水轮机导叶对振动噪声的影响

水轮机导叶对振动噪声的影响
水轮机导叶对振动噪声的影响

汽轮机振动大的原因分析及其解决方法[1]

汽轮机振动大的原因分析及其解决方法 摘要:为了保障城市经济的发展与居民用电的稳定,加强汽轮机组日常保养与维护,保障城市供电已经成为了火力发电厂维护部门的重要任务。文章就汽轮机异常振动的原因进行了分析与故障的排除,在振动监测方面应做的工作进行了简要的论述。 关键词:汽轮机;异常振动;故障排除;振动监测;汽流激振现象 对转动机械来说,微小的振动是不可避免的,振动幅度不超过规定标准的属于正常振动。这里所说的振动,系指机组转动中振幅比原有水平增大,特别是增大到超过允许标准的振动,也就是异常振动。任何一种异常振动都潜伏着设备损坏的危险。比如轴系质量失去平衡(掉叶片、大轴弯曲、轴系中心变化、发电机转子内冷水路局部堵塞等)、动静磨擦、膨胀受阻、轴承磨损或轴承座松动,以及电磁力不平衡等等都会表面在振动增大,甚至强烈振动。 而强烈振又会导致机组其他零部件松动甚至损坏,加剧动静部分摩擦,形成恶性循环,加剧设备损坏程度。异常振动是汽轮发电机运转中缺陷,隐患的综合反映,是发生故障的信号。因此,新安装或检修后的机组,必须经过试运行,测试各轴承振动及各轴承处轴振在合格标准以下,方可将机组投入运行。振动超标的则必须查找原因,采取措施将振动降到合格范围内,才能移交生产或投入正常运行。 一、汽轮机异常振动原因分析 汽轮机组担负着火力发电企业发电任务的重点。由于其运行时间长、关键部位长期磨损等原因,汽轮机组故障时常出现,这严重影响了发电机组的正常运行。汽轮机组异常振动是汽轮机常见故障中较为复杂的一种故障。由于机组的振动往往受多方面的影响,只要跟机本体有关的任何一个设备或介质都会是机组振动的原因,比如进汽参数、疏水、油温、油质、等等。因此,针对汽轮机异常震动原因的分析就显得尤为重要,只有查明原因才能对症维修。针对导致汽轮机异常振动的各个原因分析是维修汽轮机异常振动的关键。 二、汽轮机组常见异常震动的分析与排除 引起汽轮机组异常振动的主要原因有以下几个方面,汽流激振、转子热变形、摩擦振动等。 (一)汽流激振现象与故障排除 汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,且增大应该呈突发性,如负荷。其原因主要是由于叶片受不均衡的气体来流冲击就会发生汽流激振;对于大型机组,由于末级较长,气体在叶片膨胀末端产生流道紊乱也可能发生汽流激振现象;轴封也可能发生汽流激振现象。针对汽轮机组汽流激振的特征,其故障分析要通过长时间的记录每次机组振动的数据,连同机组满负荷时的数据记录,做出成组曲线,观察曲线的变化趋势和范围。通过改变升降负荷速率,从5T/h到50T/h的给水量逐一变化的过程,观察曲线变化情况。通过改变汽轮机不同负荷时高压调速汽门重调特性,消除气流激振。简单的说就是确定机组产生汽流激振的工作状态,采用减低负荷变化率和避开产生汽流激振的负荷范围的方式来避免汽流激振的产生。 (二)转子热变形导致的机组异常振动特征、原因及排除 转子热变形引发的振动特征是一倍频振幅的增加与转子温度和蒸汽参数有密切关系,大都发生在机组冷态启机定速后带负荷阶段,此时转子温度逐渐升高,材质内应力释放引起转子热变形,一倍频振动增大,同时可能伴随相位变化。由于引起了转子弯曲变形而导致机组异常振动。转子永久性弯曲和临时性弯曲是

机械振动习题集与答案

《机械振动噪声学》习题集 1-1 阐明下列概念,必要时可用插图。 (a) 振动; (b) 周期振动和周期; (c) 简谐振动。振幅、频率和相位角。 1-2 一简谐运动,振幅为 0.20 cm,周期为 0.15 s,求最大的速度和加速度。 1-3 一加速度计指示结构谐振在 82 Hz 时具有最大加速度 50 g,求其振动的振幅。 1-4 一简谐振动频率为 10 Hz,最大速度为 4.57 m/s,求其振幅、周期和最大加速度。1-5 证明两个同频率但不同相位角的简谐运动的合成仍是同频率的简谐运动。即: A cos n t + B cos (n t + ) = C cos (n t + ' ),并讨论=0、/2 和三种特例。 1-6 一台面以一定频率作垂直正弦运动,如要求台面上的物体保持与台面接触,则台面的最大振幅可有多大? 1-7 计算两简谐运动x1 = X1 cos t和x2 = X2 cos ( + ) t之和。其中<< 。如发生拍的现象,求其振幅和拍频。 1-8 将下列复数写成指数A e i 形式: (a) 1 + i3 (b) 2 (c) 3 / (3 - i ) (d) 5 i (e) 3 / (3 - i ) 2 (f) (3 + i ) (3 + 4 i ) (g) (3 - i ) (3 - 4 i ) (h) ( 2 i ) 2 + 3 i + 8 2-1 钢结构桌子的周期=0.4 s,今在桌子上放W = 30 N 的重物,如图2-1所示。 已知周期的变化=0.1 s。求:( a ) 放重物后桌子的周期;( b )桌子的质量和刚度。 2-2 如图2-2所示,长度为 L、质量为 m 的均质刚性杆由两根刚度为k 的弹簧系住,求杆绕O点微幅振动的微分方程。 2-3 如图2-3所示,质量为m、半径为r的圆柱体,可沿水平面作纯滚动,它的圆心O 用刚度为k的弹簧相连,求系统的振动微分方程。 图2-1 图2-2 图2-3 2-4 如图2-4所示,质量为m、半径为R的圆柱体,可沿水平面作纯滚动,与圆心O距离为a 处用两根刚度为k的弹簧相连,求系统作微振动的微分方程。 2-5 求图2-5所示弹簧-质量-滑轮系统的振动微分方程。

电动机三种典型振动故障的诊断(1)

电动机三种典型振动故障的诊断 1 引言 某造纸厂一台电动机先后出现了三种典型的振动故障: (1) 基础刚性差; (2) 电气故障; (3) 滚动轴承损坏。 现将诊断分析及处理过程进行简单的描述和总结: 此电动机安装于临时混凝土基础上,基础由四根混凝土支柱支撑于二楼楼板横梁上,基础较为薄弱。电动机运行时振动较大,基础平台上感觉共振强烈。没有发现其他异常。 电动机结构型式及技术参数如下: 三相绕线型异步电动机 型号:yr710-6 额定功率:2000kw 额定转速:991r/min 工作频率:50hz 额定电压:10kv 极数:6 滚动轴承:联轴节端nu244c3; 6244c3 末端: nu244c3 (fag) 针对本电动机的特点,采用entek data pactm 1500数据采集器+9000a-lbv加速度传感器; enmoniter odyssey软件进行振动数据的采集和分析: 2 电动机基础刚性弱的诊断过程 2001年8月21日,采用entek data pactm 1500数据采集器对此电动机进行测试。首先,

断开联轴节,进行电动机单试。测量电动机两端轴承座处水平、垂直、轴向三个方向的振动速度有效值(mm/s rms)、振动尖峰能量(gse)幅值及频谱;测量电动机地脚螺栓、基础、基础邻近台板各点及台板下支撑柱上各点的振动位移峰峰值(μm p-p); 测量电动机两侧轴承座 水平、垂直方向的工频(1×n)振动相位角。将电动机断电,采集断电瞬间前后电动机振动频谱瀑布图。 之后,重新找正对中,带负荷运行进行测试,测试内容同上。 测点位置如图1所示;对电动机基础、地脚螺栓及台板各点振动幅值进行测量的数据如图2、图3所示。 图1 图2 振动数据侧视图

水轮发电机组振动危害性分析及预防

水轮发电机组振动危害性分析及预防 水轮发电机组在运行中产生振动现象是不可避免的,这是由多种因素引发机组振荡的综合效应。在设备运行生产管理工作中,应注意加强对机组振动现象及其危害性的分析与预防。 1 水轮发电机组振动类型 1.1 机械类振动。由于机械部分的平衡力引起的振动称为机械类振动。例如,转动部分重量不平衡、轴线偏差、摆动过大等。其主要特点是振动频率与机组转速一致,有时振幅与转速成正比。 1.2 电气类振动。由于电气方面的原因造成发电机磁场不平衡而引起的振动称为电气振动。例如,发电机在三相电流不对称情况下运行磁场不均匀,发电机短路故障等。其主要特点是振幅与励磁电流大小成正比。 1.3 水施类振动。由于某些原因引起水轮机蜗壳内受力不平衡而造成的振动称为水施类振动。例如,尾水涡带、叶片水卡门涡列、转轮圆圈边间隙不均匀、转轮气蚀等。其特点是振幅与导叶开度有关,往往开度愈大,振幅愈大。 2 水轮机组振动所带来的危害 2.1 引起机组零部件金属和焊缝间疲劳破坏区的形成和扩大,从而使之产生裂纹,甚至断裂损坏而报废。 2.2 使机组部分紧固部件松动,不仅会导致这些紧固件本身的断裂,而且加剧被其连接部分的振动,促使它们加速损坏。 2.3 加速机组转动部分相互磨损程度。如大轴剧烈摆动可使轴与轴瓦

的温度升高,使轴瓦烧毁;发电机转子振动过大增加滑环电刷磨损程度,并使温度升高,使轴瓦烧毁;发电机转子振动过大增加滑环电刷磨损程度,并使电刷火花不断增大。 2.4 尾水管中形成的涡流脉动压力可使尾水管壁产生裂缝,严重时可使整体尾水设施遭到破坏。 2.5 水轮机组共振引起的后果更加严重。如机组设备与厂房的共振,可使整个设备和厂房遭到不同程度的损坏。 3 引起振动的原因及预防措施 3.1 机械方面的因素有:①由于主轴的弯曲或挠曲、推力轴承调整不良、轴承间隙过大、主轴法兰连接不紧和机组几何线中心点不准引起空载低速时的振动;②因转轮等旋转件与静止件相碰而引起的振动; ③转动部分重量不平衡引起的振动,且随转速上升振动增大而与负荷无关,这是常见的,特别是焊补转轮或更换浆叶后更容易发生。 对机械原因引起的振动应采取的措施:通过动平衡、调整轴线或调整轴瓦间隙等来提高相对同心度和精密度。 3.2 水施方面的因素有:①尾水管中水流涡带所引起的压力脉动诱发的水轮机振动,严重的还引起厂房共振;②卡门涡列引起的振动,当水流流经非流线型障碍物时,在其后面尾流中分裂一系列变态旋涡,即所谓卡门涡列,这种涡列交替地作顺时针或反时针方向旋转,在其不断旋转与消失过程中,会在垂直于主流方向发生交变力导致的叶片振动,严重时会发出响声,甚至使叶片根部振裂;③转轮止漏间隙不均匀引起的振动,间隙大处其流速较小而压力较大,其振频与止漏环

电机噪音分析

电机噪音分析 电机 1引言 噪声是由物体的振动产生的,再通过空气或其它弹性介质才能传播到人的耳朵。它由很多杂乱无章的单调声音混合而成。其中20Hz~20000Hz是人们耳朵可以听到的频率。低于20Hz的波叫次声波,高于20000Hz的波叫超声波。 噪声直接影响人们的身体健康,太强或长时间噪声,会使人十分痛苦、难受,甚至使人耳聋或死亡。噪声是现代社会污染环境的三大公害之一。为了保障人民的身体健康,国际标准化组织(ISO)规定了人们容许噪声的标准,如表1。 表1 每天最长工作时间(h)8 4 2 - 噪声dB(A) 85 93 96 115(最大) 电机是产生噪声的声源之一,电机又在家庭、商业、办公室以及工农医等行业广泛而大量地应用着,与人民的生活密切相关。随着社会的进步,人们对污染环境的噪声提出了越来越高的要求与限制,尤其对与人们密切接触的家用电器更是如此。这方面,先进国家尤其重视。我国政府历来重视人民的健康,对限制噪声不遗余力。表2是我国产品标准规定的部分家用电器的噪声限值。 表2我国部分家用电器的噪声限值dB(A) 电冰箱(250升以下)洗衣机吸油烟机电磁灶吸尘器洗衣机镇流器空调器(2500W、分体式) 52 75 75 50 84 72 35 45 因此,尽量降低电机的噪声,生产低噪声的电机,给人们创造一个舒适、安静的环境是每个设计者与生产者的职责。 2电机噪声的分类 根据电机噪声产生的不同方式,大致可把其噪声分为三大类: ①电磁噪声;②机械噪声;③空气动力噪声。 3电磁噪声 电磁噪声主要是由气隙磁场作用于定子铁芯的径向分量所产生的。它通过磁轭向外传播,使定子铁芯产生振动变形。其次是气隙磁场的切向分量,它与电磁转矩相反,使铁芯齿局部变形振动。当径向电磁力波与定子的固有频率接近时,就会引起共振,使振动与噪声大大增强,甚至危及电机的安全。 根据麦克斯韦定律,气隙磁场中单位面积的径向电磁力按下式计算: 式中:B——气隙磁密 θ——机械角位移 μ0——真空磁导率 由于定、转子绕组中存在着主波磁势与各次谐波磁势,它们相互作用可以产生一系列的力波。 3.1主波磁场产生的力波 主波磁场B1所产生的径向力波为:Pr1=P0+P1,式中,是径向力的不变部分,它均匀作用于圆周上,使定子铁芯受到压缩应力。不变部分不会产生振动与噪声。P1=P0cos(2pθ-2ω1t-2θ0),其中p主波的极对数,ω1—主波的角速度,θ0—初相角。P1是径向力波的交变部分,这个力波的角频率是2ω1,即2倍的电源频率,它使定、转子产生2倍电源频率的振动与噪声。它的强度与气隙磁密的平方成正比。这在两极的大容量电机中,容易产生较大的影响,而在一般情况下,由于它的频率较低,其影响不显著。 3.2谐波磁场产生的力波 谐波磁场产生的力波所引起的振动与噪声,一方面与该力波的幅值大小有关,也与力波的次数有

转机振动原因分析

转机振动原因分析文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

GB振动标准: 1、额定转速750r/min以下的转机,轴承振动值不超过0.12mm 2、额定转速1000r/min的转机,轴承振动值不超过0.10mm 3、额定转速1500r/min的转机,轴承振动值不超过0.085mm 4、额定转速3000r/min的转机,轴承振动值不超过0.05mm。 转机振动原因分析: 转机振动原因通常有四种:不平衡、共振、不对中和机械故障。 1.转子不平衡 它是最常见的振动原因,如转子制造不良、转子叶片上异物的堆积、电机转子平衡不良等。不平衡造成较大振动的另一原因是设备底座刚度较差或发生共振。键和键槽也是导致不平衡振动的另一原因。 转轴热弯曲是引起转子不平衡的另一种现象。一般热弯曲引起的不平衡振动随负荷变化而略有变化。但如果设备基础与其转动发生共振,则极有可能发生剧烈振动。因此,预防的关键,一是转轴的材质必须满足要求;二是转机机座必须坚实可靠。 2.共振 系统中的共振频率取决于其自由度数量;共振频率则由质量、刚度和衰减系数决定。转机支承共振频率应远离任何激振频率。对于新装置,可向制造厂咨询所需地基刚度以达到此目的。对于共振频率与转速相同的现有装置有两种选择—最大限度地减少激振力或改变共振频率。后者可通过增加系统刚度和质量来实现。处理共振问题时,最好改变共振频率。 共振也可能是由于转子与定子系统组件不对中或机械和电气故障而引起。

转速下谐波的共振频率也易造成故障。它们也可能由于不对中或机械和电气故障而诱发。然而与相同频率下的问题相比,这些共振造成的问题并不常见。 3.不对中 它可能在转速和两倍转速下造成径向和轴向的激振力。但是绝不能因为没有上述现象中的一种或两种而断定不存在对中问题。同时应考虑机组的热膨胀,一副联轴节之间要留有1.5-3mm间隙。 4.机械故障 质量低劣的联轴器、轴承和润滑不良以及支座不坚固,都是产生不同频率和幅值激振力的原因。 (1)质量低劣的联轴器主要表现在铸造质量差、连接螺孔偏斜、毛刺,橡皮垫圈很快损坏,使联轴器由软连接变为硬连接,产生振动、磨损。 (2)径向轴承的更换,一般是简单更换。为了避振换新轴承时,应对轴承外环作接触涂色检查,必要时处理轴承座。 (3)轴向波动是造成转机,包括联轴器、轴承在内的另一振动问题的起因。一般转机的轴向推力靠止推轴承约束。但是,如果轴向对中不良,且转子轴向发生磨蹭,则可能会产生剧烈的轴向振动。 (4)支座软弱即四个支脚不在同一平面上。转机用螺栓紧固在这四点时,如果各轴承不对中,必然造成剧烈振动。因此转机安装时,应该先用适当力矩对称拧紧几个紧固点。然后每次松开一个紧固点,并用千分表测量该点垂直变形量。如果垂直变形量大 于.05mm,应在此支脚下加垫片,其厚度等于变形量。重复以上过程,直至松开时每个点垂直变形量小于0.05mm为止。

水轮发电机组振动原因分析

水轮发电机组振动原因 分析 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

水轮发电机组振动原因分析水轮发电机组的振动问题与一般动力机械的振动有一定差异,除了机器本身转动或固定部分引起的振动外,尚需考虑发电机的电磁力以及作用于水轮机过流部分的流动压力对系统及其部件振动的影响。在机组运转的状态下,流体—机械—电磁三部分是相互影响的。例如,当水流流动激起机组转动部分振动时,在发电机转子与定子之间会导致气隙不对称变化,由此产生的磁拉力不平衡也会造成机组转动部分的振动,而转动部分的运动状态出现某些变化后,又会对水轮机的水流流场及发电机的磁场产生影响。因此,水轮机的振动是电气、机械、流体等多种原因引起的。可见,完全按照这三者的相互关系来研究系统的振动是不够的。鉴于问题的复杂性,将引起水轮机组振动原因大致分为机械、水力、电气三方面的因素来研究,为水电厂生产管理、运行、检修人员提供参考意见,以便制定出相应的预防和消振措施。 1水轮发电机组振动的危害振动是旋转机械不可避免的现象,若能将其振幅限制在允许范围内,就能确保机组安全正常运行。但较大振动对机组安全是不利的,会造成如下危害:

a)使机组各连接部件松动,使各转动部件与静止部件之间产生摩擦甚至扫膛而损坏; b)引起零部件或焊缝的疲劳、形成并扩大裂缝甚至断裂; c)尾水管低频压力脉动可使尾水管壁产生裂缝;当其频率与发电机或电力系统的自振频率接近时,将发生共振,引起机组出力大幅度波动,可能会造成机组从电力系统中解列,甚至危及厂房及水工建筑物。下面简单介绍几起天桥水电厂机组振动引起的事故,以便从中了解机组振动的起因。 a)20世纪80年代初,天桥水电站多次发生因振动摆度过大而引起的设备损坏事故。1980年8月3号机由于上导轴承摆度大导致4个上导瓦背垫块断裂;1982年10月3号机发生发电机扫膛严重事故,上导瓦架与上机架固定螺栓8只中的5只被剪断,1只定位销剪断、瓦架变形。上机架振幅达022mm,水导轴承处振幅达020mm。水轮机轴与发电机大轴法兰联接处摆度为074mm,后经测量分析为机组轴承中心不正,发电机转子外圆度超标,空气间隙不匀等原因所致。

水轮发电机振动原因分析及处理

水轮发电机振动原因分析及处理 响洪甸水电站装有4台HL-211-LJ-200水轮发电机,每台机的容量为10 MW,于1958—1961年分批投入生产。 3号水轮发电机组于1960年7月投产,1987年底进行定、转子绝缘的更新改造,更换了定子铁芯,并对定位筋位置进行了修正。 1 振动概况 1991-05-16,运行人员发现3号机下导机架靠4号机方向的一条腿松动。检查后,用现场加焊补强的方法作了暂时处理。在经历了前所未有的高水头运行后,运行及检修人员发现该机振动加剧,再次检查发现,下机架的4条腿与基础之间均存在相互蠕动现象。 1991-10-25,用不同手段在不同工况下对3号机振动情况进行了测量。测量结果表明,3号机的水平振动和垂直振动在大部分工况下都已达到甚至超过规程规定的允许范围(水平0.07 mm,垂直0.03 mm),特别是转轮压水调相工况时,水平振动达到0.085 mm,垂直振动达0.065 mm。 1991-11-05,对电机气隙进行了测量。通过对28个磁极气隙测量,发现靠下游侧至2号机侧的半圆气隙普遍偏大,一般在12 mm左右,而另半圆的气隙则在8 mm左右,这个趋势和励磁机的气隙变化基本一致,说明3号发电机的某一部分由于某种原因发生了位移,位移幅度可能在2 mm左右。 2 振动原因分析 1992年9月下旬,对3号机组进行了较全面的振动和摆度测试,并做了频谱分析,得到了幅值和频率等实测数据。通过研究分析,得出机组振动的原因如下。 (1) 从上机架的垂直振动测量分析出机组在各种测试工况下都存在着明显的8倍转频的振动。这表明镜板与推力头之间的环氧玻璃垫板有气蚀磨损、镜板与推力头结合面有不平缺陷。由于镜板与推力头的连接螺栓是8个,故使镜板在运转中呈现8个波浪式变形。由于推力瓦块数是8块,因此镜板旋转时会受到8倍转频的轴向振动力,并且镜板联接螺栓与推力瓦块数相等,使得每块瓦对镜板产生的轴向振动力是同步的,从而加剧了振动力。久而久之,造成垫板严重气蚀磨损,并使联接螺栓产生疲劳,严重时发生断裂。 镜板与推力头结合面的不平缺陷,加剧了垫板的气蚀磨损,垫板的磨损使机组的振动变大,这是3号机振动增大的主要原因(在机组大修时检查证明了垫板确实严重气蚀)。 (2) 水导摆度在各种工况下都较大,达到0.45~0.51 mm,超出了允许值,表明橡胶水导瓦间隙变大,需更换或调整。 (3) 上导摆度在2.5 MW负荷工况下达到0.48 mm,超出了允许值;在7.5 MW 大负荷工况下仅为0.14 mm。 (4) 变速试验中,上机架径向振动的转频幅值几乎相同,小于0.04 mm,表明转子机械平衡性能良好,无需再做平衡试验。

风机振动原因分析

1 轴承座振动 1.1 转子质量不平衡引起的振动在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。造成转子质量不平衡的原因主要有:叶轮磨损(主要是叶片)不均匀或腐蚀;叶片表面有不均匀积灰或附着物(如铁锈) ;机翼中空叶片或其他部位空腔粘灰;主轴局部高温使轴弯曲;叶轮检修后未找平衡;叶轮强度不足造成叶轮开裂或局部变形;叶轮上零件松动或连接件不紧固。转子不平衡引起的振动的特征:①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承处振动大于推力轴承处;②振幅随转数升高而增大;③振动频率与转速频率相等;④振动稳定性比较好,对负荷变化不敏感;⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50% 工作转速。 1.2 动静部分之间碰摩引起的振动如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装臵之间碰摩。其振动特征:振动不稳定;振动是自激振动与转速无关;摩擦严重时会发生反向涡动; 1.3 滚动轴承异常引起的振动 1.3.1 轴承装配不良的振动如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成局部振动。其振动特征为:振动值以轴向为最大;振动频率与旋转频率相等。 1.3.2 滚动轴承表面损坏的振动滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。这种振动稳定性很差,与负荷无关,振动的振幅在水平、垂直、轴向三个方向均有可能最大,振动的精密诊断要借助频谱分析,运用频谱分析可以准确判断轴承损坏的准确位臵和损坏程度,抓住振动监测就可以判断出绝大多数故障,再辅以声音、温度、磨耗金属的监测,以及定期测定轴承间隙,就可在早期预查出滚动轴承的一切缺陷。 1.4 轴承座基础刚度不够引起的振动 基础灌浆不良,地脚螺栓松动,垫片松动,机座连接不牢固,都将引起剧烈的强迫共振现象。这种振动的特征:①有问题的地脚螺栓处的轴承座的振动最大,且以径向分量最大;②振动频率为转速的1、3、5、7等奇数倍频率组合,其中3倍的分量值最高为其频域特征。 1.5 联轴器异常引起的振动 联轴器安装不正,风机和电机轴不同心,风机与电机轴在找正时,未考虑运行时轴向位移的补偿量,这些都会引起风机、电机振动。其振动特征为:①振动为不定性的,随负荷变化剧烈,空转时轻,满载时大,振动稳定性较好;②轴心偏差越大,振动越大;③电机单独运行,振动消失;

转机振动原因分析

GB振动标准: 1、额定转速750r/min以下的转机,轴承振动值不超过0.12mm 2、额定转速1000r/min的转机,轴承振动值不超过0.10mm 3、额定转速1500r/min的转机,轴承振动值不超过0.085mm 4、额定转速3000r/min的转机,轴承振动值不超过0.05mm。转机振动原因分析: 转机振动原因通常有四种:不平衡、共振、不对中和机械故障。1.转子不平衡 它是最常见的振动原因,如转子制造不良、转子叶片上异物的堆积、电机转子平衡不良等。不平衡造成较大振动的另一原因是设备底座刚度较差或发生共振。键和键槽也是导致不平衡振动的另一原因。 转轴热弯曲是引起转子不平衡的另一种现象。一般热弯曲引起的不平衡振动随负荷变化而略有变化。但如果设备基础与其转动发生共振,则极有可能发生剧烈振动。因此,预防的关键,一是转轴的材质必须满足要求;二是转机机座必须坚实可靠。 2.共振 系统中的共振频率取决于其自由度数量;共振频率则由质量、刚度和衰减系数决定。转机支承共振频率应远离任何激振频率。对于新装置,可向制造厂咨询所需地基刚度以达到此目的。对于共振频率与转速相同的现有装置有两种选择—最大限度地减少激振力或改变共振频率。后者可通过增加系统刚度和质量来实现。处理共振问题时,最好改变共振频率。

共振也可能是由于转子与定子系统组件不对中或机械和电气故障而引起。 转速下谐波的共振频率也易造成故障。它们也可能由于不对中或机械和电气故障而诱发。然而与相同频率下的问题相比,这些共振造成的问题并不常见。 3.不对中 它可能在转速和两倍转速下造成径向和轴向的激振力。但是绝不能因为没有上述现象中的一种或两种而断定不存在对中问题。同时应考虑机组的热膨胀,一副联轴节之间要留有1.5-3mm间隙。 4.机械故障 质量低劣的联轴器、轴承和润滑不良以及支座不坚固,都是产生不同频率和幅值激振力的原因。 (1)质量低劣的联轴器主要表现在铸造质量差、连接螺孔偏斜、毛刺,橡皮垫圈很快损坏,使联轴器由软连接变为硬连接,产生振动、磨损。 (2)径向轴承的更换,一般是简单更换。为了避振换新轴承时,应对轴承外环作接触涂色检查,必要时处理轴承座。 (3)轴向波动是造成转机,包括联轴器、轴承在内的另一振动问题的起因。一般转机的轴向推力靠止推轴承约束。但是,如果轴向对中不良,且转子轴向发生磨蹭,则可能会产生剧烈的轴向振动。 (4)支座软弱即四个支脚不在同一平面上。转机用螺栓紧固在这四点时,如果各轴承不对中,必然造成剧烈振动。因此转机安装时,

水轮机发电机振动的原因与处理对策探究

水轮机发电机振动的原因与处理对策探究 发表时间:2018-10-17T09:25:53.530Z 来源:《基层建设》2018年第27期作者:孙安伟1 陈书敏2 [导读] 摘要:随着我国水电建设事业不断的突破和发展,对于水轮机发电机组的需求不断增大。 重庆水轮机厂有限责任公司重庆 402260 摘要:随着我国水电建设事业不断的突破和发展,对于水轮机发电机组的需求不断增大。但是在这个过程中虽然说使用设备的数量较以前有很大程度的增加,可是设备的质量却依旧原地踏步甚至还有退步的趋势。所以为了避免这种情况的出现,保证水轮发电机的正常使用,本文深入讨论了水轮机发电机出现振动的原因与相应的解决对策,意在提高机械设备的使用效率及使用寿命,以期借鉴。 关键词:水轮发电机;振动原因;相应对策 1引言 水轮机发电机出现振动的原因,一般是由不规范的安装操作流程或者设备本身存在设计缺陷造成的,所以在进行探究时就要以这两个方面为抓手进行深入的探究。 2水轮机发电机出现振动原因的探究 2.1水力振动 由于水轮发电机在运行的过程会与水之间产生一定的干扰力,这种干扰力主要是由以下几种原因造成的: (1)由于脱流引起的干扰力。机组在紧急停机时,会引起相应的活动导叶进行快速的关闭,这个时候水轮机的尾部水管就会积蓄大量的液体压力,而在这时再把水管之中的压力再次进行降低,直至比水在饱和真空气压还低的状态时,这时尾部水管中的水就会产生大量气泡,水产生了分离现象。而在水进行重新结合的过程中还会产生相应力的作用,这就使设备产生振动的现象。 (2)水力不平衡引起的干扰力。在尾水管的中间部分会形成旋转流水,这时在出水口的部分就非常容易形成空穴,空穴在高压区被压破并产生冲击压力,这时就会使设备产生振动,如果设备长时间处于这种状态还会逐渐的破坏金属表面的保护层,缩短设备的使用年限。 2.2电磁振动 电磁振动,顾名思义就是由设备内部所产生的电磁力引起的震动,这种引起设备振动的原因容易让相关管理人员忽视。造成这种现象的原因一般是没有对设备内部的构件进行合理的安装,在一些构件的尺寸上没有科学的进行选用,比如说转子的尺寸选用如果存在问题,那么就有可能引起设备产生电磁振动。 2.3机械振动 由于在水轮机发电机在运行过程中各个部分会引起不同程度的摩擦力,所以这就引起了设备的机械振动。具体来说有以下几点原因:(1)设备中的转子在运转的过程中出现问题。一般来说可以归根到转子的质量问题,由于转子在生产时存在一定的缺陷,导致转子的质量分配不均匀,那么转子在转动中就可能倾斜,这就会使水轮机发电机受力不均,最终导致比较强的设备振动。 (2)设备轴线位置存在误差。如果设备在运行时轴线位置不准确,那么就会使转轮产生较大的离心力,这就会使轴承在运行的过程中产生较大的晃动,最终会导致设备的大幅度振动。 (3)导轴承存在质量上的问题。导轴承的质量问题一般有松动、强度不足等,如果设备在运行的过程中存在这些情况,设备虽有可能正常的运行,可是在运行的过程中也会出现一定的振动。另外轴承之间存在的缝隙不符合相应标准,或者没有定期的对其进行更新与维护,也会造成水轮机发电机出现振动的情况。 3解决水轮机发电机振动的相应措施 通过以上的分析我们可以深刻的了解到造成水轮机发电机振动的原因涉及到多个方面,所以在解决这些问题也要对其进行系统的分类进行处理,进而才能有效的避免水轮机发电机出现振动的情况,进而延长设备的使用寿命,提高经济效益。 3.1由于水力引起振动的解决办法 由于水力引起振动的原因主要有两种,所以在解决时也要进行分类。比如说为了避免脱流现象的发生,就要避免导叶快速的关闭这种情况的发生,相关的操作人员就可以安装相应的“分管”构件,在关闭油路时采取分段关闭的措施,这时导叶的转速降低就具备了一定的缓冲条件,有效的降低了水在分离和结合时的能量释放,进而减轻了设备振动的现象。另外为了解决气蚀情况的发生,延长设备的使用寿命,相关的管理人员要在采购设备时,要向商家了解到设备的气蚀振动区域,进而在寻求相应的办法进行解决。最后还要定期的对水中的杂物进行清理,设置好栏污栅,避免在水轮机发电机运行时一些杂物卷入设备内部。 3.2由于电磁引起振动的解决办法 结合实际工作来看,工作人员在发现设备振动之后会习惯性的从机械振动及水力振动来两个个方面去寻去相应的解决办法,而忽视了对于电磁引起设备振动的原因,所以在对设备进行维修时就会多走很多弯路,浪费了很多时间。所以说为了避免这种情况的发生,管理人员要通过使用恰当的方法对其进行解决,比如说利用图像的方法就可以取得良好的效果。具体来说,管理人员要对设备在不同的情况下做开机实验,进而检测造成设备电磁振动的原因,把在不同情况运行所得到的综合特性曲线利用相应的技术手段输入到调速器之中,然后再进行开机实验。总的来说,利用这种方式对设备的电磁振动进行检验(在相应的技术要求之下,允许水轮机发电机运行时存在一定的电磁振动),能够比较及时准确地找到影响因素并进行解决。 3.3由于机械引起振动的解决办法 由于机械引起的振动一般都是因为转子质量不合格所以起的,所以这时相关的管理人员就要重点对转子进行检查,具体来说可以通过检查转子的平衡力来实现,如果转子在质量上存在问题那么就要及时的进行更换,在更换的过程中要特别注意保证转子的中心与轴线之间要处于重合状态,这时水轮机发电机在运转的过程中就不会因为轴承产生较大晃动而产生振动。另外管理人员也要特别注意由导轴承所引起的问题,要定期的对其进行检查,进而保证导轴承能正常的发挥功能。 4结语 总而言之,为了避免水轮机发电机出现振动的情况,就必须要对水力振动、电磁振动、机械振动等多个方面进行严格的掌握与控制,所以这就要求管理人员在工作中要不断的积累解决问题的方法与经验,进而不断的提高自身能力。

振动大实例与原因分析

1倍频振动大除了动平衡还应检查什么? 750KW异步电机,3000V工频,2极,轴长2M6,轴瓦档轴颈80mm,端盖式滑动轴承,中心高500mm。 检修后空载试车,垂直4.6mm/s,水平6.5mm/s,轴向1.2mm/s,振动较大,振感很强。振动频谱1倍频4-5mm/s,2倍频1-2mm/s,断电后1倍频2倍频值一点点降下来的。 据维修技师反应3年前空载试车也是振动大到现场连上机械接手在转就好了,于是到现场安装试车,结果振动还是大。 重新拆回车间,转子在动平衡机上做了动平衡,装配时轴瓦间隙也重新复测了。再试车振动比原来还大了点,频谱和原来一样。 我问了维修人员,动平衡配重2面都加了,轴瓦间隙都在标准里面。 请问做动平衡时是在1300-1500左右做的,有无可能在3000转时平衡改变了? 除了动平衡还要检查其他什么? 可能是共振问题,这个规格的电机转子固有频率接近5ohz,本案例中应大于50hz 动平衡后单机试转仍大,是由于加重后固有频率下降更接近转频,所以振动有升无减 请注意:动平衡的速度不是工频,平衡本身可能是合格的 联合运行振动值更大,是由于连接上了被驱动设备,形成转子副,电机转子带载后固 有频率下降较多,更接近工频。所以振动愈发的大 其实就一句话:组合转子的固有频率小于原来单体的,好像这么说的,原话不记得了 据统计,有19%的设备振动来自动不平衡即一倍频,而产生动不平衡有很多原因。现场测量的许多频谱结果也多与机器的一倍频有关系,下面仅就一倍频振动增大的原因进行分析。 一、单一一倍频信号 转子不平衡振动的时域波形为正弦波,频率为转子工作频率,径向振动大。频谱图中基频有稳定的高峰,谐波能量集中于基频,其他倍频振幅较小。当振动频率小于固有频率时,基频振幅随转速增大而增大;当振动频率大于固有频率时,转速增加振幅趋于一个较小的稳定值;当振动频率接近固有频率时机器发生共振,振幅具有最大峰值。由于通常轴承水平方向的刚度小,振动幅值较大,使轴心轨迹成为椭圆形。振动强烈程度对工作转速的变化很敏感。 1.力不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;振动以径向为主,一般水平方向幅值大于垂直方向;振幅与转速平方成正比,振动频率为一倍频;相位稳定,两个轴承处相位接近,同一轴承水平方向和垂直方向的相位差接近90度。 2.偶不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;在两个轴承处均产生较大的振动,不平衡严重时,还会产生较大的轴向振动;振幅与转速平方成正比,振动频率以一倍频为主,有时也会有二、三倍频成分;振动相位稳定,两个轴承处相位相差180度。 3.动不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;振动以径向为主,振幅与转速平方成正比,频率以一倍频为主;振动相位稳定,两个轴承处相位接近。

噪声与振动复习题及答案

噪声与振动复习题及参考答案(40题) 参考资料 1、杜功焕等,声学基础,第一版(1981),上海科学技术出版社。 2、环境监测技术规范(噪声部分),1986年,国家环境保护局。 3、马大猷等,声学手册,第一版(1984),科学技术出版社。 4、噪声监测与控制原理(1990),中国环境科学出版社。 一、填空题 1.在常温空气中,频率为500Hz的声音其波长为。 答:0.68米(波长=声速/频率) 2.测量噪声时,要求风力。 答:小于5.5米/秒(或小于4级) 3.从物理学观点噪声是由;从环境保护的观点,噪声是 指。 答:频率上和统计上完全无规的振动人们所不需要的声音 4.噪声污染属于污染,污染特点是其具有、、。 答:能量可感受性瞬时性局部性 5.环境噪声是指,城市环境噪声按来源可分 为、、、、。 答:户外各种噪声的总称交通噪声工业噪声施工噪声社会生活噪声 其它噪声 6.声压级常用公式Lp= 表示,单位。 答: Lp=20 LgP/P° dB(分贝) 7.声级计按其精度可分为四种类型:O型声级计,是;Ⅰ型声级计为;Ⅱ型声级计为;Ⅲ型声级计为,一般 用于环境噪声监测。 答:作为实验室用的标准声级计精密声级计普通声级计调查声级计不得 8.用A声级与C声级一起对照,可以粗略判别噪声信号的频谱特性:若A声级比C声级小得多时,噪声呈性;若A声级与C声级接近,噪声呈性;如果A声级比C声级还高出1-2分贝,则说明该噪声信号在 Hz 范围内必定有峰值。 答:低频性高频性 2000-5000 9.倍频程的每个频带的上限频率与下限频率之比为。1/3倍频程的每个频带的上限频率与下限频率之比 为;工程频谱测量常用的八个倍频程段是 Hz。 答:2 2-1/3 63,125,250,500,1K,2K,4K,8K 10.由于噪声的存在,通常会降低人耳对其它声音的,并使听阈,这种现象称为掩蔽。 答:听觉灵敏度推移 11.声级计校准方式分为校准和校准两种;当两种校准方式校准结果不吻合时,以校准结果为准。 答:电声声 12.我国规定的环境噪声常规监测项目为、和;选测项目有、和。 答:昼间区域环境噪声昼间道路交通噪声功能区噪声夜间区域环境噪声 夜间道路交通噪声高空噪声 13.扰民噪声监测点应设在。 答:受影响的居民户外1米处

水轮发电机组的异常运行

水轮发电机组的异常运行

————————————————————————————————作者:————————————————————————————————日期:

第十章水轮发电机组的异常运行 第一节水轮机的常见故障与事故处理 水轮机运行中难免会发生各种各样的异常情况,同一异常现 象可能有不同 的产生原因,因此,在分析故障现象时,要根据仪表指 示,机组运转声响,振动,温度 等现象,结合事故预兆,常规处理经验进行分析判断, 必要时采用拆卸部件解体检 查等方法和手段,从根本上消除设备故障. 一水轮机出率下降 水轮机导叶开度不变的情况下,机组出率下降 明显,造成水轮机出率下降 的常见原因有; (1)上游水位下降,渠道来水量急剧减少. (2)前池进水口栏污栅杂草严重阻塞. (3)电站尾水位抬高. (4)水轮机导叶剪断销断裂,个别导叶处于自由开度状态. (5)水轮机导水机构有杂物被卡住,冲击式机组的喷嘴堵塞. (6)冲击式机组折向器阻挡水流. 针对上述原因进行相应的检查处理 (1)若水库水位下降,有效水头减小,则水轮机效率降低,机组出力下降. 水库水位过低,应停止发电运行,积蓄水量,抬高水位 后再发电.渠道来水量急剧 减少,或上游电站已经停机,渠道发生事故断流,应停 机后检查处理. (2)要及时清理栏污栅杂草,防止杂草阻塞以致影响水轮机出力. (3)检查尾水渠道有否被堵塞,是否强降雨造成河道水位抬高. (4)详细检查水轮机导叶拐臂的转动角度是否一致,发现个别导叶角度 不一致时停机处理. (5)检查水轮机内部噪声情况,做全开,全关动作,排除杂物.必要时拆卸 水轮机尾水管或打开进人孔进入蜗壳,取出杂物. (6)检查冲击式机组折向器位置,如其阻挡水流,须调整折向器角度. 水轮机出力下降,往往会出现异常声响和振动,蜗壳压力表指 示下降或大 幅度波动等现象,要根据情况进行分析和判断处理. 二水轮机振动 水轮机运行过程中振动过大会影响机组正常 运行,轻则机组运行不稳定, 出力波动大,轴承温度高,机组运转噪声大,而其机组 并网困难;重则引起机组固定 部件(地角螺栓)损坏,尾水管金属焊接部件发生裂纹, 轴承温度过高而无法连续运 行.应针对不同情况,查清机组振动原因,采取对应措 施,恢复机组正常运转.水轮机

电机噪音及振动分析

电动机的噪声和振动 电机类2007-06-18 22:02:51 阅读140 评论0 字号:大中小订阅 通常电动机的噪声和振动是同时发生的。电动机噪声包括通风噪声、电磁噪声和机械振动噪声。由于电动机修理操作不当。造成电机修理后的噪声和振动增大。原因如下: 电机修理后的噪声和振动增大引起原因 一、机械方面引起: 1、转子固定键未拧紧,有松动现象。 2、未做风扇静平衡,或做的精度不够。 3、转子不平蘅,未做静、动平衡检查。 4、定、转子铁心变形。 5、转轴弯曲,定、转子相擦。 6、地脚固定不稳,安装不正,不牢固。 7、铁心及铁心齿压板松动。 8、零部件加工不同心,装配公差不合理。 9、电动机组装和安装质量不好。 10、端盖、轴承盖螺丝未拧紧,或装偏。 二、电磁方面引起的: 1、三相绕组不平蘅。 2、绕组有短路或断路故障。 3、电刷接触不好,压力过大、过小。刷质不合要求。 4、断笼或端环开裂,松动。 5、改极时,定、转子槽数配合不适合。 6、集电环的短接片与短路环接触不稳定。 7、电源供电质量不好,三相不平蘅,有高次谐波等等。 三、风方面引起: 1、风扇有缺陷或损坏,如掉叶、变形、风扇不平衡产生噪声合振动。 2、风扇在轴上固定不牢固。 3、风罩与风叶之间的间隙不合适,过小或偏斜。 4、风路局部堵塞。 三种噪声简易鉴别方法

一、通风噪声鉴别法: 1、去掉风扇或堵住风口,让电机在无通风气流情况下运转,这时如果电动机噪声消失或显著减弱,则说明是通风噪声引起的。 2、变测量噪声的位置进行鉴别,因为以通风噪声为主的电动机,在电动机进口处和风扇附近处噪声最强。 3、磁噪声和机械噪声有时不稳定,时高时低,而通风噪声通常是稳定的。 4、用外径和型式不同的风扇,在不同转速下试运转,如果电动机噪声有明显差别,则说明电动机噪声主要是通风噪声引起的。 5、械噪声或电磁噪声较大的电动机,往往振动也大,但通风噪声与电动机振动关系不大。 二、机械噪声鉴别法: 1、机械噪声与外施电压大小和负载电流无关。 2、如果噪声不稳定,时高时低,那就是机械噪声,因为通风噪声是稳定的。 四、电磁噪声鉴别法:电磁噪声大小随磁场强弱、负载电流大小以及转速高低而变,利用这个特征,可采取下面办法进行鉴别。 1、突然断电法:由于机械惯性比电磁过渡过程慢得多,突然断电,无电磁因素影响,这是电动机转速几乎不变。如果这是电动机噪声突然消失或显著降低,可断定是电磁原因产生得噪声。 2、改变电压法:由于异步电动机转速随电压变化不大,当改变电压时,机械噪声和通风噪声基本不变,但电磁噪声随电压变化很大。 3、对拖法:用一台低噪声电动机拖动有噪声得被试电动机,这是噪声降低消失,则说明被拖动得电动机噪声是电磁噪声。 4、如果电磁噪声是因绕组不对称,匝间短路等缺陷引起,则三相电流不平蘅,如因转子断笼或绕线转子三相绕组不对称引起,则定子电流有波动。 解决噪声和振动的修理措施 一、降低机械方面引起的噪声的措施: 1、紧固所有装配件上的紧固螺栓,保证端盖,轴承盖,定、转子铁心,固定键,齿端板,风扇座,集流装置等配合不松动。 2、选用的轴承和润滑油,选用超精研磨、波纹度小于.2μM的电动机专用轴承,可降低轴承噪声。 3、装配轴承时要采用合理工具,最好热套。装配轴承时严禁猛打猛敲,使轴承受力不均。 4、增强修配零部件的机械强度的精度。 5、校正转子平衡。 6、提高电动机组装质量,保证同心度,与机械设备联接要正确,做好确定中心工作。 7、电刷硬度适当降低,刷压要合适,电刷在刷盒内间隙要合适(一般0.1MM左右) 8、检查铁心的偏心情况,必要时可适当当车圆转子表面(控制切削量0.10-0.20MM)。 9、检查电动机轴伸盒集电环的偏摆,时之合格。

风机振动原因分析

电站风机振动故障的几种简易诊断 2009-11-18 11:20:44 来源:中国化工仪器网 风机是电站的重要辅机,风机出现故障或事故时,将引起发电机组降低出力或停运,造成发电量损失。而电站风机运行中出现最多、影响最大的就是振动,因此,当振动故障出现时,尤其是在故障预兆期内,迅速作出正确的诊断,具有重要的意义。简易诊断是根据设备的振动或其他状态信息,不用昂贵的仪器,通常运用普通的测振仪,自制的听针,通过听、看、摸、闻等方式,判断一般风机振动故障的原因。文中所述振动基于电厂离心式送风机、引风 机和排粉机。1 轴承座振动 1.1 转子质量不平衡引起的振动 在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。造成转子质量不平衡的原因主要有:叶轮磨损(主要是叶片)不均匀或腐蚀;叶片表面有不均匀积灰或附着物(如铁锈);机翼中空叶片或其他部位空腔粘灰;主轴局部高温使轴弯曲;叶轮检修后未找平衡;叶轮强度不足造成叶轮开裂或局部变形;叶轮上零件松动或连接件不紧固。转子不平衡引起的振动的特征:①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承处振动大于推力轴承处;②振幅随转数升高而增大;③振动频率与转速频率相等;④振动稳定性比较好,对负荷变化不敏感;⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50%工作转速。 1.2 动静部分之间碰摩引起的振动 如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装置之间碰摩。其振动特征:振动不稳定;振动是自激振动与转速无关;摩擦严重时会发生反向涡动; 1.3 滚动轴承异常引起的振动 1.3.1 轴承装配不良的振动 如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成 局部振动。其振动特征为:振动值以轴向为最大;振动频率与旋转频率相等。 1.3.2 滚动轴承表面损坏的振动 滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。这种振动稳定性很差,与负荷无关,振动的振幅在水平、垂直、轴向三个方向均有可能最大,振动的精密诊断要借助频谱分析,运用频谱分析可以准确判断轴承损坏的准确位置和损坏程度,在此不加阐述。表1列出滚动轴承异常现象的检测,可以看出各种缺陷所对应的异常现象中,振动是最普遍的现象,抓住振动监测就可以判断出绝大多数故障,再辅以声音、温度、磨耗金属的监测,以及定期测定轴承间隙,就可在早期预查出滚动轴承的一切缺陷。 1.4 轴承座基础刚度不够引起的振动 基础灌浆不良,地脚螺栓松动,垫片松动,机座连接不牢固,都将引起剧烈的强迫共振现象。这种振动的特征:①有问题的地脚螺栓处的轴承座的振动最大,且以径向分量最大;②振动频率为转速的1、3、5、7等奇数倍频率组合,其中3倍的分量值最高为其频域特征。 1.5 联轴器异常引起的振动 联轴器安装不正,风机和电机轴不同心,风机与电机轴在找正时,未考虑运行时轴向位移的补偿量,这些都会引起风机、电机振动。其振动特征为:①振动为不定性的,随负荷变化剧烈,空转时轻,满载时大,振动稳定性较好;②轴心偏差越大,振动越大;③电机

相关文档
最新文档