正弦定理和余弦定理(一) 考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形[典例] (1)(2019·江西重点中学联考)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.[解析] (1)由正弦定理可得sin B =b sin A a =2×sin 30°3=13,∵a =3>b =2,∴B <A ,即B 为锐角,∴cos B =1-sin 2B =223. (2)∵sin B =12且B ∈(0,π),∴B =π6或B =5π6,又∵C =π6,∴B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =bsin B ,即3sin 2π3=b sinπ6,解得b =1. [答案] (1)223 (2)1考法(二) 余弦定理解三角形[典例] (1)(2019·山西五校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)(2018·泰安二模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b2c -a=sin Asin B +sin C,则角B =________.[解析] (1)∵b cos A +a cos B =c 2,∴由余弦定理可得b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac =c 2,整理可得2c 2=2c 3,解得c =1,则△ABC 的周长为a +b +c =2+2+1=5.(2)由正弦定理可得c -b2c -a =sin A sin B +sin C =a b +c, ∴c 2-b 2=2ac -a 2,∴c 2+a 2-b 2=2ac , ∴cos B =a 2+c 2-b 22ac =22,∵0<B <π,∴B =π4.[答案] (1)D (2)π4[题组训练]1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24B .-24C.34D .-34解析:选B 由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12 B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以t a n A =-1, 因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin Aa =2×222=12, 又0<C <π4,所以C =π6.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.解:(1)由正弦定理可得b 2+c 2=a 2+bc , 由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C得c =a sin C sin A =3×(3+22)32×6=1+263.考点二 判定三角形的形状[典例] (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形[解析] (1)法一:因为b cos C +c cos B =a sin A ,由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B =a c ,所以a b =ac,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.[答案] (1)B (2)C[变透练清]1.(变条件)若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________. 解析:根据正弦定理可得a 2+b 2<c 2,由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角,所以△ABC 是钝角三角形. 答案:钝角三角形2.(变条件)若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.解析:因为c -a cos B =(2a -b )cos A , C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B ·cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , 所以cos A (sin B -sin A )=0,所以cos A =0或sin B =sin A , 所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形. 答案:等腰或直角三角形3.(变条件)若本例(2)条件改为“cos A cos B =ba =2”,那么△ABC 的形状为________.解析:因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又因为A ,B ∈(0,π),所以2A =π-2B ,即A +B =π2,所以C =π2,于是△ABC 是直角三角形.答案:直角三角形[课时跟踪检测]A 级1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc=40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.(2018·重庆六校联考)在△ABC 中,cos B =ac (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形解析:选A 因为cos B =ac ,由余弦定理得a 2+c 2-b 22ac =a c ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3, cos B =23,则b =( )A .14B .6 C.14D.6解析:选D ∵b sin A =3c sin B ⇒ab =3bc ⇒a =3c ⇒c =1,∴b 2=a 2+c 2-2ac cos B =9+1-2×3×1×23=6,∴b = 6.5.(2019·莆田调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sin B cos C +sinC sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6.6.(2019·山西大同联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A.5 B .3 C.10D .4解析:选B 由正弦定理可得2(sin B cos A +sin A cos B )=c sin C , ∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =32+22-2×3×2×13=9,∴a =3.7.在△ABC 中,AB =6,A =75°,B =45°,则AC =________. 解析:C =180°-75°-45°=60°, 由正弦定理得AB sin C =ACsin B ,即6sin 60°=AC sin 45°,解得AC =2. 答案:28.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.解析:∵3sin A =2sin B ,∴3a =2b . 又∵a =2,∴b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×⎝⎛⎭⎫-14=16,∴c =4. 答案:49.(2018·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B =________,c =________.解析:由正弦定理a sin A =bsin B ,得sin B =b a ·sin A =27×32=217.由余弦定理a 2=b 2+c 2-2bc cos A , 得7=4+c 2-4c ×cos 60°,即c 2-2c -3=0,解得c =3或c =-1(舍去). 答案:2173 10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.解析:因为sin A ,sin B ,sin C 成等差数列,所以2sin B =sin A +sin C .由正弦定理得a +c =2b ,又因为a =2c ,可得b =32c ,所以cos A =b 2+c 2-a 22bc =94c 2+c 2-4c 22×32c 2=-14.答案:-1411.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B . (1)求证:a =2b cos B ; (2)若b =2,c =4,求B 的值.解:(1)证明:因为A =2B ,所以由正弦定理a sin A =b sin B ,得a sin 2B =bsin B ,所以a =2b cos B .(2)由余弦定理,a 2=b 2+c 2-2bc cos A , 因为b =2,c =4,A =2B ,所以16c os 2B =4+16-16cos 2B ,所以c os 2B =34,因为A +B =2B +B <π,所以B <π3,所以cos B =32,所以B =π6.12.(2019·绵阳模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,结合正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 又由余弦定理,得a 2=b 2+c 2-2bc cos A , 所以bc =-2bc cos A ,即cos A =-12.由于A 为△ABC 的内角,所以A =2π3.(2)由已知2a sin A =(2b +c )sin B +(2c +b )sin C ,结合正弦定理,得2sin 2A =(2sin B +sin C )sin B +(2sin C +sin B )sin C , 即sin 2A =sin 2B +sin 2C +sin B sin C =sin 22π3=34.又由sin B +sin C =1,得sin 2B +sin 2C +2sin B sin C =1,所以sin B sin C =14,结合sin B +sin C =1,解得sin B =sin C =12.因为B +C =π-A =π3,所以B =C =π6,所以△ABC 是等腰三角形.B 级1.(2019·郑州质量预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2c os 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D .6解析:选A 由2c os 2A +B2-cos 2C =1,得1+c os(A +B )-(2c os 2C -1)=2-2c os 2C -cos C =1,即2c os 2C +cos C -1=0,解得cos C =12或cos C =-1(舍去).由4sin B =3sin A及正弦定理,得4b =3a ,结合a -b =1,得a =4,b =3.由余弦定理,知c 2=a 2+b 2-2ab cos C =42+32-2×4×3×12=13,所以c =13.2.(2019·长春模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n Cc,若sin(A -B )+sin C =2sin 2B ,则a +b =________. 解析:∵2sin A a =t a n C c =sin C c cos C ,且由正弦定理可得a =2R sin A ,c =2R sin C (R 为△ABC的外接圆的半径),∴cos C =12.∵C ∈(0,π),∴C =π3.∵sin(A -B )+sin C =2sin 2B ,sin C =sin(A+B ),∴2sin A cos B =4sin B cos B .当cos B =0时,B =π2,则A =π6,∵c =3, ∴a =1,b =2,则a +b =3.当cos B ≠0时,sin A =2sin B ,即a =2b .∵cos C =a 2+b 2-c 22ab =12,∴b 2=1,即b =1,∴a =2,则a +b =3.综上,a +b =3.答案:33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b .(1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解:(1)2a cos C -c =2b ⇒2sin A cos C -sin C =2sin B ⇒2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C ,∵sin C ≠0,∴cos A =-12, 又A ∈(0,π),∴A =2π3. (2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BD sin A, ∴sin ∠ADB =AB sin A BD =22. 又∠ADB ∈(0,π),A =2π3, ∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,b =c =2, 由余弦定理,得a 2=c 2+b 2-2c ·b ·cos A =(2)2+(2)2-2×2×2c os 2π3=6,∴a = 6.。
(完整版)解三角形1.1正弦定理和余弦定理知识点总结
第一章 解三角形1.1正弦定理和余弦定理一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义)sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba 。
二、正弦定理(一)知识与工具:正弦定理:在△ABC 中, R Cc B b A a 2sin sin sin ===。
(外接圆圆半径) 在这个式子当中,已知两边和一角或已知两角和一边,可以求出其它所有的边和角。
注明:正弦定理的作用是进行三角形中的边角互化,在变形中,注意三角形中其他条件的应用:(1)三内角和为180°(2)两边之和大于第三边,两边之差小于第三边(3)面积公式:S=21absinC=Rabc 4=2R 2sinAsinBsinC 111sin ()222a S ah ab C r a bc ===++(其中r 为三角形内切圆半径) )(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)(4)三角函数的恒等变形。
(5) sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边)sin(A+B)=sinC ,cos(A+B)=-cosC ,sin 2B A +=cos 2C ,cos 2B A +=sin 2C 2sin ,2sin ,2sin a R A b R B c R C ===(6)(边化角公式)sin ,sin ,sin 222a b c A B C R R R===(7)(角化边公式) ::sin :sin :sin a b c A B C =(8)sin sin sin (9),,sin sin sin a A a A b B b B c C c C === (10)sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边)(二)题型 使用正弦定理解三角形共有三种题型题型1 利用正弦定理公式原型解三角形题型2 利用正弦定理公式的变形(边角互化)解三角形:关于边或角的齐次式可以直接边角互化。
正余弦定理知识点+经典题(有问题详解)
正余弦定理1.定理容:〔1〕正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即2sin sin sin a b cR A B C=== 〔2〕余弦定理:三角形中任意一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的两倍。
即:2222cos a b c bc A =+- 2222cos b a c ac B =+-2222cos c a b ab C =+-〔3〕面积定理:111sin sin sin 222ABC S ab C bc A ac B ∆=== 2.利用正余弦定理解三角形: 〔1〕一边和两角:〔2〕两边和其中一边的对角: 〔3〕两边和它们所夹的角: 〔4〕三边:正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,如此b 等于( )A.6B. 2C. 3 D .2 6 2.在△ABC 中,a =8,B =60°,C =75°,如此b 等于( )A .4 2B .4 3C .4 6 D.3233.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,如此角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,如此sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定 解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6. 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,假如A =105°,B =45°,b =2,如此c =( )A .1 B.12C .2 D.146.在△ABC 中,假如cos A cos B =ba,如此△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形 7.△ABC 中,AB =3,AC =1,∠B =30°,如此△ABC 的面积为( )A.32B.34C.32或3D.34或328.△ABC 的角A 、B 、C 的对边分别为a 、b 、c .假如c =2,b =6,B =120°,如此a 等于( )A.6B .2C.3D. 29.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,假如a =1,c =3,C =π3,如此A =________.10.在△ABC 中,a =433,b =4,A =30°,如此sin B =________.11.在△ABC 中,∠A =30°,∠B =120°,b =12,如此a +c =________. 12.在△ABC 中,a =2b cos C ,如此△ABC 的形状为________.13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,如此a +b +csin A +sin B +sin C =________,c =________.14.△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,如此a -2b +csin A -2sin B +sin C=________.15.在△ABC 中,a =32,cos C =13,S △ABC =43,如此b =________.16.在△ABC 中,b =43,C =30°,c =2,如此此三角形有________组解.17.如下列图,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,如此货轮到达C 点时,与灯塔A 的距离是多少?18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,假如a =23,sin C 2cos C 2=14,sin B sin C =cos 2A2,求A 、B 与b 、c .19.(2009年高考卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)假如a -b =2-1,求a ,b ,c 的值.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.余弦定理1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于()A .6B .26C .36D .4 62.在△ABC 中,a =2,b =3-1,C =30°,如此c 等于()A. 3B.2C. 5 D .23.在△ABC 中,a 2=b 2+c 2+3bc ,如此∠A 等于()A .60°B .45°C .120°D .150°4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,假如(a 2+c 2-b 2)tan B =3ac ,如此∠B 的值为()A.π6B.π3C.π6或5π6D.π3或2π35.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,如此a cos B +b cos A 等于()A .aB .bC .cD .以上均不对6.如果把直角三角形的三边都增加同样的长度,如此这个新的三角形的形状为()A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度决定7.锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,如此AB →·AC →的值为()A .2B .-2C .4D .-48.在△ABC 中,b =3,c =3,B =30°,如此a 为()A.3B .23C.3或23D .29.△ABC 的三个角满足2B =A +C ,且AB =1,BC =4,如此边BC 上的中线AD 的长为________. 10.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数.11.a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,假如a =4,b =5,S =53,如此边c 的值为________. 12.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,如此cos A ∶cos B ∶cos C =________.13.在△ABC 中,a =32,cos C =13,S △ABC =43,如此b =________.14.△ABC 的三边长分别为AB =7,BC =5,AC =6,如此AB →·BC →的值为________.15.△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,如此角C =________.16.(2011年调研)三角形的三边为连续的自然数,且最大角为钝角,如此最小角的余弦值为________. 17.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.18.△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)假如△ABC 的面积为16sin C ,求角C 的度数.19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π4)的值.20.在△ABC 中,(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,如此b 等于( )A.6B. 2C. 3 D .2 6解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin Bsin A= 6.2.在△ABC 中,a =8,B =60°,C =75°,如此b 等于( )A .4 2B .4 3C .4 6 D.323解析:选C.A =45°,由正弦定理得b =a sin Bsin A=4 6.3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,如此角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对解析:选C.由正弦定理a sin A =b sin B 得:sin B =b sin A a =22,又∵a >b ,∴B <60°,∴B =45°.4.在△ABC 中,a ∶b ∶c =1∶5∶6,如此sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6. 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,假如A =105°,B =45°,b =2,如此c =( )A .1 B.12C .2 D.14解析:选A.C =180°-105°-45°=30°,由b sin B =c sin C 得c =2×sin 30°sin45°=1.6.在△ABC 中,假如cos A cos B =ba,如此△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin Bsin A,sin A cos A =sin B cos B ,∴sin2A =sin2B即2A =2B 或2A +2B =π,即A =B ,或A +B =π2.7.△ABC 中,AB =3,AC =1,∠B =30°,如此△ABC 的面积为( )A.32B.34C.32或 3D.34或32解析:选D.AB sin C =AC sin B ,求出sin C =32,∵AB >AC ,∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =12AB ·AC sin A 可求面积.8.△ABC 的角A 、B 、C 的对边分别为a 、b 、c .假如c =2,b =6,B =120°,如此a 等于( )A. 6 B .2 C. 3 D. 2解析:选D.由正弦定理得6sin120°=2sin C,∴sin C =12.又∵C 为锐角,如此C =30°,∴A =30°, △ABC 为等腰三角形,a =c = 2.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,假如a =1,c =3,C =π3,如此A =________.解析:由正弦定理得:a sin A =csin C,所以sin A =a ·sin C c =12.又∵a <c ,∴A <C =π3,∴A =π6.答案:π610.在△ABC 中,a =433,b =4,A =30°,如此sin B =________.解析:由正弦定理得a sin A =bsin B⇒sin B =b sin A a =4×12433=32.答案:3211.在△ABC 中,∠A =30°,∠B =120°,b =12,如此a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×sin30°sin120°=43, ∴a +c =8 3. 答案:8 312.在△ABC 中,a =2b cos C ,如此△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B , 代入式子a =2b cos C ,得 2R sin A =2·2R ·sin B ·cos C , 所以sin A =2sin B ·cos C , 即sin B ·cos C +cos B ·sin C =2sin B ·cos C , 化简,整理,得sin(B -C )=0. ∵0°<B <180°,0°<C <180°, ∴-180°<B -C <180°, ∴B -C =0°,B =C . 答案:等腰三角形13.在△ABC 中,A =60°,a =63,b =12,C=30°如此a +b +csin A +sin B +sin C=________,c =________.解析:由正弦定理得a +b +c sin A +sin B +sin C =a sin A =63sin60°=12,又S △ABC =12bc sin A ,∴12×12×sin60°×c =183,∴c =6.答案:12 614.△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,如此a -2b +csin A -2sin B +sin C=________.解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°,∴2R =a sin A =1sin30°=2,又∵a =2R sin A ,b =2R sin B ,c =2R sin C ,∴a -2b +c sin A -2sin B +sin C =2R sin A -2sin B +sin Csin A -2sin B +sin C =2R =2. 答案:215.在△ABC 中,a =32,cos C =13,S △ABC =43,如此b =________.解析:依题意,sin C =223,S △ABC =12ab sin C =43,解得b =2 3. 答案:2 316.在△ABC 中,b =43,C =30°,c =2,如此此三角形有________组解.解析:∵b sin C =43×12=23且c =2,∴c <b sin C ,∴此三角形无解. 答案:0 17.如下列图,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,如此货轮到达C 点时,与灯塔A 的距离是多少?解:在△ABC 中,BC =40×12=20,∠ABC =140°-110°=30°, ∠ACB =(180°-140°)+65°=105°, 所以∠A =180°-(30°+105°)=45°, 由正弦定理得AC =BC ·sin ∠ABC sin A=20sin30°sin45°=102(km). 即货轮到达C 点时,与灯塔A 的距离是10 2 km.18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,假如a =23,sin C 2cos C 2=14,sin B sin C =cos 2A2,求A 、B 与b 、c .解:由sin C 2cos C 2=14,得sin C =12,又C ∈(0,π),所以C =π6或C =5π6.由sin B sin C =cos 2A2,得sin B sin C =12[1-cos(B +C )],即2sin B sin C =1-cos(B +C ),即2sin B sin C +cos(B +C )=1,变形得 cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =π6,B =C =5π6(舍去),A =π-(B +C )=2π3.由正弦定理a sin A =b sin B =csin C,得b =c =a sin Bsin A =23×1232=2.故A =2π3,B =π6,b =c =2.19.(2009年高考卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)假如a -b =2-1,求a ,b ,c 的值. 解:(1)∵A 、B 为锐角,sin B =1010,∴cos B =1-sin 2B =31010.又cos 2A =1-2sin 2A =35,∴sin A =55,cos A =255,∴cos(A +B )=cos A cos B -sin A sin B =255×31010-55×1010=22.又0<A +B <π,∴A +B =π4.(2)由(1)知,C =3π4,∴sin C =22.由正弦定理:a sin A =b sin B =csin C得5a =10b =2c ,即a =2b ,c =5b .∵a -b =2-1,∴2b -b =2-1,∴b =1. ∴a =2,c = 5.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.解:由S =12ab sin C 得,153=12×603×sin C ,∴sin C =12,∴∠C =30°或150°.又sin B =sin C ,故∠B =∠C . 当∠C =30°时,∠B =30°,∠A =120°.又∵ab =603,a sin A =bsin B,∴b =215.当∠C =150°时,∠B =150°(舍去). 故边b 的长为215.余弦定理1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于()A .6B .2 6C .3 6D .4 6 解析:选A.由余弦定理,得 AC =AB 2+BC 2-2AB ·BC cos B=42+62-2×4×6×13=6.2.在△ABC 中,a =2,b =3-1,C =30°,如此c 等于() A. 3 B. 2 C. 5 D .2解析:选B.由余弦定理,得c 2=a 2+b 2-2ab cos C =22+(3-1)2-2×2×(3-1)cos30° =2, ∴c = 2.3.在△ABC 中,a 2=b 2+c 2+3bc ,如此∠A 等于() A .60° B .45° C .120° D .150°解析:选D.cos ∠A =b 2+c 2-a 22bc =-3bc 2bc =-32,∵0°<∠A <180°,∴∠A =150°.4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,假如(a 2+c 2-b 2)tan B =3ac ,如此∠B 的值为()A.π6B.π3C.π6或5π6D.π3或2π3解析:选D.由(a 2+c 2-b 2)tan B =3ac ,联想到余弦定理,代入得cos B =a 2+c 2-b 22ac =32·1tan B =32·cos B sin B .显然∠B ≠π2,∴sin B =32.∴∠B =π3或2π3.5.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,如此a cos B +b cos A 等于() A .a B .b C .c D .以上均不对解析:选C.a ·a 2+c 2-b 22ac +b ·b 2+c 2-a 22bc =2c 22c=c .6.如果把直角三角形的三边都增加同样的长度,如此这个新的三角形的形状为() A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 解析:选A.设三边长分别为a ,b ,c 且a 2+b 2=c 2. 设增加的长度为m ,如此c +m >a +m ,c +m >b +m ,又(a +m )2+(b +m )2=a 2+b 2+2(a +b )m +2m 2>c 2+2cm +m 2=(c +m )2, ∴三角形各角均为锐角,即新三角形为锐角三角形.7.锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,如此AB →·AC →的值为() A .2 B .-2 C .4 D .-4解析:选A.S △ABC =3=12|AB →|·|AC →|·sin A=12×4×1×sin A , ∴sin A =32,又∵△ABC 为锐角三角形,∴cos A =12,∴AB →·AC →=4×1×12=2.8.在△ABC 中,b =3,c =3,B =30°,如此a 为() A. 3 B .2 3 C.3或2 3 D .2解析:选C.在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac cos B ,即3=a 2+9-33a , ∴a 2-33a +6=0,解得a =3或2 3.9.△ABC 的三个角满足2B =A +C ,且AB =1,BC =4,如此边BC 上的中线AD 的长为________.解析:∵2B =A +C ,A +B +C =π,∴B =π3.在△ABD 中,AD =AB 2+BD 2-2AB ·BD cos B=1+4-2×1×2×12= 3.答案: 310.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数. 解:∵sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10, ∴a ∶b ∶c =(3-1)∶(3+1)∶10.设a =(3-1)k ,b =(3+1)k ,c =10k (k >0), ∴c 边最长,即角C 最大.由余弦定理,得cos C =a 2+b 2-c 22ab =-12,又C ∈(0°,180°),∴C =120°. 11.a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,假如a =4,b =5,S =53,如此边c 的值为________.解析:S =12ab sin C ,sin C =32,∴C =60°或120°.∴cos C =±12,又∵c 2=a 2+b 2-2ab cos C ,∴c 2=21或61,∴c =21或61. 答案:21或6112.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,如此cos A ∶cos B ∶cos C =________. 解析:由正弦定理a ∶b ∶c =sin A ∶sin B ∶sin C =2∶3∶4, 设a =2k (k >0),如此b =3k ,c =4k ,cos B =a 2+c 2-b 22ac =2k 2+4k 2-3k 22×2k ×4k =1116,同理可得:cos A =78,cos C =-14,∴cos A ∶cos B ∶cos C =14∶11∶(-4). 答案:14∶11∶(-4)13.在△ABC 中,a =32,cos C =13,S △ABC =43,如此b =________.解析:∵cos C =13,∴sin C =223. 又S △ABC =12ab sin C =43, 即12·b ·32·223=43, ∴b =2 3.答案:2 314.△ABC 的三边长分别为AB =7,BC =5,AC =6,如此AB →·BC →的值为________.解析:在△ABC 中,cos B =AB 2+BC 2-AC 22AB ·BC=49+25-362×7×5=1935, ∴AB →·BC →=|AB →|·|BC →|·cos(π-B )=7×5×(-1935) =-19. 答案:-1915.△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,如此角C =________. 解析:12ab sin C =S =a 2+b 2-c 24=a 2+b 2-c 22ab ·ab 2=12ab cos C ,∴sin C =cos C ,∴tan C =1,∴C =45°. 答案:45°16.(2011年调研)三角形的三边为连续的自然数,且最大角为钝角,如此最小角的余弦值为________. 解析:设三边长为k -1,k ,k +1(k ≥2,k ∈N ),如此⎩⎪⎨⎪⎧k 2+k -12-k +12<0k +k -1>k +1⇒2<k <4, ∴k =3,故三边长分别为2,3,4,∴最小角的余弦值为32+42-222×3×4=78. 答案:7817.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.解:∵A +B +C =π且2cos(A +B )=1,∴cos(π-C )=12,即cos C =-12. 又∵a ,b 是方程x 2-23x +2=0的两根,∴a +b =23,ab =2.∴AB 2=AC 2+BC 2-2AC ·BC ·cos C=a 2+b 2-2ab (-12) =a 2+b 2+ab =(a +b )2-ab=(23)2-2=10,∴AB =10.18.△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)假如△ABC 的面积为16sin C ,求角C 的度数. 解:(1)由题意与正弦定理得AB +BC +AC =2+1,BC +AC =2AB ,两式相减,得AB =1.(2)由△ABC 的面积12BC ·AC ·sin C =16sin C ,得BC ·AC =13, 由余弦定理得cos C =AC 2+BC 2-AB 22AC ·BC=AC +BC 2-2AC ·BC -AB 22AC ·BC =12, 所以C =60°.19.在△ABC 中,BC =5,AC =3,sin C =2sin A . (1)求AB 的值;(2)求sin(2A -π4)的值. 解:(1)在△ABC 中,由正弦定理AB sin C =BC sin A, 得AB =sin C sin ABC =2BC =2 5. (2)在△ABC 中,根据余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC =255, 于是sin A =1-cos 2A =55. 从而sin 2A =2sin A cos A =45, cos 2A =cos 2A -sin 2A =35. 所以sin(2A -π4)=sin 2A cos π4-cos 2A sin π4=210.20.在△ABC 中,(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.解:由正弦定理,得sin C sin B =c b. 由2cos A sin B =sin C ,有cos A =sin C 2sin B =c 2b. 又根据余弦定理,得cos A =b 2+c 2-a 22bc ,所以c 2b =b 2+c 2-a 22bc, 即c 2=b 2+c 2-a 2,所以a =b .又因为(a +b +c )(a +b -c )=3ab ,所以(a +b )2-c 2=3ab ,所以4b 2-c 2=3b 2,所以b =c ,所以a =b =c ,因此△ABC 为等边三角形.。
正余弦定理知识点总结及高考考试题型
三角函数五——正、余弦定理一、知识点 (一)正弦定理:2,sin sin sin a b cR A B C===其中R 是三角形外接圆半径. 变形公式:(1)化边为角:2sin ,2sin ,2sin ;a R A b R B c R C ===a b c3sin B C4(((解可 2、余弦定理可以解决的问题: (1)已知三边,求三个角;(解唯一)(2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一):(3)两边和其中一边对角,求另一边,进而可求其它的边和角.(解可能不唯一)三、正、余弦定理的应用射影定理:cos cos ,cos cos ,cos cos .a b C c B b a C c A c a B b A =+=+=+有关三角形内角的几个常用公式 解三角形常见的四种类型(1)已知两角,A B 与一边a :由180A B C ++=︒及正弦定理sin sin sin a b cA B B==,可 求出C ∠,再求,b c 。
(2)已知两边,b c 与其夹角A ,由2222cos a b c bc A =+-,求出a ,再由余弦定理, 求出角,B C 。
(3)已知三边a b c 、、,由余弦定理可求出A B C ∠∠∠、、。
(4讲解 (知∆A ∠,A .由a c ==,075C ∠=,所以030B ∠=,1sin 2B =由正弦定理得1sin 2sin 2a b B A =⋅==,故选A(2013·新课标Ⅰ高考文科·T10)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,02cos cos 232=+A A ,7=a ,c=6,则=b ( ) A.10B.9C.8D.5【解题指南】由02cos cos 232=+A A ,利用倍角公式求出A cos 的值,然后利用正弦定理或余弦定理求得b 的值.【解析】选D.因为02cos cos 232=+A A ,所以01cos 2cos 2322=-+A A ,解得251cos 2=A , 方法一:因为△ABC 为锐角三角形,所以51cos =A ,562sin =A . 由正弦定理C cA a sin sin =得,C sin 65627=.6sin =C 所以sin =B5.方法二5∴sin 9、()0C =,求边又1+即12cos 0A -=,2,又0°<A<180°,所以A =60°.在△ABC 中,由正弦定理sin sin a b A B =得sin 2sin 2b A B a ===, 又∵b a <,所以B <A ,B =45°,C =75°,∴BC 边上的高AD 752sin(4530)=+在锐角△ABC 中,内角A,B,C 的对边分别为a,b,c ,且 b.(1)求角A 的大小.(2)若a=6,b+c=8,求△ABC 的面积.【解题指南】(1)由正弦定理易求角A 的大小;(2)根据余弦定理,借助三角形的面积公式求解.【解析】(1)由及正弦定理sin sin a bA B=,得, 因为(2)b 2+c 26、(3,则c =.4、(2012福建文)在ABC ∆中,已知60,45,BAC ABC BC ∠=︒∠=︒=,则AC =_______.【解析】由正弦定理得sin 45AC AC =⇒=︒5、(2011北京)在ABC 中,若15,,sin 43b B A π=∠==,则a = .【答案】325 【解析】:由正弦定理得sin sin a b A B =又15,,sin 43b B A π=∠==所以5,13sin 34a a π==1、在△ABC 中,角,,A B C 的对边分别为,,abc ,3A π=,1a b ==,则c =( )A 、1B 、2 C1 D 、32、在△ABC 中,分别为的对边.如果成等差数列,30°,△ABC 的面 A 、3)75213 C D 4B π=,则___________________.3,=60°AB 的长度等于13(20132012天津理)在ABC ∆中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cos C =()A .725B .725-C .725±D .2425【答案】A【解析】85,b c =由正弦定理得8sin 5sin B C =,又2C B =,8sin 5sin 2B B ∴=,所以8sin 10sin cos B B B =,易知247sin 0,cos ,cos cos 22cos 1525B B C B B ≠∴===-=(2013·湖南高考文科·T5)在锐角∆ABC 中,角A ,B 所对的边长分别为a ,b. 若2asinB=3b ,则角A 等于( ) A.3π B.4π C.6π D.12π【解题指南】本题先利用正弦定理B bA a sin sin =化简条件等式,注意条件“锐角三角形” .【解析】选A.由2asinB=3b 得2sinAsinB=3sinB,得sinA=23,所以锐角A=3π. (2013·湖南高考理科·T3)在锐角ABC ∆中,角,A B 所对的边长分别为,a b .若2sin ,a B A =则角等于A .12π(2013 A . 3 5,=在△B 0=. (1)(2)若a 【解题指南】(1)借助三角形内角和为π,结合三角恒等变换将条件中的等式转化为只含B 的方程,求出B 的三角函数值,进而可求出角B.(2)根据(1)求出的B 与a c 1+=,由余弦定理可得b 2关于a 的函数,注意到a c 1+=可知0a 1<<,进而可求出b 的范围.【解析】(1)由已知得cos(A B)cos A cos B A cos B 0-++-=,即sin Asin B A cos B 0=.因为sin A 0≠,所以sin B B 0=,又cosB 0≠,所以tan B =,又0B <<π,所以B 3π=.(2)由余弦定理,有222b a c 2accos B =+-,因为a c 1+=,1cos B 2=,所以2211b 3(a )24=-+,又因为0a 1<<,所以21b 14≤<,即1b 12≤<.1sin BAM ∠=∠(2013·上海高考文科·T5)已知∆ABC 的内角A 、B 、C 所对的边分别是a 、b 、c.若a +ab+b 2-c 2=0,则角C 的大小是 .【解析】π32212- cos 0- 222222=⇒-=+=⇒=++C ab c b a C c b ab a 【答案】π32设ABC ∆的内角A ,B ,C 的对边分别为c b a ,,,ac c b a c b a =+-++))(((I )求B ; (II )若413sin sin -=C A ,求C . 【解题指南】(I )由条件ac c b a c b a =+-++))((确定求B 应采用余弦定理. (II )应用三角恒等变换求出C A +及C A -的值,列出方程组确定C 的值. 【解析】(I )因为ac c b a c b a -=+-++))((.所以ac b c a -=-+222.222(II 221+=故-C A10、((I c = 所以A (2012(1(2【解析】(1) 3(cos cos sin sin )16cos cos 3cos cos 3sin sin 13cos()11cos()3BC B C B C B C B C B C A π+-=⎧⎪-=-⎪⎪+=-⎨⎪⎪-=-⎪⎩ 则1cos 3A =. (2)由(1)得sin A =,由面积可得bc=6①,则根据余弦定理2222291cos 2123b c a b c A bc +-+-===则2213b c +=②, ①②两式联立可得32b a =⎧⎪⎨=⎪⎩或32a b =⎧⎪⎨=⎪⎩ 7、(2011全国)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.己知sin csin sin sin a A C C b B +=.(I )求B ; (Ⅱ)若75,2,A b ==a c 求,. 【解析】(I)由正弦定理得222a cb +=2222cos b a c ac B =+-cos 2B =45B =(II sin30=故6a +=60645c b ==1、∆C 的对边分别为 )2 A A 、30° B 、30°或150° C 、60° D 、60°或120° 8、已知在△ABC 中,sin :sin :sin 3:2:4A B C =,那么cos C 的值为( )A 、14-B 、14C 、23- D 、2310、若△ABC 的内角,,,A B C 满足6sin 4sin 3sin A B C ==,则cos B =A B .34C D .111611、在ABC ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=A .-12 B .12C . -1D .112、已知在△ABC 中,10,a b A ===45°,则B = 。
正弦定理和余弦定理知识点与题型归纳
●高考明方向掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.★备考知考情1.利用正、余弦定理求三角形中的边、角问题是高考考查的热点.2.常与三角恒等变换、平面向量相结合出现在解答题中,综合考查三角形中的边角关系、三角形形状的判断等问题.3.三种题型都有可能出现,属中低档题. 一、知识梳理名师一号P62知识点一 正弦定理其中R 为△ABC 外接圆的半径变形1:2sin ,2sin ,2sin ,===a R A b R B c R C 变形2:sin ,sin ,sin ,222===a b c A B C R R R变形3:∶∶∶∶sinA sinB sinC=a b c 注意:补充关于边的齐次式或关于角的正弦的齐次式均可利用正弦定理进行边角互化;知识点二 余弦定理222222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2⎧+-=⎪⎧=+-⎪+-⎪⎪=+-⇔=⎨⎨=+-⎪⎪⎩+-⎪=⎪⎩b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab 注意:补充1关于边的二次式或关于角的余弦均可考虑利用余弦定理进行边角互化;2勾股定理是余弦定理的特例3在∆ABC 中,222090︒︒<+⇔<<a b c A用于判断三角形形状名师一号P63问题探究 问题3判断三角形形状有什么办法判断三角形形状的两种途径:一是化边为角;二是化角为边, 并常用正弦余弦定理实施边、角转换.知识点三 三角形中常见的结论△ABC 的面积公式有:①S =错误!a ·hh 表示a 边上的高;②S =错误!ab sin C =错误!ac sin B =错误!bc sin A =错误!;--知两边或两边的积及其夹角可求面积③S =错误!ra +b +cr 为内切圆半径.补充1++=A B C π2在三角形中大边对大角,大角对大边.3任意两边之和大于第三边,任意两边之差小于第三边.4有关三角形内角的常用三角函数关系式sin()sin ,cos()cos ,tan()tan sin cos ,cos sin 2222+=+=-+=-++==B C A B C A B C A B C A B C A 利用++=A B C π及诱导公式可得之5在△ABC 中的几个充要条件:名师一号P63问题探究 问题4sin A >sin B 错误!>错误! a >b A >B .补充 cos cos A B A B >⇔<若R ∈、αβ或2k απβπ=-+k Z ∈或2k αβπ=-+k Z ∈45套之7--196锐角△ABC 中的常用结论 ∆ABC 为锐角三角形⇔02<<、、A B C π4.解斜三角形的类型名师一号P63问题探究 问题1利用正、余弦定理可解决哪几类问题在解三角形时,正弦定理可解决两类问题:1已知两角及任一边,求其它边或角;2已知两边及一边的对角,求其它边或角.情况2中结果可能有一解、二解、无解,应注意区分.余弦定理可解决两类问题:1已知两边及夹角或两边及一边对角的问题;2已知三边问题.a b A补充已知两边和其中一边的对角如,,用正弦定理或余弦定理均可名师一号P63问题探究问题2选用正、余弦定理的原则是什么若式子中含有角的余弦或边的二次式,要考虑用余弦定理;若遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.补充:一、正弦定理推导必修5证明思路:转化到特殊情形----直角三角形中二、余弦定理推导必修52011年陕西高考考查余弦定理的证明18.本小题满分12分叙述并证明余弦定理;2222cos a b c bc A =+-, 2222cos b c a ca B =+-,2222cos c a b ab C =+-.证明:证法一 如图,2c BC = ()()AC AB AC AB =-•-即2222cos a b c bc A =+-同理可证 2222cos b c a ca B =+-,证法二 已知ABC ∆中,,,A B C 所对边分别为,,,a b c ,以A 为原点,AB 所在直线为x 轴建立直角坐标系,则(cos ,sin ),(,0)C b A b A B c ,∴222222222||(cos )(sin )cos 2cos sin a BC b A c b A b A bc A c b A ==-+=-++222cos b c bc A =+-,即 2222cos a b c bc A =+-同理可证 2222cos b c a ca B =+-,二、例题分析:一利用正、余弦定理解三角形例1.1名师一号P62 对点自测1在△ABC 中,A =60°,B =75°,a =10,则c 等于A .5错误!B .10错误! D .5错误!解析 由A +B +C =180°,知C =45°,由正弦定理得:错误!=错误!.即错误!=错误!. ∴c =错误!.注意:已知两角及任一边,求其它边或角----正弦定理,解唯一例1.2名师一号P62 对点自测2在△ABC 中,若a =3,b =错误!,A =错误!,则C 的大小为________.解析 由正弦定理可知sin B =错误!=错误!=错误!,所以B =错误!或错误!舍去,因为a >b 即A =错误!> B 所以B =错误!所以C =π-A -B =π-错误!-错误!=错误!.一解变式1: 在△ABC 中,若b =3,a =错误!,A =错误!, 则C 的大小为________.答案: sin B >1无解变式2:在ABC ∆中,已知45︒===a b B , 解ABC ∆.答案:60,75,︒︒+===A C c或120,15,2︒︒-===A C c两解变式3:求边c注意:知道两边和其中一边的对角如,,a b A 解三角形 可用正弦定理先求出角B 也可用余弦定理先求出边c 再求解;两种方法均须注意解的个数可能有一解、二解、无解,应注意区分.练习:补充2009山东文17已知函数x x x x f sin sin cos 2cossin 2)(2-+=ϕϕ ππϕ=<<x 在)0(处取最小值; I 求ϕ的值;Ⅱ在ABC ∆中,c b a ,,分别是角A,B,C 的对边,已知,23)(,2,1===A f b a 求角C; 解析 Ⅰfx =2sinx 1cos cos sin sin 2x x ϕϕ++- =sinx+ϕ.因为 fx 在x =π时取最小值,所以 sin π+ϕ=-1,故 sin ϕ=1.又 0<ϕ<π,所以ϕ=2π, Ⅱ由Ⅰ知fx=sinx+2π=cosx. 因为fA=cosA=3,且A 为△ABC 的角, 所以A =6π. 由正弦定理得 sinB =sin b A a =22, 又b >a, 当4π=B 时,,12746πππππ=--=--=B A C 当43π=B 时,.12436πππππ=--=--=B A C 综上所述,12127ππ==C C 或例2. 补充若满足条件060=C ,a BC AB ==,3的ABC ∆有两个,求a 的取值范围. 32<<a注意:判断三角形解的个数常用方法:1在ABC ∆中,已知,,A a b ;构造直角三角形判断 2利用余弦定理判断一元二次方程正根个数 勿忘大边对大角判断已知两边及其中一边对角,判断三角形解的个数的方法:①应用三角形中大边对大角的性质以及正弦函数的值域判断解的个数.②在△ABC 中,已知a 、b 和A ,以点C 为圆心,以边长a 为半径画弧,此弧与除去顶点A 的射线AB 的公共点的个数 即为三角形的个数,解的个数见下表:图示已知a 、b 、A ,△ABC 解的情况.ⅰA 为钝角或直角时解的情况如下:ⅱA 为锐角时,解的情况如下:③运用余弦定理转化为关于一元二次方程 正根个数问题练习:已知ABC ∆中,若22,2==b a ,且三角形有两解,求角A 的取值范围;答案:由条件知b sin A <a ,即2错误!sin A <2, ∴sin A <错误!,∵a <b ,∴A <B ,∴A 为锐角,∴0<A <错误!.例3.1名师一号P62 对点自测3在△ABC 中,a =错误!,b =1,c =2,则A 等于A .30°B .45°C .60°D .75° 解析 由余弦定理得:cos A =错误!=错误!=错误!,∵0<A <π,∴A =60°.注意:已知三边,求其它边或角---余弦定理例3.2名师一号P63 高频考点例122014·新课标全国卷Ⅱ钝角三角形ABC的面积是错误!,AB=1,BC=错误!,则AC=A.5 C.2 D.1解:由题意知S=错误!AB·BC·sin B,△ABC即错误!=错误!×1×错误!sin B,解得sin B=错误!,∴B=45°或B=135°.当B=45°时,AC2=AB2+BC2-2AB·BC·cos B=12+错误!2-2×1×错误!×错误!=1.此时AC2+AB2=BC2,△ABC为直角三角形,不符合题意;当B=135°时,AC2=AB2+BC2-2AB·BC·cos B=12+错误!2-2×1×错误!×错误!=5,解得AC=错误!.符合题意.故选B.注意:已知两边夹角,求其它边或角---余弦定理小结:已知与待求涉及三边和一角的关系---余弦定理例4.1名师一号P63 高频考点例112014·江西卷在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则错误!的值为A.-错误!C.1解:∵3a=2b,∴由正弦定理得错误!=错误!=错误!.∴错误!=错误!,∴错误!=2×错误!-1=2×错误!-1=错误!-1=错误!.例4.2名师一号P62 对点自测已知△ABC三边满足a2+b2=c2-错误!ab,则此三角形的最大内角为__________.解析∵a2+b2-c2=-错误!ab,∴cos C=错误!=-错误!,故C=150°为三角形的最大内角.注意:1关于边的齐次式或关于角的正弦的齐次式均可利用正弦定理进行边角互化;2关于边的二次式或关于角的余弦均可考虑利用余弦定理进行边角互化.注意等价转换练习:2010·天津理在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=错误!bc,sin C=2错误!sin B,则A=A.30°B.60°C.120°D.150°解:由余弦定理得:cos A=错误!,由题知b2-a2=-错误!bc,c2=2错误!bc,则cos A=错误!, 又A∈0°,180°,∴A=30°,故选A.注意:已知三边比例关系---余弦定理二三角形的面积例1.1名师一号P62 对点自测62014·福建卷在△ABC中,A=60°,AC=4,BC=2错误!,则△ABC的面积等于________.解析由题意及余弦定理得cos A=错误!=错误!=错误!,解得c=2.所以S=错误!bc sin A=错误!×4×2×sin60°=2错误!.故答案为2错误!.注意:a b A解三角形可用正知道两边和其中一边的对角如,,弦定理先求出角B也可用余弦定理先求出边c再求解;两种方法均须注意解的个数本例用余弦求边更快捷.例1.2名师一号P63 高频考点例32014·浙江卷在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=错误!,cos2A-cos2B=错误!sin A cos A-错误! sin B cos B.1求角C的大小;2若sin A=错误!,求△ABC的面积.解:1由题意得错误!-错误!=错误!sin2A-错误!sin2B,即错误!sin2A-错误!cos2A=错误!sin2B-错误! cos2B,sin错误!=sin错误!.由a≠b,得A≠B,又A+B∈0,π.得2A-错误!+2B-错误!=π,即A+B=错误!,所以C=错误!.2由c=错误!,sin A=错误!,错误!=错误!,得a=错误!.由a<c,得A<C,从而cos A=错误!,故sin B=sin A+C=sin A cos C+cos A sin C=错误!.所以△ABC的面积为S=错误!ac sin B=错误!.规律方法三角形面积公式的应用原则1对于面积公式S=错误!ab sin C=错误!ac sin B=错误! bc sin A,一般是已知哪一个角就使用哪一个公式.2与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.三三角形形状的判定例1.1名师一号P63 高频考点例2在△ABC中a,b,c分别为内角A,B,C的对边,且2a sin A =2b+c sin B+2c+b sin C.1求A的大小;2若sin B+sin C=1,试判断△ABC的形状.解:1由已知,根据正弦定理得2a2=2b+c·b+2c+bc,即a2=b2+c2+bc.由余弦定理得a2=b2+c2-2bc cos A,故cos A=-错误!,∵0<A<180°,∴A=120°.2由1得sin 2A =sin 2B +sin 2C +sin B sin C =错误!.又sin B +sin C =1,解得sin B =sin C =错误!.∵0°<B <60°,0°<C <60°,故B =C =30°,A =120°.∴△ABC 是等腰钝角三角形.法二:因为A =120°,且A +B +C=180°所以sin B +sin C =1即sin60°-C +sin C =1 可求得C=30°例1.2补充根据所给条件,判断△ABC 的形状.1若a cos A =b cos B ,则△ABC 形状为________. 2若错误!=错误!=错误!,则△ABC 形状为________. 解析:1 解法一: 由正弦定理得sinA cos A =sinB cos B 即sin2A =sin2B22A B ∴= 或 22A B π=-A B ∴= 或 2A B π+= ∴△ABC 是等腰三角形或直角三角形.解法二:由余弦定理得a cos A =b cos Ba ·错误!=b ·错误!a 2c 2-a 4-b 2c 2+b 4=0,∴a 2-b 2c 2-a 2-b 2=0∴a 2-b 2=0或c 2-a 2-b 2=0∴a =b 或c 2=a 2+b 2∴△ABC是等腰三角形或直角三角形.2由正弦定理得错误!=错误!=错误!即tan A=tan B=tan C,∵A、B、C∈0,π,∴A=B=C,∴△ABC为等边三角形.注意:利用正、余弦定理进行边角互化1关于边的齐次式或关于角的正弦的齐次式均可利用正弦定理进行边角互化;2关于边的二次式或关于角的余弦均可考虑利用余弦定理进行边角互化;规律方法依据已知条件中的边角关系判断三角形的形状时,主要有如下两种方法:1利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.2利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A+B+C=π这个结论.加加练P9 第6题∆中,已知ABC∆为则ABCA.等边三角形B.等腰直角三角形C.锐角三角形D.钝角三角形答案:B计时双基练P252 第2题四三角形的综合问题例1.补充 在△ABC 中,sinC-A=1,sinB=31. Ⅰ求sinA 的值;Ⅱ设AC=错误!,求△ABC 的面积.解:Ⅰ由2C A π-=,且C A B π+=-,∴42B A π=-,∴sin sin()sin )42222B B B A π=-=-, ∴211sin (1sin )23A B =-=,又sin 0A >,∴sin A = Ⅱ如图,由正弦定理得sin sin AC BC B A=∴sin 31sin 3AC A BC B ===, 又sin sin()sin cos cos sin C A B A B A B =+=+∴11sin 223ABC S AC BC C ∆=••==注意:关注三角形内角和、特殊角、三角恒等变换公式、 知两边夹角求面积公式的选择;例2.补充已知ABC ∆中,角A B C 、、所对的边 A BC分别为a b c 、、,3B π∠=,b =求a c +的取值范围解法一:正弦定理结合三角最值 当且仅当62A ππ+=即3A π=时等号成立 法二:余弦定理结合不等式 由2222cos b a c ac B =+-得2228a c ac =+-即()2283a c ac =+-a c ∴+≤当且仅当a c =时等号成立 又三角形两边之和大于第三边注:这是一道好题,刚好都能运用“正余弦定理求解最值问题”的两种主要方法解决; 小结:借助正弦定理,转化为角的正弦值,利用三角函数最值求解借助余弦定理,转化为边的关系,利用均值不等式求解余弦定理注意两数和差与这两数的平方和、两数的积 的关系的运用练习:加加练P11 第11题已知△ABC 中,外接圆半径是1,且满足()()222sin sin sin sin A C A B b -=-,则△ABC 面积的最大值为答案:4计时双基练P251 第6题补充已知向量(sin ,1)2A m =-,()2,cos()nBC =+, ,,A B C 为锐角..ABC ∆的内角,其对应边为a ,b ,c . Ⅰ当m n ⋅取得最大值时,求角A 的大小;Ⅱ在Ⅰ成立的条件下,当a =,求22b c +的取值范围. 解:Ⅰ2(sin 212sin 22sin 2cos 2sin2)cos(sin 22--=++-=+=+-=⋅A A A A A C B A nm 0,0,0sin 2242A A A ππ<<∴<<∴<<,1sinA ∴=时,即A π=时,m n ⋅取得最大值,∴A π=正弦定理:2sin sin sin ===a b c R A B C其中R 为△ABC 外接圆的半径 22442cos 22cos(2)3sin 2cos 242sin(23b c B B B B B π+=---=-+=-ABC ∆为锐角三角形★注意:∆ABC 为锐角三角形⇔02<<、、A B C π讲评:1、计时双基练 P252 基础11---多个三角形问题2014·湖南卷如图,在平面四边形ABCD 中,AD =1,CD =2,AC =错误!.1求cos ∠CAD 的值;2若cos ∠BAD =-错误!,sin ∠CBA =错误!,求BC 的长.解 1由余弦定理可得cos ∠CAD =错误!=错误!=错误!,∴cos ∠CAD =错误!.2∵∠BAD 为四边形内角,∴sin ∠BAD >0且sin ∠CAD >0,则由正余弦的关系可得sin ∠BAD =错误!=错误!,且sin ∠CAD =错误!=错误!,由正弦的和差角公式可得sin ∠BAC =sin ∠BAD -∠CAD=sin ∠BAD cos ∠CAD -sin ∠CAD cos ∠BAD=错误!×错误!-错误!×错误!=错误!+错误!=错误!, 再由△ABC 的正弦定理可得错误!=错误!BC =错误!×错误!=3.2、45套之7--192---方程的思想课后作业一、计时双基练P251基础1-6;课本P63变式思考1、3补充练习1、2、3二、计时双基练P251基础7-11;培优1-4课本P63变式思考2三、课本P64典例、※对应训练补充练习4、5预习 第七节补充练习:1、2009山东文17已知函数x x x x f sin sin cos 2cos sin 2)(2-+=ϕϕ ππϕ=<<x 在)0(处取最小值; I 求ϕ的值;Ⅱ在ABC ∆中,c b a ,,分别是角A,B,C 的对边,已知,23)(,2,1===A f b a 求角C;解析Ⅰfx =2sinx 1cos cos sin sin 2x x ϕϕ++- =sinx+ϕ.因为 fx 在x =π时取最小值,所以 sin π+ϕ=-1,故 sin ϕ=1. 又 0<ϕ<π,所以ϕ=2π, Ⅱ由Ⅰ知fx=sinx+2π=cosx. 因为fA=cosA=3,且A 为△ABC 的角, 所以A =6π. 由正弦定理得 sinB =sin b A a =22, 又b >a,当4π=B 时,,12746πππππ=--=--=B A C 当43π=B 时,.12436πππππ=--=--=B A C 综上所述,12127ππ==C C 或 2、 已知ABC ∆中,若22,2==b a ,且三角形有两解,求角A 的取值范围;答案:由条件知b sin A <a ,即2错误!sin A <2,∴sin A <错误!,∵a <b ,∴A <B ,∴A 为锐角,∴0<A <错误!.3、已知△ABC 中,∠A =60°,BC=2错误!,则其外接圆面积为__________.答案:4π★注意:勿忘正弦定理中三角形各边与对角正弦的比为外接圆直径sin sin in 2s a b c A B R C=== R 为三角形外接圆半径 4、在四边形ABCD 中,∠B =∠D =90°,∠A =60°, AB =4,AD =5,则AC 的长为B .2错误!解析 如图,连结AC ,设∠BAC =α,则AC ·cos α=4,AC ·cos60°-α=5,两式相除得,错误!=错误!,展开解得,tan α=错误!∵α为锐角,∴cos α=错误!∴AC =错误!=2错误!解法二:补充△ABD 中,由余弦定理得21BD =由∠B =∠D =90°知AC 为△ABD 的外接圆直径由正弦定理得2127sin sin 620BD AC R A ︒====5、已知向量(sin ,1)2A m =-,()2,cos()nBC =+, ,,A B C 为锐角..ABC ∆的内角,其对应边为a ,b ,c .Ⅰ当m n ⋅取得最大值时,求角A 的大小; Ⅱ在Ⅰ成立的条件下,当a =, 求22b c +的取值范围. 解:Ⅰ2(sin 212sin 22sin 2cos 2sin2)cos(sin 22--=++-=+=+-=⋅A A A A A C B A nm 0,0,0sin 2242A A A ππ<<∴<<∴<<,1sinA ∴=时,即A π=时,m n ⋅取得最大值,∴A π=正弦定理:2sin sin sin ===a b c R A B C其中R 为△ABC 外接圆的半径 22442cos 22cos(2)2cos 242sin(23b c B B B B B π+=---=-+=-∆ABC 为锐角三角形⇔02<<、、A B C π6、2013年广州二模文数 第17题某单位有A 、B 、C 三个工作点,需要建立一个公共无线网络发射点O ,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为80AB =m ,70BC =m ,50CA =m .假定A 、B 、C 、O 四点在同一平面上.1求BAC ∠的大小;2求点O 到直线BC 的距离.答案13BAC π∠=23m 课后作业三、计时双基练P251基础1-6;课本P63变式思考1补充练习1、3、例2四、计时双基练P251基础7-11;培优1-4课本P63变式思考3补充练习2三、课本P63变式思考2课本P64典例、※对应训练补充练习4、5预习 第七节。
第一节 正弦定理和余弦定理(知识梳理)
第一节 正弦定理和余弦定理复习目标学法指导1.会证明正弦定理、余弦定理.2.理解正弦定理、余弦定理在讨论三角形边角关系时的作用.3.能用正弦定理、余弦定理解斜三角形.4.会用正弦定理、余弦定理讨论三角形解的情形.5.了解正弦定理与三角形外接圆半径的关系.1.正弦定理和余弦定理是解三角形的基础,熟记定理内容及变形公式,在解决问题时注重数形结合.2.在给定方程的化简和变形上要注重“统一”“消元”思想的运用.统一:统一角度或边长.消元:多个角度利用A+B+C=π进行消元.一、正弦定理正弦定理内容:sin a A =sin b B =sin c C=2R(R 为△ABC 外接圆半径). 变形形式:①a=2Rsin A,b=2Rsin B,c=2Rsin C. ②sin A=2a R ,sin B=2b R ,sin C=2c R . ③a ∶b ∶c=sin A ∶sin B ∶sin C.④sin a A =sin sin a b A B ++=sin sin sin a b c A B C++++.1.概念理解(1)正弦定理主要解决两类三角形问题:①知两角和一边;②知两边和其中一边所对应的角.在第②类中要注意会出现两组解的特殊情况. (2)正弦定理中边角互化公式:a=2Rsin A 和sin A=2a R 是表达式变形中常用公式,在统一角度或统一长度上发挥作用. 2.与正弦定理有关的结论(1)三角形中:A+B+C=π,sin(A+B)=sin C, cos(A+B)=-cos C.(2)在△ABC 中,已知a,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a=bsin Absin A<a<ba ≥ba>b解的个数 一解两解一解一解二、余弦定理余弦定理内容:a 2=b 2+c 2-2bc ·cos A, b 2=a 2+c 2-2ac ·cos B, c 2=a 2+b 2-2ab ·cos C.变形形式:cos A=2222bc a bc+-,cos B=2222ac b ac+-,cos C=2222a b c ab+-.1.概念理解(1)余弦定理解决两类三角形问题:一是知两边及其夹角的三角形,二是知三边的三角形.(2)利用余弦定理来解决三角形问题时,要注意角的取值范围.通常求解三角形的内角度数时,不是解该角的正弦,而是解该角的余弦. 2.与余弦定理有关的结论 由cos A=2222b c a bc+-(设A 为最大内角)若b 2+c 2>a 2,则该三角形为锐角三角形. b 2+c 2=a 2,则该三角形为直角三角形. b 2+c 2<a 2,则该三角形为钝角三角形.1.在△ABC 中,内角A,B,C 的对边分别为a,b,c.若asin Bcos C+csin Bcos A=12b,且a>b,则∠B 等于( A ) (A)π6 (B)π3(C)2π3 (D)5π6 解析:由正弦定理得sin Asin Bcos C+sin Csin Bcos A=12sin B, 所以sin Bsin(A+C)=12sin B. 因为sin B ≠0, 所以sin(A+C)=12,即sin B=12,所以B=π6或5π6.又因为a>b, 所以A>B, 所以B=π6.故选A.2.在△ABC 中,已知b=40,c=20,C=60°,则此三角形的解的情况是( C ) (A)有一解 (B)有两解 (C)无解(D)有解但解的个数不确定解析:由正弦定理得sin b B =sin cC,所以sin B=sin b Cc=40220>1.所以角B 不存在,即满足条件的三角形不存在.故选C. 3.在△ABC 中,A=60°则△ABC 的面积等于 .解析:=4sin B, 所以sin B=1, 所以B=90°, 所以AB=2,所以S △ABC =12×2×23=23.答案:234.(2019·临海高三检测)设△ABC 的内角A,B,C 所对边的长分别为a,b,c.若b+c=2a,3sin A=5sin B,则角C= . 解析:由3sin A=5sin B,得3a=5b.又因为b+c=2a, 所以a=53b,c=73b,所以cos C=2222a b c ab +-=22257()()33523b b b b b +-⨯⨯=-12. 因为C ∈(0,π), 所以C=2π3. 答案:2π3考点一 利用正弦定理解三角形 [例1] (1)在△ABC 中32°,求角A,C 和边c;(2)已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若3求角A 的大小.解:(1)由正弦定理sin a A =sin bB , 得sin A=sin a B b3,所以A=60°或120°. ①当A=60°时,C=75°,由sin a A =sin c C ,得c=sin sin a C A⋅=2·sin 75°62+②当A=120°时,C=15°,c=2·sin 15°62-解:(2)由A+C=2B,A+C+B=180°得B=60°.所以由正弦定理得3=1sin A, 所以sin A=12.所以A=30°或150°. 又因为b>a, 所以B>A. 所以A=30°.利用正弦定理解三角形(1)注重条件和图形的结合;(2)知两边及一边对应的角时,要区分三角形解的情况,通常情况下先利用正弦定理求角,再利用“大边对大角”的条件排除; (3)正弦定理的变形公式.1.(2019·浙江卷)在△ABC 中,∠ABC=90°,AB=4,BC=3,点D 在线段AC 上.若∠BDC=45°,则BD= ,cos ∠ABD= .解析:如图,易知sin C=45, cos C=35.在△BDC 中,由正弦定理可得sin BD C=sin BC BDC∠, 所以BD=sin sin BC C BDC⋅∠4352⨯122.由∠ABC=∠ABD+∠CBD=90°,可得cos ∠ABD=cos(90°-∠CBD)=sin ∠CBD=sin[π-(∠C+∠BDC)] =sin(∠C+∠BDC)=sin C ·cos ∠BDC+cos C ·sin ∠BDC=45×2+35×2=72.答案122722.在△ABC 中,B=60°3则AB+2BC 的最大值为 .解析:在△ABC 中,由正弦定理得sin AB C =sin BCA 3所以AB+2BC=2sin C+4sin A =2sin(120°-A)+4sin A 7ϕ),其中,tan ϕ3,又因为A ∈(0°,120°), 所以最大值为7答案7考点二 利用余弦定理解三角形[例2] 若△ABC 的内角A,B,C 所对的边a,b,c 满足(a+b)2-c 2=4,且C=60°,则ab 的值为( ) (A)433(C)1 (D)23解析:由已知得a 2+b 2-c 2+2ab=4, 由于C=60°,所以cos C=2222a b c ab+-=12, 即a 2+b 2-c 2=ab,因此ab+2ab=4,ab=43,故选A.利用余弦定理解三角形:一般地,如果式子中含有角的余弦或边的二次关系时,考虑使用余弦定理.△ABC 中,角A,B,C 的对边分别是a,b,c,已知b=c,a 2=2b 2(1-sin A),则A 等于( C )(A)3π4 (B)π3 (C)π4 (D)π6解析:在△ABC 中,由余弦定理得a 2=b 2+c 2-2bccos A, 因为b=c,所以a 2=2b 2(1-cos A), 又因为a 2=2b 2(1-sin A), 所以cos A=sin A,所以tan A=1, 因为A ∈(0,π),所以A=π4,故选C. 考点三 正、余弦定理的综合应用[例3] 设△ABC 的内角A,B,C 所对应的边分别为a,b,c, 已知()sin a bA B ++=sin sin a c AB --.(1)求角B; (2)若6,求△ABC 的面积.解:(1)因为()sin a bA B ++=sin sin a c AB --,所以a b c+=a ca b --, 所以a 2-b 2=ac-c 2, 所以cos B=2222a c b ac+-=2ac ac =12, 又因为0<B<π,所以B=π3.解:(2)由cos A=63可得sin A=33,由sin a A =sin b B可得a=2, 而sin C=sin(A+B) =sin Acos B+cos Asin B =3326+,所以△ABC 的面积S=12absin C=3322+.(1)利用正、余弦定理解三角形的关键是根据已知条件及所求结论确定三角形及所需应用的定理.(2)对于面积公式S=12absin C=12acsin B=12bcsin A,一般是已知哪一个角就选用哪一个公式.(2017·全国Ⅰ卷)△ABC 的内角A,B,C 的对边分别为a,b,c,已知△ABC的面积为23sin a A .(1)求sin Bsin C;(2)若6cos Bcos C=1,a=3,求△ABC 的周长. 解:(1)由题设得12acsin B=23sin a A ,即12csin B=3sin aA . 由正弦定理得12sin Csin B=sin 3sin A A ,故sin Bsin C=23.解:(2)由题设及(1)得cos Bcos C-sin Bsin C=-12,即cos(B+C)=- 12.所以B+C=2π3,故A=π3.由题设得12bcsin A=23sinaA,即bc=8,由余弦定理得b2+c2-bc=9,即(b+c)2-3bc=9,得b+c=33.故△ABC的周长为3+33.类型一利用正弦定理解三角形1.在△ABC中,角A,B,C所对的边分别是a,b,c.已知8b=5c,C=2B,则cos C等于( A )(A)725 (B)-725(C)±725(D)2425解析:因为8b=5c,所以由正弦定理,得8sin B=5sin C.又因为C=2B,所以8sin B=5sin 2B,所以8sin B=10sin Bcos B.因为sin B≠0,所以cos B=45,所以cos C=cos 2B=2cos2B-1=725.故选A.2.在△ABC中,a,b,c分别是内角A,B,C的对边,向量p=(1,-∥q,且bcos C+ccos B=2asin A,则C等于( A )(A)30°(B)60°(C)120° (D)150°解析:因为p∥q,cos B=sin B,所以即得所以B=120°.又因为bcos C+ccos B=2asin A,所以由正弦定理得sin Bcos C+sin Ccos B=2sin2A,即sin A=sin(B+C)=2sin2A,,又由sin A≠0,得sin A=12所以A=30°,C=180°-A-B=30°.故选A.类型二利用余弦定理解三角形3.已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+ cos 2A=0,a=7,c=6,则b等于( D )(A)10 (B)9 (C)8 (D)5解析:由23cos2A+cos 2A=0,得25cos2A=1,因为A为锐角,所以cos A=1.5b,又由a2=b2+c2-2bccos A,得49=b2+36-125整理得5b2-12b-65=0,解得b=-135(舍)或b=5.即b=5. 故选D.4.若锐角△ABC 的面积为,且AB=5,AC=8,则BC 等于 .解析:设内角A,B,C 所对的边分别为a,b,c.由已知及12得因为A 为锐角,所以A=60°,cos A=12.由余弦定理得a 2=b 2+c 2-2bccos A =64+25-2×40×12 =49,故a=7,即BC=7. 答案:7类型三 正弦定理和余弦定理的综合应用 5.在△ABC 中,∠B=120°∠BAC的平分线则AC 等于( D )(C)2解析:如图,在△ABD 中,由正弦定理,得sin ∠ADB=sin AB BAD .由题意知0°<∠ADB<60°, 所以∠ADB=45°,则∠BAD=180°-∠B-∠ADB=15°, 所以∠BAC=2∠BAD=30°, 所以∠C=180°-∠BAC-∠B=30°, 所以于是由余弦定理,得AC=222cos120AB BC AB BC ︒+-⨯=()()221222222⎛⎫+-⨯⨯- ⎪⎝⎭=6.故选D.。
正弦定理和余弦定理_知识点及典型例题精编版
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新 料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯正弦定理和余弦定理重点梳理1.正弦定理abcsin A sin B2 Rsin C此中 R 是 三角形外接圆的半径.由正弦定理能够变形为:(1)a ∶ b ∶ c = sin A ∶ sin B ∶ sin C ;(2)a = 2Rsin A , b = 2Rsin B , c = 2Rsin C ;abc(3)sin A = 2R , sin B =2R , sin C = 2R 等形式,以解决不一样的三角形问题.2.三角形面积公式1 1 1 abc 1(a + b + c) ·r(r 是三角形内切圆的半径 ),并可由此计算 R 、 r.S △ABC = absin C = bcsin A = acsin B = 4R =22223.余弦定理:a 2=b 2+c 2-2bccos A ,b 2=a 2+c 2-2accos B ,c 2=a 2+b 2-2abcos C .余弦定理能够变形为:b2c2a2a2c2b2a 2b 2c 2cos A =2bc, cos B =2ac, cos C =2ab .4.在解三角形时,正弦定理可解决两类问题:(1) 已知两角及任一边,求其余边或角;(2)已知两边及一边的对角,求其余边或角.状况 (2) 中结果可能有一解、二解、无解,应注意划分.余弦定理可解决两类问题:(1) 已知两边及夹角或两边及一边对角的问题; (2)已知三边问题.基础自测2π.1.在 △ ABC 中,若 b =1, c = ,则 a =3,C = 32.已知 △ ABC 的内角 A , B , C 的对边分别为 a , b , c ,若 c = 2, b = 6, B = 120 °,则 a = ________.93.在 △ ABC 中,若 AB = 5, AC = 5,且 cos C = 10,则 BC = ________ . 4.已知圆的半径为 4, a 、 b 、 c 为该圆的内接三角形的三边,若 abc = 16 2,则三角形的面积为 ()2 A .2 2 B .8 2 C. 2D. 2题型分类 深度解析题型一利用正弦定理求解三角形例 1 在△中, = 3, = 2, =45°. 求角 、 和边c .ABC a b B A C1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新 料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯变式训练 1 已知 a , b , c 分别是△ ABC 的三个内角A ,B ,C 所对的边,若 a = 1, b = 3, A + C = 2B ,则 A=题型二 利用余弦定理求解三角形例 2 在△ ABC 中, a 、 b 、 c 分别是角 A 、 B 、 C 的对边,且cos B= cos Cb2a c.( 1)求角 B 的大小;(2)若 b = 13, a + c = 4,求△ ABC 的面积.变式训练 2 已知 A 、 B 、 C 为△ ABC 的三个内角,其所对的边分别为a 、b 、c ,且 2cos 2A+cos A=0 .2(1)求角 A 的值;(2) 若 a = 2 3, b + c = 4,求△ ABC 的面积.题型三 正、余弦定理的综合应用例 3. 在 △ABC 中, a 、b 、c 分别是角 A 、B 、 C 的对边 已知 22(sin 2 A sin 2 C ) (a b)sin B ,△ABC 外接圆半径为2 .( 1)求角 C 的大小;( 2)求 △ABC 面积的最大值.变式训练 3 在△ ABC 中,内角 A , B , C 所对的边长分别是a ,b , c.π(1) ,且△ ABC 的面积为 3,求 a , b 的值;若 c = 2, C = 3 (2)若 sin C + sin(B - A)= sin 2A ,试判断△ ABC 的形状.例 4 设△ ABC 的内角 A 、 B 、 C 所对的边分别为 a 、 b 、 c ,且 acosC + 1 c = b.2(1)求角 A 的大小; (2)若 a = 1,求△ ABC 的周长 l 的取值范围.2。
正弦定理与余弦定理知识点与题型分类讲解
正弦定理与余弦定理知识点与题型分类讲解[归纳·知识整合]1.正弦定理和余弦定理[探究] 1.在三角形ABC中,“A>B”是“sin A>sin B”的什么条件?“A>B”是“cos A<cos B”的什么条件?提示:“A>B”是“sin A>sin B”的充要条件,“A>B”是“cos A<cos B”的充要条件.2.在△ABC中,已知a、b和A时,解的情况[探究] 2.如何利用余弦定理判定三角形的形状?(以角A为例)提示:∵cos A与b2+c2-a2同号,∴当b 2+c 2-a 2>0时,角A 为锐角,若可判定其他两角也为锐角,则三角形为锐角三角形;当b 2+c 2-a 2=0时,角A 为直角,三角形为直角三角形; 当b 2+c 2-a 2<0时,角A 为钝角,三角形为钝角三角形.[自测·牛刀小试]1.(教材习题改编)在△ABC 中,若a =2,c =4,B =60°,则b 等于( ) A .23 B .12 C .27D .28解析:选A 由余弦定理得b 2=a 2+c 2-2ac cos B , 即b 2=4+16-8=12,所以b =2 3.2.(教材习题改编)在△ABC 中,a =15,b =10,A =60°,则cos B 等于( ) A .-223B.223 C .-63D.63解析:选D ∵a sin A =b sin B ,∴15sin 60°=10sin B ,∴sin B =23×32=33.又∵a >b ,A =60°, ∴B <60°,∴cos B =1-sin 2B =63. 3.△ABC 中,a =5,b =3,sin B =22,则符合条件的三角形有( ) A .1个 B .2个 C .3个D .0个解析:选B ∵a sin B =102,∴a sin B <b =3<a =5, ∴符合条件的三角形有2个.4.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为________.解析:∵cos C =13,∴sin C =223,∴S △ABC =12ab sin C =12×32×23×223=4 3.答案:4 35.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c .若b =2a sin B ,则角A 的大小为________.解析:由正弦定理得sin B =2sin A sin B ,∵sin B ≠0, ∴sin A =12,∴A =30°或A =150°.答案:30°或150°[例1] (2012·浙江高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B .(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值. [自主解答] (1)由b sin A =3a cos B 及正弦定理 a sin A =bsin B,得sin B =3cos B , 所以tan B =3,所以B =π3.(2)由sin C =2sin A 及a sin A =csin C ,得c =2a .由b =3及余弦定理b 2=a 2+c 2-2ac cos B , 得9=a 2+c 2-ac . 所以a =3,c =2 3. ———————————————————正、余弦定理的选用原则解三角形时,有时可用正弦定理,也可用余弦定理,应注意用哪一个定理更方便、简捷.在解题时,还要根据所给的条件,利用正弦定理或余弦定理合理地实施边和角的相互转化.1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A -2cos C cos B =2c -a b .(1)求sin Csin A的值; (2)若cos B =14,△ABC 的周长为5,求b 的长.解:(1)由正弦定理,设a sin A =b sin B =c sin C=k ,则2c -a b =2k sin C -k sin A k sin B =2sin C -sin Asin B, 所以cos A -2cos C cos B =2sin C -sin A sin B,即(cos A -2cos C )sin B =(2sin C -sin A )cos B , 化简可得sin(A +B )=2sin(B +C ). 又因为A +B +C =π,所以sin C =2sin A . 因此sin Csin A =2.(2)由sin Csin A=2得c =2a . 由余弦定理及cos B =14得b 2=a 2+c 2-2ac cos B =a 2+4a 2-4a 2×14=4a 2.所以b =2a .又a +b +c =5,从而a =1.因此b =2.[例2] 在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断△ABC 的形状. [自主解答] ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ), ∴b 2[sin(A +B )+sin(A -B )]= a 2[sin(A +B )-sin(A -B )], ∴2sin A cos B ·b 2=2cos A sin B ·a 2, 即a 2cos A sin B =b 2sin A cos B .法一:由正弦定理知a =2R sin A ,b =2R sin B , ∴sin 2A cos A sin B =sin 2B sin A cos B , 又sin A ·sin B ≠0,∴sin A cos A =sin B cos B , ∴sin 2A =sin 2B .在△ABC 中,0<2A <2π,0<2B <2π, ∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2.∴△ABC 为等腰或直角三角形. 法二:由正弦定理、余弦定理得: a 2b b 2+c 2-a 22bc =b 2a a 2+c 2-b 22ac,∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0或a 2+b 2-c 2=0. 即a =b 或a 2+b 2=c 2.∴△ABC 为等腰或直角三角形.若将条件改为“sin B =cos A sin C ”,试判断△ABC 的形状. 解:∵sin B =cos A ·sin C , ∴b =b 2+c 2-a 22bc ·c ,即b 2+a 2=c 2,∴△ABC 为直角三角形.———————————————————1.三角形形状的判断思路判断三角形的形状,就是利用正、余弦定理等进行代换、转化,寻求边与边或角与角之间的数量关系,从而作出正确判断.(1)边与边的关系主要看是否有等边,是否符合勾股定理等; (2)角与角的关系主要是看是否有等角,有无直角或钝角等. 2.判定三角形形状的两种常用途径①通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;②利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出三条边之间的关系进行判断.2.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b -c )sin B +(2c -b )sin C .(1)求角A 的大小;(2)若sin B +sin C =3,试判断△ABC 的形状. 解:∵2a sin A =(2b -c )sin B +(2c -b )sin C , 得2a 2=(2b -c )b +(2c -b )c ,即bc =b 2+c 2-a 2, ∴cos A =b 2+c 2-a 22bc =12,∴A =60°.(2)∵A +B +C =180°, ∴B +C =180°-60°=120°.由sin B +sin C =3,得sin B +sin(120°-B )=3,∴sin B +sin 120°cos B -cos 120°sin B = 3. ∴32sin B +32cos B =3,即sin(B +30°)=1. 又∵0°<B <120°,30°<B +30°<150°, ∴B +30°=90°,即B =60°.∴A =B =C =60°,∴△ABC 为正三角形.[例3] (2012·山东高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin B (tan A +tan C )=tan A tan C .(1)求证:a ,b ,c 成等比数列; (2)若a =1,c =2,求△ABC 的面积S .[自主解答] (1)证明:在△ABC 中,由于sin B (tan A +tan C )=tan A tan C , 所以sin B ⎝⎛⎭⎫sin A cos A +sin C cos C =sin A cos A ·sin C cos C , 因此sin B (sin A cos C +cos A sin C )=sin A sin C , 所以sin B sin(A +C )=sin A sin C . 又A +B +C =π,所以sin(A +C )=sin B ,因此sin 2B =sin A sin C . 由正弦定理得b 2=ac , 即a ,b ,c 成等比数列.(2)因为a =1,c =2,所以b =2,由余弦定理得cos B =a 2+c 2-b 22ac =12+22-22×1×2=34,因为0<B <π,所以sin B =1-cos 2B =74, 故△ABC 的面积S =12ac sin B =12×1×2×74=74.———————————————————三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.3.(2012·新课标全国卷)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .解:(1)由a cos C +3a sin C -b -c =0及正弦定理得 sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12. 又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.1条规律——三角形中的边角关系在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .2个原则——选用正弦定理或余弦定理的原则在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.2种途径——判断三角形形状的途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换. 2个防范——解三角形应注意的问题(1)在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解或无解,所以要进行分类讨论.(2)在判断三角形形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.答题模板——利用正、余弦定理解三角形[典例] (2012·江西高考)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a . (1)求证:B -C =π2;(2)若a =2,求△ABC 的面积.[快速规范审题]第(1)问1.审条件,挖解题信息观察条件:A =π4,b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a ――――――――→数式中既有边又有角,应统一sin B sin ⎝⎛⎭⎫π4+C -sin C sin ⎝⎛⎭⎫π4+B =sin A . 2.审结论,明确解题方向 观察所求结论:求证:B -C =π2――――――――――→应求角B -C 的某一个三角函数值sin(B -C )=1或cos(B -C )=0.3.建联系,找解题突破口考虑到所求的结论只含有B ,C ,因此应消掉sin B ·sin ⎝⎛⎭⎫π4+C -sin C sin ⎝⎛⎭⎫π4+B =sin A 中的角A =4π借助−−−−→A sin B sin ⎝⎛⎭⎫π4+C -sin C sin ⎝⎛⎭⎫π4+B =22――――――――――→利用两角和与差的三角函数公式sin(B -C )=1―――――――――――→要求角的值,还应确定角的取值范围由0<B ,C <3π4,解得B -C =π2. 第(2)问1.审条件,挖解题信息观察条件:a =2,A =π4,B -C =π2―――――――→可求B ,C 的值 B =5π8,C =π8. 2.审结论,明确解题方向观察所求结论:求△ABC 的面积――――――→应具有两边及其夹角由a sin A =b sin B =c sin C ,得b =2sin 5π8,c =2sin π8.3.建联系,找解题突破口△ABC 的边角都具备―――――→利用面积公式求结论S =12bc sin A = 2sin 5π8sin π8=2cos π8sin π8=12. [准确规范答题](1)证明:由b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a ,应用正弦定理,得sin B sin ⎝⎛⎭⎫π4+C -sin C sin ⎝⎛⎭⎫π4+B =sin A ,sin B ⎝⎛⎭⎫22sin C +22cos C -sin C 22sin B +22cos B =22,⇨(3分) 整理得sin B cos C -cos B sin C =1, 即sin(B -C )=1,⇨(5分) 由于0<B ,C <34π,从而B -C =π2.⇨(6分)(2)B +C =π-A =3π4,因此B =5π8,C =π8.⇨(8分)由a =2,A =π4,得b =a sin B sin A =2sin 5π8,c =a sin C sin A =2sin π8,⇨(10分)所以△ABC 的面积S =12bc sin A =2sin 5π8sin π8=2cos π8sin π8=12.⇨(12分)[答题模板速成]解决解三角形问题一般可用以下几步解答:⇒⇒一、选择题(本大题共6小题,每小题5分,共30分)1.(2012·上海高考)在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .不能确定解析:选A 由正弦定理得a 2+b 2<c 2,故cos C =a 2+b 2-c 22ab<0,所以C 为钝角.2.(2012·广东高考)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =( ) A .4 3 B .2 3 C. 3D.32解析:选B 由正弦定理得:BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=2 3.3.在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( ) A.32 B.332 C.3+62D.3+394解析:选B 由余弦定理得:(7)2=22+AB 2-2×2AB ·cos 60°,即AB 2-2AB -3=0,得AB =3,故BC 边上的高是AB sin 60°=332. 4.在△ABC 中 ,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( )A.32B.22C.12 D .-12解析:选C 由余弦定理得a 2+b 2-c 2=2ab cos C ,又c 2=12(a 2+b 2),得2ab cos C =12(a 2+b 2),即cos C =a 2+b 24ab ≥2ab 4ab =12.5.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知8b =5c ,C =2B ,则cos C =( )A.725 B .-725C .±725D.2425解析:选A 由C =2B 得sin C =sin 2B =2sin B cos B ,由正弦定理及8b =5c 得cos B =sin C 2 sin B =c 2b =45,所以cos C =cos 2B =2cos 2 B -1=2×⎝⎛⎭⎫452-1=725. 6.在△ABC 中,AB =3,AC =1,B =30°,则△ABC 的面积等于( ) A.32B.34C.32或 3 D.32或34解析:选D 依题意与正弦定理得AB sin C =AC sin B ,sin C =AB ·sin B AC =32,C =60°或C =120°.当C =60°时,A =90°,△ABC 的面积等于12AB ·AC =32;当C =120°时,A =30°,△ABC 的面积等于12AB ·AC ·sin A =34.因此,△ABC 的面积等于32或34.二、填空题(本大题共3小题,每小题5分,共15分)7.(2012·福建高考)已知△ABC 的三边长成公比为2的等比数列,则其最大角的余弦值为________.解析:依题意得,△ABC 的三边长分别为a ,2a,2a (a >0),则最大边2a 所对的角的余弦值为a 2+(2a )2-(2a )22a ·2a=-24.答案:-248.(2013·佛山模拟)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos A =35,cosB =513,b =3,则c =________.解析:由题意知sin A =45,sin B =1213,则sin C =sin(A +B )=sin A cos B +cos A sin B =5665,所以c =b sin C sin B =145.答案:1459.在△ABC 中,D 为边BC 的中点,AB =2,AC =1,∠BAD =30°,则AD 的长度为________.解析:延长AD 到M ,使得DM =AD ,连接BM 、MC ,则四边形ABMC 是平行四边形.在△ABM 中,由余弦定理得BM 2=AB 2+AM 2-2AB ·AM ·cos ∠BAM ,即12=22+AM 2-2·2·AM ·cos 30°,解得AM =3,所以AD =32. 答案:32三、解答题(本大题共3小题,每小题12分,共36分)10.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos(A -C )+cos B =1,a =2c ,求C .解:由B =π-(A +C ),得cos B =-cos(A +C ).于是cos(A -C )+cos B =cos(A -C )-cos(A +C )=2sin A sin C , 由已知得sin A sin C =12.①由a =2c 及正弦定理得sin A =2sin C .② 由①②得sin 2C =14,于是sin C =-12(舍去),或sin C =12.又a =2c ,所以C =π6.11.(2012·江苏高考)在△ABC 中,已知AB ·AC =3BA ·BC . (1)求证:tan B =3tan A ; (2)若cos C =55,求A 的值. 解:(1)因为AB ·AC =3BA ·BC ,所以AB ·AC ·cos A =3BA ·BC ·cos B ,即AC ·cos A =3BC ·cos B ,由正弦定理知AC sin B =BCsin A,从而sin B cos A =3sin A cos B ,又因为0<A +B <π,所以cos A >0,cos B >0, 所以tan B =3tan A . (2)因为cos C =55,0<C <π, 所以sin C =1-cos 2C =255,从而tan C =2,于是tan[π-(A +B )]=2, 即tan(A +B )=-2,亦即tan A +tan B 1-tan A tan B =-2.由(1)得4tan A 1-3tan 2A =-2,解得tan A =1或-13,因为cos A >0,故tan A =1,所以A =π4.12.(2012·浙江高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B =5cos C .(1)求tan C 的值;(2)若a =2,求△ABC 的面积.解:(1)因为0<A <π,cos A =23,得sin A =1-cos 2A =53.又5cos C =sin B =sin (A +C ) =sin A cos C +cos A sin C =53cos C +23sin C . 所以tan C = 5.(2)由tan C =5,得sin C =56,cos C =16. 于是sin B =5cos C =56. 由a =2及正弦定理a sin A =csin C ,得c = 3.设△ABC 的面积为S ,则S =12ac sin B =52.1.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43 B .8-4 3 C .1D.23解析:选A 由(a +b )2-c 2=4, 得a 2+b 2-c 2+2ab =4.① 由余弦定理得a 2+b 2-c 2=2ab cos C =2ab cos 60°=ab ,② 将②代入①得ab +2ab =4,即ab =43.2.若△ABC 的内角A ,B ,C 满足6sin A =4sin B =3sin C ,则cos B =( ) A.154B.34C.31516D.1116 解析:选D 依题意,结合正弦定理得6a =4b =3c ,设3c =12k (k >0),则有a =2k ,b =3k ,c =4k ,由余弦定理得cos B =a 2+c 2-b 22ac =(2k )2+(4k )2-(3k )22×2k ×4k=1116.3.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B ·sin C ,则A 的取值范围是( )A.⎝⎛⎦⎤0,π6B.⎣⎡⎭⎫π6,π C.⎝⎛⎦⎤0,π3 D.⎣⎡⎭⎫π3,π解析:选C 由已知及正弦定理,有a 2≤b 2+c 2-bc .而由余弦定理可知,a 2=b 2+c 2-2bc cos A ,于是b 2+c 2-2bc cos A ≤b 2+c 2-bc ,可得cos A ≥12.注意到在△ABC 中,0<A <π,故A ∈⎝⎛⎦⎤0,π3. 4.已知A 、B 、C 为△ABC 的三个内角,其所对的边分别为a 、b 、c ,且2cos 2A2+cos A=0.(1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积.解:(1)由2cos 2A2+cos A =0,得1+cos A +cos A =0,即cos A =-12,∵0<A <π,∴A =2π3.(2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3,则a 2=(b +c )2-bc ,又a =23,b +c =4, 有12=42-bc ,则bc =4, 故S △ABC =12bc sin A = 3.。
高考数学正弦定理和余弦定理必考点梳理
必考点:正弦定理和余弦定理必考点梳理(精编Wor d)一、正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则二、三角形中常用的面积公式1.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高);(2)S =12bc s in A =12ac s inB =12ab s in C ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).2.在△ABC 中常用结论 (1)∠A +∠B +∠C =π.(2)在三角形中大边对大角,大角对大边.(3)任意两边之和大于第三边,任意两边之差小于第三边(4)s in (A +B )=s inC ;c os(A +B )=-c os C ;t an (A +B )=-t anC ;s in A +B 2=c os C 2;c os A +B 2=s in C2. (5)t an A +t an B +t an C =t an A ·t an B ·t an C . (6)∠A >∠B ⇔a >b ⇔s in A >s in B ⇔c os A <c os B . (7)合比定理:a sin A =a +b +c sin A +sin B +sin C=2R .(8)在锐角三角形中①A +B >π2;②若A =π3,则π6<B ,C <π2三、实际测量中的常见问题求AB 图形需要测量的元素解法求竖直高度底部可达∠ACB=α,BC=a解直角三角形AB=a t anα底部不可达∠ACB=α,∠ADB=β,CD=a解两个直角三角形AB=a tan αtan βtan β-tan α求水平距离山两侧∠ACB=α,AC=b,BC=a用余弦定理AB=a2+b2-2ab cos α河两岸∠ACB=α,∠ABC=β,CB=a用正弦定理AB=a sin αsin(α+β)河对岸∠ADC=α,∠BDC=β,∠BCD=δ,∠ACD=γ,CD=a在△ADC中,AC=a sin αsin(α+γ)在△BDC中,BC=a sin βsin(β+δ);在△ABC中,应用余弦定理求AB(一)仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角.(如图①).(二)方位角和方向角(1)方位角:从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(2)方向角:相对于某正方向的水平角,如南偏东30°等.利用正弦定理可解决两类问题例题1: (2019·辽宁沈阳模拟)已知△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若A =π6,B =π4,a =1,则b =( )A .2B .1C .3D . 2 【解析】由正弦定理得b =a sin B sin A =2212= 2.选D变式1: (2019·山东烟台模拟)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b ,若2a s in B =3b ,则角A =________.【解析】∵2a s in B =3b ,∴2s in A s in B =3s in B ,得s in A =32,∴A =π3或A =2π3, ∵△ABC 为锐角三角形,∴A =π3.利用余弦定理可解决两类问题例题2: (2019·山东济南期中)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则c os C =( ) A .24 B .-24 C .34 D .-34【解析】由题意得,b 2=ac =2a 2,即b =2a , ∴c os C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a =-24.选B变式2: (2017·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2bc os B =ac os C +cc os A ,则B =________.方法一:由2bc os B =ac os C +cc os A 及正弦定理, 得2s in Bc os B =s in Ac os C +s in Cc os A . ∴2s in Bc os B =s in (A +C ). 又A +B +C =π,∴A +C =π-B . ∴2s in Bc os B =s in (π-B )=s in B . 又s in B ≠0,∴c os B =12.∴B =π3.方法二:∵在△ABC 中,ac os C +cc os A =b , ∴条件等式变为2bc os B =b ,∴c os B =12.又0<B <π,∴B =π3.判定三角形形状的2种常用途径例题3: 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若bc os C +cc os B =a s in A ,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不确定【解析】由正弦定理得s in Bc os C +s in Cc os B =s in 2A ,∴s in (B +C )=s in 2A ,即s in (π-A )=s in 2A ,s in A =s in 2A . ∵A ∈(0,π),∴s in A >0,∴s in A =1,即A =π2,∴△ABC 为直角三角形.变式3: 本题中,若将条件变为2s in Ac os B =s in C ,判断△ABC 的形状. 【解析】∵2s in Ac os B =s in C =s in (A +B ), ∴2s in Ac os B =s in Ac os B +c os A s in B , ∴s in (A -B )=0.又A ,B 为△ABC 的内角. ∴A =B ,∴△ABC 为等腰三角形.变式4: 本题中,若将条件变为a 2+b 2-c 2=ab ,且2c os A s in B =s in C ,判断△ABC 的形状. 【解析】∵a 2+b 2-c 2=ab ,∴c os C =a 2+b 2-c 22ab =12, 又0<C <π,∴C =π3,又由2c os A s in B =s in C 得s in (B -A )=0,∴A =B ,故△ABC 为等边三角形.例题4: (2017·全国卷Ⅲ)△ABC 内角A ,B ,C 对边分别为a ,b ,c ,s in A +3c os A =0,a =27,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积. 【解析】 (1)由已知可得t an A =-3,所以A =2π3.在△ABC 中,由余弦定理得28=4+c 2-4cc os2π3,即c 2+2c -24=0,解得c =-6(舍去),c =4. (2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6.故△ABD 面积与△ACD 面积的比值为12AB ·AD ·sin π612AC ·AD =1.又△ABC 的面积为12×4×2s in ∠BAC =23,所以△ABD 的面积为 3.变式5: (2018·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b s in C +c s in B =4a s in B s in C ,b 2+c 2-a 2=8,则△ABC 的面积为________. 【解析】∵b s in C +c s in B =4a s in B s in C ,∴由正弦定理得s in B s in C +s in C s in B =4s in A s in B s in C .又s in B s in C >0,∴s in A =12.由余弦定理得c os A =b 2+c 2-a 22bc =82bc =4bc >0,∴c os A =32,bc =4cos A =833,∴S △ABC =12bc s in A =12×833×12=233必考点5: 解几何计算问题例题5: 如图,在△ABC 中,B =π3,BC =2,点D 在边AB 上,AD =DC ,DE ⊥AC ,E 为垂足.(1)若△BCD 的面积为33,求AB 的长; (2)若DE =62,求角A 的大小. 【解析】 (1)∵△BCD 的面积为33,B =π3,BC =2, ∴12×2×BD ×s in π3=33,∴BD =23. 在△BCD 中,由余弦定理可得CD =BC 2+BD 2-2BC ·BD ·cos B =4+49-2×2×23×12=273. ∴AB =AD +BD =CD +BD =273+23=27+23. (2)∵DE =62,∴CD =AD =DE sin A =62sin A. 在△BCD 中,由正弦定理可得BC sin ∠BDC =CDsin B.∵∠BDC =2∠A ,∴2sin 2A =62sin A sinπ3,∴c os A =22.∴A =π4.变式6: (2018·北京卷)在△ABC 中,a =7,b =8,c os B =-17.(1)求∠A ;(2)求AC 边上的高.【解析】(1)在△ABC 中,因为c os B =-17,所以s in B =1-cos 2B =437.由正弦定理得s in A =a sin B b =32.由题设知π2<∠B <π,所以0<∠A <π2.所以∠A =π3.(2)在△ABC 中,因为s in C =s in (A +B )=s in Ac os B +c os A s in B =3314,所以AC 边上的高为a s in C =7×3314=332.必考点6: 考点6三角函数求值问题例题6: (2018·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b s in A =ac os ⎝⎛⎭⎫B -π6. (1)求角B 的大小;(2)设a =2,c =3,求b 和s in (2A -B )的值.【解析】(1)在△ABC 中,由正弦定理a sin A =bsin B ,可得b s in A =a s in B .又由b s in A =ac os ⎝⎛⎭⎫B -π6,得a s in B =ac os ⎝⎛⎭⎫B -π6, 即s in B =c os ⎝⎛⎭⎫B -π6,所以t an B = 3.又因为B ∈(0,π),所以B =π3. (2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,得b 2=a 2+c 2-2acc os B =7,故b =7. 由b s in A =ac os ⎝⎛⎭⎫B -π6,可得s in A =37 . 因为a <c ,所以c os A =27.因此s in 2A =2s in Ac os A =437,c os 2A =2c os 2A -1=17.所以s in (2A -B )=s in 2Ac os B -c os 2A s in B =437×12-17×32=3314.必考点7: 考点7解三角形综合问题例题7: (2018·全国卷Ⅰ)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5. (1)求c os ∠ADB ; (2)若DC =22,求BC .【解析】 (1)在△ABD 中,由正弦定理得BD sin ∠A =ABsin ∠ADB即5sin 45°=2sin ∠ADB ,所以s in ∠ADB =25由题设知,∠ADB <90°,所以c os ∠ADB =1-225=235 (2)由题设及(1)知,c os ∠BDC =s in ∠ADB =25在△BCD 中,由余弦定理得BC 2=BD 2+DC 2-2BD ·DC ·c os ∠BDC =25+8-2×5×22×25=25所以BC =5变式7: (2019·广东惠州模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足(2b -c )c os A =ac os C . (1)求角A 的大小;(2)若a =13,b +c =5,求△ABC 的面积.【解析】(1)△ABC 中,由条件及正弦定理得(2s in B -s in C )c os A =s in Ac os C ,∴2s in Bc os A =s in Cc os A +s in Ac os C =s in B .∵s in B ≠0,∴2c os A =1,∵A ∈(0,π),∴A =π3.(2)∵a =13,b +c =5,a 2=b 2+c 2-2bcc os A =(b +c )2-2bc -2bcc os π3=52-3bc =13,∴bc =25-133=4,∴S △ABC =12bc s in A =12×4×s in π3= 3.必考点8: 高度问题(已知仰角或俯角)例题8: (2019·山东青岛月考)如图所示,D ,C ,B 三点在地面的同一条直线上,DC =a ,从C ,D 两点测得A 点的仰角分别为60°,30°,则A 点离地面的高度AB =________.【解析】由已知得∠DAC =30°,△ADC 为等腰三角形,AD =3a ,所以在Rt △ADB 中,AB =12AD =32a .变式8: (2019·河北衡水模拟)如图,为了测量河对岸电视塔CD 的高度,小王在点A 处测得塔顶D 的仰角为30°,塔底C 与A 的连线同河岸成15°角,小王向前走了1 200 m 到达M 处,测得塔底C 与M 的连线同河岸成60°角,则电视塔CD 的高度为________m .【解析】在△ACM 中,∠MCA =60°-15°=45°,∠AMC =180°-60°=120°, 由正弦定理得AM sin ∠MCA =AC sin ∠AMC ,即1 20022=AC32,解得AC =600 6.在△ACD 中,∵t an ∠DAC =DC AC =33,∴DC =6006×33=600 2.求解高度问题的3个注意点 (1)在处理有关高度问题时,要理解仰角、俯角(它是在铅垂面上所成的角)、方向(位)角(它是在水平面上所成的角)是关键.(2)在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.(3)注意山或塔垂直于地面或海平面,把空间问题转化为平面问题.必考点9: 高度问题(已知方位角或方向角)例题9: 如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山高度CD =______m .【解析】由题意,在△ABC 中,∠BAC =30°,∠ABC =180°-75°=105°,故∠ACB =45°.又AB =600 m ,故由正弦定理得600sin 45°=BC sin 30°,解得BC =300 2 m . 在Rt △BCD 中,CD =BC ·t an 30°=3002×33=1006(m ) 必考点10: 距离问题例题10: (2019·山东临沂联考)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67°,30°,此时气球的高是46 m ,则河流的宽度BC 约等于________m .(用四舍五入法将结果精确到个位.参考数据:s in 67°≈0.92,c os 67°≈0.39,s in 37°≈0.60,c os 37°≈0.80,3≈1.73)【解析】如图,过点A 作AD 垂直于CB 的延长线,垂足为D ,则在Rt △ABD 中,∠ABD =67°,AD =46,AB =46sin 67°. 在△ABC 中,根据正弦定理得BC =AB sin 37°sin 30°=46×sin 37°sin 67°sin 30°≈60变式9: 如图所示,要测量一水塘两侧A ,B 两点间的距离,其方法先选定适当的位置C ,用经纬仪测出角α,再分别测出AC ,BC 的长b ,a ,则可求出A ,B 两点间的距离,即AB =a 2+b 2-2ab cos α.若测得CA =400 m ,CB =600 m ,∠ACB =60°,试计算AB 的长.【解析】在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BCc os ∠ACB ,∴AB 2=4002+6002-2×400×600c os 60°=280 000,∴AB =2007(m ),即A ,B 两点间的距离为2007 m .求解距离问题的一般步骤(1)画出示意图,将实际问题转化成三角形问题.(2)明确所求的距离在哪个三角形中,有几个已知元素.(3)使用正弦定理、余弦定理解三角形对于解答题,应作答.必考点11: 角度问题例题11: 如图所示,位于A 处的信息中心获悉:在其正东方向相距40 n mile 的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20 n mile 的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,则c os θ的值为________.【解析】在△ABC 中,AB =40,AC =20,∠BAC =120°,由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·c os 120°=2 800,得BC =207由正弦定理,得AB sin ∠ACB =BC sin ∠BAC,即s in ∠ACB =AB BC ·s in ∠BAC =217 由∠BAC =120°,知∠ACB 为锐角,则c os ∠ACB =277.由θ=∠ACB +30° 得c os θ=c os(∠ACB +30°)=c os ∠ACBc os 30°-s in ∠ACB s in 30°=2114变式10: (2019·山西大同联考)在一次抗洪抢险中,某救生艇发动机突然发生故障停止转动,失去动力的救生艇在洪水中漂行,此时,风向是北偏东30°,风速是20 km /h ;水的流向是正东,流速是20 km /h ,若不考虑其他因素,救生艇在洪水中漂行的方向为北偏东________,速度的大小为________ km /h .【解析】如图,∠AOB =60°,由余弦定理知OC 2=202+202-800c os 120°=1 200,故OC =203,∠COy =30°+30°=60°. ]解决测量角度问题的注意事项(1)首先应明确方位角或方向角的含义.(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步.(3)将实际问题转化为可用数学方法解决的问题后,注意正弦、余弦定理的“联袂”使用.变式11: (2019·河南安阳调研)如图,在海岸A 处发现北偏东45°方向,距A 处(3-1)n mile 的B 处有一艘走私船.在A 处北偏西75°方向,距A 处2 n mile 的C 处的我方缉私船奉命以10 3 n mile /h 的速度追截走私船,此时走私船正以10 n mile /h 的速度从B 处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.【解析】设缉私船应沿CD 方向行驶t 小时,才能最快截获(在D 点)走私船,则CD = 103t n mile ,BD =10t n mile ,△ABC 中,由余弦定理,BC 2=AB 2+AC 2-2AB ·AC ·c os A =(3-1)2+22-2(3-1)×2×c os120°=6,解得BC = 6. 又∵BC sin A =AC sin ∠ABC ,∴s in ∠ABC =AC ·sin A BC =2×sin120°6=22, ∴∠ABC =45°,故B 点在C 点的正东方向上,∴∠CBD =90°+30°=120°,在△BCD 中,由正弦定理,得BD sin ∠BCD =CD sin ∠CBD ,∴s in ∠BCD =BD ·sin ∠CBD CD =10t ·sin120°103t=12. ∴∠BCD =30°,∴缉私船沿北偏东60°的方向行驶.在△BCD中,∠CBD=120°,∠BCD=30°,∴∠D=30°,∴BD=BC,即10t=6,t=610小时≈15分钟∴缉私船应沿北偏东60°的方向行驶,才能最快截获走私船,大约需要15分钟.。
正弦定理余弦定理(解析版)
考点31 正弦定理、余弦定理【命题解读】高考对正弦定理和余弦定理的考查较为灵活,题型多变,往往以小题的形式独立考查正弦定理或余弦定理,以解答题的形式综合考查定理的综合应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换等结合考查,试题难度控制在中等或以下,主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等 【基础知识回顾】1.正弦定理a sin A =b sin B =csin C =2R (R 为△ABC 外接圆的半径).a 2=b 2+c2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C .3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高); (2)S △ABC =12ab sin C =12bc sin A =12ac sin B ; (3)S =12r (a +b +c )(r 为三角形的内切圆半径).1、 在△ABC 中,若AB =13,BC =3,C =120°,则AC 等于( )A .1B .2C .3D .4 【答案】:A 【解析】:设在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则a =3,c =13,C =120°,由余弦定理得13=9+b 2+3b ,解得b =1或b =-4(舍去),即AC =1. 2、 已知△ABC ,a =5,b =15,A =30°,则c 等于( )A .2 5 B.5 C .25或 5 D .均不正确【答案】:C 【解析】:∵a sin A =b sin B ,∴sin B =b sin A a =155·sin 30°=32.∵b >a ,∴B =60°或120°. 若B =60°,则C =90°,∴c =a 2+b 2=2 5. 若B =120°,则C =30°,∴a =c = 5.3、 在△ABC 中,A =60°,AB =2,且△ABC 的面积为32,则BC 的长为( )A.32B.3 C .2 3 D .2 【答案】:B 【解析】:因为S =12AB ·AC sin A =12×2×32AC =32,所以AC =1, 所以BC 2=AB 2+AC 2-2AB ·AC cos A =3.所以BC = 3. 4、 在△ABC 中,cos C 2=55,BC =1,AC =5,则AB 等于( )A .4 2 B.30 C.29 D .25【答案】:A 【解析】:∵cos C 2=55,∴cos C =2cos 2C 2-1=2×⎝⎛⎭⎫552-1=-35.在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC ·cos C =52+12-2×5×1×⎝⎛⎭⎫-35=32,∴AB =32=4 2.故选A.5、 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定【答案】:B 【解析】:由正弦定理得sin B cos C +sin C cos B =sin 2A , ∴sin(B +C )=sin 2A ,即sin(π-A )=sin 2A ,sin A =sin 2A . ∵A ∈(0,π),∴sin A >0,∴sin A =1, 即A =π2,∴△ABC 为直角三角形.6、在△ABC 中,cos 2B 2=a +c2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .等边三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形 【答案】:B 【解析】:∵cos 2B 2=1+cos B 2,cos 2B 2=a +c2c ,∴(1+cos B )·c =a +c ,∴a =cos B ·c =a 2+c 2-b 22a , ∴2a 2=a 2+c 2-b 2,∴a 2+b 2=c 2,∴△ABC 为直角三角形.7、 △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin C +c sin B =4a sin B sin C ,b 2+c 2-a 2=8,则△ABC的面积为 . 【答案】:233 【解析】:由b sin C +c sin B =4a sin B sin C , 得sin B sin C +sin C sin B =4sin A sin B sin C ,因为sin B sin C ≠0,所以sin A =12.因为b 2+c 2-a 2=8,所以cos A =b 2+c 2-a 22bc >0, 所以bc =833,所以S △ABC =12×833×12=233.8、 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A -3cos C cos B =3c -a b ,则sin Csin A 的值为__________. 【答案】:3 【解析】:由正弦定理a sin A =b sin B =csin C ,得cos A -3cos C cos B =3c -a b =3sin C -sin A sin B , 即(cos A -3cos C )sin B =(3sin C -sin A )·cos B , 化简可得sin(A +B )=3sin(B +C ),又知A +B +C =π,所以sin C =3sin A ,因此sin Csin A =3.考向一 运用正余弦定理解三角形例1、(2020届山东实验中学高三上期中)在ABC △中,若3,120AB BC C ==∠=,则AC =( ) A .1 B .2C .3D .4【答案】A 【解析】余弦定理2222?cos AB BC AC BC AC C =+-将各值代入 得2340AC AC +-=解得1AC =或4AC =-(舍去)选A.变式1、(2021·山东泰安市·高三三模)在中,,,,则( )ABC .D .【答案】DABC3AC =2BC =3cos 4C =tan A =33【解析】由余弦定理可以求出,有可判断,进而可以求出. 【解析】由余弦定理得:, 所以,因为,所以,所以, 故选:D .变式2、【2020江苏淮阴中学期中考试】在ABC 中,如果sin :sin :sin 2:3:4A B C =,那么tan C =________.【答案】【解析】∵sin A :sin B :sin C =2:3:4,∴由正弦定理可得:a :b :c =2:3:4,∴不妨设a =2t ,b =3t ,c =4t ,则cos C 2222224916122234a b c t t t ab t t +-+-===-⨯⨯,∵C ∈(0,π),∴tanC ==答案为变式3、(2020届山东省泰安市高三上期末)在△ABC 中,内角A ,B ,C 的对边分别为,,a b c ,若cos cos sin A B C a b c +=,22265b c a bc +-=,则tan B =______. 【答案】4 【解析】∵cos cos sin A B Ca b c+=, ∴由正弦定理得cos cos sin sin sin sin A B CA B C+=, ∴111tan tan A B+=, 又22265b c a bc +-=,∴由余弦定理得62cos 5A =,∴3cos 5A =,∵A 为ABC ∆的内角,∴4sin 5A =,∴4tan 3A =,∴tan 4B =, 故答案为:4.2AB =AB BC =A C =tan A 2222232cos 3223244AB AC BC BC AC C =+-⋅=+-⨯⨯⨯=2AB =AB BC =A C =3cos cos 4A C ==tan 3A =变式4、(2020届山东省潍坊市高三上期中)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知10a b +=,5c =,sin 2sin 0B B +=. (1)求a ,b 的值: (2)求sin C 的值.【答案】(1)3a =,7b =;(2. 【解析】(1)由sin 2sin 0B B +=,得2sin cos sin 0B B B +=, 因为在ABC ∆中,sin 0B ≠,得1cos 2B =-, 由余弦定理2222cos b a c ac B =+-,得22215252b a a ⎛⎫=+-⨯⨯⨯-⎪⎝⎭, 因为10b a =-,所以2221(10)5252a a a ⎛⎫-=+-⨯⨯⨯- ⎪⎝⎭, 解得3a =,所以7b =.(2)由1cos 2B =-,得sin B =由正弦定理得5sin sin 7214c C B b ==⨯=方法总结:本题考查正弦定理、余弦定理的公式.在解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.考查基本运算能力和转化与化归思想.考向二 利用正、余弦定理判定三角形形状例2、已知a ,b ,c 分别是△ABC 三个内角A ,B ,C 的对边,下列四个命题中正确的是( )A .若tan A +tanB +tanC >0,则△ABC 是锐角三角形 B .若a cos A =b cos B ,则△ABC 是等腰三角形 C .若b cos C +c cos B =b ,则△ABC 是等腰三角形D .若a cos A =b cos B =ccos C ,则△ABC 是等边三角形 【答案】:ACD 【解析】:∵tan A +tan B +tan C =tan A tan B tan C >0, ∴A ,B ,C 均为锐角,∴选项A 正确;由a cos A =b cos B 及正弦定理,可得sin 2A =sin 2B , ∴A =B 或A +B =π2,∴△ABC 是等腰三角形或直角三角形,∴选项B 错; 由b cos C +c cos B =b 及正弦定理, 可知sin B cos C +sin C cos B =sin B , ∴sin A =sin B ,∴A =B ,∴选项C 正确;由已知和正弦定理,易知tan A =tan B =tan C , ∴选项D 正确.变式1、△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且2a sin A =(2b +c)sin B +(2c +b)sin C.(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状. 【解析】 (1)由已知,根据正弦定理得:2a 2=(2b +c)b +(2c +b)c ,即a 2=b 2+c 2+bc ,由余弦定理得:a 2=b 2+c 2-2bc cos A ,故cos A =-12,A =120°.(2)由(1)得:sin 2A =sin 2B +sin 2C +sin B sin C ,∵A =120°,∴34=sin 2B +sin 2C +sin B sin C ,与sin B +sin C=1联立方程组解得:sin B =sin C =12,∵0°<B <60°,0°<C <60°,故B =C =30°,∴△ABC 是等腰钝角三角形.变式2、(1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形【答案】 (1)B (2)C 【解析】(1)法一:因为b cos C +c cos B =a sin A , 由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B =a c ,所以a b =ac ,所以b =c . 又(b +c +a )(b +c -a )=3bc , 所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12. 因为A ∈(0,π),所以A =π3, 所以△ABC 是等边三角形.方法总结: 判定三角形形状的途径:①化边为角,通过三角变换找出角之间的关系;②化角为边,通过代数变形找出边之间的关系.正(余)弦定理是转化的桥梁.考查转化与化归思想. 考点三 运用正余弦定理研究三角形的面积考向三 运用正余弦定理解决三角形的面积例3、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知b cos C +c cos B =2a cos A . (1) 求角A 的大小;(2) 若AB →·AC →=3,求△ABC 的面积. 【解析】:(1) (解法1)在△ABC 中,由正弦定理,及b cos C +c cos B =2a cos A , 得sin B cos C +sin C cos B =2sin A cos A , 即sin A =2sin A cos A .因为A ∈(0,π),所以sin A ≠0, 所以cos A =12,所以A =π3.(解法2)在△ABC 中,由余弦定理,及b cos C +c cos B =2a cos A , 得b a 2+b 2-c 22ab +c a 2+c 2-b 22ac =2a b 2+c 2-a 22bc , 所以a 2=b 2+c 2-bc ,所以cos A =b 2+c 2-a 22bc =12. 因为A ∈(0,π),所以A =π3.(2) 由AB →·AC →=cb cos A =3,得bc =23,所以△ABC 的面积为S =12bc sin A =12×23×sin60°=32变式1、在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cosA -3sinB cos B . (1) 求角C 的大小;(2) 若sin A =45,求△ABC 的面积. 【解析】:(1) 由题意得 1+cos2A 2-1+cos2B 2=32sin 2A -32sin 2B , 即32sin 2A -12cos 2A =32sin 2B -12cos 2B ,sin ⎝⎛⎭⎫2A -π6=sin ⎝⎛⎭⎫2B -π6.由a ≠b ,得A ≠B .又A +B ∈(0,π),得2A -π6+2B -π6=π,即A +B =2π3,所以C =π3. (2) 由c =3,sin A =45,a sin A =c sin C ,得a =85. 由a <c ,得A <C ,从而cos A =35,故sin B =sin(A +C )=sin A cos C +cos A sin C =4+3310, 所以,△ABC 的面积为S =12ac sin B =83+1825.变式2、(2020届山东实验中学高三上期中)在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,若32sin sin sin ,cos 5B AC B =+=,且6ABC S ∆=,则b =__________. 【答案】4【解析】已知等式2sin sin B A sinC =+,利用正弦定理化简得:2b a c =+,3cos ,5B =∴可得4sin 5B ==,114sin 6225ABC S ac B ac ∆∴==⨯=,可解得15ac =,∴余弦定理可得,2222cos b a c ac B =+-()()221cos a c ac B =+-+=23421515b ⎛⎫-⨯⨯+ ⎪⎝⎭,∴可解得4b =,故答案为4.变式3、【2020江苏溧阳上学期期中考试】在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若3b =,222sin sin 3sin A B C -=,1cos 3A =-,则ABC ∆的面积是______.【解析】3b =,222sin sin 3sin A B C -=,∴由正弦定理可得2222339a c b c =+=+,又1cos 3A =-,∴由余弦定理可得22222cos 92a b c bc A c c =+-=++,223992c c c ∴+=++,解得1c =,又sin A ==,11sin 3122ABC S bc A ∆∴==⨯⨯.方法总结:1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.考向三 结构不良题型例4、(2020届山东省烟台市高三上期末)在条件①()(sin sin )()sin a b A B c b C +-=-,②sin cos()6a Bb A π=+,③sin sin 2B Cb a B +=中任选一个,补充到下面问题中,并给出问题解答.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,6b c +=,a =, . 求ABC ∆的面积. 【解析】 若选①:由正弦定理得(a b)()(c b)a b c +-=-, 即222b c a bc +-=,所以2221cos 222b c a bc A bc bc +-===,因为(0,)A π∈,所以3A π=.又2222()3a b c bc b c bc =+-=+-,a =6bc +=,所以4bc =,所以11sin 4sin 223ABC S bc A π∆==⨯⨯= 若选②:由正弦定理得sin sin sin cos()6A B B A π=+.因为0B π<<,所以sin 0B ≠,sin cos()6A A π=+,化简得1sin sin 2A A A =-,即tan 3A =,因为0A π<<,所以6A π=.又因为2222cos6a b c bc π=+-,所以2222bc =24bc =-所以111sin (246222ABC S bc A ∆==⨯-⨯=- 若选③:由正弦定理得sin sinsin sin 2B CB A B +=, 因为0B π<<,所以sin 0B ≠,所以sinsin 2B CA +=,又因为BC A +=π-, 所以cos 2sin cos 222A A A=,因为0A π<<,022A π<<,所以cos 02A≠,1sin 22A ∴=,26A π=,所以3A π=.又2222()3a b c bc b c bc =+-=+-,a =6bc +=,所以4bc =,所以11sin 4sin 223ABC S bc A π∆==⨯⨯= 变式1、(2020届山东省德州市高三上期末)已知a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边,若ABC ∆同时满足下列四个条件中的三个:①b ac -=②2cos 22cos 12A A +=;③a =④b =(1)满足有解三角形的序号组合有哪些?(2)在(1)所有组合中任选一组,并求对应ABC ∆的面积. (若所选条件出现多种可能,则按计算的第一种可能计分) 【解析】(1)由①()33b a c c a b -+=+得,()2223a c b +-=-,所以222cos 2a c b B ac +-== 由②2cos 22cos 12AA +=得,22cos cos 10A A +-=, 解得1cos 2A =或cos 1A =-(舍),所以3A π=,因为1cos 32B =-<-,且()0,B π∈,所以23B π>,所以A B π+>,矛盾.所以ABC ∆不能同时满足①,②. 故ABC ∆满足①,③,④或②,③,④; (2)若ABC ∆满足①,③,④,因为2222cos b a c ac B =+-,所以28623c c =++⨯,即2420c c +-=.解得2c =.所以ABC ∆的面积1sin 2S ac B ==若ABC ∆满足②,③,④由正弦定理sin sin a b A B==sin 1B =,所以c =ABC ∆的面积1sin 2S bc A ==变式2、(2020cos )sin b C a c B -=;②22cos a c b C +=;③sin sin2A Cb A += 这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足________________,b =4a c +=,求ABC ∆的面积.【解析】cos sin )sin sin B C A C B -=. 由sin sin()sin cos cos sin A B C B C B C =+=+,得sin sin sin B C C B =. 由0C π<<,得sin 0C ≠.所以sin B B =.又cos 0B ≠(若cos 0B =,则sin 0,B =22sin cos 0B B +=这与22sin cos 1B B +=矛盾),所以tan B = 又0B π<<,得23B π=.由余弦定理及b =得22222cos3a c ac π=+-, 即212()a c ac =+-.将4a c +=代入,解得4ac =.所以1sin 2ABC S ac B =△1422=⨯⨯= 在横线上填写“22cos a c b C +=”. 解:由22cos a c b C +=及正弦定理,得2sin sin 2sin cos A C B C ++=.又sin sin()sin cos cos sin A B C B C B C =+=+, 所以有2cos sin sin 0B C C +=. 因为(0,)C π∈,所以sin 0C ≠. 从而有1cos 2B =-.又(0,)B π∈, 所以23B π=由余弦定理及b =得22222cos3a c ac π=+-即212()a c ac =+-.将4a c +=代入, 解得4ac =.所以11sin 4222ABCSac B ==⨯⨯=在横线上填写“sin sin2A Cb A +=”解:由正弦定理,得sin sin sin 2BB A A π-=.由0A π<<,得sin A θ≠,所以sin 2B B =由二倍角公式,得2sincos 222B B B =.由022B π<<,得cos 02B ≠,所以sin 22B =. 所以23B π=,即23B π=.由余弦定理及b =得22222cos3a c ac π=+-. 即212()a c ac =+-.将4a c +=代入, 解得4ac =.所以1sin 2ABC S ac B =△142=⨯=1、【2020年高考全国III 卷理数】在△ABC 中,cos C =23,AC =4,BC =3,则cos B = A .19B .13C .12D .23【答案】A 【解析】在ABC 中,2cos 3C =,4AC =,3BC =,根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅,2224322433AB =+-⨯⨯⨯,可得29AB = ,即3AB =, 由22299161cos22339AB BC AC B AB BC +-+-===⋅⨯⨯,故1cos 9B =. 故选:A .2、【2018年高考全国Ⅱ理数】在ABC △中,cos25C =,1BC =,5AC =,则AB =A . BCD .【答案】A【解析】因为223cos 2cos 121,255C C ⎛⎫=-=⨯-=- ⎪ ⎪⎝⎭所以22232cos 125215325AB BC AC BC AC C AB ⎛⎫=+-⋅=+-⨯⨯⨯-== ⎪⎝⎭,则 A.3、【2018年高考全国Ⅲ理数】ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =A .π2B .π3 C .π4D .π6【答案】C【解析】由题可知2221sin 24ABCa b c S ab C +-==△,所以2222sinC a b c ab +-=, 由余弦定理2222cos a b c ab C +-=,得sin cos C C =,因为()0,πC ∈,所以π4C =,故选C.4、【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.【答案】【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =,解得c c ==-,所以2a c ==,11sin 222ABC S ac B ==⨯=△ 5、【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.【答案】5,10【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,5AC ,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以BD =ππcos cos()cos cos sin sin 4410ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.6、【2018年高考浙江卷】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =b =2,A =60°,则sin B =___________,c =___________.【答案】7,3【解析】由正弦定理得sinsin a A b B =,所以πsin sin 3B ==由余弦定理得22222cos ,742,3a b c bc A c c c =+-∴=+-∴=(负值舍去).7、(2020届山东省枣庄市高三上学期统考)ABC ∆的内角A ,B ,C 的对边分别为,,a b c ,已知()2cos cos 0a c B b A ++=.(I )求B ;(II )若3,b ABC =∆的周长为3ABC +∆的面积. 【解析】 (Ⅱ)()2cos cos 0a c B b A ++=,()sin 2sin cos sin cos 0A C B B A ∴++=,()sin cos sin cos 2sin cos 0A B B A C B ++=,()sin 2cos sin 0A B B C ++=, ()sin sin A B C +=.1cos 2B ∴=-,20,3B B ππ<<∴=.(Ⅱ)由余弦定理得221922a c ac ⎛⎫=+-⨯-⎪⎝⎭, ()2229,9a c ac a c ac ++=∴+-=,33,a b c b a c ++=+=∴+= 3ac ∴=,11sin 322ABCSac B ∴==⨯=. 8、(2020届山东省潍坊市高三上期中)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知10a b +=,5c =,sin 2sin 0B B +=.(1)求a ,b 的值: (2)求sin C 的值. 【解析】(1)由sin 2sin 0B B +=,得2sin cos sin 0B B B +=, 因为在ABC ∆中,sin 0B ≠,得1cos 2B =-, 由余弦定理2222cos b a c ac B =+-,得22215252b a a ⎛⎫=+-⨯⨯⨯-⎪⎝⎭, 因为10b a =-,所以2221(10)5252a a a ⎛⎫-=+-⨯⨯⨯- ⎪⎝⎭, 解得3a =,所以7b =.(2)由1cos 2B =-,得sin 2B =由正弦定理得5sin sin 7c C B b ===9、【2020年新高考全国Ⅱ卷】在①ac =sin 3c A =,③c =这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角,,A B C 的对边分别为,,a b c ,且sin A B =,6C π=,________? 注:如果选择多个条件分别解答,按第一个解答计分. 【解析】方案一:选条件①.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a .222=b c =.由①ac =1a b c ==.因此,选条件①时问题中的三角形存在,此时1c =. 方案二:选条件②.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a .222=b c =,6B C π==,23A π=.由②sin 3c A =,所以6c b a ===.因此,选条件②时问题中的三角形存在,此时c = 方案三:选条件③.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a .222=b c =.由③c =,与b c =矛盾.因此,选条件③时问题中的三角形不存在.。
(完整版)正弦定理、余弦定理知识点
正弦定理、余弦定理讲师:王光明【基础知识点】1. 三角形常用公式:A +B +C =π;S =ab sin C =bc sin A ==ca sin B ;2121212.三角形中的边角不等关系: A>B a>b,a+b>c,a-b<c ;;⇔3.【正弦定理】:===2R (外接圆直径);A a sin B b sin Ccsin 正弦定理的变式:; a ∶b ∶c =sin A ∶sin B ∶sin C .⎪⎩⎪⎨⎧===C R c B R b AR a sin 2sin 2sin 24.正弦定理应用范围: ①已知两角和任一边,求其他两边及一角. ②已知两边和其中一边对角,求另一边的对角.③几何作图时,存在多种情况.如已知a 、b 及A ,求作三角形时,要分类讨论,确定解的个数.已知两边和其中一边的对角解三角形,有如下的情况:(1)A 为锐角AABa=bsin A bsin A<a<b a b ≥ 一解 两解 一解(2)A 为锐角或钝角当时有一解.a>b 5.【余弦定理】 a 2=b 2+c 2-2bccosA .c 2=a 2+b 2-2abcosC .b 2=a 2+c 2-2accosB .若用三边表示角,余弦定理可以写为、6.余弦定理应用范围:(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边.【习题知识点】知识点1 运用判断三角形形状例题1在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.【分析】利用正弦定理或余弦定理判断三角形形状,可以将三角形中的边用角表示,也可将角用边来表示.从中找到三角形中的边角关系,判断出三角形的形状.【解析】解法1:由扩充的正弦定理:代入已知式2RsinAcosB=2RsinBcosAsinAcosB-cosAsinB=0 , sin(A-B)=0A-B=0 ∴A=B 即△ABC 为等腰三角形解法2:由余弦定理: 22222222bc a c b b ac b c a a -+⋅=-+⋅ 22b a = ∴ b a =即△ABC 为等腰三角形.知识点2 运用正、余弦定理解三角形解三角形问题中正、余弦定理的选择:(1)在下述情况下应首先使用余弦定理: ①已知三条边(边边边),求三个角;②已知两边和它们的夹角(边角边),求其它一边和两角;(2)在下述情况下应首先使用正弦定理:①已知两边和一边的对角(边边角),求其它一边和两角;②已知两角和任一边(角角边、角边角),求其它两边和一角.例题2 在△ABC 中,已知,,B=45︒ 求A 、C 及c .3=a 2=b 【分析】在解斜三角形应用过程中,注意要灵活地选择正弦定和余弦定理,解得其它的边和角【解析】解法1:由正弦定理得:23245sin 3sin sin === b B a A ∵B=45︒<90︒ 即b <a ∴A=60︒或120︒当A=60︒时C=75︒ 22645sin 75sin 2sin sin +===BCb c当A=120︒时C=15︒ 22645sin 15sin 2sin sin -===B C b c 解法2:设c =x 由余弦定理将已知条件代入,整理:解之:B ac c a b cos 2222-+=0162=+-x x 226±=x 当时 从而A=60︒ ,C=75︒226+=c 2)13(231226223)226(22cos 22221=++=+⋅⋅-++=-+=bc a c b A 当时同理可求得:A=120︒ C=15︒.226-=c 知识点3 解决与三角形在关的证明、计算问题例题3 已知A 、B 、C 为锐角,tanA=1,tanB=2,tanC=3,求A+B+C 的值. 【分析】本题是要求角,要求角先要求出这个角的某一个三角函数值,再根据角的范围确定角.本题应先求出A+B 和C 的正切值,再一次运用两角和的正切公式求出A+B+C .【解析】 A B C 、、为锐角∴<++<0270°°A B C 又,,由公式可得tan tan A B ==12tan()tan tan tan tan A B A B A B +=+-⋅=+-=-112123[]tan()tan ()A B C A B C ++=++=++-+⋅tan()tan tan()tan A B C A B C 1 =-+--⨯33133() =0所以A+B+C=π知识点4 求三角形的面积例题4 △ABC 中,D 在边BC 上,且BD =2,DC =1,∠B =60o ,∠ADC =150o ,求AC 的长及△ABC 的面积.【解析】在△ABC 中,∠BAD =150o -60o =90o ,∴AD =2sin60o =3.A在△ACD 中,AD 2=(3)2+12-2×3×1×cos150o =7,∴AC =7. ∴AB =2cos60o =1.S △ABC =21×1×3×sin60o =343.知识点4 解决实际为题例题4 如图,海中有一小岛,周围3.8海里内有暗礁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦定理和余弦定理知识点与题型归纳Pleasure Group Office【T985AB-B866SYT-●高考明方向掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.★备考知考情1.利用正、余弦定理求三角形中的边、角问题是高考考查的热点.2.常与三角恒等变换、平面向量相结合出现在解答题中,综合考查三角形中的边角关系、三角形形状的判断等问题.3.三种题型都有可能出现,属中低档题. 一、知识梳理《名师一号》P62知识点一 正弦定理(其中R 为△ABC 外接圆的半径)变形1:2sin ,2sin ,2sin ,===a R A b R B c R C 变形2:sin ,sin ,sin ,222===a b c A B C R R R变形3:∶∶∶∶sinA sinB sinC=a b c 注意:(补充)关于边的齐次式或关于角的正弦的齐次式均可利用正弦定理进行边角互化。
知识点二 余弦定理222222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2⎧+-=⎪⎧=+-⎪+-⎪⎪=+-⇔=⎨⎨=+-⎪⎪⎩+-⎪=⎪⎩b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab 注意:(补充)(1)关于边的二次式或关于角的余弦均可考虑利用余弦定理进行边角互化。
(2)勾股定理是余弦定理的特例(3)在∆ABC 中,222090︒︒<+⇔<<a b c A用于判断三角形形状《名师一号》P63问题探究 问题3判断三角形形状有什么办法判断三角形形状的两种途径:一是化边为角;二是化角为边, 并常用正弦(余弦)定理实施边、角转换.知识点三 三角形中常见的结论△ABC 的面积公式有:①S =12a ·h (h 表示a 边上的高); ②S =12ab sin C =12ac sin B =12bc sin A =abc 4R;--知两边(或两边的积)及其夹角可求面积③S =12r (a +b +c )(r 为内切圆半径). (补充)(1)++=A B C π(2)在三角形中大边对大角,大角对大边.(3)任意两边之和大于第三边,任意两边之差小于第三边.(4)有关三角形内角的常用三角函数关系式sin()sin ,cos()cos ,tan()tan sin cos ,cos sin 2222+=+=-+=-++==B C A B C A B C A B C A B C A 利用++=A B C π及诱导公式可得之(5)在△ABC 中的几个充要条件:《名师一号》P63问题探究 问题4sin A >sin B a 2R >b 2Ra >b A >B . (补充) cos cos A B A B >⇔< 若R ∈、αβ或2k απβπ=-+(k Z ∈)或2k αβπ=-+(k Z ∈)《45套》之7--19(6)锐角△ABC 中的常用结论∆ABC 为锐角三角形⇔02<<、、A B C π4.解斜三角形的类型《名师一号》P63问题探究问题1利用正、余弦定理可解决哪几类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、二解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角或两边及一边对角的问题;(2)已知三边问题.a b A)(补充)已知两边和其中一边的对角(如,,用正弦定理或余弦定理均可《名师一号》P63问题探究问题2选用正、余弦定理的原则是什么若式子中含有角的余弦或边的二次式,要考虑用余弦定理;若遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.补充:一、正弦定理推导必修5证明思路:转化到特殊情形----直角三角形中二、余弦定理推导必修52011年陕西高考考查余弦定理的证明18.(本小题满分12分)叙述并证明余弦定理。
2222cosa b c bc A=+-,2222cosb c a ca B=+-,2222cosc a b ab C=+-.证明:(证法一)如图,2c BC=()()AC AB AC AB=-•-即2222cosa b c bc A=+-同理可证2222cosb c a ca B=+-,(证法二)已知ABC∆中,,,A B C所对边分别为,,,a b c,以A为原点,AB所在直线为x轴建立直角坐标系,则(cos,sin),(,0)C b A b A B c,∴222222222 ||(cos)(sin)cos2cos sina BCb Ac b A b A bc A c b A==-+=-++222cosb c bc A=+-,即2222cosa b c bc A=+-同理可证 2222cos b c a ca B =+-,二、例题分析:(一)利用正、余弦定理解三角形例1.(1)《名师一号》P62 对点自测1在△ABC 中,A =60°,B =75°,a =10,则c 等于( )A .5 2B .10 2 D .5 6解析 由A +B +C =180°,知C =45°,由正弦定理得:a sin A =c sin C. 即1032=c 22. ∴c =1063. 注意:已知两角及任一边,求其它边或角----正弦定理,解唯一例1.(2)《名师一号》P62 对点自测2在△ABC 中,若a =3,b =3,A =π3, 则C 的大小为________.解析 由正弦定理可知sin B =b sin A a =3sin π33=12, 所以B =π6或5π6(舍去),(因为a >b 即A =π3> B 所以B =π6) 所以C =π-A -B =π-π3-π6=π2. 一解!变式1: 在△ABC 中,若b =3,a =3,A =π3, 则C 的大小为________.答案: sin B >1无解!变式2:在ABC ∆中,已知45︒===a b B , 解ABC ∆.答案:60,75,︒︒+===A C c 或120,15,2︒︒-===A C c 两解!变式3:求边c注意:知道两边和其中一边的对角(如,,a b A )解三角形 可用正弦定理先求出角B 也可用余弦定理先求出边c 再求解。
两种方法均须注意解的个数!可能有一解、二解、无解,应注意区分.练习:(补充)(2009山东文17)已知函数x x x x f sin sin cos 2cos sin 2)(2-+=ϕϕ ππϕ=<<x 在)0(处取最小值。
(I )求ϕ的值; (Ⅱ)在ABC ∆中,c b a ,,分别是角A ,B ,C 的对边,已知,23)(,2,1===A f b a 求角C 。
【解析】 (Ⅰ)f(x)=2sinx 1cos cos sin sin 2x x ϕϕ++- =sin(x+ϕ).因为 f(x)在x =π时取最小值,所以 sin(π+ϕ)=-1,故 sin ϕ=1.又 0<ϕ<π,所以ϕ=2π, (Ⅱ)由(Ⅰ)知f(x)=sin(x+2π)=cosx. 因为f(A)=cosA=32,且A 为△ABC 的角, 所以A =6π.由正弦定理得 sinB =sin b A a又b >a , 当4π=B 时,,12746πππππ=--=--=B A C 当43π=B 时,.12436πππππ=--=--=B A C 综上所述,12127ππ==C C 或例2. (补充)若满足条件060=C ,a BC AB ==,3的ABC ∆有两个,求a 的取值范围.2<<a注意:判断三角形解的个数常用方法:(1)在ABC ∆中,已知,,A a b 。
构造直角三角形判断(2)利用余弦定理判断(一元二次方程正根个数) 勿忘大边对大角判断已知两边及其中一边对角,判断三角形解的个数的方法:①应用三角形中大边对大角的性质以及正弦函数的值域判断解的个数.②在△ABC 中,已知a 、b 和A ,以点C 为圆心,以边长a 为半径画弧,此弧与除去顶点A 的射线AB 的公共点的个数即为三角形的个数,解的个数见下表:图示已知a 、b 、A ,△ABC 解的情况.(ⅰ)A 为钝角或直角时解的情况如下:(ⅱ)A 为锐角时,解的情况如下:③运用余弦定理转化为关于一元二次方程正根个数问题练习:已知ABC ∆中,若22,2==b a ,且三角形有两解,求角A 的取值范围。
答案:由条件知b sin A <a ,即22sin A <2,∴sin A <22,∵a <b ,∴A <B ,∴A 为锐角,∴0<A <π4.例3.(1)《名师一号》P62 对点自测3在△ABC 中,a =3,b =1,c =2,则A 等于() A .30° B .45° C .60° D .75°解析 由余弦定理得:cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,∵0<A <π,∴A =60°.注意:已知三边,求其它边或角---余弦定理例3.(2)《名师一号》P63 高频考点 例1(2)(2014·新课标全国卷Ⅱ)钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( ) A .5 C .2 D .1解:由题意知S △ABC =12AB ·BC ·sin B , 即12=12×1×2sin B ,解得sin B =22, ∴B =45°或B =135°.当B =45°时,AC 2=AB 2+BC 2-2AB ·BC ·cos B=12+(2)2-2×1×2×22=1. 此时AC 2+AB 2=BC 2,△ABC 为直角三角形,不符合题意;当B =135°时,AC 2=AB 2+BC 2-2AB ·BC ·cos B=12+(2)2-2×1×2×⎝ ⎛⎭⎪⎫-22=5,解得AC = 5. 符合题意.故选B.注意:已知两边夹角,求其它边或角---余弦定理小结:已知与待求涉及三边和一角的关系---余弦定理例4.(1)《名师一号》P63 高频考点 例1(1)(2014·江西卷)在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则2sin2B-sin2Asin2A的值为()A.-19 C.1解:∵3a=2b,∴由正弦定理得ab=sin Asin B=23.∴sin2Asin2B=4 9,∴2sin2B-sin2Asin2A=2×sin2Bsin2A-1=2×94-1=92-1=72.例4.(2)《名师一号》P62 对点自测已知△ABC三边满足a2+b2=c2-3ab,则此三角形的最大内角为__________.解析∵a2+b2-c2=-3ab,∴cos C=a2+b2-c22ab=-32,故C=150°为三角形的最大内角.注意:(1)关于边的齐次式或关于角的正弦的齐次式均可利用正弦定理进行边角互化。