七年级数学代数式试题(含答案)
人教版七年级上册数学 代数式专题练习(解析版)
一、初一数学代数式解答题压轴题精选(难)1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:方法①:________ 方法②:________请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________(2)根据(1)中的等式,解决如下问题:①已知:,求的值;②己知:,求的值.【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2(2)解:①把代入∴,∴②原式可化为:∴∴∴【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .方法②:草坪的面积= ;等式为:故答案为:,;【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.2.从2012年4月1日起厦门市实行新的自来水收费阶梯水价,收费标准如下表所示:月用水量不超过15吨的部分超过15吨不超过25吨的部分超过25吨的部分收费标准2.23.34.4(元/吨)②.以上表中的价格均不包括1元/吨的污水处理费(1)某用户12月份用水量为20吨,则该用户12月份应缴水费是多少?(2)若某用户的月用水量为m吨,请用含m的式子表示该用户月所缴水费.【答案】(1)解:该用户12月份应缴水费是15×2.2+5×3.3+20=69.5(元)(2)解:①m≤15吨时,所缴水费为2.2m元,②15<m≤25吨时,所缴水费为2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,③m>25吨时,所缴水费为2.2×15+3.3×(25﹣15)+(m﹣25)×4.4=(4.4m﹣110)元.【解析】【分析】(1)该用户12月份应缴水费三两部分构成:不超过15吨的水费+超过15吨不超过25吨的9吨的水费+20吨的污水处理费,列代数式求解即可。
初中数学代数式经典测试题附解析
初中数学代数式经典测试题附解析一、选择题1.若多项式x 2+mx +4能用完全平方公式分解因式,则m 的值可以是( ) A .4B .﹣4C .±2D .±4【答案】D【解析】【分析】利用完全平方公式因式分解2222=()a ab b a b ±+±计算即可.【详解】解:∵x 2+mx +4=(x ±2)2,即x 2+mx +4=x 2±4x +4,∴m =±4.故选:D .【点睛】本题要熟记完全平方公式,尤其是两种情况的分类讨论.2.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=( )A .7500B .10000C .12500D .2500 【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199 =22119919922++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A .【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.3.下列运算错误的是( )A .()326m m =B .109a a a ÷=C .358⋅=x x xD .437a a a +=【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【详解】A、(m2)3=m6,正确;B、a10÷a9=a,正确;C、x3•x5=x8,正确;D、a4+a3=a4+a3,错误;故选:D.【点睛】此题考查合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.4.(x2﹣mx+6)(3x﹣2)的积中不含x的二次项,则m的值是()A.0 B.23C.﹣23D.﹣32【答案】C【解析】试题解析:(x2﹣mx+6)(3x﹣2)=3x3﹣(2+3m)x2+(2m+18)x﹣12,∵(x2﹣mx+6)(3x﹣2)的积中不含x的二次项,∴2+3m=0,解得,m=23 ,故选C.5.下列运算正确的是()A.2m2+m2=3m4B.(mn2)2=mn4C.2m•4m2=8m2D.m5÷m3=m2【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算后即可解答.【详解】选项A,2m2+m2=3m2,故此选项错误;选项B,(mn2)2=m2n4,故此选项错误;选项C,2m•4m2=8m3,故此选项错误;选项D,m5÷m3=m2,正确.故选D.本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题关键.6.下列运算正确的是 ( )A .()236a a a -⋅=-B .632a a a ÷=C .()2222a a =D .()326a a =【答案】D【解析】【分析】 根据幂的乘方与积的乘方的运算法则和同底数幂的乘除法运算法则对各选项进行计算,最后进一步判断即可.【详解】A :()523a a a -⋅=-,计算错误;B :633a a a ÷=,计算错误;C :()2224a a =,计算错误;D :()326a a =,计算正确;故选:D.【点睛】比特主要考查了幂的乘方与积的乘方的运算和同底数幂的运算,熟练掌握相关运算法则是解题关键.7.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( )A .23bB .26bC .29bD .236b 【答案】C【解析】【分析】根据完全平方公式的形式(a±b )2=a 2±2ab+b 2可得出缺失平方项.【详解】根据完全平方的形式可得,缺失的平方项为9b 2故选C .【点睛】本题考查了整式的加减及完全平方式的知识,掌握完全平方公式是解决本题的关键.8.如果(x 2+px +q )(x 2-5x +7)的展开式中不含x 2与x 3项,那么p 与q 的值是( )A .p =5,q =18B .p =-5,q =18C .p =-5,q =-18D .p =5,q =-18【答案】A【解析】 试题解析:∵(x 2+px+q )(x 2-5x+7)=x 4+(p-5)x 3+(7-5p+q )x 2+(7-5q )x+7q , 又∵展开式中不含x 2与x 3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.故选A .9.一种微生物的直径约为0.0000027米,用科学计数法表示为( )A .62.710-⨯B .72.710-⨯C .62.710-⨯D .72.710⨯【答案】A【解析】【分析】绝对值小于1的正数科学记数法所使用的是负指数幂,指数由原数左边起第一个不为0的数字前面的0的个数所决定.【详解】解:0.0000027的左边第一个不为0的数字2的前面有6个0,所以指数为-6,由科学记数法的定义得到答案为62.710-⨯.故选A.【点睛】本题考查了绝对值小于1的正数科学记数法表示,一般形式为10n a -⨯.10.如图,是一个运算程序的示意图,若开始输入x 的值为81,则第2018次输出的结果是( )A .3B .27C .9D .1【答案】D【解析】【分析】 根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【详解】第1次,13×81=27, 第2次,13×27=9, 第3次,13×9=3, 第4次,13×3=1, 第5次,1+2=3,第6次,13×3=1, …,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2018是偶数,∴第2018次输出的结果为1.故选D .【点睛】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.11.下列计算正确的是( )A .236a a a ⋅=B .22a a a -=C .632a a a ÷=D .236()a a =【答案】D【解析】【分析】根据同底数幂的乘除法公式,合并同类项,以及幂的乘方公式逐项计算得到结果,即可作出判断.【详解】A 、235a a a ⋅=,不符合题意;B 、22a 和a 不是同类项,不能合并,不符合题意;C 、633a a a ÷=,不符合题意;D 、236()a a =,符合题意,故选:D .【点睛】此题考查了同底数幂的乘除法,合并同类项,以及幂的乘方,熟练掌握运算法则是解本题的关键.12.将(mx +3)(2﹣3x )展开后,结果不含x 的一次项,则m 的值为( )A .0B .92C .﹣92D .32【答案】B【解析】【分析】 根据多项式乘以多项式的法则即可求出m 的值.【详解】解:(mx +3)(2-3x )=2mx -3mx 2+6-9x=-3mx 2+(2m -9)x +6由题意可知:2m -9=0,∴m =92故选:B .【点睛】本题考查多项式乘以多项式,解题的关键是熟练运用整式的运算法则,本题属于基础题型.13.下列运算正确的是( )A .2352x x x +=B .()-=g 23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.14.下列运算正确的是A .32a a 6÷=B .()224ab ab =C .()()22a b a b a b +-=-D .()222a b a b +=+【答案】C【解析】根据整式的除法,幂的乘方与积的乘方运算法则和平方差公式,完全平方公式逐一计算作出判断:A 、322a a 2a ÷=,故选项错误;B 、()2224ab a b =,故选项错误;C 、选项正确;D 、()222a b a 2ab b +=++,故选项错误.故选C .15.有两个正方形A ,B ,现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A ,B 的面积之和为( )A .7B .12C .13D .25【答案】C【解析】【分析】 设正方形A 的边长为a ,正方形B 的边长为b ,根据图形列式整理得a 2+b 2−2ab =1,2ab =12,求出a 2+b 2即可.【详解】解:设正方形A 的边长为a ,正方形B 的边长为b ,由图甲得:a 2−b 2−2(a−b )b =1,即a 2+b 2−2ab =1,由图乙得:(a +b )2−a 2−b 2=12,即2ab =12,所以a 2+b 2=13,即正方形A ,B 的面积之和为13,故选:C.【点睛】本题主要考查了完全平方公式在几何图形中的应用,解题的关键是根据图形列出算式.16.按如图所示的运算程序,能使输出y 的值为1的是( )A.a=3,b=2 B.a=﹣3,b=﹣1 C.a=1,b=3 D.a=4,b=2【答案】A【解析】【分析】根据题意,每个选项进行计算,即可判断.【详解】解:A、当a=3,b=2时,y=12a-=132-=1,符合题意;B、当a=﹣3,b=﹣1时,y=b2﹣3=1﹣3=﹣2,不符合题意;C、当a=1,b=3时,y=b2﹣3=9﹣3=6,不符合题意;D、当a=4,b=2时,y=12a-=142-=12,不符合题意.故选:A.【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.17.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为()A.42 B.43 C.56 D.57【答案】B【解析】【分析】根据题意得出得出第n个图形中菱形的个数为n2+n+1;由此代入求得第⑧个图形中菱形的个数.【详解】第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑥个图形中菱形的个数62+6+1=43.故选B.【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.18.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是()(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A.食指B.中指C.小指D.大拇指【答案】B【解析】【分析】根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.【详解】解:∵大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.=⨯+,又∵2019是奇数,201925283∴数到2019时对应的指头是中指.故选:B.【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.19.计算(-2)2009+(-2)2010的结果是()A.22019 B.22009 C.-2 D.-22010【答案】B【解析】(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009, 故选B .20.下列计算,正确的是( ) A .2a a a -=B .236a a a =C .933a a a ÷=D .()236a a = 【答案】D【解析】A.2a 和a,和不能合并,故本选项错误;B.2356a a a a ⋅=≠ ,故本选项错误;C.9363a a a a ÷=≠,和不能合并,故本选项错误;D.()236 a a =,故本选项正确; 故选D.。
七年级数学上册《代数式》同步练习题(附答案)
七年级数学上册《代数式》同步练习题(附答案)课前练习1. 用字母表示数的书写规则:(1)字母与字母相乘时,“×”号通常省略不写或写成“ ______ ”;(2)字母与数相乘时,数通常写在字母的__________;(3)带分数与字母相乘时,通常化带分数为___________;(4)字母与字母相除时,要写成__________的形式;2. 用含字母的式子表示数量关系:用表示数的_______表示问题中的数或数量;_____________能简明表达数量关系;同一问题中,相同的字母必须表示相同的量,不同的____必须用不同的字母表示;用字母表示实际问题中的某个量时,字母的______必须使式子有意义且符合实际情况.3. 用字母表示数,字母和数一样参与运算,可以用_____把数量关系简明地表示出来.4. 下列含有字母的式子符合书写规范的是( )A. 1aB. 312bC. 0.5xyD. (x +y )÷z 5. “比a 的32倍大1的数”用式子表示为( )A. 32a +1B. 23a +1C. 52aD. 32(a +1) 6. 购买1个单价为a 元的面包和3瓶单价为b 元的饮料,所需钱数为( )A. (a+b )元B. 3(a+b )元C. (3a+b )元D. (a+3b )元7. 填空:(1)买单价为6元的钢笔a 支,共需______元;(2)一台电视机的标价为a 元,则打八折后的售价为______元;(3)温度由30度下降t 度后是______度课前练习参考答案1. ①. ②. 前面 ③. 假分数 ④. 分数2. ①. 字母 ②. 用字母表示数 ③. 量 ④. 取值3.式子4.C5.A6.D【解析】试题分析:买1个面包和3瓶饮料所用的钱数:a+3b 元;故选D .考点:列代数式.7. ①. 6a ②. 0.8a ③. (30-t )1.用代数式表示:a 与3的和的2倍,下列选项中的表示正确的是( )A .2(a +3)B .2a +3C .2(a −3)D .23a -2.下列代数式书写正确的是( )A .7aB .x ÷yC .3a +bD .123ab3.下列代数式中符合书写要求的是( ) A .ab4 B .413x C .x ÷y D .−52a4.某种苹果的售价是每千克x 元,打7折销售后每千克____元.5.小明买单价为x 元的球拍a 个,结账后还有27元,小明出门带了现金____元.6.甲数比乙数的5倍小3,若乙数为x ,则甲数为_________.7.下列各式书写规范的是( )A .3a ⨯B .112abC .5x +只D .m2n8.一个两位数,它的十位数字是x ,个位数字是y ,那么这个两位数是( ).A .x +yB .10xyC .10(x +y )D .10x +y9.列代数式:x 的三分之二比x 的2倍少多少?__________.10.现有5元面值人民币m 张,10元面值人民币n 张,共有人民币________元(用含m 、n 的代数式表示).11.某眼镜公司积极响应国家号召,在技术顾问和市场监管局的帮助下,开始生产医用护目镜.第一周生产a 个,工人在技术员的指导下,技术越来越熟练,第二周比第一周增长10%.用含a 的代数式表示该公司这两周共生产医用护目镜______个.12.为鼓励居民节约用水,某市自来水公司实施阶梯水价:如果每月用水不超过8吨,按每吨2.3元收费;如果每月用水量超过8吨,则超出部分按每吨3.5元收费,设每月用水量为x 吨.(1)当每月用水量不超过8吨时,用含x 的代数式表示用水费用为 元;(2)当每月用水超过8吨时,需付水费多少元?(用含x 的代数式表示)(3)若小红家8月份用水12吨,则需交水费多少元?课堂练习参考答案1.A【分析】根据和与倍数关系得出代数式解答即可.【详解】解:a 与3和的2倍用代数式表示为:2(a +3),故选:A .【点睛】此题考查列代数式问题,关键是根据和与倍数关系得出代数式.2.C【分析】根据代数式的书写方法分别进行判断.【详解】解:A 、7a 应写为7a ,故不符合题意;B 、x ÷y 应写为x y ,故不符合题意;C 、3a +b 书写正确,故符合题意;D 、123ab 应写为53ab ,故不符合题意;故选C .【点睛】本题考查了代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.也考查了代数式的书写.3.D【分析】根据代数式的书写规范逐项排查即可.【详解】解:A 、不符合书写要求,应为4ab ,故此选项不符合题意;B 、不符合书写要求,应为133x ,故此选项不符合题意; C 、不符合书写要求,应为x y ,故此选项不符合题意;D 、−52a 符合书写要求,故此选项符合题意.故选:D .【点睛】本题考查了代数式的书写规范,书写代数式要关注以下几点:①在代数式中出现的乘号,通常简写成“·”或者省略不写;②数字与字母相乘时,数字要写在字母的前面;③在代数式中出现的除法运算,一般按照分数的写法来写、带分数也要写成假分数.4.0.7x【分析】根据题意,可以用含x 的代数式表示出苹果现价,本题得以解决.【详解】解:由题意可得,苹果现价是每千克0.7x 元,故答案为:0.7x .【点睛】本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式.5.(ax +27)【分析】用球拍的总价加上结账后剩余的钱可得结果.【详解】解:由题意可得:小明出门带了现金:(ax +27)元,故答案为:(ax +27).【点睛】本题考查了列代数式,解题的关键是理解题意,理清数量关系.6.5x -3【分析】设乙数是x ,根据甲数比乙数的5倍小3,列出代数式即可.【详解】解:设乙数为x ,则甲数为5x -3,故答案为:5x -3.【点睛】本题考查代数式问题,理解题意能力,关键是设出未知数,根据题目所给的等量关系列代数式求解.7.B【分析】根据代数式的书写要求判断各项.【详解】解:A 、数字与字母相乘时,数字要写在字母的前面且省略乘号,原书写不规范,不符合题意;B 、112ab 是正确的形式,符合题意;C 、5x +只应写为(5x +)只,不符合题意;D 、m2n 应写为2mn ,不符合题意;故选B .【点睛】本题考查了代数式,解题的关键是掌握代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.8.D【分析】根据两位数的表示方法:十位数字×10+个位数字,即可解答.【详解】解:∵一个两位数,它的十位数是x ,个位数字是y ,∴根据两位数的表示方法,这个两位数表示为:10x +y .故选:D【点睛】本题考查了用字母表示数的方法,会用含有字母的式子表示数量是解题的关键.9.2x −23x【分析】根据分数、倍数与差的意义解答.【详解】解:∵x 的三分之二为23x ,x 的2倍为2x ,∴“x 的三分之二比 x 的 2 倍少多少”列代数式为:2x −23x ,故答案为:2x −23x .【点睛】本题考查列代数式的有关应用,熟练掌握分数、倍数与差的意义是解题关键.10.(5m +10n )【分析】由5元面值人民币m张,可得人民币5m元,由10元面值人民币n张,可得人民币10n元,从而可得答案.【详解】解:由题意得:共有人民币(5m+10n)元,故答案为:(5m+10n)【点睛】本题考查的是列代数式,掌握列代数式的方法是解题的关键.11.2.1a【分析】根据题意,第二周的生产数量为:(110%)a+,加上第一周的数量,合并同类项即可求得【详解】第一周生产a个第二周生产(110%)a+=1.1a个这两周共生产a+1.1a=2.1a个故答案为:2.1a【点睛】本题考查了列代数式,单项式的加法即合并同类项,求得第二周的生产数量是解题的关键.12.(1)2.3x;(2)3.5x−9.6;(3)32.4元【分析】(1)根据当每月用水量不超过8吨时,按每吨2.3元收费,则可用含x的代数式表示用水费用;(2)根据当每月用水量超过8吨时,则超出部分按每吨3.5元收费,则可用含x的代数式表示用水费用;(3)根据小红家用水量为12吨,则按照(2)中水费公式计算,即可得到答案.【详解】(1)∵根据当每月用水量不超过8吨时,按每吨2.3元收费,∴此时用水费用=2.3x;(2)∵每月用水不超过8吨,按每吨2.3元收费;每月用水量超过8吨,则超出部分按每吨3.5元收费,∴此时用水费用=2.3×8+3.5×(x−8)=3.5x−9.6;(3)∵小红家用水量为12吨,∴需交水费=3.5×12−9.6=32.4(元)【点睛】本题考查了由实际问题列代数式,解答本题的关键是正确理解题意,分清楚如何计算水费.课后练习1.下列各式:①113x;②2•3;③20%x;④a-b÷c;⑤m3n23;⑥x-5;其中,不符合代数式书写要求的有()A.5个B.4个C.3个D.2个2.某水果批发市场规定,批发苹果重量不少于100kg时,批发价为2.5元/kg,批发苹果重量多于100kg 时,超过的部分按批发价打八折.若某人批发苹果重量为x(x>100)kg时,需支付多少现金,可列式子为()A.100xB.100x+2.5×0.8×(x﹣100)C.100×2.5+2.5×0.8×(x﹣100)D.x+2.5×(x﹣100)的意义是()3.代数式mn−2n 除mA.m除以n减2 B.2C.n与2的差除以m D.m除以n与2的差所得的商4.下列图形是由同样大小的棋子按一定规律组成的,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑧个图形中棋子的颗数为()A.141 B.106 C.169 D.1505.用代数式表示“m的3倍与n的差的平方”为____________.6.n是任意整数,我们常用2n表示偶数,由此想到奇数可以表示为____________,比2n小的最大奇数为____________.7.对单项式“0.75m”可以解释为:一件商品原价m元,若按原价的七五折出售,这件商品现在的售价为0.75m 元.某超市的苹果价格为39元/斤,则代数式“50−3.9x”可表示的实际意义______.8.某花店新开张,第一天销售盆栽m盆,第二天比第一天多销售7盆,第三天的销量是第二天的3倍少13盆,则第三天销售了_________盆.(结果用含m的式子表示)9.一条河的水流速度时3km/ℎ,船在静水中的速度是v km/ℎ,则船在这条河中顺水行驶的速度是______km/ℎ;逆水行驶的速度是______km/ℎ.10.如图的瓶子中盛满了水,则水的体积是__________________.(用代数式表示)11.图1由若干个小圆圈组成的一个形如正三角形的图案,第1层有1个圆圈,每一层都比上一层多1个圆圈,一共堆了n层.(1)如图1所示,第100层有个小圆圈,从第1层到第n层共有个小圆圈;(2)我们自上往下按图2的方式排列一串连续的正整数1,2,3,…,则第20层的第5个数是;(3)我们自上往下按图3的方式排列一串整数31,﹣33,35,﹣37,…,则求从第1层到第20层的所有数的绝对值的和.课后练习参考答案1.C【分析】根据代数式的书写规则:分数不能为带分数,不能出现除号,单位名称前面的代数式不是单项式要加括号,数与字母相乘,乘号省略或者用“.”表示,对各项代数式逐一判定即可.x中分数不能为带分数;【详解】①113②2•3中数与数相乘不能用“.”;③20%x,书写正确;④a-b÷c中不能出现除号;⑤m3n2书写正确;3⑥x-5书写正确;不符合代数式书写要求的有①②④共3个.故选:C.【点睛】本题考查代数式的书写要求,解题的关键是要熟练地掌握代数式的书写要求:分数不能为带分数,不能出现除号,单位名称前面的代数式不是单项式要加括号,数与字母相乘,乘号省略或者用“.”表示. 2.C【分析】根据批发苹果重量不少于100kg时,批发价为2.5元/kg,批发苹果重量多于100kg时,超过的部分按批发价打八折,列式子即可.【详解】解:由题意可列式子为:100×2.5+2.5×0.8×(x﹣100)故选:C.【点睛】本题考查列代数式,解题的关键是读懂题意正确列出式子.3.D【分析】根据代数式的意义,表示m除以n与2的差所得的商.表示m除以n与2的差所得的商,【详解】解:代数式mn−2故选:D.【点睛】本题考查了代数式,掌握代数式的意义,要把运算过程表述清楚.4.A【分析】本题的图从②个图开始可以看作是由图①的一个棋子为中心依次向外以五边形的形式向外扩张,棋子依次是5的整数倍关系.所以第⑥个图形中棋子的颗数也就容易计算了.【详解】解:∵第①个图形中棋子的个数为:1=1+5×0=1+5×0;第②个图形中棋子的个数为:1+5×(0+1)=6;第③个图形中棋子的个数为:1+5×(0+1+2)=16;…∴第n个图形中棋子的个数为:1+5×(0+1+2+⋯+n−1)=1+5n(n−1);2=141则第⑧个图形中棋子的颗数为:1+5×8×72故应选A.【点睛】本题考查了规律型中图形的变化类,根据图形中棋子数目的变化找出变化规律是解题的关键.5.(3m-n)2【分析】m的3倍是3m,与n的差就是3m-n,然后对差求平方.【详解】解:m的3倍与n的差的平方是(3m-n)2.故答案是:(3m-n)2.【点睛】本题考查了列代数式的知识;列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“差”等,从而明确其中的运算关系,正确地列出代数式.6.2n+1或2n-1 2n-1【分析】根据偶数和奇数的意义:整数中,是2的倍数的数是偶数,不是2的倍数的数是奇数,偶数可用2n表示,奇数可用2n+1表示,故可求解.【详解】n是任意整数,我们常用2n表示偶数,由此想到奇数可以表示为2n+1或2n-1,比2n小的最大奇数为2n-1.故答案为:2n+1或2n-1; 2n-1.【点睛】解答此题的关键:应明确偶数和奇数的含义.7.用50元买原价39元/斤一折出售的苹果x斤后余下的钱.【分析】根据代数式50−3.9x,50是支付的钱,3.9x=(39×110)x按原价一折,购买x斤的钱,其差表示余下的钱即可.【详解】解:3.9x按原价一折,购买x斤的钱,代数式“50−3.9x=50−(39×110)x”可表示的实际意义是:支付50元买原价39元/斤一折出售的苹果x 斤后余下的钱,故答案为:用50元买原价39元/斤一折出售的苹果x斤后余下的钱.【点睛】本题考查代数式的意义,特别注意减号与小数的实际意义,通过代数式变形将小数的实际意义突出出来是解题关键.8.(3m+8)【分析】先求出第二天销售的盆数,然后求出第三天销售的盆数即可.【详解】解:由题意可得,第二天销售了(m+7)盆第三天销售了3(m+7)-13=(3m+8)盆故答案为:(3m+8).【点睛】此题考查的是利用代数式表示实际意义,掌握实际问题中各个量的关系是解题关键.9.(3+v)(v−3)【分析】根据顺水逆水行船问题可知顺水速度=船在静水中的速度+水速,逆水速度=船在静水中的速度-水速,由此可求解.【详解】解:由顺水速度=船在静水中的速度+水速,逆水速度=船在静水中的速度-水速,可得:船在这条河中顺水行驶的速度是(3+v)km/h,逆水行驶的速度是(v−3)km/h;故答案为:(3+v);(v−3).【点睛】本题主要考查了列代数式,熟练掌握列代数式是解题的关键.10.πa2(H+ℎ4)【分析】根据圆柱体积公式计算即可.【详解】解:瓶子的体积为:π(2a2)2H+π(a2)2ℎ=πa2(H+ℎ4),故填:πa2(H+ℎ4).【点睛】本题主要考查了圆柱体积的计算,发现水的体积等于两个容器的体积之和成为解答本题的关键.11.(1)100,n(n+1)2;(2)195;(3)50400.【分析】(1)观察图1发现规律:第n层有n个小圆圈,从第1层到第n层共有圆圈的个数为1+2+3+…+n,计算即可得圆圈的个数,进而可得结论;(2)观察图2发现规律:从1开始的自然数列,第n层放n个,进而可得第20层第5个数;(3)观察图3发现规律:第n层放n个,从第1个数开始,符号“+﹣”周期变化,绝对值依次加2,可得第20层最后一个数的绝对值,最后得第1层到第20层所有数的绝对值和.【详解】解:(1)图1规律:第n层有n个小圆圈,则第100层有100个小圆圈,.因为1+2+3+…+n=n(n+1)2所以从第1层到第n层共有n(n+1)个小圆圈;2;故答案为:100,n(n+1)2(2)图2规律:从1开始的自然数列,第n层放n个,则第20层第5个数为:1+2+3+…+19+5=195.故答案为:195;(3)图3规律:第n层放n个,从第1个数开始,符号“+﹣”周期变化,绝对值依次加2,则第20层最后一个数的绝对值为:31+(2+3+4+…+20)×2=449,则第1层到第20层所有数的绝对值和为:31+33+35+…+449=50400.故答案为:50400.【点睛】本题考查了根据图形的变化规律列式,计算等知识,理解图形的变化规律,并寻找其中规律是解题关键.。
七年级数学上册 代数式专题练习(解析版)
一、初一数学代数式解答题压轴题精选(难)1.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类①若a≠0,b=c=0,则称该整式为P类整式;②若a≠0,b≠0,c=0,则称该整式为PQ类整式;③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;(2)说明整式x2﹣5x+5为“PQ类整式;(3)x2+x+1是哪一类整式?说明理由.【答案】(1)解:若a=b=0,c≠0,则称该整式为“R类整式”.若a=0,b≠0,c≠0,则称该整式为“QR类整式”.故答案是:a=b=0,c≠0;a=0,b≠0,c≠0(2)解:因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x+1)=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”(3)解:∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),∴该整式为PQR类整式.【解析】【分析】(1)根据题干条件,可得若a=b=0,c≠0,则称该整式为“R类整式”;若a=0,b≠0,c≠0,则称该整式为“QR类整式”.(2)根据"PQ类整式"定义,由x2﹣5x+5=﹣2(x2+x﹣1)+3(x2﹣x+1) = ﹣2P+3Q,据此求出结论.(3)由x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1)= PQR,据此判断即可.2.根据数轴和绝对值的知识回答下列问题(1)一般地,数轴上表示数m和数n两点之间的距离我们可用│m-n│表示。
例如,数轴上4和1两点之间的距离是________.数轴上-3和2两点之间的距离是________.(2)数轴上表示数a的点位于-4与2之间,则│a+4│+│a-2│的值为________.(3)当a为何值时,│a+5│+│a-1│+│a-4│有最小值?最小值为多少?【答案】(1)3;5(2)6(3)解:①a≤1时,原式=1-a+2-a+3-a+4-a=10-4a,则a=1时有最小值6;②1≤a≤2时,原式=a-1+2-a+3-a+4-a=8-2a,则a=2时有最小值4③2≤a≤3时,原式=a-1+a-2+3-a+4-a=4④3≤a≤4时,原式=a-1+a-2+a-3+4-a=2a-2;则a=3时有最小值4⑤a≥4时,原式=a-1+a-2+a-3+a-4=4a-10;则a=4时有最小值6综上所述,当a=2或3时,原式有最小值4.故答案为:(1)3;5;(2)6;(3)当a=2或3时,原式有最小值4.【解析】【解答】(1)解:数轴上表示1和4的两点之间的距离是3;表示-3和2的两点之间的距离是5( 2 )解:根据题意得:-4<a<2,即a+4>0,a-2<0则原式=a+4+2-a=6.【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值即可直接算出答案;(2)根据数轴上所表示的数的特点得出-4<a<2,进而根据有理数的加减法法则得出a+4>0,a-2<0,然后根据绝对值的意义去绝对值符号,再合并同类项即可;(3)分①a≤1时,②1≤a≤2时,③2≤a≤3时,④3≤a≤4时,⑤a≥4时,五种情况,根据绝对值的意义分别取绝对值符号,再合并同类项得出答案,再比大小即可.3.用正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形.(1)每个盒子需________个长方形,________个等边三角形;(2)硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).现有相同规格的 19 张正方形硬纸板,其中的 x 张按方法一裁剪,剩余的按方法二裁剪.①用含 x 的代数式分别表示裁剪出的侧面个数,底面个数;②若裁剪出的侧面和底面恰好全部用完,求能做多少个盒子.【答案】(1)3;2(2)解:①∵裁剪x张时用方法一,∴裁剪(19−x)张时用方法二,∴侧面的个数为:6x+4(19−x)=(2x+76)个,底面的个数为:5(19−x)=(95−5x)个;②由题意,得解得:x=7,经检验,x=7是原分式方程的解,∴盒子的个数为:答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.【解析】【解答】(1)由图可知每个三棱柱盒子需3个长方形,2个等边三角形;故答案为3,2.【分析】(1)由图可知两个底面是等边三角形,侧面是长方形,所以需要2个等边三角形和3个长方形。
初中数学代数式求值综合测试卷(含答案)
初中数学代数式求值综合测试卷
一、单选题(共7道,每道10分)
1.化简的结果为( )
A. B.
C.9m-2
D.-9m-2
答案:D
试题难度:三颗星知识点:整式的加减
2.若关于x的多项式的值与x无关,则m2-2m2-2(2m-4)+4m的值为( )
A.-28
B.28
C.-32
D.44
答案:A
试题难度:三颗星知识点:整式的加减;化简求值
3.已知a-b=1,则代数式2a-2b-3的值是()
A.-1
B.1
C.-5
D.5
答案:A
试题难度:三颗星知识点:整体代入
4.已知代数式的值是8,那么代数式的值为()
A.1
B.2
C.3
D.4
答案:B
试题难度:三颗星知识点:整体代入
5.当x=2时,代数式ax3+bx+1的值为6,那么当x=-2时这个式子的值为()
A.-4
B.1
C.5
D.6
答案:A
试题难度:三颗星知识点:整体代入
6.一个三位数,中间的数字为a,个位上的数字比十位上的数字大2,百位上的数字比个位上的数字小3,用代数式表示这个三位数为()
A.3a+1
B.111a-98
C.111a+199
D.111a-298
答案:B
试题难度:三颗星知识点:数位表示
7.若a表示一个两位数,b也表示一个两位数,要把b放在a的右边,那么所组成的四位数应表示为()
A.100a+b
B.100a+10b
C.100b+a
D.1000b+10a
答案:A
试题难度:三颗星知识点:数位表示。
七年级数学上册代数式的值配套练习及答案
3.3代数式的值(一)一、基础训练1.用__________代替代数式中的________,按照代数式中的运算关系计算,所得的结果是代数式的值.2.当x=_______时,代数式53x的值为0.3.当a=4,b=12时,代数式a2-ba的值是___________.4.小张在计算31+a的值时,误将“+”号看成“-”号,结果得12,那么31+a的值应为_____________.5.三角形的底边为a ,底边上的高为h ,则它的面积s=_______,若s=6cm2,h=5cm,则a=_______cm.二、典型例题例1 已知a2+5ab=76,3b2+2ab=51,求代数式a2+11ab+9b2的值.分析首先将原代数式变形成(a2+5ab)+3(3b2+2ab),然后将整体代入.例2当m=2,n=1时,(1)求代数式(m+2)2和m2+2mn+n2的值;(2)写出这两个代数式值的关系.(3)当m=5,n=-2时,上述的结论是否仍成立?(4)根据(1)(2),你能用简便方法算出:当m=0.125,n=0.875时,m2+2mn+n2的值吗?分析通过代入具体数值,得知(m+2)2=m2+2mn+n2,再运用此等式求值.三、拓展提升例小明读一本共m页的书,第一天读了该书的13,第二天读了剩下的15.(1)用代数式表示小明两天共读了多少页;(2)求当m=120时,小明两天读的页数.四、课后作业1.当a =2,b =1,c =-3时,代数式2c b a b-+的值为___________. 2.若x =4时,代数式x 2-2x +a 的值为0,则a 的值为________.3.若5a b +=,6ab =,则ab a b --=________.4.当7x =时,代数式357ax bx +-=.则当7x =时,35ax bx ++=_____.5.如果某船行驶第1千米的运费是25元,以后每增加1千米,运费增加5元.现在某人租船要行驶s 千米(s 为整数,s ≥1),所需运费表示为___________________.当s =6千米时,运费为________元.6.若代数式2a 2+3a +1的值为5,求代数式4a 2+6a +8的值.7.已知2a b a b+=-,求224()a b a b a b a b +---+的值.8.从2开始,连续的偶数相加,和的情况如下表:n .并由此计算下列各题:(1) 2+4+6+8+…+202(2) 126+128+130+…+3003.3代数式的值(一)一、基础训练1.具体数值字母2. 53. 134. 505. 12ah125二、典型例题例1a2+11a+9b2=(a2+5ab)+3(3b2+2ab)=76+3×51=229 例2 (1)99(2)相等(3)成立(4)1三、拓展提升例3(1)715m(2)56四、课后作业1.4 32.-83. 14. 175. 20+5s50元6. 167.7 3 88.S=n(n+1)(1)101×(101+1)=10302;(2)150×(150+1)-62(62+1)=18744.3.3代数式的值(二)一、基础训练1.已知a,b互为相反数,c、d互为倒数,则代数式2(a+b)-3cd的值为______.2.填表:÷2+2x( )+1( )2输出( )输入y 输入x.3.右图是一个数值转换机,写出图中的输出结果:输入2- 0 0.5 输出4.当x .5.当x y x y -+=2时,代数式x y x y -+-22x y x y+-的值是___________. 二、典型例题 例1根据右边的数值转换器,按要求填写下表. x 1- 0 1 2- y 1 12- 0 12 输出 例2 填写下表,并观察下列两个代数式的值的变化情况: n 1 2 3 4 5 6 7 8 …5n +6 …n 2 …(1)(2)估计一下,哪个代数式的值先超过100?三、拓展提升例 已知311=-y x ,求代数式yxy x y xy x ---+2232的值. 分析 变形后运用整体的思想带入,可使分子分母同除以“xy ”.四、课后作业1.当x =1,y =32,z =53时,代数式y (x -y +z )的值为_______. 2.若23250x y -+=,那么23(321)x y -+=______.2x 2 14 2x +1 9 3 12x 1163.定义a*b =ab b a+,则2*(2*2)= . 4.如图所示,某计算装置有一数据入口和计算结果出口,根据图中的程序, 计算函数值,若输入的x 值为75,则输出的结果是________.5.在下列计算程序中填写适当的数或转换步骤:6.若7:4:3::=z y x ,且182=+-z y x ,求代数式z y x -+2的值.3.3代数式的值(二)一、基础训练1.-3 y =x 2 -1≤x y =5x -2≤x ≤-1 y =-x +2 1≤x ≤2输出y 值 输入x 值2.3 1281816 17 2125443.-15 -3 0 4.45.17 5二、典型例题:例1 2 0 1 3例2 (1)6或-1 (2)n2三、拓展提升:例3 3 5四、课后作业:1.4 32.-123.3 24.3 55.略6.8。
七年级数学代数式试题(含答案)
七年级数学代数式试题(含答案)班级 姓名一、选择题1.下列各组代数式中,是同类项的是( )A .5x 2y 与15xy B .-5x 2y 与15yx 2 C .5ax 2与15yx 2 D .83与x 32.下列式子合并同类项正确的是 ( )A .3x +5y =8xyB .3y 2-y 2=3C .15ab -15ba =0D .7x 3-6x 2=x 3.同时含有字母a 、b 、c 且系数为1的五次单项式有( )A .1个B .3个C .6个D .9个4.右图中表示阴影部分面积的代数式是 ( ) A .ab +bcB .c(b -d)+d(a -c)C .ad +c(b -d)D .ab -cd5.圆柱底面半径为3 cm,高为2 cm,则它的体积为( )A .97π cm 2B .18π cm 2C .3π cm 2D .18π2 cm 26.下列运算正确的是( )A 、2x +3y =5xyB 、5m 2·m 3=5m 5C 、(a —b )2=a 2—b 2D 、m 2·m 3=m 67.下列各式中去括号正确的是( )A 、22(22)22x x y x x y --+=-++ B 、()m n mn m n mn -+-=-+- C 、(53)(2)22x x y x y x y --+-=-+ D 、(3)3ab ab --+=8.张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A . a =bB . a =3bC . a =bD . a =4b9.下列合并同类项中,错误的个数有( )(1)321x y -=,(2)224x x x +=,(3)330mn mn -=,(4)2245ab ab ab -=(5)235347m m m +=A 、4个B 、3个C 、2个D 、1个10. 下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A.21B.24C.27D.30 二、填空题温馨提示:要求将最简洁、最正确的答案填在空格处!1.若-5abn -1与13am -1b 3是同类项,则m +2n =_______. 2.a 是某数的十位数字,b 是它的个位数字,则这个数可表示为_______.3.若A =x 2-3x -6,B =2x 2-4x +6,则3A -2B =_______4.单项式5.2×105a 3bc 4的次数是_______,单项式-23πa 2b 的系数是_______.5.代数式x 2-x 与代数式A 的和为-x 2-x +1,则代数式A =_______.6.已知21×2=21+2,32×3=32+3,43×4=43+4,…,若a b ×10=ab+10(a 、b 都是正整数),则a +b 的值是_______.7.已知m 2-mn =2,mn -n 2=5,则3m 2+2mn -5n 2=_______.8.按照如图所示的操作步骤,若输入x 的值为2,则输出的值为 .9.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b )进入其中时,会得到一个新的实数:a2+b ﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是10.已知21×2=21+2,32×3=32+3,43×4=43+4,…,若a b ×10=ab+10(a 、b 都是正整数),则a +b 的值是_______.三、解答题 1.化简下列各题:(1)22227(65)2(3)x x xy y xy x -+--+- (2)223221515x x x x +--+-2.已知222244,5A x xy y B x xy y =-+=+-,求3A -B3.先化简,在求值33233[(67)2(34)x x x x x xy y -+----],其中x =-1,y =14.用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少颗黑色棋子?(2)第几个图形有2016颗黑色棋子?请说明理由.5.某市出租车收费标准:3 km 以内(含3 km)起步价为8元,超过3 km 后每1 km 加收1.8元.(1)若小明坐出租车行驶了6 km,则他应付多少元车费?(2)如果用s 表示出租车行驶的路程,m 表示出租车应收的车费,请你表示出s 与m 之间的数量关系(s>3).6.一种蔬菜x 千克,不加工直接出售每千克可卖y 元;如果经过加工质量减少了20%,价格增加了40%,问:(1)x千克这种蔬菜加工后可卖多少钱?(2)如果这种蔬菜有1 000千克,不加工直接出售每千克可卖1.50元,加工后原1 000千克这种蔬菜可卖多少钱?比不加工多卖多少钱?7.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;(2)并按此规律计算:①2+4+6+…+300的值;②162+164+166+…+400的值.参考答案一.选择题二.填空题 1.10 2.10a +b3.-x 2-x -30 4. 8 -23π 5.-2x 2+1 6.19 7.31 8. 20 9. 9 10.19三.解答题 1.化简下列各题:(1)22227(65)2(3)x x xy y xy x -+--+-22222267226567y xy x x xy y xy x x --=+---+-=解:原式(2)223221515x x x x +--+-12132---=x x 解:原式2.已知222244,5A x xy y B x xy y =-+=+-,求3A -B22222222228131153121235,44yxy x y xy x y xy x B A y xy x B y xy x A +-=+--+-=-∴-+=+-= 解3.1986764,1,186764862763:233233-=-+---==-=--+-=--++--=原式时当原式解y x y xy x x x y xy x x x x x4.(1)第5个图形有18颗黑色棋子.(2)=671,所以第671个图形有2016颗黑色棋子.5.(1)他应付13.4•元车费 (2)m =1.8s +2.6 6.解:(1)千克这种蔬菜加工后质量为千克,价格为元.故千克这种蔬菜加工后可卖(元).(2)加工后可卖1.12×1 000×1.5=1 680(元),(元), 比不加工多卖180元.7.(1)S=n(n+1) (2)①22650 ②33720。
初一上册数学代数式求值试题
初一上册数学代数式求值试题及答案一、选择题(共12小题)1.已知m=1,n=0,则代数式m+n的值为( )A.﹣1B.1C.﹣2D.2【考点】代数式求值.【分析】把m、n的值代入代数式进行计算即可得解.【解答】解:当m=1,n=0时,m+n=1+0=1.故选B.【点评】本题考查了代数式求值,把m、n的值代入即可,比较简单.2.已知x2﹣2x﹣8=0,则3x2﹣6x﹣18的值为( )A.54B.6C.﹣10D.﹣18【考点】代数式求值.【专题】计算题.【分析】所求式子前两项提取3变形后,将已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣2x﹣8=0,即x2﹣2x=8,∴3x2﹣6x﹣18=3(x2﹣2x)﹣18=24﹣18=6.故选B.【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.3.已知a2+2a=1,则代数式2a2+4a﹣1的值为( )A.0B.1C.﹣1D.﹣2【考点】代数式求值.【专题】计算题.【分析】原式前两项提取变形后,将已知等式代入计算即可求出值.【解答】解:∵a2+2a=1,∴原式=2(a2+2a)﹣1=2﹣1=1,故选B【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.4.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A.4,2,1B.2,1,4C.1,4,2D.2,4,1【考点】代数式求值.【专题】压轴题;图表型.【分析】把各项中的数字代入程序中计算得到结果,即可做出判断.【解答】解:A、把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;B、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项不合题意;C、把x=1代入得:3+1=4,把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;D、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项符合题意,故选D【点评】此题考查了代数式求值,弄清程序框图中的运算法则是解本题的关键.5.当x=1时,代数式4﹣3x的值是( )A.1B.2C.3D.4【考点】代数式求值.【专题】计算题.【分析】把x的值代入原式计算即可得到结果.【解答】解:当x=1时,原式=4﹣3=1,故选A.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.6.已知x=1,y=2,则代数式x﹣y的值为( )A.1B.﹣1C.2D.﹣3【考点】代数式求值.【分析】根据代数式的求值方法,把x=1,y=2代入x﹣y,求出代数式x ﹣y的值为多少即可.【解答】解:当x=1,y=2时,x﹣y=1﹣2=﹣1,即代数式x﹣y的值为﹣1.故选:B.【点评】此题主要考查了代数式的求法,采用代入法即可,要熟练掌握,解答此题的关键是要明确:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.7.已知x2﹣2x﹣3=0,则2x2﹣4x的值为( )A.﹣6B.6C.﹣2或6D.﹣2或30【考点】代数式求值.【专题】整体思想.【分析】方程两边同时乘以2,再化出2x2﹣4x求值.【解答】解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.【点评】本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.8.按如图的运算程序,能使输出结果为3的x,y的值是( )A.x=5,y=﹣2B.x=3,y=﹣3C.x=﹣4,y=2D.x=﹣3,y=﹣9【考点】代数式求值;二元一次方程的解.【专题】计算题.【分析】根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.【解答】解:由题意得,2x﹣y=3,A、x=5时,y=7,故A选项错误;B、x=3时,y=3,故B选项错误;C、x=﹣4时,y=﹣11,故C选项错误;D、x=﹣3时,y=﹣9,故D选项正确.故选:D.【点评】本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.9.若m+n=﹣1,则(m+n)2﹣2m﹣2n的值是( )A.3B.0C.1D.2【考点】代数式求值.【专题】整体思想.【分析】把(m+n)看作一个整体并代入所求代数式进行计算即可得解.【解答】解:∵m+n=﹣1,∴(m+n)2﹣2m﹣2n=(m+n)2﹣2(m+n)=(﹣1)2﹣2×(﹣1)=1+2=3.故选:A.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.10.已知x﹣2y=3,则代数式6﹣2x+4y的值为( )A.0B.﹣1C.﹣3D.3【考点】代数式求值.【分析】先把6﹣2x+4y变形为6﹣2(x﹣2y),然后把x﹣2y=3整体代入计算即可.【解答】解:∵x﹣2y=3,∴6﹣2x+4y=6﹣2(x﹣2y)=6﹣2×3=6﹣6=0故选:A.【点评】本题考查了代数式求值:先把所求的代数式根据已知条件进行变形,然后利用整体的思想进行计算.11.当x=1时,代数式 ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是( )A.7B.3C.1D.﹣7【考点】代数式求值.【专题】整体思想.【分析】把x=1代入代数式求出a、b的关系式,再把x=﹣1代入进行计算即可得解.【解答】解:x=1时, ax3﹣3bx+4= a﹣3b+4=7,解得 a﹣3b=3,当x=﹣1时, ax3﹣3bx+4=﹣ a+3b+4=﹣3+4=1.故选:C.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.12.如图是一个运算程序的示意图,若开始输入x的值为81,则第2014次输出的结果为( )A.3B.27C.9D.1【考点】代数式求值.【专题】图表型.【分析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【解答】解:第1次,×81=27,第2次,×27=9,第3次,×9=3,第4次,×3=1,第5次,1+2=3,第6次,×3=1,…,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2014是偶数,∴第2014次输出的结果为1.故选:D.【点评】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.二、填空题(共18小题)13.若4a﹣2b=2π,则2a﹣b+π=2π.【考点】代数式求值.【分析】根据整体代入法解答即可.【解答】解:因为4a﹣2b=2π,所以可得2a﹣b=π,把2a﹣b=π代入2a﹣b+π=2π.【点评】此题考查代数式求值,关键是根据整体代入法计算.14.若2m﹣n2=4,则代数式10+4m﹣2n2的值为18 .【考点】代数式求值.【分析】观察发现4m﹣2n2是2m﹣n2的2倍,进而可得4m﹣2n2=8,然后再求代数式10+4m﹣2n2的值.【解答】解:∵2m﹣n2=4,∴4m﹣2n2=8,∴10+4m﹣2n2=18,故答案为:18.【点评】此题主要考查了求代数式的值,关键是找出代数式之间的关系.15.若a﹣2b=3,则9﹣2a+4b的值为 3 .【考点】代数式求值.【专题】计算题.【分析】原式后两项提取﹣2变形后,把已知等式代入计算即可求出值.【解答】解:∵a﹣2b=3,∴原式=9﹣2(a﹣2b)=9﹣6=3,故答案为:3.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.已知3a﹣2b=2,则9a﹣6b= 6 .【考点】代数式求值.【分析】把3a﹣2b整体代入进行计算即可得解.【解答】解:∵3a﹣2b=2,∴9a﹣6b=3(3a﹣2b)=3×2=6,故答案为;6.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.17.若a2﹣3b=5,则6b﹣2a2+2015= 2005 .【考点】代数式求值.【分析】首先根据a2﹣3b=5,求出6b﹣2a2的值是多少,然后用所得的结果加上2015,求出算式6b﹣2a2+2015的值是多少即可.【解答】解:6b﹣2a2+2015=﹣2(a2﹣3b)+2015=﹣2×5+2015=﹣10+2015=2005.故答案为:2005.【点评】此题主要考查了代数式的求值问题,采用代入法即可,要熟练掌握,题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.按照如图所示的操作步骤,若输入的值为3,则输出的值为55 .【考点】代数式求值.【专题】图表型.【分析】根据运算程序列式计算即可得解.【解答】解:由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.故答案为:55.【点评】本题考查了代数式求值,读懂题目运算程序是解题的关键.19.若a﹣2b=3,则2a﹣4b﹣5= 1 .【考点】代数式求值.【分析】把所求代数式转化为含有(a﹣2b)形式的代数式,然后将a﹣2b=3整体代入并求值即可.【解答】解:2a﹣4b﹣5=2(a﹣2b)﹣5=2×3﹣5=1.故答案是:1.【点评】本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a﹣2b)的值,然后利用“整体代入法”求代数式的值.20.已知m2﹣m=6,则1﹣2m2+2m= ﹣11 .【考点】代数式求值.【专题】整体思想.【分析】把m2﹣m看作一个整体,代入代数式进行计算即可得解.【解答】解:∵m2﹣m=6,∴1﹣2m2+2m=1﹣2(m2﹣m)=1﹣2×6=﹣11.故答案为:﹣11.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.21.当x=1时,代数式x2+1= 2 .【考点】代数式求值.【分析】把x的值代入代数式进行计算即可得解.【解答】解:x=1时,x2+1=12+1=1+1=2.故答案为:2.【点评】本题考查了代数式求值,是基础题,准确计算是解题的关键.22.若m+n=0,则2m+2n+1= 1 .【考点】代数式求值.【分析】把所求代数式转化成已知条件的形式,然后整体代入进行计算即可得解.【解答】解:∵m+n=0,∴2m+2n+1=2(m+n)+1,=2×0+1,=0+1,=1.故答案为:1.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.23.按如图所示的程序计算.若输入x的值为3,则输出的值为﹣3 .【考点】代数式求值.【专题】图表型.【分析】根据x的值是奇数,代入下边的关系式进行计算即可得解.【解答】解:x=3时,输出的值为﹣x=﹣3.故答案为:﹣3.【点评】本题考查了代数式求值,准确选择关系式是解题的关键.24.按照如图所示的操作步骤,若输入x的值为2,则输出的值为20 .【考点】代数式求值.【专题】图表型.【分析】根据运算程序写出算式,然后代入数据进行计算即可得解.【解答】解:由图可知,运算程序为(x+3)2﹣5,当x=2时,(x+3)2﹣5=(2+3)2﹣5=25﹣5=20.故答案为:20.【点评】本题考查了代数式求值,是基础题,根据图表准确写出运算程序是解题的关键.25.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是9 .【考点】代数式求值.【专题】应用题.【分析】观察可看出未知数的值没有直接给出,而是隐含在题中,需要找出规律,代入求解.【解答】解:根据所给规则:m=(﹣1)2+3﹣1=3∴最后得到的实数是32+1﹣1=9.【点评】依照规则,首先计算m的值,再进一步计算即可.隐含了整体的数学思想和正确运算的能力.26.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是 3 .【考点】代数式求值.【分析】将x=1代入代数式2ax3+3bx+4,令其值是5求出2a+3b的值,再将x=﹣1代入代数式2ax3+3bx+4,变形后代入计算即可求出值.【解答】解:∵x=1时,代数式2ax3+3bx+4=2a+3b+4=5,即2a+3b=1,∴x=﹣1时,代数式2ax3+3bx+4=﹣2a﹣3b+4=﹣(2a+3b)+4=﹣1+4=3.故答案为:3【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.27.若x2﹣2x=3,则代数式2x2﹣4x+3的值为9 .【考点】代数式求值.【专题】计算题.【分析】所求式子前两项提取2变形后,将已知等式代入计算即可求出值.【解答】解:∵x2﹣2x=3,∴2x2﹣4x+3=2(x2﹣2x)+3=6+3=9.故答案为:9【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.28.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为 5 .【考点】代数式求值.【专题】整体思想.【分析】先求出m2﹣2m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.【解答】解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=5.故答案为:5.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.29.已知x(x+3)=1,则代数式2x2+6x﹣5的值为﹣3 .【考点】代数式求值;单项式乘多项式.【专题】整体思想.【分析】把所求代数式整理出已知条件的形式,然后代入数据进行计算即可得解.【解答】解:∵x(x+3)=1,∴2x2+6x﹣5=2x(x+3)﹣5=2×1﹣5=2﹣5=﹣3.故答案为:﹣3.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.30.已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为9 .【考点】代数式求值.【专题】整体思想.【分析】把所求代数式整理成已知条件的形式,然后代入进行计算即可得解.【解答】解:∵x2﹣2x=5,∴2x2﹣4x﹣1=2(x2﹣2x)﹣1,=2×5﹣1,=10﹣1,=9.故答案为:9.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.。
初中数学代数式经典测试题含答案
A. B. C. D.
【答案】B
【解析】
【分析】
根据同类项的定义列出关于m和n的二元一次方程组,再解方程组求出它们的值.
【详解】
由同类项的定义,得:
,解得 .
故选B.
【点睛】
同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.
【点睛】
本题考查了多项式乘多项式,熟练掌握其运算方法: 是解题的关键.
2.下列各运算中,计算正确的是( )
A.2a•3a=6aB.(3a2)3=27a6
C.a4÷a2=2aD.(a+b)2=a2+ab+b2
【答案】B
【解析】
试题解析:A、2a•3a=6a2,故此选项错误;
B、(3a2)3=27a6,正确;
故选:A.
点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.
15.图为“ ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )
A. B. C. D.
【答案】A
【解析】
【分析】
根据图形中的字母,可以表示出“L”型钢材的截面的面积,本题得以解决.
19.若(x+4)(x﹣1)=x2+px+q,则( )
A.p=﹣3,q=﹣4 B.p=5,q=4
C.p=﹣5,q=4 D.p=3,q=﹣4
【答案】D
【解析】
【分析】
根据整式的运算法则即可求出答案.
【详解】
解:∵(x+4)(x﹣1)=x2+3x﹣4
浙教版七年级数学上册第四章代数式单元测试题(含解析)
第四章代数式单元测试题一、单选题(共10题;共30分)1、某厂去年产值是x万元,今年比去年增产40%,今年的产值是()A、40%x万元B、(1+40%)x万元C、万元D、1+40%x万元2、下列各式符合代数式书写规范的是( )A、 B、a×3 C、3x-1个 D、2n3、下列语句中错误的是()A、数字0也是单项式B、xy是二次单项式C、单项式-a的系数与次数都是1D、- 的系数是—4、下列各式中,不是代数式的是()A、x—yB、xC、2x﹣1=6D、05、若代数式2x2+3x的值是5,则代数式4x2+6x﹣9的值是(A、10B、1C、—4D、—86、已知代数式m2+m+1=0,那么代数式2018﹣2m2﹣2m的值是()A、2016B、-2016C、2020D、—20207、已知﹣2x m+1y3与x2y n﹣1是同类项,则m,n的值分别为()A、m=1,n=4B、m=1,n=3C、m=2,n=4D、m=2,n=38、为了解决老百姓看病难的问题,卫生部门决定大幅度降低药品的价格,某种常用药品降价40%后的价格为a元,则降价前此药品价格为()A、元B、元C、40%元D、60%元9、如果A和B都是5次多项式,则下面说法正确的是()A、A﹣B一定是多项式B、A﹣B是次数不低于5的整式C、A+B一定是单项式D、A+B是次数不高于5的整式10、下列各式中运算错误的是()A、5x﹣2x=3xB、5ab﹣5ba=0C、4x2y﹣5xy2=﹣x2yD、3x2+2x2=5x2二、填空题(共10题;共36分)11、若a﹣2b=3,则9﹣2a+4b的值为 ________12、一个三位数,个位上的数为,十位上的数比个位上的数大2,百位上的数是个位上数的5倍,则这个三位数是________,当时,它是________13、若已知x+y=3,xy=﹣4,则(1+3x)﹣(4xy﹣3y)的值为________14、单项式﹣的系数是________ ,次数是________15、若3a3b n c2﹣5a m b4c2所得的差是单项式,则这个单项式为________16、若a x﹣3b3与﹣3ab2y﹣1是同类项,则x y=________.17、观察下列单项式:x,﹣3x2, 5x3,﹣7x4, 9x5,…按此规律,可以得到第2016个单项式是________.18、按照如图所示的操作步骤,若输入的值为3,则输出的值为________.19、当x=2017时,代数式(x﹣1)(3x+2)﹣3x(x+3)+10x的值为________.20、﹣的系数为________.三、解答题(共5题;共35分)21、某商店积压了100件某种商品,为使这批货物尽快脱手,该商店采取了如下销售方案,将价格提高到原来的2。
苏科版七年级数学上册第3章 代数式测试题( 含答案)
第3章代数式测试题一、选择题(本大题共10小题,每小题3分,共30分)1. 用式子表示“a与5的差的2倍”,下列正确的是()A. a-(-5)×2B. a+(-5)×2C. 2(a-5)D. 2(a+5)2. 计算-a2+2a2的结果为()A. a2B. -a2C. 2a2D. 03. 单项式m2n的系数和次数分别是()A. 0,2B. 0,3C. 1,2D. 1,34. 下列各组单项式中,属于同类项的是()A.1-2mn与-2mn B. 18ab与18abc C. 16a2b与-16ab2 D. x3与635. 下列整式中,去括号后得a-b+c的是()A. a-(b+c)B. -(a-b)+cC. -a-(b+c)D. a-(b-c)6. 下列选项中,加上5x2-3x-5等于3x的式子是()A. 5x2-6x-5B. 5+5x2C. -5x2+6x+5D. 5x2-57. 某商场举行促销活动,促销的方法是消费超过200元时,所购买的商品按原价打8折后,再减少20元.若某商品的原价为x(x>200)元,则购买该商品实际付款的金额是()A.(80%x-20)元B. 80%(x-20)元C.(20%x-20)元D. 20%(x-20)元8. 按图1所示的程序计算,当输入x=7时,输出的值为()A. 28B. 42C. 52D. 100图1 图29. 如图2,两个面积分别为35,23的长方形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a-b的值为()A. 6B. 8C. 9D. 1210. 观察图3所示的图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n(n为正整数)的结果为()A. n2B.(2n-1)2C.(n+2)2D.(2n+1)2图3二、填空题(本大题共6小题,每小题3分,共18分)11. 多项式-3x2y-2x2y2+xy-4的最高次项为.12. 写出1-2xy3的一个同类项.13. 已知x=2y+3,则式子4x-8y+9的值是.14. 若多项式(k-1)x2+3x|k+2|+2为三次三项式,则k的值为.15. 长红枣是地方特产,色泽红艳、酥脆甘甜、营养丰富,有着较高的滋补和药用价值,被誉为“天然维生素丸”.某网店以a元一包的价格购进500包长红枣,加价20%卖出400包以后,剩余每包比进价降低b元后全部卖出,则可获得利润元.16.如图4-①,小长方形纸片的长为2、宽为1,将4张这样的小长方形纸片按图4-②所示的方式不重叠的放在大长方形内,未被覆盖的部分恰好被分割为两个长方形Ⅰ和Ⅱ,设长方形Ⅰ和Ⅱ的周长分别为C1和C2,则C1C2(填“>”“=”或“<”).①②图4三、解答题(本大题共6小题,共52分)17.(6分)先化简,再求值:3a2b-[2ab2-2(ab-1.5a2b)+ab]+3ab2,其中a=2,b=-3.18.(8分)(1)有下列式子:①2x2+bx+1;②-ax2+3x;③13a;④1-2x2.其中是整式的有.(填序号)(2)已知a,b为常数,将上面的①式与②式相加,化简所得的结果是单项式,求a,b的值.19.(8分)图5所示的是一个长方形,其尺寸如图所示.(1)根据图中尺寸大小,用含x的式子表示阴影部分的面积S;(2)当x=2时,求S的值.图520.(8分)已知A=x2-mx+2,B=nx2+2x-1,且化简2A-B的结果与x无关.(1)求m,n的值;(2)求式子-3(m2n-2mn2)-[m2n+2(mn2-2m2n)-5mn2]的值.21.(10分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:+(-3x2+5x-7)=-2x2+3x-6.(1)求所捂的多项式;(2)若x为正整数,任取几个x的值并求出所捂多项式的值,你能发现什么规律?(3)若所捂多项式的值为144,请直接写出正整数x的值.22.(12分)国庆期间,王老师计划组织朋友出去游玩两日.经了解,现有甲、乙两家旅行社针对组团两日游的游客报价均为每人500元,提供的服务完全相同.甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,超出部分每人按八折收费.假设组团参加两日游的人数为x人.(1)请列式表示甲、乙两家旅行社收取组团两日游的总费用;(2)若王老师组团参加两日游的人数共有30人,请你通过计算,帮助王老师在甲、乙两家旅行社中选择收取总费用较少的一家.附加题(共20分,不计入总分)1.(6分)“双十一”前,某微商在某平台以每个a 元的价格购进充电宝50个,后又从另一平台以每个b 元的价格购进相同型号的充电宝30个(其中a >b ),“双十一”时以每个2a b 元的价格在平台全部卖出,则该微商 ( )A. 亏损了B. 盈利了C. 不亏不盈D. 亏损还是盈利由a ,b 的值决定2.(14分)请同学们仔细阅读下列步骤:①任意写一个三位数,百位数字比个位数字大2;②交换百位数字与个位数字,得到一个三位数;③用上述的较大的三位数减去较小的三位数,所得的差为三位数;④交换这个差的百位数字与个位数字又得到一个三位数;⑤把③④中的两个三位数相加,得到最后结果.请根据以上步骤完成下列问题:(1)③中的三位数是 ,④中的三位数是 ,⑤中的结果是 .(2)在草稿纸上试一个不同的三位数,看看结果是否都一样?如果一样,请你用含a ,b 的式子表示这个三位数,解释其中的原因.第3章 代数式测试题参考答案一、1. C 2. A 3. D 4. A 5. D 6. C 7. A 8. C 9. D 10. D二、11. -2x 2y 2 12. 答案不唯一,如xy 3 13. 21 14. -5 15.(80a -100b )16. = 提示:设图②中大长方形长为x ,宽为y ,则长方形Ⅰ的长为x -1,宽为y -3,周长C 1=2(x -1+y -3)=2x +2y -8;长方形Ⅱ的长为x -2,宽为y -2,周长C 2=2(x -2+y -2)=2x +2y -8.所以C 1=C 2.三、 17. 解:原式=3a 2b -2ab 2+2ab -3a 2b -ab +3ab 2=ab 2+ab .当a =2,b =-3时,原式=2×(-3)2+2×(-3)=18-6=12.18. 解:(1)①②④(2)2x 2+bx +1+(-ax 2+3x )=2x 2+bx +1-ax 2+3x =(2-a )x 2+(b +3)x +1.因为①式与②式相加,化简所得的结果是单项式,所以2-a =0,b +3=0,所以a =2,b =-3.19. 解:(1)S 阴影部分=S 长方形ABCD -S 三角形ABC -S 三角形DEF =12×6-12×12×6-12×(12-6)×(6-x )=72-36-18+3x =18+3x ;(2)当x =2时,S =18+3×2=24.20. 解:(1)2A-B=2(x2-mx+2)-(nx2+2x-1)=2x2-2mx+4-nx2-2x+1=(2-n)x2-(2m+2)x+5.由化简2A-B的结果与x无关,得2-n=0,2m+2=0,解得n=2,m=-1.(2)原式=-3m2n+6mn2-m2n-2mn2+4m2n+5mn2=9mn2.当n=2,m=-1时,原式=9×(-1)×22=-36.21. 解:(1)所捂的多项式是:(-2x2+3x-6)-(-3x2+5x-7)=-2x2+3x-6+3x2-5x+7=x2-2x+1.(2)当x=1时,x2-2x+1=12-2×1+1=0;当x=2时,x2-2x+1=22-2×2+1=1;当x=3时,x2-2x+1=32-2×3+1=4;当x=4时,x2-2x+1=42-2×4+1=9.规律:所捂多项式的值是代入的正整数减去1的平方.(3)若所捂多项式的值为144,又122=14,所以此时正整数x的值是13.22. 解:(1)由题意,得甲旅行社收取组团两日游的总费用(单位:元)为:500x×0.85=425x.若人数不超过20人时,乙旅行社收取组团两日游的总费用(单位:元)为:500x×0.9=450x;若人数超过20人时,乙旅行社收取组团两日游的总费用(单位:元)为:500(x-20)×0.8+500×20×0.9=400x+1000.(2)甲旅行社收取组团两日游的总费用为:425×30=12 750(元);乙旅行社收取组团两日游的总费用为:400×30+1000=13 000(元).因为12 750<13 000,所以王老师应选择甲旅行社.附加题1. A2. 解:(1)198 891 1089(2)结果都一样.设①中的三位数为100a+10b+(a-2),则②中的三位数为100(a-2)+10b+a.因为100a+10b+(a-2)-[100(a-2)+10b+a]= 100a+10b+a-2-100a+200-10b-a=198,这是一个常数,在交换百位数字与个位数字后得到891,198+891=1089,所以相加后是常数1089.。
七年级数学代数式求值整式加减练习题(附答案)
七年级数学代数式求值整式加减练习题一、解答题1.某公园的门票价格是:成人20元,学生10元,满40人可以购买团体票(打8折),设一个旅游团共有x 人(40x >),其中学生y 人.1.用含的式子表示该旅游团应付的门票费;2.如果旅游团有47个成人, 12个学生,那么他们应付多少门票费?2.某市的张、王、李三家合办一个股份制企业,总股数为()2532a a --股,每股1元,张家持有()221a +股,王家比张家少()1a -股,年终按股本额18%的比例支付股利,获利的20%缴纳个人所得税,请你帮助李家算算年终能得到多少钱.3.某农户2007年承包荒山若干亩,投资7800元改造后,种果树2000棵.今年水果总产量为18000千克,此水果在市场上每千克售a 元,在果园每千克售b 元()b a <该农户将水果拉到市场出售平均每天出售1000千克,需8人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元.1.分别用,a b 表示两种方式出售水果的收入?2.若 1.3a =元, 1.1b =元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.3.该农户加强果园管理,力争到明年纯收入达到15000元,那么纯收入增长率是多少(纯收入=总收入-总支出),该农户采用了(2)中较好的出售方式出售)?4.假如在数轴原点处放立一挡板(厚度不计),有甲、乙两个球(忽略球的大小,可看作一点),甲球从表示数-2的点处出发,以每秒1个单位长度的速度沿数轴向左运动;同时乙球从表示数4的点处出发,以每秒2个单位长度的速度沿数轴向左运动,在碰到挡板后即刻按原来的速度向相反的方向运动,设运动的时间为t (秒).用含t 的代数式分别表示甲、乙两球到原点之间的距离.5.历史上的数学巨人欧拉最先把关于x 的多项式用记号()f x 的形式来表示,把x 等于某数a 时的多项式的值用()f a 来表示,例如1x =-时,多项式()235f x x x =+-的值记为()1f -,则()17f -=-.已知()533f x ax bx x c =+++,且()01f =-.(1)c = .(2)若()12f =,求a b +的值;(3)若()29f =,求()2f -的值.二、计算题6.化简下列各题(1)()22232x xy xy x -+-. (2)()221212a a a a ⎛⎫-+-+- ⎪⎝⎭. (3)()3521x x x ---⎡⎤⎣⎦.(4)()()()355423a b a b a b ++---.7.化简求值.(1)233360.5xy xy x y -+23335 4.5xy xy x y -+-,其中1, 4.2x y =-= (2)222{35[4a a a --++2(31)]}5a a ----,其中 3.a =8.计算下列各题.(1)228352(32)xy x xy xy y ----(2)3323410(310)a b b a b b -+-+(3)22225[(52)2(3)]a a a a a a -+---9.先化简,再求值. (1)32(2)3()2a ab a b +---,其中3,2a b =-=. (2){}222243[5(2)4]x x x x x x x ------+,其中12x =-. 10.已知232A a ab a =--,22B a ab =-+-.(1)求43()A A B --的值;(2)若3A B +的值与a 的取值无关,求b 的值.11.计算下列小题:(1)已知:222x y +=,12xy =-,求2222(23)(2)x y xy x y xy ----+的值; (2)若22(26)(2351)x ax y bx x y +-+--+-的值与字母x 所取的值无关,试求3232112(3)34a b a b ---的值.参考答案1.答案:1.由题意得成人门票费为()20x y -元,学生门票费为10y 元,所以总费用为()201080%x y y -+⨯⎡⎤⎣⎦元.答:该旅游团应付门票费()201080%x y y -+⨯⎡⎤⎣⎦元.2.当该旅游团有47个成人, 12个学生时, ()2047101280%848⨯+⨯⨯= (元). ()40x > 答:如果旅游团有47个成人, 12个学生,那么他们应付门票费848元.解析:门票费=门票价格×人数×80%(人数>40),由于成人和学生的门票价格不相同,所以应先分别求两种门票的费用,再求它们的和,最后乘所打折数,就得最终费用.2.答案:王家持有的股数为:()()()2221122a a a a +--=-+股. 李家持有的股数为:()()()()2222532212225a a a a a a a ---+--+=--股.所以李家年终可获得的钱数为:()()212518%120%a a ⨯--⨯⨯-()20.14425a a =--()20.1440.2880.72a a =--元.答:李家年终能获得()20.1440.2880.72a a --元. 解析:3.答案:1.解:将这批水果拉到市场上出售收入为18000180001800082510010001000a -⨯⨯-⨯ 1800036001800180005400a a =--=- (元)在果园直接出售收入为18000b 元;2.当 1.3a =时,市场收入为18000540018000 1.3540018000a -=⨯-= (元),当 1.1b =时,果园收入为1800018000 1.119800b =⨯= (元),因为1800019800<,所以应选择在果园出售3.因为今年的纯收入为19800780012000-=,所以 100%25%⨯=,所以增长率为25%。
【人教版】七年级数学代数式练习题及答案
代数式 同步练习一.选择题(共10小题)1.“m 与n 差的3倍”用代数式可以表示成( ) A .3m n −B .3m n −C .3()n m −D .3()m n −2.下列各式符合代数式书写规范的是( ) A .18b ⨯B .114xC .2b a −D .2m n ÷3.下列代数式的书写格式规范的是( ) A .51a b ⨯÷+B .34abC .2abD .213x4.某商店促销的方法是将原价x 元的衣服以(0.810)x −元出售,意思是( ) A .原价减去10元后再打8折 B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元5.代数式2x y −的意义为( ) A .x 与y 的差的平方 B .x 与y 的平方的差C .x 的平方与y 的平方的差D .x 与y 的相反数的平方差6.下列图形是按照一定规律画出的.对于第n 个图形,有x 个正方形和一定数量的三角形,三角形的个数可以表示为( )A .44x −B .44n −C .4x n +D .4n x +7.按一定规律排列的一列数依次为16,112,11,2030⋯⋯按此规律排列下去,这列数的第9个数是( ) A .119B .1110C .190 D .198.一个矩形的周长为l ,若矩形的长为a ,则该矩形的宽为( ) A .2la − B .2l a− C .l a − D .2l a9.代数式3m n +的值为5,则代数式32m n −−−的值为( ) A .7B .7−C .3D .3−10.当2x=时,38ax bx++=;那么当2x=−时,3ax bx++的值为() A.8−B.2C.2−D.8二.填空题(共9小题)11.已知23a b−=,则代数式241a b−+的值为.12.根据如图所示的计算程序,若输入的值3x=−,则输出y的值为.13.如果某种商品每8千克的售价为32元,那么这种商品m千克的售价为元.14.m的2倍与n的差大于0表示为:.15.将下列各式按照列代数式的规范要求重新书写:(1)5a⨯,应写成;(2)S t÷应写成;(3)123a a b⨯⨯−⨯,应写成;(4)413x,应写成.16.每件a元的上衣,降价20%后的售价是.17.小明买了6本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元,则小明共花费元(用含a,b的代数式表示).18.下列各式是按新定义的已知“△”运算得到的,观察下列等式:2△523511=⨯+=,2△(1)23(1)5−=⨯+−=,6△363321=⨯+=,4△(3)43(3)9−=⨯+−=⋯⋯根据这个定义,计算(2022)−△2022的结果为.19.已知有理数x、y满足2|3|(24)0x y−++=,则代数式x y+的值为.三.解答题(共5小题)20.某校为实现垃圾分类投放,计划购进大小两种垃圾桶,大小垃圾桶的进价分别为m 元/个、50元/个,购进7个大垃圾桶和10个小垃圾桶. (1)用含m 的代数式表示共付款多少元?(2)若110m =,学校预算购买垃圾桶资金为1200元是否够用?为什么?21.当2x =,5y =−时,求多项式223x y x y +−+−的值.22.根据下列语句列出代数式: (1)x 与y 的和乘以3的积的倒数; (2)x 、y 两数的平方差; (3)x 、y 两数和的平方的2倍.23.阅读下列例题:计算:23456102222222++++++⋯+. 解:设23456102222222S =++++++⋯+,①那么2345102345101122(222222)222222S =⨯+++++⋯+=++++⋯++.② ②−①,得1122S =−. 所以原式1122=−. 仿照上面的例题计算: 234201833333++++⋯+.24.当2a =−,3b =时,求下列代数式的值. (1)2(2)a b +; (2)222a b ab −−.代数式 巩固练习 答案一.选择题(共10小题)1.“m 与n 差的3倍”用代数式可以表示成( ) A .3m n −B .3m n −C .3()n m −D .3()m n −【解答】解:“m 与n 差的3倍”用代数式可以表示为:3()m n −. 故选:D .2.下列各式符合代数式书写规范的是( ) A .18b ⨯B .114xC .2b a −D .2m n ÷【解答】解:A 、正确书写格式为:18b ,故此选项不符合题意; B 、正确书写格式为:54x ,故此选项不符合题意;C 、是正确的书写格式,故此选项符合题意;D 、正确书写格式为:2mn,故此选项不符合题意. 故选:C .3.下列代数式的书写格式规范的是( ) A .51a b ⨯÷+B .34abC .2abD .213x【解答】解:.15abA +,故A 不符合题意; 3.4B ab ,故B 符合题意; .2C ab ,故C 不符合题意;5.3D x ,故D 不符合题意; 故选:B .4.某商店促销的方法是将原价x 元的衣服以(0.810)x −元出售,意思是( ) A .原价减去10元后再打8折 B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元【解答】解:某商店促销的方法是将原价x 元的衣服以(0.810)x −元出售,意思是:原价打8折后再减去10元, 故选:B .5.代数式2x y −的意义为( ) A .x 与y 的差的平方 B .x 与y 的平方的差C .x 的平方与y 的平方的差D .x 与y 的相反数的平方差【解答】解:字母表达式2x y −的意义为x 与y 的平方的差. 故选:B .6.下列图形是按照一定规律画出的.对于第n 个图形,有x 个正方形和一定数量的三角形,三角形的个数可以表示为( )A .44x −B .44n −C .4x n +D .4n x +【解答】解:第1个图形中,有2个正方形和4个三角形,44(21)=⨯−; 第2个图形中,有3个正方形和8个三角形,84(31)=⨯−; 第3个图形中,有4个正方形和12个三角形,124(41)=⨯−; ⋯⋯,∴第n 个图形中,三角形的个数为4n 或44x −.故选:A .7.按一定规律排列的一列数依次为16,112,11,2030⋯⋯按此规律排列下去,这列数的第9个数是( ) A .119B .1110C .190 D .19【解答】解:11623=⨯, 111234=⨯, 112045=⨯, ⋯⋯∴第n 个数为:1(1)(2)n n ++,∴第9个数为:111011110=⨯. 故选:B .8.一个矩形的周长为l ,若矩形的长为a ,则该矩形的宽为( ) A .2la − B .2l a− C .l a − D .2l a【解答】解:矩形的宽为:2la −. 故选:A .9.代数式3m n +的值为5,则代数式32m n −−−的值为( ) A .7B .7−C .3D .3−【解答】解:35m n +=, ∴原式3()2m n =−+−52=−−7=−.故选:B .10.当2x =时,38ax bx ++=;那么当2x =−时,3ax bx ++的值为( ) A .8−B .2C .2−D .8【解答】解:当2x =时,3ax bx ++的值是8, 2238a b ∴++=,即225a b +=,∴当2x =−时,3(22)3532ax bx a b ++=−++=−+=−.故选:C .二.填空题(共9小题)11.已知23a b −=,则代数式241a b −+的值为 7 . 【解答】解:23a b −=,∴原式2(2)1617a b =−+=+=.故答案为:7.12.根据如图所示的计算程序,若输入的值3x =−,则输出y 的值为 10 .【解答】解:当3x =−时,由程序图可知:221(3)19110y x =+=−+=+=. 故答案为:10.13.如果某种商品每8千克的售价为32元,那么这种商品m 千克的售价为 4m 元. 【解答】解:这种商品的单价为3284÷=元,∴这种商品m 千克的售价为4m 元.故答案为:4m .14.m 的2倍与n 的差大于0表示为: 20m n −> . 【解答】解:m 的2倍为2m ,与n 的差为:2m n −,m ∴的2倍与n 的差大于0表示为:20m n −>.故答案为:20m n −>.15.将下列各式按照列代数式的规范要求重新书写: (1)5a ⨯,应写成 5a ; (2)S t ÷应写成 ;(3)123a a b ⨯⨯−⨯,应写成 ;(4)413x ,应写成 .【解答】(1)55a a ⨯=, 故答案为:5a ; (2)SS t t÷=. 故答案为:S t; (3)212233ba ab a ⨯⨯−⨯=−,故答案为:223b a −; (4)47133x x =,故答案为:73x .16.每件a 元的上衣,降价20%后的售价是 (120%)a −元/件 . 【解答】解:每件a 元的上衣降价20%后,出售的价格为(120%)a −(元/件). 故答案为:(120%)a −(元/件).17.小明买了6本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小明共花费 (610)a b + 元(用含a ,b 的代数式表示). 【解答】解:依题意得:小明共花费(610)a b +元, 故答案是:(610)a b +.18.下列各式是按新定义的已知“△”运算得到的,观察下列等式: 2△523511=⨯+=,2△(1)23(1)5−=⨯+−=, 6△363321=⨯+=,4△(3)43(3)9−=⨯+−=⋯⋯根据这个定义,计算(2022)−△2022的结果为 4044− . 【解答】解:根据前几个数可以找到规律,a △3b a b =⨯+, 故(2022)−△20222022320224044=−⨯+=−, 故答案为:4044−.19.已知有理数x 、y 满足2|3|(24)0x y −++=,则代数式x y +的值为 1 .【解答】解:2|3|(24)0x y −++=, 30x ∴−=,240y +=,解得:3x =,2y =−, 则321x y +=−=. 故答案为:1.三.解答题(共5小题)20.某校为实现垃圾分类投放,计划购进大小两种垃圾桶,大小垃圾桶的进价分别为m 元/个、50元/个,购进7个大垃圾桶和10个小垃圾桶.(1)用含m 的代数式表示共付款多少元?(2)若110m =,学校预算购买垃圾桶资金为1200元是否够用?为什么?【解答】解:(1)购进7个大垃圾桶和10个小垃圾桶,共付款71050(7500)m m +⨯=+(元);(2)当110m =时,750071105001270m +=⨯+=(元),12001270<,1200∴元不够用.21.当2x =,5y =−时,求多项式223x y x y +−+−的值.【解答】解:当2x =,5y =−时,223x y x y +−+−222(5)2(5)3=+−−+−−425253=+−−−19=.22.根据下列语句列出代数式:(1)x 与y 的和乘以3的积的倒数;(2)x 、y 两数的平方差;(3)x 、y 两数和的平方的2倍.【解答】解:(1)由题意可得,13()x y +; (2)由题意可得,22x y −;(3)由题意可得,22()x y +.23.阅读下列例题:计算:23456102222222++++++⋯+.解:设23456102222222S =++++++⋯+,①那么2345102345101122(222222)222222S =⨯+++++⋯+=++++⋯++.② ②−①,得1122S =−.所以原式1122=−.仿照上面的例题计算:234201833333++++⋯+.【解答】解:设234201833333S =++++⋯+,①那么23420182019333333S =+++⋯++.②(②−①)2÷,得2019332S −=. 所以原式2019332−=. 24.当2a =−,3b =时,求下列代数式的值.(1)2(2)a b +;(2)222a b ab −−.【解答】解:(1)2a =−,3b =,2(2)a b ∴+2(223)=−+⨯2(26)=−+24=16=;(2)2a =−,3b =,222∴−−a b ab22=−−−⨯−⨯(2)32(2)3 4912=−+=.7。
人教版七年级数学上册《第三章代数式》单元检测卷及答案
人教版七年级数学上册《第三章代数式》单元检测卷及答案(时间:45分钟满分:100分)一、选择题(每小题5分,共40分)1.下列各式中,符合代数式书写规则的是( )xyA.x×5B.72ab D.m-1÷nC.2142.用代数式表示“a的3倍与b的差的平方”,正确的是( )A.3a-b2B.3(a-b)2C.(3a-b)2D.(a-3b)23.一次知识竞赛共有24道选择题,规定:答对一道得3分,不答或答错一道扣1分,如果某位学生答对了x道题,则用式子表示他的成绩为( )A.3x-(24+x)B.100-(24-x)C.3xD.3x-(24-x)4.有长为L的篱笆,利用它和房屋的一面墙围成如图所示的长方形园子,园子的宽为t,则所围成的园子的面积为( ))t B.(L-t)tA.(L-t2C.(L-t)t D.(L-2t)t25.下面各选项中的两个量成正比例关系的是( )A.全班的人数一定,出勤人数与缺勤人数B.三角形的面积一定,它的底与高C.已知xy=1,y与xD.已知xy=3,y与x6.若2m-n-4=0,则-2m+n-9的值是( )A.-13B.-5C.5D.137.某超市把一种商品按成本价a元提高60%标价,然后再以7折优惠卖出,则这种商品的售价比成本多( )A.20%B.16%C.15%D.12%8.如图所示的图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑧个图形中实心圆点的个数为( )A.22B.23C.25D.26二、填空题(每小题4分,共16分)9.如果|a+3|+(b-2)2=0,那么代数式(a+b)2 025的值是 .10.对有理数a,b,规定运算如下:a※b=1a +1b,则-2.5※2= .11.如果A×B=4.5,那么A和B成比例关系;如果x÷y=3.5,那么x和y成比例关系;如果m∶1.2=1.5∶n,那么m和n成比例关系.12.找出下列数的排列规律,填上适当的数:13,29,427, .三、解答题(共44分)13.(7分)一个圆柱的底面积与高的关系如下表.底面积/cm2 4 5 6 8 10 …高/cm 15 12 10 7.5 6 …(1)这个圆柱的体积是多少?(2)如果用S表示圆柱的底面积,h表示圆柱的高,S与h成什么比例关系?你能写出这个关系式吗?(3)如果圆柱的底面积是20 cm2,那么圆柱的高是多少?14.(9分)某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+25,-15,-22,+24,-21,+14,-12.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存100 t水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a元,出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费(用含a,b的代数式表示)?15.(8分)1号探测气球从海拔2 m处出发,以每秒0.8 m的速度上升.与此同时,2号探测气球从海拔10 m处出发,以每秒 0.3 m 的速度上升,设气球出发的时间为x s.(1)请用含x的代数式表示:1号探测气球与2号探测气球的海拔高度;(2)求出发多长时间1号探测气球与2号探测气球的海拔高度相同.16.(10分)甲、乙两家网购平台以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲平台规定:凡超过1 000元的电器,超出部分的金额打8折;乙平台规定:凡超过500元的电器,超出部分的金额按90%收取,两家平台均免费送货并赠送运费险,若某顾客购买电器的价格是x元,请回答下列问题:(1)当x=800时,该顾客应选择在哪家平台下单比较划算?(2)当x>2 000时,分别用代数式表示在两家平台购买电器所需支付的费用.(3)当x=3 500时,该顾客应该选择哪家平台下单比较划算?请说明理由.17.(10分)高速公路旁有三个物品代收点A,B,C,它们之间的距离如图所示.现要在高速公路旁修建一个货仓,把代收点A,B,C的货全部运到货仓,代收点A每天有50 t货物,代收点B每天有10 t货物,代收点C每天有60 t货物,从A到C方向每吨每千米运费1.5元,从C到A方向每吨每千米运费1元.问货仓应修建在何处才能使运费最低,最低运费是多少?参考答案一、选择题(每小题5分,共40分)1.下列各式中,符合代数式书写规则的是(B)xyA.x×5B.72C.21ab D.m-1÷n42.用代数式表示“a的3倍与b的差的平方”,正确的是(C)A.3a-b2B.3(a-b)2C.(3a-b)2D.(a-3b)23.一次知识竞赛共有24道选择题,规定:答对一道得3分,不答或答错一道扣1分,如果某位学生答对了x道题,则用式子表示他的成绩为(D)A.3x-(24+x)B.100-(24-x)C.3xD.3x-(24-x)4.有长为L的篱笆,利用它和房屋的一面墙围成如图所示的长方形园子,园子的宽为t,则所围成的园子的面积为(D))t B.(L-t)tA.(L-t2-t)t D.(L-2t)tC.(L25.下面各选项中的两个量成正比例关系的是(D)A.全班的人数一定,出勤人数与缺勤人数B.三角形的面积一定,它的底与高C.已知xy=1,y与x=3,y与xD.已知xy6.若2m-n-4=0,则-2m+n-9的值是(A)A.-13B.-5C.5D.137.某超市把一种商品按成本价a元提高60%标价,然后再以7折优惠卖出,则这种商品的售价比成本多(D)A.20%B.16%C.15%D.12%8.如图所示的图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑧个图形中实心圆点的个数为(D)A.22B.23C.25D.26二、填空题(每小题4分,共16分)9.如果|a+3|+(b-2)2=0,那么代数式(a+b)2 025的值是-1 .10.对有理数a,b,规定运算如下:a※b=1a +1b,则-2.5※2= 110.11.如果A×B=4.5,那么A和B成反比例关系;如果x÷y=3.5,那么x和y成正比例关系;如果m∶1.2=1.5∶n,那么m和n成反比例关系.12.找出下列数的排列规律,填上适当的数:13,29,427, 881.三、解答题(共44分)13.(7分)一个圆柱的底面积与高的关系如下表.底面积/cm2 4 5 6 8 10 …高/cm 15 12 10 7.5 6 …(1)这个圆柱的体积是多少?(2)如果用S表示圆柱的底面积,h表示圆柱的高,S与h成什么比例关系?你能写出这个关系式吗?(3)如果圆柱的底面积是20 cm2,那么圆柱的高是多少?解:(1)4×15=60(cm3).答:这个圆柱的体积是60 cm3.(2)如果用S表示圆柱的底面积,h表示圆柱的高,因为“圆柱的底面积×高=圆柱的体积”,体积一定,也就是积一定,所以S与h成反比例关系,sh=60.(3)60÷20=3(cm).答:如果圆柱的底面积是20 cm2,那么圆柱的高是3 cm.14.(9分)某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+25,-15,-22,+24,-21,+14,-12.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存100 t水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a元,出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费(用含a,b的代数式表示)?解:(1)因为+25-15-22+24-21+14-12=-7所以经过这7天,仓库里的水泥减少了,减少了7 t.(2)因为100-(-7)=100+7=107(t)所以那么7天前,仓库里存有水泥107 t.(3)依题意,得进库的装卸费为[(+25)+(+24)+(+14)]a=63a出库的装卸费为(|-15|+|-22|+|-21|+|-12|)b=70b所以这7天要付(63a+70b)元装卸费.15.(8分)1号探测气球从海拔2 m处出发,以每秒0.8 m的速度上升.与此同时,2号探测气球从海拔10 m处出发,以每秒 0.3 m 的速度上升,设气球出发的时间为x s.(1)请用含x的代数式表示:1号探测气球与2号探测气球的海拔高度;(2)求出发多长时间1号探测气球与2号探测气球的海拔高度相同.解:(1)根据题意,1号探测气球的海拔高度为(0.8x+2)m;2号探测气球的海拔高度为(0.3x+10)m.(2)依题意有0.8x+2=0.3x+10解得x=16.故出发16 s 1号探测气球与2号探测气球的海拔高度相同.16.(10分)甲、乙两家网购平台以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲平台规定:凡超过1 000元的电器,超出部分的金额打8折;乙平台规定:凡超过500元的电器,超出部分的金额按90%收取,两家平台均免费送货并赠送运费险,若某顾客购买电器的价格是x元,请回答下列问题:(1)当x=800时,该顾客应选择在哪家平台下单比较划算?(2)当x>2 000时,分别用代数式表示在两家平台购买电器所需支付的费用.(3)当x=3 500时,该顾客应该选择哪家平台下单比较划算?请说明理由.解:(1)顾客购买电器的价格是x=800元时,甲购物平台没有优惠,需要付费800元,乙购物平台有优惠,需要付费500+90%×(800-500)=770(元)所以顾客应选择在乙购物平台下单比较划算.(2)选择甲购物平台下单比较划算.理由如下:顾客购买电器的价格是x>2 000元时,甲购物平台需要付费1 000+80%(x-1 000)=(0.8x+200)(元)乙购物平台需要付费500+90%(x-500)=(0.9x+50)(元).(3)当x=3 500时,甲购物平台需要付费0.8×3 500+200=3 000(元)乙购物平台需要付费0.9×3 500+50=3 200(元)因为3 000<3 200所以该顾客应该选择甲购物平台下单比较划算.17.(10分)高速公路旁有三个物品代收点A,B,C,它们之间的距离如图所示.现要在高速公路旁修建一个货仓,把代收点A,B,C的货全部运到货仓,代收点A每天有50 t货物,代收点B每天有10 t货物,代收点C每天有60 t货物,从A到C方向每吨每千米运费1.5元,从C到A方向每吨每千米运费1元.问货仓应修建在何处才能使运费最低,最低运费是多少?解:①货仓P在A,B之间时,距离点A有x km,则距离点B有(50-x)km,距离点C 有(130-x)km.运费为50x×1.5+10×(50-x)×1+60×(130-x)×1=(5x+8 300)元.由题意,得0≤x≤50所以x=0时,运费最低,为8 300元.②货仓P在B,C之间时,距离点C有y km,则距离点B有(80-y)km,距离点A有(130-y)km.运费为60y×1+10×(80-y)×1.5+50×(130-y)×1.5=(-30y+ 10 950)元.由题意,得0≤y≤80所以当y=80时,运费最低,为8 550元.因为8 300<8 550所以货仓P在A,B之间,距离点A有 0 km,即在A处时,运费最低,为8 300元. 答:货仓在点A处时,运费最低,为 8 300元.自我诊断知识分类题号总分评价1,2,3,4,5,7,8代数式11,12,13,14求代数式的值6,9,10,15,16,17。
七年级代数式(培优篇)(Word版 含解析)
一、初一数学代数式解答题压轴题精选(难)1.已知A=2x2+3xy-2x-1,B=x2-xy-1(1)化简:4A-(2B+3A),将结果用含有x、y的式子表示(2)若式子4A-(2B+3A)的值与字母x的取值无关,求的值【答案】(1)解:∵A=2x2+3xy-2x-1,B=x2-xy-1,∴4A-(2B+3A)=A-2B=2x2+3xy-2x-1-2(x2-xy-1)=5xy-2x+1(2)解:根据(1)得4A-(2B+3A)= 5xy-2x+1;∵4A-(2B+3A)的值与字母x的取值无关,∴4A-(2B+3A)=5xy-2x+1=(5y-2)x+1,5y-2=0,则y= .则y3+ A- B= y3+ (A-2B)= y3+ ×1= + = = .【解析】【分析】(1)先将4A-(2B+3A)化简,再将A,B的值分别代入代数式,去括号合并同类项化为最简形式即可;(2)根据(1)化简的结果,由4A-(2B+3A)的值与字母x的取值无关,得出5y-2=0,求解得出y的值,再将代数式中含A,B的项,逆用乘法分配律最后整体代入即可算出代数式的值。
2.小明是个爱动脑筋的同学,在发现教材中的用方框在月历中移动的规律后,突发奇想,将连续的偶数2,4,6,8,…,排成如表,并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五个数,其他五个数的和能等于2016吗?如能,写出这五个数,如不能,说明理由.【答案】(1)解:十字框中的五个数的和为6+14+16+18+26=80=16×5,∴十字框中的五个数的和为中间的数16的5倍(2)解:设中间的数为x,则另外四个数分别为x﹣10、x﹣2、x+2、x+10,∴十字框中的五个数的和为(x﹣10)+(x+10)+(x﹣2)+(x+2)+x=5x(3)解:假设能够框出满足条件的五个数,设中间的数为x,根据题意得:5x=2016,解得:x=403.2.∵403.2不是整数,∴假设不成立,∴不能框住五个数,使它们的和等于2016.【解析】【分析】(1)算出十字框中的五个数的和,即可发现是16的5倍;(2)设中间的数为x,则另外四个数分别为x﹣10、x﹣2、x+2、x+10 ,利用整式加法法则即可算出十字框中的五个数的和;(3)假设能够框出满足条件的五个数,设中间的数为x ,根据(2)计算的结果及这五个数的和是2016,,列出方程,求解如解是整数即可,不是整数即不可。
初一数学代数式试题答案及解析
初一数学代数式试题答案及解析1.下列说法:①代数式a2+1的值永远是正的;②代数式中的字母可以是任何数;③代数式只代表一个值;④代数式中字母x可以是0以外的任何数.其中正确的个数是()A.1个B.2个C.3个D.4个【答案】B【解析】本题考查的是非负数的性质,分式的性质①根据任何数的平方都是非负数即可判断;②根据分式的分母不能为0即可判断;③根据字母a、b可以表示任意有理数即可判断;④根据分式的分母不能为0即可判断。
①,,故本小题正确;②,故本小题错误;③字母a、b可以表示任意有理数,故可表示无数个数,故本小题错误;④,故本小题正确;正确的个数是2个,故选B.思路拓展:解答本题应熟知任何数的平方都是非负数,任意分数的分母均不为0.2.按规律填数-5,-2,1,4,,,… …,第n个数是 .【答案】7,10,3n-8【解析】此题考查的是数字的变化类问题观察依次为-5,-2,1,4,…,的一列数,分析得出每一个数都比前一个数大3,据此求出第n个数.通过观察得出:每一个数都比前一个数大3,则-5,-2,1,4,7,10,第n个数是-5+(n-1)×3=3n-8.思路拓展:解题的关键是分析一列数找出规律,按规律求解.3.用长为12米的木条,做成一个长方形的窗框(如图所示,中间有一横档),设窗框的横条长度为x米,用代数式表示窗框的面积.【答案】平方米【解析】本题考查了列代数式要注意题中关键词中包含的运算关系,知道横条长度为x米,则可求出窗框高,故其面积可求.横条长度为x米,则窗框高为米,∴面积=长×高平方米.思路拓展:列代数式的关键是正确理解文字语言中的关键词,此题是要正确求出窗框高.4.下列去括号,正确的是()A.-(a+ b)=-a-b B.-(3x-2)=-3x-2C.a2-(2a-1)=a2-2a-1D.x-2(y-z)=x-2y+z【答案】A【解析】本题考查的是去括号法则根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,依次分析各项即可得到结果。
苏教版七年级数学复习专题训练《代数式》(含答案)
七年级数学复习专题训练《代数式》 考试时间:90分钟 满分:120分一、选择题(每题3分,共30分) 1.代数式21xy-的正确解释是( ) A. x 与y 的倒数的差的平方 B. x 的平方与y 的倒数的差 C.x 的平方与y 的差的倒数 D. x 与y 的差的平方的倒数2.已知,,a b c 均为有理数,则a b c ++的相反数是( ) A.b ac +- B. b a c --- C. b a c --+ D. b a c -+3. 若单项式39mxy 与单项式24n x y 是同类项,则m n +的值是( )A. 2B. 3C. 4 5. 5 4.若2222221131(3)(4)()2222x xy y x xy y x y -+---+-=-++,则括号中的一项是( ) A.7xy - B. 7xy C. xy - D. xy5.已知代数式2346xx -+的值为9,则2463x x -+的值为( )A. 18B. 12C. 9D. 7 6.给出下列说法:①若a 为任意有理数,则21a+总是正数;②若0a a +=,则a 是负数;③单项式34a b -的系数与次数分别为4-和4;④代数式2t ,3a b +,2b都是整式.其中正确的有( )A. 4个B. 3个C. 2个D. 1个 7. 已知数,,a b c 在数轴上的位置如图所示,则化简a b c b+--的结果是( )A.a c + B. c a - C. a c -- D. 2abc +-8.国庆期间,某商店推出全场打八折的优惠活动,持贵宾卡的客户还可在八折的基础上再打九折.若某人持贵宾卡买一件商品花了a 元,则该商品的标价是( ) A.1720a 元 B. 2017a 元 C. 1825a 元 D. 2518a 元 9.如图的图形都是由同样大小的圆圈按一定规律组成的,其中图①中一共有6个小圆圈,图②中一共有9个小圆圈,图③中一共有12个小圆圈,…,按此规律排列,则图⑦中小圆圈的个数为( )A. 21B. 24C. 2 7D. 3010. 把四张形状、大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m ,宽为n )的盒子底部(如图②),盒子底部未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A.4n B. 4m C. 2()m n + D. 4()m n -二、填空题(每题3分,共24分) 11.若三角形三边的长分别为(21)x +cm ,2(2)x -cm ,2(21)x x -+cm ,则其周长为cm.12.已知当1x =时,22axbx +的值为3,则当2x =时,2ax bx +的值为 .13.某班学生在实践基地进行拓展活动分组,因为器材的原因,教练要求分成固定的a 组.若每组5人,就有9名同学多出来;若每组6人,最后一组的人数将不满,则最后一组的人数用含a 的代数式可表示为 . 14.已知:2222233+=⨯;2333388+=⨯;244441515+=⨯,…若299a ab b+=⨯(,a b 为正整数),则ab = .15.已知,a b 互为相反数,,c d 互为倒数,并且1x =,则代数式(2)(3)a b x cd bx cdx +--+ 的值为 .16. 如图,阴影部分的面积为 .17.已知有理数,,a b c 满足0,0,0a b c<>>,且b a c<<.(1)在数轴上将,,a b c 三个数填在相应的括号内:(2)化简:22a b b c c a -+---= .18.如图,已知四边形ABCD 是正方形.(1)试用两种不同的方法来表示正方形ABCD 的面积: 或 ;(2)若x 为有理数,则2(1)x +221x x ++,2(1)x - 221x x --.(填“>”“<”或 “=”) 三、解答题(共66分) 19. (12分)化简: (1) 22223()x x y y -+-; (2)5(27)3(410)x y x y ---;(3)2222111()()()236a b a b a b -+-++.20. ( 6分)先化简,再求值:22112[(4)7]22a ab a ab ab----,其中,a b满足21(3)02a b ++-=.21. (6分)已知点,,,A B C D 的位置如图所示.(1)用含,a b 的代数式表示,A C 两点之间的距离是 ; (最后结果需化简)(2)若已知,A C 两点之间的距离是12,求,C D 两点之间的距离.22. ( 9分)图①②分别由两个长方形拼成,其中ab >.(1)用含,a b 的代数式表示它们的面积,则=S ① ,=S ② ; (2)S ①与S ②之间有怎样的大小关系?请你解释其中的道理; (3)请你利用上述发现的结论计算式子: 222016-2014.23. ( 6分)已知,a b 为有理数,且,,,a a b a b ab b+-中恰有三个数相等,求(2)ba -的值.24.(9分)某品牌饮水机厂生产一种饮水机和饮水机桶,饮水机每台定价350元,饮水机桶每只定价50元.厂家开展促销活动期间,可以同时向客户提供两种优惠方案:①买一台饮水机送一只饮水机桶;②饮水机和饮水机桶都按定价的90%付款.现某客户到该饮水机厂购买饮水机30台,饮水机桶x 只(x 超过30). (1)若该客户按方案①购买,求客户需付款;(用含x 的代数式表示) (2)若该客户按方案②购买,求客户需付款;(用含x 的代数式表示)(3)当40x =时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并计算出所需的钱数.25. ( 9分)某单位准备组织部分员工到某地旅游,现在联系了甲、乙两家旅行社,两家旅行社的报价均为2 000元/人,两家旅行社都对10人以上的团体推出了优惠措施:甲旅行社对每名员工给予七五折优惠;乙旅行社是免去一名带队员工的费用,其余员工八折优惠.(1)若设该单位参加旅游的员工共有m (10m >)人,则甲旅行社的费用为 元,乙旅行社的费用为 元;(用含m 的代数式表示并化简) (2)若这个单位组织包括带队员工在内的共20名员工到某地旅游,则该单位选择哪一家旅行社比较优惠?说明理由.(3)①若这个单位计划在2月外出旅游七天,设最中间一天的日期为n ,则这七天的日期之和为 ;(用含n 的代数式表示并化简)②若这七天的日期之和为63的倍数,则他们可能于2月几日出发?(写出所有符合条件的可能性,并写出简单的计算过程)26. ( 9分)某商场将进货价为30元的台灯以40元的销售价售出,平均每月能售出600个.市场调研表明:当销售价每上涨1元时,其销售量将减少10个.若设每个台灯的销售价上涨a 元. (1)试用含a 的代数式填空:①涨价后,每个台灯的销售价为 元; ②涨价后,每个台灯的利润为 元;③涨价后,商场的台灯平均每月的销售量为 个;(2)如果商场要想平均每月销售利润达到10 000元,商场经理甲说:“在原售价每个40元的基础上再上涨40元,可以完成任务.”商场经理乙说:“不用涨那么多,在原售价每个40元的基础上再上涨10元就可以了.”试判断经理甲与乙的说法是否正确,并说明理由.参考答案1. B2. B3. D4. C5. D6. C7. A8. D9. B 10. A 11.22x12. 6 13. 15a - 14. 720 15. 2-或4- 16. 24m mn π-17. (1) a b c (2) c -18. (1)2()a b + 222a ab b ++(2) = > 19. (1)2222xy -(2)25x y -- (3)2221113362a ab b +-- 20. 原式=246a ab +因为21(3)02a b ++-= 所以12a=-,3b = 将12a =-,3b =代入,得,原式=2114()6()3822⨯-+⨯-⨯=-21. (1)32a b -(2) 5 22. (1)22ab - ()()a b a b +-(2)=S S ①② 相同的两个长方形拼成的两个图形的面积相等,即都等于这两个长方形面积的和 (3)8060.23. 因为0b ≠,所以a b a b +≠-,所以ab 一定与ab相等, 所以0a =或1b =±.若0a =,则0b =,矛盾;若1b =,则,,,aa b a b ab b +-中不可能有三个数相等, 若1b =-,则a ab a b b ==+或aab a b b ==-, 对应的a 值分别为12或12-,所以(2)ba -1=±24. (1) (509000)x + 元(2)(459450)x +元(3) 当40x =时,方案①需付款5040900011000⨯+=(元),方案②需付款4540945011250⨯+= (元),所以方案①合算.更为省钱的购买方案:先按方案①购买30台饮水机,送30只饮水机桶,需10 50。
浙教版七年级数学上册《第四章代数式》测试题(含答案)
第4章代数式测试题 第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.下列式子中符合代数式的一般书写要求的是( )A .a ×bB .3x 2C .2÷abD .223a2.如果单项式12x a y 2与13x 3y b是同类项,那么a ,b 的值分别为( )A .2,2B .-3,2C .2,3D .3,23.下列说法正确的是( )A .0不是代数式B .2πa2b5的系数是2,次数是4 C .x 2-2x +6的项分别是x 2 , 2x ,6 D .25(xy -5x 2y +y -7)的三次项系数是-24.下列计算正确的是( ) A .3x 2y -2y 2x =x 2y B .5y -3y =2y C .7a +a =7a 2 D .3a +2b =5ab5.若a ,b 互为相反数,c ,d 互为倒数,则代数式a +b -cd 的值等于( )A .1B .-1C .0D .-26.已知一个三位数,百位上的数字为a ,十位上的数字为b ,个位上的数字为c ,则这个三位数可表示成( )A .abcB .a +b +cC .100a +10b +cD .100c +10b +a7.某超市销售一批商品,若零售价为每件a 元,获利25%,则每件商品的进价应为( )A .25%a 元B .(1-25%)a 元C .(1+25%)a 元D .a1+25%元 8.已知|a +1|+(3-b)2=0,则a 2b 等于( )A .1B .-1C .3D .-39.多项式5a 3-6a 3b +3a 2b -3a 3+6a 3b -5-2a 3-3ba 2的值( )A .只与a 的取值有关B .只与b 的取值有关C .与a ,b 的取值都有关D .与a ,b 的取值都无关10.对a ,b 定义运算“*”如下:a*b =⎩⎪⎨⎪⎧2a +b (a ≥b ),2a -b (a <b ).已知x*3=-1,则实数x 等于( )A .1B .-2C .1或-2D .不确定第Ⅱ卷 (非选择题 共90分)二、填空题(每小题4分,共24分)11.“x 的2倍与5的和”用代数式可以表示为__________. 12.-πx3y7的系数是________,次数是________.13.如图是一个数值转换器,若输入的a 的值为2,则输出的值为________.14.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3相加后不含x 的二次项,则m 的值为________.15.已知x 2+3x +5=7,那么多项式3x 2+9x -2的值是________.16.实数a ,b ,c 在数轴上对应的点的位置如图Z 4-2所示,则|a -c|-|a -b|-|b -c|=________.三、解答题(共66分) 17.(6分)化简:(1)3a +7a -5a; (2)4x -3xy -6x +2xy ;(3)32a 2-2a -4+3a -12a 2;(4)5+7(x -1)-(2x +3);(5)3x -7y -2(x -4y)+x; (6)3(a +b -c)-5(a -b +c).18.(6分)先化简,再求值:3(2x +1)+2(3-x),其中x =-1.19.(6分)先化简,再求值:5(3x 2y -xy 2)-3(xy 2+5x 2y),其中x =12,y =-1.20.(8分)某超市今年第一季度的营业额为m万元,预计本年度每季度比上一季度的营业额增长p%.请你完成下列问题:(1)用代数式分别表示第二季度、第三季度、第四季度的预计营业额;(2)当m=10,p=15时,求出本年度预计营业总额(结果精确到0.1万元).21. (8分)2016年9月15日太空实验室“天宫二号”顺利升空,同学们备受鼓舞,开展了火箭模型制作比赛.如图为火箭模型的截面图,下面是梯形,中间是长方形,上面是三角形.(1)用含a,b的代数式表示该截面的面积S;(2)当a=2.2 cm,b=2.8 cm时,求这个截面的面积.22.(10分)七年级(1)班李娥同学做一道题:“已知两个代数式A,B,A=x2+2x-1,计算A+2B.”他误将A+2B写成了2A+B,结果得到答案x2+5x-6,请你帮助他求出正确的答案.23.(10分)用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形中有多少颗黑色棋子?(2)第几个图形中有2019颗黑色棋子?请说明理由.24.(12分)为了加强公民的节水意识,合理利用水资源,某市采取价格调控手段以达到节水的目的,下表是该市自来水收费价格的价目表.(1)若某户居民2月份用水4立方米,则应交水费________元;(2)若某户居民3月份用水a立方米(其中6<a<10),则该用户3月份应交水费多少元(用含a的整式表示,结果要化成最简形式)?(3)若某户居民4,5月份共用水15立方米(5月份用水量多于4月份),设4月份用水x 立方米,求该户居民4,5月份共交水费多少元(用含x的整式表示,结果要化成最简形式).答案1.B 2.D 3.D 4.B 5.B 6.C 7.D 8.C 9.D 10.A 11.2x +5 12.-17π 4 13.0 14.4 15. 4 16.2a -2b 17.解:(1)原式=5a. (2)原式=-xy -2x. (3)原式=a 2+a -4. (4)原式=5x -5. (5)原式=2x +y. (6)原式=-2a +8b -8c.18.解:原式=6x +3+6-2x =4x +9.当x =-1时,原式=5. 19.解:原式=(15x 2y -5xy 2)-(3xy 2+15x 2y)=-8xy 2. 当x =12,y =-1时,原式=-4.20.解:(1)第二季度预计营业额:m(1+p%)万元; 第三季度预计营业额:m(1+p%)2万元; 第四季度预计营业额:m(1+p%)3万元. (2)49.9万元.21.解:(1)S =12ab +2a ·a +12(a +2a)b =2ab +2a 2.(2)当a =2.2 cm ,b =2.8 cm 时,S =2a(a +b)=2×2.2×(2.2+2.8)=22(cm 2). 22.解:因为2A +B =x 2+5x -6,A =x 2+2x -1, 所以B =(x 2+5x -6)-2(x 2+2x -1)=-x 2+x -4, 所以A +2B =x 2+2x -1+2(-x 2+x -4)=-x 2+4x -9. 23.解:(1)第5个图形中有18颗黑色棋子.(2)第672个图形中有2019颗黑色棋子.理由:由规律可知,第n个图形有(3n+3)颗黑色棋子,令3n+3=2019,解得n=672.所以第672个图形中有2019颗黑色棋子.24.解:(1)根据题意,得2×4=8(元).(2)根据题意,得4(a-6)+6×2=(4a-12)元.(3)由5月份用水量多于4月份,得4月份用水量少于7.5立方米,当4月份的用水量少于5立方米时,5月份用水量超过10立方米,则4,5月份共交水费2x+8(15-x-10)+4×4+6×2=(-6x+68)元;当4月份用水量大于或等于5立方米,但不超过6立方米时,5月份用水量不少于9立方米,但不超过10立方米,则4,5月份共交水费2x+4(15-x-6)+6×2=(-2x+48)元;当4月份用水量超过6立方米,但少于7.5立方米时,5月份用水量超过7.5立方米,但少于9立方米,则4,5月份共交水费4(x-6)+6×2+4(15-x-6)+6×2=36(元).。
湘教版七年级数学上册 期末专项复习—《代数式》(含答案)
湘教版七年级数学上册 期末专项复习—《代数式》(时间:45分钟 满分:100分)题号一二三总分合分人复分人得分一、选择题(每小题3分,共24分)1.下列代数式中符合书写要求的是(D )A .ab4B .4mC .x÷yD .-a13522.列式表示“比m 的平方的3倍大1的数”是(B )A .(3m)2+1B .3m 2+1C .3(m +1)2D .(3m +1)23.下列各组单项式中,不是同类项的是(D )A .12a 3y 与B .6a 2mb 与-a 2bm 2ya 33C .23与32D .x 3y 与-xy 312124.下列各式:-mn ,m ,8,,x 2+2x +6,,,y 3-5y +中,整式有(C)121a 2x -y 5x 2+4y π1y A .3个 B .4个 C .6个 D .7个5.多项式1+2xy -3xy 2的次数及最高次项的系数分别是(A )A .3,-3B .2,-3C .5,-3D .2,36.(娄底娄星区期末)下列去括号错误的是(C )A .3a 2-(2a -b +5c)=3a 2-2a +b -5cB .5x 2+(-2x +y)-(3z -a)=5x 2-2x +y -3z +aC .2m 2-3(m -1)=2m 2-3m -1D .-(2x -y)-(-x 2+y 2)=-2x +y +x 2-y 27.如果代数式2a 2+3a +1的值是6,那么代数式6a 2+9a +5的值为(D )A .18B .16C .15D .208.一根铁丝正好可以围成一个长是2a +3b ,宽是a +b 的长方形框,把它剪去可围成一个长是a ,宽是b 的长方形的一段铁丝(均不计接缝),剩下部分铁丝的长是(C )A .a +2bB .b +2aC .4a +6bD .6a +4b二、填空题(每小题3分,共24分)9.单项式-的系数是-,次数是6.2πa2b3c 32π310.化简:3(a -b)-(2a -b)=a -2b .11.把多项式x 2y -2x 3y 2-3+4xy 3按字母x 的指数由小到大排列是-3+4xy 3+x 2y -2x 3y 2.12.某商品先按批发价a 元提高10%零售,后又按零售价90%出售,则它最后的单价是0.99a 元.13.(娄底期中)某超市的苹果价格如图,试说明代数式100-9.8x 的实际意义:用100元买该种苹果x 斤后剩余的钱数.14.已知多项式x |m|+(m -2)x -10是二次三项式,m 为常数,则m 的值为-2.15.规定一种新运算:aΔb =a·b -a -b +1,如3Δ4=3×4-3-4+1,请比较大小:(-3)Δ4=4Δ(-3).(填“>”“=”或“<”)16.有一组多项式:a +b 2,a 2-b 4,a 3+b 6,a 4-b 8,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为a 10-b 20.三、解答题(共52分)17.(16分)计算:(1)3a 3-(7-a 3)-4-6a 3; (2)(5x -2y)+(2x +y)-(4x -2y);12解:原式=3a 3-7+a 3-4-6a 3 解:原式=5x -2y +2x +y -4x +2y12=(3a 3+a 3-6a 3)+(-7-4) =3x +y.12=-a 3-11.52(3)2(x 2-y)-3(y +2x 2);解:原式=2x 2-2y -3y -6x 2 =-4x 2-5y.(4)3x 2-[x 2+(2x 2-x)-2(x 2-2x)].解:原式=3x 2-(x 2+2x 2-x -2x 2+4x) =3x 2-x 2-2x 2+x +2x 2-4x =2x 2-3x.18.(6分)若a ,b 满足(a -3)2+|b +|=0,求代数式3a 2b -[2ab 2-2(ab -a 2b)+ab]+3ab 2的值.1332解:因为(a -3)2+|b +|=0,所以a =3,b =-.1313又因为原式=3a 2b -2ab 2+2ab -3a 2b -ab +3ab 2=ab 2+ab.所以当a =3,b =-时,原式=ab 2+ab =3×(-)2+3×(-)=-.1313132319.(8分)已知,如图,长方形广场的四角都有一块边长为x 米的正方形草地,长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为200米,宽为150米,正方形的边长为10米,求阴影部分的面积.解:(1)ab -4x 2.(2)阴影部分的面积为:200×150-4×102=29 600(m 2).20.(10分)小红做一道数学题“两个多项式A ,B ,B 为4x 2-5x -6,试求A +2B 的值”.小红误将A +2B 看成A-2B,结果答案(计算正确)为-7x2+10x+12.(1)试求A+2B的正确结果;(2)求出当x=-3时,A+2B的值.解:(1)因为A-2B=-7x2+10x+12,B=4x2-5x-6,所以A=-7x2+10x+12+2(4x2-5x-6)=x2.所以A+2B=x2+2(4x2-5x-6)=9x2-10x-12.(2)当x=-3时,A+2B=9×(-3)2-10×(-3)-12=99.21.(12分)某影剧院观众席近似于扇面形状,第一排有m个座位,后边的每一排比前一排多两个座位.(1)写出第n排的座位数;(2)当m=20时,①求第25排的座位数;②如果这个剧院共25排,那么最多可以容纳多少观众?解:(1)m+2(n-1).(2)①当m=20,n=25时,m+2(n-1)=20+2×(25-1)=68(个).②m+m+2+m+2×2+…+m+2×(25-1)=25m+600.当m=20时,25m+600=25×20+600=1 100(人).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上数学代数式期末复习测试卷
班级 姓名
一、选择题
1.下列各组代数式中,是同类项的是( )
A .5x 2y 与
15xy B .-5x 2y 与15yx 2 C .5ax 2与15
yx 2 D .83与x 3
2.下列式子合并同类项正确的是 ( ) A .3x +5y =8xy B .3y 2-y 2=3 C .15ab -15ba =0 D .7x 3-6x 2=x 3.同时含有字母a 、b 、c 且系数为1的五次单项式有( ) A .1个 B .3个 C .6个 D .9个 4.右图中表示阴影部分面积的代数式是 ( ) A .ab +bc
B .c(b -d)+d(a -c)
C .ad +c(b -d)
D .ab -cd
5.圆柱底面半径为3 cm ,高为2 cm ,则它的体积为( ) A .97π cm 2 B .18π cm 2 C .3π cm 2 D .18π2 cm 2
6.下列运算正确的是( )
A 、2x +3y =5xy
B 、5m 2·m 3=5m 5
C 、(a —b )2=a 2—b 2
D 、m 2·m 3=m 6
7.下列各式中去括号正确的是( )
A 、2
2
(22)22x x y x x y --+=-++ B 、()m n mn m n mn -+-=-+- C 、(53)(2)22x x y x y x y --+-=-+ D 、(3)3ab ab --+=
8.张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )
A . a =b
B . a =3b
C . a =b
D . a =4b
9.下列合并同类项中,错误的个数有( )
(1)321x y -=,(2)2
2
4
x x x +=,(3)330mn mn -=,(4)2
2
45ab ab ab -=
(5)235
347m m m +=
A 、4个
B 、3个
C 、2个
D 、1个
10. 下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共
有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )
A.21
B.24
C.27
D.30 二、填空题
温馨提示:要求将最简洁、最正确的答案填在空格处!
1.若-5ab n -1与13
a m -1
b 3是同类项,则m +2n =_______.
2.a 是某数的十位数字,b 是它的个位数字,则这个数可表示为_______. 3.若A =x 2-3x -6,B =2x 2-4x +6,则3A -2B =_______
4.单项式5.2×105a 3bc 4的次数是_______,单项式-
23
πa 2
b 的系数是_______. 5.代数式x 2-x 与代数式A 的和为-x 2-x +1,则代数式A =_______.
6.已知
21×2=21+2,32×3=32+3,43×4=43+4,…,若a b ×10=a
b
+10(a 、b 都是正整数),则a +b 的值是_______.
7.已知m 2-mn =2,mn -n 2=5,则3m 2+2mn -5n 2=_______.
8.按照如图所示的操作步骤,若输入x 的值为2,则输出的值为 .
9.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数:a2+b ﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m ,再将实数对(m ,1)放入其中后,得到实数是
10.已知21×2=21+2,32×3=32+3,43×4=43+4,…,若a b ×10=a
b
+10(a 、b 都是正整数),则a +b 的值是_______.
三、解答题 1.化简下列各题:
(1)2
2
2
2
7(65)2(3)x x xy y xy x -+--+- (2)22
3221515x x x x +--+-
2.已知2222
A x xy y
B x xy y
=-+=+-,求3A-B
44,5
3.先化简,在求值3323
-+----],其中x=-1,y=1
3[(67)2(34)
x x x x x xy y
4.用同样大小的黑色棋子按如图所示的规律摆放:
(1)第5个图形有多少颗黑色棋子?
(2)第几个图形有2016颗黑色棋子?请说明理由.
5.某市出租车收费标准:3 km以内(含3 km)起步价为8元,超过3 km后每1 km加收1.8元.(1)若小明坐出租车行驶了6 km,则他应付多少元车费?
(2)如果用s表示出租车行驶的路程,m表示出租车应收的车费,请你表示出s与m之间的数量关系(s>3).
6.一种蔬菜x千克,不加工直接出售每千克可卖y元;如果经过加工质量减少了20%,价
格增加了40%,问:(1)x千克这种蔬菜加工后可卖多少钱?
(2)如果这种蔬菜有1 000千克,不加工直接出售每千克可卖1.50元,加工后原1 000千克这种蔬菜可卖多少钱?比不加工多卖多少钱?
7.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:
(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;
(2)并按此规律计算:①2+4+6+…+300的值;②162+164+166+…+400的值.
参考答案
一.选择题 题号 1 2 3 4 5 6 7 8 9 10 答案
C
C
D
D
A
B
C
B
A
B
二.填空题 1.10 2.10a +b
3.-x 2-x -30 4. 8 -23
π 5.-2x 2+1 6.19 7.31 8. 20 9. 9 10.19
三.解答题 1.化简下列各题:
(1)2
2
2
2
7(65)2(3)x x xy y xy x -+--+-
2
2222267226567y xy x x xy y xy x x --=+---+-=解:原式(2)
223221515x x x x +--+- 12132---=x x 解:原式
2.已知2
2
2
2
44,5A x xy y B x xy y =-+=+-,求3A -B
2
2
2
2
2
2
2
2228131153121235,44y
xy x y xy x y xy x B A y xy x B y xy x A +-=+--+-=-∴-+=+-=Θ解
3.
19
86764,1,186764862763:233233-=-+---==-=--+-=--++--=原式时当原式解y x y xy x x x y xy x x x x x
4.(1)第5个图形有18颗黑色棋子.
(2)=671,所以第671个图形有2016颗黑色棋子.
5.(1)他应付13.4•元车费 (2)m =1.8s +2.6 6.解:(1)千克这种蔬菜加工后质量为千克,价格为
元.
故千克这种蔬菜加工后可卖
(元).
(2)加工后可卖1.12×1 000×1.5=1 680(元),
(元),比不加工多卖180元.
7.(1)S=n(n+1) (2)①22650 ②33720。