第五章 矩阵的特征值与特征向量
线性代数(同济大学第五版)矩阵的特征值与特征向量讲义、例题
第五章 矩阵的特征值与特征向量§1矩阵的特征值与特征向量一、矩阵的特征值与特征向量定义1:设A 是n 阶方阵,如果有数λ和n 维非零列向量x 使得x Ax λ=,则称数λ为A 的特征值,非零向量x 称为A 的对于特征值λ的特征向量.由x Ax λ=得0)(=-x E A λ,此方程有非零解的充分必要条件是系数行列式0=-E A λ,此式称为A 的特征方程,其左端是关于λ的n 次多项式,记作)(λf ,称为方阵A 特征多项式.设n 阶方阵)(ij a A =的特征值为n λλλ,,,21 ,由特征方程的根与系数之间的关系,易知:nn n a a a i +++=+++ 221121)(λλλA ii n =λλλ 21)(例1 设3阶矩阵A 的特征值为2,3,λ.若行列式482-=A ,求λ. 解:482-=A 64823-=∴-=∴A Aλ⨯⨯=32A 又 1-=∴λ例2 设3阶矩阵A 的特征值互不相同,若行列式0=A , 求矩阵A 的秩.解:因为0=A 所以A 的特征值中有一个为0,其余的均不为零.所以A 与)0,,(21λλdiag 相似.所以A 的秩为2.定理1对应于方阵A 的特征值λ的特征向量t ξξξ,,,21 ,t ξξξ,,,21 的任意非零线性组合仍是A 对应于特征值λ的特征向量.证明 设存在一组不全为零的数t k k k ,,,21 且存在一个非零的线性组合为t t k k k ξξξ+++ 2211,因为t ξξξ,,,21 为对应于方阵A 的特征值λ的特征向量。
则有),,2,1(1t i k Ak i i i ==ξλξ所以)()(22112211t t t t k k k k k k A ξξξλξξξ+++=+++ 所以t t k k k ξξξ+++ 2211是A 对应于特征值λ的特征向量. 求n 阶方阵A 的特征值与特征向量的方法:第一步:写出矩阵A 的特征多项式,即写出行列式E A λ-.第二步:解出特征方程0=-E A λ的根n λλλ,,,21 就是矩阵A 的特征值.第三步:解齐次线性方程组0)(=-x E A i λ,它的非零解都是特征值i λ的特征向量.例3 求矩阵⎪⎪⎪⎭⎫ ⎝⎛--=201034011A 的特征值和特征向量.解 A 的特征多项式为2)1)(2(201034011λλλλλλ--=-----=-E A 所以,A 的特征值为1,2321===λλλ. 当21=λ时,解方程组0)2(=-x E A .由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-000010001~2010340112E A ,得基础解系⎪⎪⎪⎭⎫ ⎝⎛=1001p ,所以特征值21=λ的全部特征向量为11p k ,其中1k 为任意非零数.当132==λλ时,解方程组0)(=-x E A .由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-000210101~101024012E A ,得基础解系⎪⎪⎪⎭⎫ ⎝⎛--=1212p ,所以特征值132==λλ的全部特征向量为22p k ,其中2k 为任意非零数. 二、特征值与特征向量的性质与定理性质1 n 阶方阵A 可逆的充分必要条件是矩阵A 的所有特征值均非零. 此性质读者可利用A n =λλλ 21可证明.定理 2 若21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p ,则21,p p 线性无关.证明 假设设有一组数21,x x 使得02211=+p x p x (1)成立. 以2λ乘等式(1)两端,得0222121=+p x p x λλ (2) 以矩阵A 左乘式(1)两端,得0222111=+p x p x λλ (3) (3)式减(2)式得0)(1211=-p x λλ 因为21,λλ不相等,01≠p ,所以01=x .因此(1)式变成022=p x . 因为02≠p ,所以只有02=x . 这就证明了21,p p 线性无关.性质2 设)(A f 是方阵A 的特征多项式,若λ是A 的特征值.对应于λ的特征向量为ξ,则)(λf 是)(A f 的特征值,而ξ是)(A f 的对应于)(λf 的特征向量,而且若O A f =)(,则A 的特征值λ满足0)(=λf ,但要注意,反过来0)(=λf 的根未必都是A 的特征值.例4 若λ是可逆方阵A 的特征值,ξ是A 的对应于特征值λ的特征向量,证明:1-λ是1-A 的特征值,ξ是1-A 对应于特征值1-λ的特征向量,证明 λ 是可逆方阵A 的特征值,ξ是A 的对应于特征值λ的特征向量λξξ=∴A ξξλ11--=∴Aξξλ11--=∴A A A ξξλ*1A A =∴-1-∴λ是1-A 的特征值,ξ是1-A 对应于特征值1-λ的特征向量, 1-λA 是*A 的特征值,ξ是*A 对应于特征值1-λA 的特征向量.例5 设3阶矩阵A 的特征值1,2,2,求E A --14.解:A 的特征值为1,2,2,,所以1-A 的特征值为1,12,12, 所以E A--14的特征值为4113⨯-=,41211⨯-=,41211⨯-=所以311341=⨯⨯=--E A .例6 若21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p ,证明21p p +一定不是A 的特征向量.证明 假设21p p +是矩阵A 的特征向量,对应的特征值为.λ根据特征值定义可知:)()(2121p p p p A +=+λ …………………(1) 21,λλ 又是n 阶方阵A 的特征值,对应的特征向量分别为21,p p .,111p Ap λ=∴ 222p Ap λ= (2)将(2)带入(1)式整理得:0)()(2211=-+-p p λλλλ因为21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p 线性无关.所以21λλλ==.与21,λλ是n 阶方阵A 的两互不相等的特征值矛盾. 所以假设不成立.例7 若A 为正交矩阵,则1±=A ,证明,当1-=A 时,A 必有特征值1-;当1=A 时,且A 为奇数阶时,则A 必有特征值1.证明 当1-=A 时.TT T A E A A E A AA A E A +=+=+=+)(A E A E T +-=+-=,所以 .0=+A E `所以1-是A 的一个特征值反证法:因为正交阵特征值的行列式的值为1,且复特征值成对出现,所以若1不是A 的特征值,那么A 的特征值只有-1,以及成对出现的复特征值。
线性代数学习指导第五章矩阵的特征值与特征向量
第五章 矩阵的特征值与特征向量一.内容提要1 . 特征值和特征向量定义1 设()ijn nA a ⨯=是数域P 上的n 阶矩阵,若对于数域P 中的数λ,存在数域P 上的非零n 维列向量X ,使得X AX λ=则称λ为矩阵A 的特征值,称X 为矩阵A 属于(或对应于)特征值λ的特征向量 注意:1)()ijn nA a ⨯=是方阵;2)特征向量 X 是非零列向量;3)方阵 ()ijn nA a ⨯= 与特征值λ 对应的特征向量不唯一4)一个特征向量只能属于一个特征值.2.特征值和特征向量的计算计算矩阵A 的特征值与特征向量的步骤为: (1) 计算n 阶矩阵A 的特征多项式|λE -A |;(2) 求出特征方程|λE -A |=0的全部根,它们就是矩阵A 的全部特征值; (3) 设λ1 ,λ2 ,… ,λs 是A 的全部互异特征值。
对于每一个λi ,解齐次线性方程组()i E A X λ-=0,求出它的一个基础解系,该基础解系的向量就是A 属于特征值λi 的线性无关的特征向量,方程组的全体非零解向量就是A 属于特征值λi 的全体特征向量.3. 特征值和特征向量的性质性质1 (1)若X 是矩阵A 属于特征值λ的特征向量,则kX (0k ≠)也是A 属于λ的特征向量;(2)若12,,,s X X X 是矩阵A 属于特征值λ的特征向量,则它们的非零线性组合1122s s k X k X k X +++也是A 属于λ的特征向量;(3)若A 是可逆矩阵,λ是A 的一个特征值,则λ1是A —1的一个特征值,λ||A 是A *的一个特征值;(4)设λ是n 阶矩阵A 的一个特征值,f (x )= a m x m + a m-1x m -1 + … + a 1x + a 0为一个多项式,则()f λ是f (A )的一个特征值。
性质2(1) nn n a a a +⋅⋅⋅++=+⋅⋅⋅++221121λλλ(2) || 21A n =⋅⋅⋅λλλ性质3 n 阶矩阵A 和它的转置矩阵T A 有相同的特征值 性质4 n 阶矩阵A 不同的特征值所对应的特征向量线性无关4. 相似矩阵定义2 设A 、B 为n 阶矩阵,若存在可逆矩阵P ,使得B=P ―1AP则称A 与B 相似。
第五章矩阵的特征值和特征向量
1 0
1 0
x1 x2
0 0
x1
x2
0
取 x2
1, 得基础解系
P1
1 11
特征值和特征向量的性质:
1. A与AT有相同的特征值;
2. A 12L n 推论 : A可逆 所有的i 0, i aii
3. 若是A的特征值,x是对应的特征向量,则: (1) k是Ak的特征值,x是Ak的对应k的特征向量;
2c是cA的特征值,x是cA的对应c的特征向量;
3 c是A cE的特征值,x是A cE的对应 c的特征向量;
4 f 是f A的特征值,x是f A的对应f 的特征向量;
5 1 是A1的特征值,x是A1的对应 1 的特征向量。
4.对应不同特征值的特征向量线性无关。
5.(圆盘定理):A的每一个特征值必在下列圆盘中的某一个中
z
|
z aii
aij
,
i
1, 2,L
n
ji
2
方阵A的对角化
方阵 A 的对角化,即寻找相似变换矩阵 P,使 P-1AP= ∧ 为对角矩阵.
什么样的方阵能够与一个对角阵相似呢? 定理:A 与一个对角阵相似的充要条件是
A 有 n 个线性无关的特征向量。 推论:如果 A 有 n 个互异的特征值,则 A 必
vk Avk 1 Ak v0 Ak (a1x1 a2 x2 L an xn )
a11k x1 a22k x2 L annk xn
1k
[a1
x1
a2
2 1
k
x2 L
an
n 1
xn ]
1k a1x1
lim
k
第五章 矩阵的特征值与特征向量
可知 λ1E − A 的秩为 r = 2, 有n − r = 3 − 2 = 1个自由未知量 1 x1 − 3 x3 = 0, 求得它的一个基础解系为 取为 x3 . 由 2 α1 = (1, −2,3)T . x2 + x3 = 0, 3 A 的属于特征值6 的全部特征向量为 k (1, −2,3)T , 所以 k 为任意非零数 为任意非零数. 对于λ2 = 2, 解齐次线性方程组 ( 2 E − A ) X = o, 由 1 1 −1 1 1 −1 −2 −2 2 → 0 0 0 , ( λ2 E − A) = 3 3述, 综上所述,求 n阶矩阵A的特征值与特征向量的步骤: 的全部特征值, 第一步 求 A 的全部特征值,即求特征方程 的全部根; | λE − A|= 0 的全部根; 第二步 的特征向量. 求 A 的特征向量
s
对于每一个特征值 λi,求出齐次线性方程组 求出齐次线性方程组
( λi E − A) X = o的一个基础解系ξ1,ξ2,L,ξs , 那么 X = ∑kiξi i= 1 的全部特征向量, 就是A 的属于 λi 的全部特征向量,其中 k1, k2 ,L, ks为不全
所以 A 的全部特征值为 λ1 = −1, λ2 = 1, λ3 = 3. 利用解齐次线性方程组, 可以求得: 利用解齐次线性方程组 可以求得 A的属于特征值 −1 的全部特征向量为 k1 (1, −1,0)T , 为任意非零数. 其中k1为任意非零数 A的属于特征值 1 的全部特征向量为 k2 (1, −1,1)T , 为任意非零数. 其中k2为任意非零数 A的属于特征值 3 的全部特征向量为 k3 (0,1, −1)T , 其中k3为任意非零数. 为任意非零数 (1, −1,0)T ,(1, −1,1)T ,(0,1, −1)T 线性无关 线性无关. 容易证明 该例中有三个不同的特征值, 注: 该例中有三个不同的特征值 相应的特征向量线 性无关. 性无关
《线性代数》教学教案—05矩阵的特征值与特征向量
3.设 为n阶实对称矩阵, 是 的特征方程的 重根,则矩阵 的秩 ,从而对应特征值 恰有 个线性无关的特征向量.
1.定理:设A为n阶实对称矩阵,则必存在n阶正交矩阵P,使得 = = ,其中 是 的n个特征值.
2.合同矩阵:给定两个n阶方阵 和 ,若存在可逆矩阵 ,使 = ,则称矩阵 与矩阵 合同,或 , 是合同矩阵.
例2.设矩阵 是3阶实对称阵, 的特征值为 1,2,2, = 与 = 都是矩阵 的属于特征值2的特征向量.求 的属于特征值1的特征向量,并求出矩阵 .
例3.设某城市共有30万人从事农、工、商的工作,假定这个总人数在若干年内保持不变,而社会调查表明:
(1)在这30万就业的人员中,目前约有15万从事农业、9万人从事工业、6万人从事商业;
授课序号02
教 学 基 本 指 标
教学课题
第5章第2节相似矩阵
课的类型
新知识课
教学方法
讲授、课堂提问、讨论、启发、自学
教学手段
黑板多媒体结合
教学重点
相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件
教学难点
矩阵可相似对角化的方法
参考教材
同济版《线性代数》
作业布置
课后习题
大纲要求
理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件。
推论2.若n阶矩阵 与对角矩阵 = 相似,则 是 的全部n个特征值.
二.方阵的相似对角化
1.相似对角化:若方阵 能与一个对角阵 相似,则称 可以相似对角化,简称 可对角化.
2.定理:n阶方阵 可以相似对角化的充要条件是 有n个线性无关的特征向量.
推论1.如果n阶方阵 的n个特征值互不相等,则 与对角阵相似.
五、矩阵的特征值与特征向量
五、矩阵的特征值与特征向量(一)考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵的特征值的性质,掌握求矩阵特征值和特征向量的方法。
2.理解相似矩阵的概念,掌握相似矩阵的性质,了解矩阵可对角化的必要条件,掌握将矩阵化为相似对角矩阵的方法。
3.掌握实对称矩阵的特征值和特征向量的性质以及实对称矩阵正交对角化的方法。
(二)基本内容1.特征值特征向量的概念A 为n 阶方阵,λ是一个数,若存在n 维非零列向量α,使λαα=A ,则称λ是A 的一个特征值,α为对应于特征值λ的特征向量。
由于O X A E =-)(λ有非零解,所以0=-A E λ的根就是A 的特征值。
若0λ是A 的一个特征值,O X A E =-)(0λ有非零解,它的所有非零解就是A 对应于特征值0λ的全部特征向量。
2.特征值与特征向量的求法。
①0=-A E λ的全部根就是A 的全部特征值;②对于A 的每一个特征值i λ,解齐次线性方程组O X A E i =-)(λ,它的基础解系为:t ηηη,,,21 ,则A 对应于特征值i λ的全部特征向量为t t k k k ηηη+++ 2211,t k k k ,,,21 不全为零。
3.特征值与特征向量的基本性质①任何矩阵A 与它的转置矩阵TA 具有相同的特征值;②设n 阶矩阵A 的n 个特征值分别为:n λλλ,,,21 则: )(221121A tr a a a nn n =+++=+++ λλλA n =⋅⋅⋅λλλ 21因此,n 阶矩阵A 可逆的充分必要条件是:A 的所有特征值均不等于零。
③若n λλλ,,,21 是A 的n 个特征值,对应的特征向量依次为:n ααα,,,21 ; 则k n k k λλλ,,,21 是k A 的n 个特征值,对应的特征向量依次为:n ααα,,,21 ; )(,),(),(21n f f f λλλ 是)(A f 的n 个特征值,对应的特征向量依次为n ααα,,,21 ; 其中)(A f 为多项式)(x f 所对应的矩阵多项式。
第五章矩阵的特征值与特征向量
第五章 矩阵的特征值与特征向量内容提要一、基本概念1.A 是一个n 阶方阵,如果存在一个数λ和一个n 维非零列向量α,使得λαα=A 成立,则称λ为矩阵A 的特征值,非零列向量α称为矩阵A 的属于特征值λ的特征向量.2.A 为n 阶方阵,λ为未知量,则矩阵⎪⎪⎪⎪⎭⎫⎝⎛---------=-nn n n n n a a a a a a a a a A E λλλλ212222111211称为矩阵A 的特征矩阵;其行列式A E f -=λλ)(为λ的n 次多项式,称为矩阵A 的特征多项式;0=-A E λ称为矩阵A 的特征方程.3.n 阶方阵A 的主对角线上的元素的和称为A 的迹,记作)(A t r ,即)(A t r nn a a a +++= 2211.4.对于n 阶方阵A 和B ,若存在n 阶可逆方阵P ,使B AP P =-1成立,则称A 与B 相似,记为B A ~.满足: (1)自身性 即A A ~;(2)对称性 若B A ~,则A B ~;(3)传递性 若B A ~,C B ~,则C A ~. 5.若矩阵A 与对角阵相似,则称A 可对角化.6.实矩阵A =n m ij a ⨯)(,如果0≥ij a ,),,2,1;,,2,1(n j m i ==,称A 为非负矩阵;如果ij a >0,),,2,1;,,2,1(n j m i ==,称A 为正矩阵.7.如果n 阶方阵A =n m ij a ⨯)(,可以经过一系列相同的行和列互换,化为 ⎪⎭⎫⎝⎛221211A OA A , 其中11A ,22A 为子方阵(不一定同阶),则称A 为可分解矩阵,否则称A 为不可分解的矩阵.8.若n λλλ,,,21 为n 阶方阵A 的特征值,则称=)(A P |}|,,||,|max{|21n λλλ 为A 的最大特征值(或为A 的谱半径). 二、几个结果1.特征值和特征向量的基本性质(1)n 阶矩阵A 与它的转置矩阵T A 有相同的特征值(但特征向量一般不同);(2)属于A 的不同特征值的特征向量必定线性无关(但属于相同特征值的特征向量不一定必相关);(3)属于同一特征值的特征向量的线性组合仍是属于该特征值的特征向量;(4)设n λλλ,,,21 为n 阶方阵A 的特征值,则有①nn n a a a ++=+++221121λλλ,即A 的特征值的和等于矩阵A 的主对角线的元素的和; ②||21A n =λλλ .推论 若矩阵A 可逆⇔矩阵A 的特征值全不为零.(5)若λ为矩阵A 的特征值,α是A 的属于λ的特征向量,则①λk 是kA 的特征值(k 为任意常数); ②m λ是m A 的特征值(m 为正整数);③当A 可逆时,1-λ是1-A 的特征值,λA是*A 的特征值;④)(0λP 是)(A P 的特征值,其中)(x P 为任一多项式.注意 α仍是矩阵kA 、m A 、1-A 、*A 、)(A P 对应于特征值λk 、m λ、1-λ、λA、)(0λP 的特征向量.)6(*若A 为实对称矩阵,则A 的所有特征值均为实数,且属于不同特征值的特征向量彼此正交. 2.相似矩阵的性质若A ~B ,则(1)B A =,)()(B r A r =,)()(B t A t r r =;(2)T A ~T B ,1-A ~1-B ,m A ~m B ,kA ~kB ,)(A P ~)(B P ;(3)||||B E A E -=-λλ,即相似矩阵有相同的特征多项式,因而也有相同的特征值,但特征向量不一定相同.3.矩阵可对角化的条件(1)n 阶方阵A 可对角化的充分必要条件是A 有n 个线性无关的特征向量;(2)n 阶方阵A 有n 个不同的特征值,则A 一定可对角化;)3(*实对称矩阵必可对角化,且存在正交矩阵P (1-=P P T ),使Λ=-AP P 1.例题解析例1 设矩阵⎪⎪⎪⎭⎫ ⎝⎛--=011102124A ,则A 的对应于特征值2=λ的特征向量α为( ).(A )T )0,0,0( (B )T )0,1,1(- (C )T )2,1,1( (D )T )1,0,1(解 根据定义,只需验证选项中的向量α是否满足αα2=A )0(≠α,显然,零向量不是矩阵A 的特征向量,应排除(A ). 对于(B ),因为⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--=0112022011011102124αA , 所以,=α()T 0,1,1-是A 的对应于2=λ的特征向量,应选(B ).例2 设A 为n 阶矩阵,下述结论中正确的是( ). (A )矩阵A 有n 个不同的特征根(B )矩阵A 与T A 有相同的特征值和特征向量(C )矩阵A 的特征向量21,αα的线性组合2211ααc c +仍是A 的特征向量 (D )矩阵A 对应于不同特征值的特征向量线性无关解 对于选项(A ),矩阵A 有n 个特征根(在复数范围内),但这些特征根中可能有重根,故(A )错.对于选项(B ),A 与T A 有相同的特征值,但是,对应的特征向量不一定相同,故(B )错.对于选项(C ),未说明21,αα对应的特征值.如果21,αα是对应于A 的同一特征值λ的特征向量,则当21,c c 不全为零时,2211ααc c +仍是A 的对应于特征值λ的特征向量;如果21,αα是对应于A 的不同特征值21,λλ的特征向量,则2211ααc c +不是A 的特征向量(0,021≠≠c c 为任意常数).关于这一结论的证明,见例8.对于选项(D )是矩阵特征值、特征向量的性质.综上分析,应选(D ).例3 如果n 阶矩阵A 任意一行的n 个元素之和都是a ,则A 有一个特征值( ). (A )a (B )a - (C )0 (D )1-a解 在||A E -λ中,把第二列到第n 列都加到第一列上,则第一列有公因子αλ-,提出后可知αλ-是||A E -λ的因子,所以a 是A 的一个特征值.应选(A ).例4 设矩阵⎪⎪⎭⎫⎝⎛---=2221A ,则下面各矩阵中非奇异矩阵是( ).(A )A E +-2 (B )A E - (C )A E -2 (D )A E --3 解 矩阵A 的特征多项式为 )2)(3(2221-+=+-=-λλλλλA E ,故A 的特征值为31-=λ,22=λ.因为 02)1()2(22=--=--=+-A E A E A E ,即选项(A )是奇异矩阵,而1不是A 的特征值,必有0||≠-A E ,应选(B ). 例5 已知三阶方阵A 的三个特征值为1,-2,3,则=||A ,1-A 的特征值为 ,T A 的特征值为 ,*A 的特征值为 ,E A A ++22的特征值为 .解 因为6||321-==λλλA ,由||||T A E A E -=-λλ,知A 与T A 有相同的特征值,故T A 的特征值为1,2-,3.若设X 为A 属于λ的一个特征向量,则有XAX λ=,于是有XX A λ11=-,X AX A A X A λ==-1*,X X A kkλ=,从而推得1-A的特征值为λ1,*A 的特征值为λ||A .矩阵多项式)(A f 的特征值为)(λf ,从而可写出各自具体内容.应填6-;31,21,1-;3,2,1-;2,3,6--;16,1,4.例6 设A 是三阶方阵,并且0322=+=+=-E A E A E A ,则E A 32-* = .解 由0322=+=+=-E A E A E A ,可得A 的特征值分别为23,2,1--,所以 3)23()2(1=-⋅-⋅=A ,于是E A E A A E A 36323211-=-=---*的特征值分别为7,6,3--,故 126)7()6(332=-⨯-⨯=-*E A ,应填126.例7 设4阶方阵A 满足条件03=+A E ,E AA T 2=,0<A ,其中E 是4阶单位阵,则方阵A 的伴随矩阵*A 的一个特征值为_______.解 由0)3(3=--=+E A E A ,得A 的一个特征值3-=λ.又由条件有 16224===E E AA T , 162===A A A AA T T .因为0<A ,所以4-=A ,且知A 可逆.设A 的属于特征值3-=λ的特征向量为α,则αααααα3133111-=⇒-=⇒-=---A A A A A ,又因为0≠A ,所以11,31-*-=-=AA A A A A αα,故αα34=*A ,可知*A 的特征值为34.应填34.例8 设21,λλ是n 阶矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,试证:2211ααc c +(01≠c ,02≠c ,任意常数)不是A 的特征向量. 证 反证法.设2211ααc c +为A 的对应于特征值λ的特征向量,于是 )()(22112211ααλααc c c c A +=+又由已知,有111αλα=A ,)0(1≠α,222αλα=A ,)0(2≠α.代入上式左边,得 22211122112211)(αλαλααααc c A c A c c c A +=+=+, 因此)(2211222111ααλαλαλc c c c +=+, 所以0)()(222111=-+-αλλαλλc c . 因21λλ≠,所以向量21,αα线性无关,故 0)(11=-λλc , 0)(22=-λλc , 其中21,c c 是不等于零的任意常数.由此可得λλ=1,λλ=2,即21λλ=,与已知条件矛盾!所以2211ααc c +不是A 的特征向量.例9 求矩阵⎪⎪⎪⎭⎫⎝⎛-=110020112A 的特征值和特征向量. 解 A 的特征多项式)1()2(110201122--=-----=-λλλλλλA E ,所以,A 的特征值为11=λ,232==λλ.对于11=λ,解齐次线性方程组O X A E =-)(,因⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛----=-000010101010010111)(A E ,由此可得同解方程组 ⎩⎨⎧==+00231x x x ,取3x 为自由未知量,令13=x ,得方程组的基础解系T -=)1,0,1(1α.于是A 的对应于特征值11=λ的全部特征向量为11αc (01≠c ,为任意常数).对于232==λλ,解齐次线性方程组0)2(=-X A E , 因⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛--=-000000110110000110)2(A E , 由此可得同解方程组 032=+x x . 取自由未知量⎪⎪⎭⎫⎝⎛31x x 分别为⎪⎭⎫ ⎝⎛01,⎪⎭⎫⎝⎛10可得方程组的基础解系TT-==)1,1,0(,)0,0,1(32αα于是,A 的对应于232==λλ的全部特征向量为3322ααc c +(32,c c 为不全为零的任意常数).注 1.求特征值、特征向量的基本方法:(1)计算矩阵A 的特征多项式()A E f -=λλ;(2)求出特征方程()0=-=A E f λλ的全部根,即A 的全部特征值; (3)对每一个特征值0λ,求出O X A E =-)(0λ的一个基础解系r n -ηηη,,,21 , 则A 的属于0λ的全部特征向量为r n r n k k k --+++ηηη 2211,其中r n k k k -,,,21 为不全为零的常数.2.这类计算题中,方程组()O X A E =-λ的系数矩阵常常出现零列(如此题中)2(A E -的第一列).应注意:凡是零列所对应的变量应取作自由未知量.例如,在本题中求O X A E =-)2(的基础解系时,取31,x x 为自由未知量.例10 ⎪⎪⎪⎭⎫⎝⎛-----=122212221A ,(1)求A 的特征值;(2)求1-+A E 的特征值. 解 A 的特征多项式12122212221r r A E ++-+---+=-λλλλ12211221+-----+λλλλ)5()1(2+-=λλ.所以,A 的特征值为1,1,5-.由特征值性质可知,1-A 的特征值为1,1,51-,于是1-+A E 的特征值为2,2,54.例11 设⎪⎪⎪⎭⎫⎝⎛=0011100y xA 有三个线性无关的特征向量,求x 和y 应满足的条件.解 A 的特征多项式为λλλλ0111-----=-y xA E )1()1(2+-=λλ,所以,A 的特征值为 121=,λ,13-=λ. 只要121=,λ有两个线性无关的特征向量即可,即矩阵A E -⋅1的秩等于1. 因为A E -⋅1⎪⎪⎪⎭⎫⎝⎛----=1010101y x⎪⎪⎪⎭⎫⎝⎛---→00000101x y ,只要满足0=+y x 即可.例12 设向量TK )1,,1(=α是矩阵⎪⎪⎪⎭⎫ ⎝⎛=211121112A 的逆矩阵1-A 的特征向量,试求常数K 的值.分析 用特征值、特征向量的定义讨论.解 设λ是α所属的特征值,则λαα=-1A ,αλαA =,.即⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛1121112111211K Kλ, 由此,得方程组 ⎩⎨⎧=+=+KK K )22(1)3(λλ,其解为11=λ,21-=K ;412=λ,12=K .于是,当2-=K 或1时,α是1-A 的特征向量.例13 设矩阵⎪⎪⎪⎭⎝--=a c b A 0135,其行列式1-=A ,又A 的伴随矩阵 *A 有一个特征值0λ,属于0λ的一个特征向量为T )1,1,1(--=α,求c b a ,,和0λ的值.解 由题设知E E A AA -==*,αλα0=*A . 于是有αλααααA A A E AA 0)(==-=-=**. 即有0λ⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛---11111101351a c b c a . 得⎪⎩⎪⎨⎧-=--=--=++-1)1( 1)2(1)1(000a c b c a λλλ.由此解得 10=λ,3-=b ,c a =.再代入1-=A 得2==c a .例14 设A 为n 阶方阵,任一非零的n 维向量都是A 的特征向量,试证明:⎪⎪⎪⎪⎪⎭⎫⎝⎛=λλλ00A , 即A 为数量矩阵.证 设),,2,1,(n j i a ij ⋅⋅⋅=是A 的第i 行、第j 列元素,因单位坐标向量,1εn εε,,2⋅⋅⋅也是A 的特征向量,设n λλλ,,,21 是对应的特征值,则有 i i A λεε= ),,1(n i ⋅⋅⋅=即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=001i niiii i a a a A λε, ),,1(n i ⋅⋅⋅=.故 i ii a λ=,0=ji a (i j ≠).这样⎪⎪⎪⎪⎭ ⎝=n A λλ02 . 因为0≠+j i εε (i j ≠),也是A 的特征向量,设λ为对应的特征值,则由j i j i j i A λελεεελεε+=+=+)()(, j j i i j i j i A A A ελελεεεε+=+=+)(,有 0)()(=-+-j j i i ελλελλ.因j i εε,线性无关,故λλλ==j i .于是可得⎪⎪⎪⎪⎭⎫ ⎝⎛=λλλ0 A . 例15 设B A ,均为n 阶方阵,试证AB 与BA 有相同的特征值.证 如果矩阵AB 是不可逆的,则0=AB ,所以 0==⋅=⋅=AB B A A B BA . 由此可得0)1(0=-=-AB AB E n , 0)1(0=-=-BA BA E n .即AB 与BA 都有特征值0.当AB 不可逆,且00≠λ为AB 的任一非零特征值时,需证0λ也是BA 的特征值.实际上,设AB 的对应于0λ的特征向量为)0(≠αα,则 αλα0=AB . 在上式两边左乘B ,得)()(0αλαB B BA =.令αηB =,则有ηλη0=BA ,只需证明0≠η.假设0==αηB ,于是0==αηAB A .这与00≠=αλαAB 矛盾.因此0≠η.即0λ是BA 的一个特征值,对应的特征向量为αB .由0λ的任意性可知,AB 的任一非零特征值都是BA 的特征值.类似可证BA 的任一非零特征值也是AB 的特征值.当矩阵AB 可逆时,AB 的任一特征值不等于零.类似于上面的证明可得AB 与BA 有相同的特征值.例16 设B A ,为n 阶矩阵,且A 与B 相似,E 为n 阶单位矩阵,则( ). (A )B E A E -=-λλ(B )A 与B 有相同的特征值和特征向量 (C )A 与B 都相似于一个对角阵(D )对任意常数t ,A tE -与B tE -相似解 由A 与B 相似,则存在可逆阵P ,使得 B AP P =-1,从而 B tE AP P P tP P A tE P -=-=----111)(, 即A tE -与B tE -相似.应选(D ).例17 设矩阵⎪⎪⎪⎭⎫⎝⎛=300020002A ,则下述矩阵中与A 相似的矩阵是( ). (A )⎪⎪⎪⎭⎫⎝⎛=3001200121A(B )⎪⎪⎪⎭⎫⎝⎛=3000200122A (C )⎪⎪⎪⎭⎫⎝⎛=3000201023A(D )⎪⎪⎪⎭⎫⎝⎛=3110210024A 解 因矩阵A 已是对角形矩阵,而各选项中矩阵与A 有相同的特征值,故只需判断各选项中的矩阵可否对角化.对于选项(A ),特征多项式)3()2(21--=-λλλA E ,其特征值为221==λλ,33=λ.考察方程组O X A E =-)2(1,其系数矩阵⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫⎝⎛---=-000100010100100010)2(1A E , 于是2)2(1=-A E r .方程组O X A E =-)2(1的基础解系中仅含1个向量,而=1λ22=λ是二重特征值,故矩阵1A 不能对角化,即1A 不与A 相似.对于选项(B )与(D ),用类似方法可判断矩阵42,A A 不可对角化,故42,A A 不与A 相似.对于选项(C ),矩阵3A 的特征多项式)3()2(23--=-λλλA E ,其特征值为221==λλ,33=λ.考虑方程组O X A E =-)2(3,其系数矩阵⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫⎝⎛-=-000000100100000100)2(3A E ,故1)2(3=-A E r ,方程组O X A E =-)2(3的基础解系中恰恰含两个向量,故3A 可对角化.应选(C ).注 矩阵A 对角化的步骤:(1)求出A 的特征值:1λ,2λ, n λ,对于每一个特征值i λ,求出齐次线性方程组O X A E i =-)(λ的一个基础解系,若基础解系中所含向量的个数等于i λ的重数,则A 可对角化,否则A 不可对角化;(2)以A 的n 个线性无关的特征向量:n ααα,,,21 为列构造可逆矩阵=P),,,(21n ααα ,则有对角阵Λ=diag(n λλλ,,,21 )=AP P 1-.注意顺序:i α为属于i λ的特征向量.例18 三阶矩阵A 的特征值为1,2-,3,矩阵A A B 22-=,求: (1)B 的特征值;(2)B 是否可对角化,若可以,试写出其相似对角形矩阵; (3)行列式E A B 2-和的值.解 设λ为A 的任一特征值,对应的一个特征向量为α,则 λαα=A , )0(≠α. 所以αλαλα22==A A ,αλλλααλαα)2(2)2(222-=-=-=A A B ,即,对应于A 的一个特征值λ,B 对应的特征值为λλ22-.由此可知当A 的特征值为1,2-,3时,B 的特征值为1-,8,3.因为B 有三个不同的特征值,所以B 可与一对角阵相似,其相似对角形矩阵为⎪⎪⎪⎭⎫⎝⎛-300080001. 于是 2438)1(-=⨯⨯-=B ,63)2(1-=⨯-⨯=A .又因为)2(E A A B -=,所以46242=--==-AB E A .例19 设⎪⎪⎭⎫⎝⎛=3212A ,求100A .分析 直接求100A 计算量过大,可设法利用对角矩阵进行计算. 解 A 的特征多项式)4)(1(2212--=----=-λλλλλA E ,故A 的特征值为11=λ,42=λ.当11=λ时,可求出一个基础解系:T )1,1(1-=α. 当42=λ时,可求出一个基础解系:T )2,1(2=α.令⎪⎪⎭⎫ ⎝⎛-=2111P ,则⎪⎪⎭⎫⎝⎛-=-3/13/13/13/21P ,此时⎪⎪⎭⎫⎝⎛=-40011AP P , 即有 14001-⎪⎪⎭⎫ ⎝⎛=P P A 因此⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=-3/13/13/13/24001211140011001100100PP A ⎪⎪⎭⎫ ⎝⎛⨯+⨯+-+-+=100100100100421422414231. 例20 若三阶方阵A 的特征值为61=λ,32=λ,33=λ,其相应的特征向量为T )1,1,1(1=α,T )1,0,1(2-=α,T )1,2,1(3-=α,求矩阵A ,5A . 解 因为可逆矩阵⎪⎪⎪⎭⎫⎝⎛--=111201111P , 则Λ=⎪⎪⎪⎭⎫⎝⎛=-3000300061AP P . 故A =1300030006-⎪⎪⎪⎭⎫⎝⎛P P =⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--6/13/16/12/102/13/13/13/130030006111201111=⎪⎪⎪⎭⎫⎝⎛411141114. 因A ~Λ,故5A ~5Λ,即有 1555555555332336336⨯=⨯⨯==Λ=A .*例21 若三阶实对称矩阵A 的特征值为1,4,2-,且对于11=λ和42=λ的特征向量分别为T )2,1,2(1-=α,T )1,2,2(2-=α,求矩阵A ,5A .解 设23-=λ的特征向量为T c b a ),,(3=α,由于实对称矩阵的特征向量是相互正交的,故有0),(21=αα,0),(32=αα,即 ⎩⎨⎧=+-=-+022022c b a c b a ,解之可得 2c a =,c b =,c c =.令2=c ,即有1=a ,2=b .故T )2,2,1(3=α. 取⎪⎪⎪⎭⎫⎝⎛--==212221122),,(321αααP . 则⎪⎪⎪⎭⎫⎝⎛--=-221122212911P. 由于⎪⎪⎪⎭⎫⎝⎛-=-2411AP P , 所以1241-⎪⎪⎪⎭⎫⎝⎛-=P P A ⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=22112221291241212221122 ⎪⎪⎪⎭⎫ ⎝⎛----=020212022. 此时由A ~⎪⎪⎪⎭⎫⎝⎛-=Λ241, 故5A ~⎪⎪⎪⎭⎫⎝⎛-=Λ555)2(41. 因此1555)2(41-⎪⎪⎪⎭⎫⎝⎛-=P P A⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫⎝⎛--=221122212913210241212221122⎪⎪⎪⎭⎫⎝⎛----=9002178198021783969415819804158406891⎪⎪⎪⎭⎫⎝⎛----=100242220242441462220462452. *例22 设矩阵⎪⎪⎪⎪⎭⎫⎝⎛=2110000010010y A . (1)已知A 的一个特征值为3,试求y ; (2)求矩阵,使)()(AP AP T 为对角阵.解 (1)由31=λ,代入特征方程0=-A E λ,得11130000310013-----y ()02811133113=-=-----=y y .所以2=y .(2)由)()(AP AP T P A P AAP P T T 2==,问题转化为2A 的对角化问题. 由于⎪⎪⎪⎪⎭⎫ ⎝⎛=5445112A ,只要将⎪⎪⎭⎫ ⎝⎛=54451A 对角化即可,由0910544521=+-=----=-λλλλλA E ,得11=λ,92=λ.求得相应特征向量为 ⎪⎭⎫⎝⎛-=111α, ⎪⎭⎫⎝⎛=112α.单位化⎪⎪⎭⎫⎝⎛-=11211β, ⎪⎪⎭⎫ ⎝⎛=11212β. 即⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=2121212111P 使⎪⎪⎪⎪⎭⎫⎝⎛=9111)()(AP AP T .注 由正交矩阵P 将实对称矩阵A 化为对角阵的步骤:(1)求出实对称阵A 的全部特征值:1λ,2λ, ,n λ;(2)对于每一个特征值i λ,求出齐次线性方程组0)(=-X A E i λ的一个基础解系;(3)利用施密特正交化法将基础解系正交化、单位化,求出属于i λ的一个标准正交组;(4)将所有正交化、单位化后的n 个特征向量作为列向量构成矩阵P ,则P 为所求正交矩阵,并可得对角阵AP P 1-=),,,(diag 21n λλλ .例23 设n 阶方阵A 有n 个互不相同的特征值,证明:A 的特征向量也是B 的特征向量的充分必要条件是B A ,可交换.证 必要性因为A 有n 个互不相同的特征值,故A 可对角化.即存在可逆阵P ,使11Λ=-AP P .由于A 的特征向量也是B 的特征向量,故对同样的P ,有21Λ=-BP P .于是1211211))((---ΛΛ=ΛΛ=P P P P P P AB ,1121112))((---ΛΛ=ΛΛ=P P P P P P BA . 而1221ΛΛ=ΛΛ,所以,BA AB =. 充分性设λαα=A ,0≠α.两边左乘B ,利用BA AB =,有 )()()(αλααB B A A B ==.若0≠αB ,由上式可知αB 也是A 的属于特征值λ的特征向量.由于A 的特征值两两不同,故属于特征值λ的线性无关的特征向量只有一个,因此α与αB 应成比例,即μαα=B ,即α为B 的特征向量;若0=αB ,则αα0=B )0(≠α,故α仍为B 的特征向量. 总之,A 的特征向量也是B 的特征向量.例24 已知矩阵A 与C 相似,矩阵B 与D 相似,证明分块矩阵 ⎪⎭⎫⎝⎛B OO A 与⎪⎭⎫⎝⎛D OO C 相似. 证 由条件知,存在可逆矩阵Q P ,使得 AP P C 1-=, BQ Q D 1-=. 取⎪⎭⎫⎝⎛=Q OO P X ,则X 可逆,且⎪⎪⎭⎫⎝⎛=---111Q O O P X.这时 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---Q OO P B OO AQ O O P X B OO A X111⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=--D OO C BQ Q OOAPP 11, 即⎪⎭⎫⎝⎛B O O A 与⎪⎭⎫⎝⎛D O O C相似. 例25 设 矩阵⎪⎪⎭⎫ ⎝⎛=d c b aA 为二阶实矩阵,且0>bc ,证明A 可与一对角矩阵相似.证 因A 的特征多项式 dcbaA E ----=-λλλ)()(2bc ad d a -++-=λλ,其判别式04)()(4)(22>+-=--+=∆bc d a bc ad d a 所以A 必有两个不同的特征值,故A 必可与一对角阵相似.练习题一.是非题1.( )A 是n 阶方阵,若有数λ与n 维列向量α满足λαα=A ,则λ是A 的特征值,α是A 的属于λ的特征向量.2.( )若21,αα是A 的分别属于21,λλ的特征向量,则21,αα一定线性无关.3.( )若21,αα是两个线性无关的特征向量,则它们一定是分别属于不同特征值的特征向量.4.( )若1α是A 的属于1λ的特征向量,则1αK 也是A 的属于1λ的特征向量.5.( )A 与T A 有相同的特征值和相同的特征向量.6.( )A 与T A 有相同的特征多项式.7.( )方程O X A E =-)(0λ的每一个解向量都是对应于特征值0λ的特征向量.8.( )若21,αα为方程O X A E =-)(0λ的一个基础解系,则2211ααc c +(,1c 2c 为非零常数)是A 的属于特征值0λ的全部特征向量.9.( )设21,αα为A 的二个特征向量,则2211ααc c +(21,c c 不全为零)也是A 的特征向量.10.( )若矩阵A ,B 有相同的特征多项式,则A ~B .11.( )若A ~B ,则存在唯一的可逆阵P ,使B AP P =-1. 12.( )若A ~B ,则A 与B 有相同的特征值. 13.( )若A ~B ,则A 与B 有相同的特征向量. 14.( )若A ~B ,则B E A E -=-T λλ.15.( )若A ~B ,则)(A E -λ~)(B E -λ.16.( )若矩阵A 有三重的特征值,则A 一定不能对角化. 17.( )若n 阶矩阵A 可对角化,则A 有n 个特征值.18.( )若n 阶矩阵A 可对角化,则A 有n 个线性无关的特征向量. 19.( )若n 阶矩阵A 可对角化,则T A 有n 个相异的特征值. 20.( )若n 阶矩阵A 可对角化,则A 有n 个不同的特征向量. 二.填空题1.设三阶矩阵A 的特征值为1-,1,2,则1-A 的特征值为 ,*A 的特征值为 ,)3(A E +的特征值为 .2.设三阶方阵A 有三个特征值1λ,2λ,3λ,如果36=A ,21=λ,32=λ则=3λ .3.已知矩阵⎪⎪⎪⎭⎫⎝⎛-=160420125A , 则A 的三个特征值的和是 ,积是 .4.已知三阶方阵A 有三个特征值1-,1,2,22)(2+-=x x x f ,则)(A f 的特征值是 ,=)(A f .5.设三阶矩阵O A =,则A 的全部特征向量为 .6.设A 为n 阶方阵,O AX =有非零解,则A 必有一个特征值是 .7.若A ~E ,则=A .8.若⎪⎪⎭⎫ ⎝⎛-x 123122与⎪⎪⎭⎫⎝⎛4321相似,则=x .9.若⎪⎪⎭⎫⎝⎛x y 3122与⎪⎪⎭⎫ ⎝⎛4321相似,则=x ,=y .10.设二阶实对称矩阵A 的特征值为1,2;对应于特征值1的特征向量为T-=)1,1(1α,则A 的对应于特征值2的特征向量=2α . 三.单项选择题1.设A 为n 阶方阵,以下结论中成立的是( ).(A )若A 可逆,则矩阵A 的属于特征值λ的特征向量也是矩阵1-A 的属于特征值λ1的特征向量(B )A 的特征向量即为方程O X A E =-)(λ的全部解 (C )A 的特征向量的线性组合仍为特征向量 (D )A 与T A 有相同的特征向量2.可逆矩阵A 与矩阵( )有相同的特征值. (A )T A (B )1-A (C )2A (D )E A +3.设⎪⎪⎪⎭⎫⎝⎛---=53342111a A ,且A的特征值为61=λ,232==λλ如果A 有三个线性无关的特征向量,则a 为( ).(A )2 (B )2- (C )4 (D )4- 4.与n 阶单位矩阵E 相似的矩阵是( ). (A )数量矩阵)1(≠K KE(B )对角矩阵Λ(主对角元素不为1) (C )E(D )任意n 阶可逆矩阵5.设B A ,均为n 阶矩阵,并且A ~B ,则下述结论中不正确的是( ). (A )A 与B 有相同的特征值和特征向量 (B )B A = (C ))()(B r A r = (D )1-A ~1-B6.已知矩阵A 相似于对角矩阵Λ,其中⎪⎪⎪⎭⎫ ⎝⎛=Λ300020001,则下列各矩阵中是可逆矩阵的为( ).(A )A E + (B )A E - (C )A E -2 (D )A E -37.设A ,B 为n 阶矩阵,且A 可逆,A ~B ,则下列结论中正确的是( ). (A )A 与B 有相同的特征向量 (B )A ,B 都相似于一个对角矩阵 (C )AB ~BA (D )BA AB = *8.下列矩阵中,不是正交矩阵的为( ).(A )⎪⎪⎭⎫ ⎝⎛1001(B )⎪⎪⎭⎫⎝⎛-θθθθcos sin sin cos (C )⎪⎪⎪⎪⎭⎫⎝⎛-23212123(D )⎪⎪⎪⎪⎭⎫⎝⎛-122221 四.计算题1.求矩阵A 的特征值和特征向量(1)⎪⎪⎪⎭⎫⎝⎛=122212221A ;(2)⎪⎪⎪⎭⎫⎝⎛----=101410213A ;(3)⎪⎪⎪⎪⎪⎭⎫⎝⎛=a a a A;(4)⎪⎪⎪⎭⎫ ⎝⎛---=031302120A .2.判断下列矩阵是否与对角矩阵相似,如果可与对角矩阵相似,试求出可逆矩阵P ,使AP P 1-为对角矩阵.(1)⎪⎪⎪⎭⎫ ⎝⎛---=6123020663A ; (2)⎪⎪⎪⎭⎫⎝⎛----=022242111A ; (3)⎪⎪⎪⎭⎫ ⎝⎛------=266157113A . 3*.设⎪⎪⎪⎭⎫⎝⎛-=124222421A ,求正交矩阵Q ,使得AQ Q 1-为对角形矩阵.4.设B AP P =-1,其中⎪⎪⎪⎭⎫ ⎝⎛-=100000001B ,⎪⎪⎪⎭⎫⎝⎛-=112012001P ,求A 和5A .5.设三阶矩阵A 的特征值为1,2,3,对应的特征向量分别为T =)1,1,1(1α,T=)1,0,1(2α,T =)1,1,0(3α,试求矩阵A .6*.设三阶实对称矩阵A 的特征值是1,2,3;属于特征值2,1的特征向量分别为T )1,1,1(1--=α,T )1,2,1(2--=α.(1)求属于特征值3的特征向量;(2)求矩阵A .7*.设三阶实对称矩阵A 的特征值11-=λ,132==λλ,A 的对应于1λ的特征向量为T =)1,1,0(1α,求A .8*.设二阶实对称矩阵A 的一个特征值为1,A 的对应于特征值1的特征向量为T )1,1(-.如果2-=A ,求:(1)A 的另一特征值和对应的特征向量; (2)正交矩阵AQ Q Q 1,-使为对角矩阵; (3)矩阵A . 五.证明题1.设0λ是n 阶矩阵A 的一个特征值,试证:(1)220A 是λ的特征值; (2)0λ-k 是矩阵A kE -的特征值 (k 为常数); (3)如果A 可逆,则11-A是λ的特征值;(4)如果A 可逆,则*AA是λ的特征值.2.若n 阶矩阵A 满足A A =2,则称A 为幂等矩阵.试证:幂等矩阵的特征值只能是1或零.3.设1λ,2λ为A 的两个不同的特征值,且21,αα分别是属于21,λλ的特征向量.试证21,αα线性无关.4.设2=λ是非奇异矩阵A 的一个特征值,则矩阵12)31(-A 有一特征值等于43.5*.设A 为正交矩阵,若1-=A ,试证明A 一定有特征值1-.6*.设A 为正交阵,试证明:A 的实特征向量所对应的特征值的绝对值等于1.7.设A ,B 均为n 阶矩阵,A ~B ,试证:k A ~k B (k 为正整数).8*.设A ,B 为两个实对称矩阵,证明:存在正交矩阵Q ,使B AQ Q =-1的充分必要条件是A ,B 具有相同的特征值.。
第五章:特征值与特征向量
(4)
从而
A 的特征值为: λ1 = trA = a1b1 + a2b2 + ⋯ + an bn ,
T
λ2 = λ3 = ⋯ = λn = 0 .
批注: (a1 , a2 ,..., an ) 为 (5) 若
A 各行的公比, (b1 , b2 ,..., bn ) 为 A 各列的公比.
A 的全部特征值 λ1 , λ2 ,⋯ , λn , f ( x) 是多项式,则:
第五章: 特征值与特征向量
一、 考试内容
矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质
矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵
二、 考试要求
1. 理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法. 2. 理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化 为相似对角矩阵的方法. 3. 掌握实对称矩阵的特征值和特征向量的性质.
) α
4、 n 阶方阵
A 具有 n 个不同的特征值是 A 与对角阵相似的(
(B)充分而非必要条件 (D)既非充分也非必要条件
)
(A)充分必要条件 (C)必要而非充分条件 5、设
A, B 为 n 阶矩阵,且 A 与 B 相似, E 为 n 阶单位矩阵,则(
83
)
(A) λ E
− A = λE − B (C) A 与 B 都相似于一个对角矩阵
A = AT ,
Aa1 = λ1a1 Aa2 = λ2a2
a1 ≠ 0 ⎫ T ⎬ 若 λ1 ≠ λ2 ⇒ a1 a2 = 0 a2 ≠ 0 ⎭
第五章 矩阵的特征值与特征向量
第五章矩阵的特征值与特征向量5.1矩阵的特征值与特征向量一、基本概念定义5.1设A 为n 阶矩阵,l 是一个数,如果存在n 维非零向量a ,使得A a la =,则称l 是A 的一个特征值,向量a 称为矩阵A 对应于特征值l 的特征向量.例如311,2,131A l a -æöæö===ç÷ç÷-èøèø可以验证31121213121A a -æöæöæöæö===ç÷ç÷ç÷ç÷-èøèøèøèø所以,2l =是A 的一个特征值,a 是A 对应于特征值2l =的特征向量。
特征值和特征向量的性质:如果a 是A 的对应于特征值l 的特征向量,则(0)k k a ¹也是A 的对应于l 的特征向量。
如果12,a a 都是A 的对应于特征值l 的特征向量,则1122(0)k k a a +¹也是A 的对应于l 的特征向量。
因为11221122()()A k k k k a a l a a +=+.由此可知A 的属于同一个特征值l 的有限个特征向量的非零线性组合仍然是矩阵A 的属于l 的特征向量。
注:矩阵A 的对应于一个特征值的特征向量有无限多个,但是A 的同一个特征向量不可能属于两个不同的特征值。
二、特征值和特征向量的计算由A 的特征值和特征向量的定义知A a la=或()0E A l a -=由于0a ¹,这说明a 是齐次线性方程组()0E A X l -=的非零解.根据齐次线性方程组有非零解的充要条件得到E A l -=这是一个关于l 的n 次方程,它的根与矩阵A 的特征值是一一对应的.所以我们有如下的定义.定义5.2设A 为n 阶方阵,含有未知量l 的矩阵E A l -称为A 的特征矩阵;特征矩阵的行列式E A l -是一个关于l 的n 次多项式,称为A 的特征多项式;0E A l -=称为A 的特征方程.特征方程的根也称为A 的特征根,其实就是A 的特征值。
第五章特征值(考研精讲)
第五章 特征值与特征向量1、数字型矩阵的特征值与特征向量知识点:定义:1º设n A 是阶方阵,如果存在数λ和非零向量x 使得x Ax λ=,则称λ是A 的特征值,称非零向量x 是属于λ的特征向量.2º由0)(,=-=x A E x Ax λλ得称x Ax λ=为A 的特征矩阵A E -λ为A 的特征多项式,它的根就是A 的特征值.求法:1)特征值:0=-A E λ2)特征向量:0)(=-x A E λ即求解线性方程组.注:属于同一个特征值的线性无关的特征向量为 )(A E n --λ秩.例1. ⎪⎪⎪⎭⎫ ⎝⎛----=163053064A 解:2)1)(2(163053064-+=-+--=-λλλλλλA E2、抽象矩阵的特征值与特征向量例2. 设3阶矩阵A 的三个特征值为1,-2,3,则=A -6 ,A-1的特征值为31,21,1- A *的特征值为 -6,3,-2A 2+2A+E 的可逆性 可逆 4,1,16 例3. 设2=λ是可逆矩阵A 的一个特征值,则矩阵1231-⎪⎭⎫ ⎝⎛A 有一个特征值为( 43 ). 例 4. 设向量()T n Tn b b b ),,,(,,,,2121 ==βαααα都是非零向量,且满足条件T T A αββα==记,0,求(1)A 2(2)矩阵A 的特征值和特征向量 例5. 设A 为3阶矩阵,且0322=+=+=-E A E A E A ,则=-E A 32* 解:A 为特征值为:323,2,1=∴--A 2,23,3:*--∴即λA A 7,6,3:32*---∴EA 11=1263、已知矩阵的特征值和特征向量来求矩阵和行列式等问题1)已知特征向量,一般用x Ax λ=求解2)已知全部特征值和特征向量反求矩阵A=),,(21n A ααα ),,(2211n n αλαλαλ则),,(2211n n A αλαλαλ =121),,(-n ααα3)已知部分特征值和特征向量,反求另一部分特征值,特征向量或矩阵A4)已知特征值反求行列式例6.设⎪⎪⎪⎭⎫⎝⎛--=b a A 6633331有特征值4,221=-=λλ,试求参数a,b 的值. 解:分析:用特征议程0=-A E λ可建立两个方程02=--A E 得0)4)(5(3266323333=-+=--------b a ba04=-A E 得0]72)2)(7[(3466343333=++-=------b a ba由①②得4,5=-=b a例7.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=a A 11121112可逆,向量⎪⎪⎪⎭⎫⎝⎛=11b α是A *的一个特征向量,λ是α对应的特征值,求a,b,λ. 解:αλαλααλααA A A A A A =⇒=⇒=)()(**由可逆,知λ≠0,从而αλαAA =. 即⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛111111121112b A b a λ. 得⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=+λλλA b a b A b A b 1223①②③①-②得 a=2①b -②得 b=1或b=-24211121112==A 故b A +=3λ 当1=b 时,1=λ;当42==λ时b例8.已知3,6321===λλλ是实对称矩阵A 的三个特征值,且对徉332==λλ的特征向量为⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=121,10132αα,求A 对应于λ1=6的特征向量及矩阵A解:设A 对应于λ1=6的特征向量()321,,x x x =α,由于A 实对称属于不同特征值正交故⎩⎨⎧=+-==⇒=+-02032132131x x x x x x x x 故()T T Tx x x x )1,1,1(,)1,1,1(,,11321===αα取 ∴属于λ1=6的特征向量为αk进一步 ())3,3,6(,,321321αααααα=A故⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=-4111411141112011113366063361A4、矩阵相似和对角化的题目(2000,2001,2002,2003,2005,2007)知识点:1º相似矩阵具有相同的特征多项式2º矩阵A 可对角化的充要条件且属于A 的特征值i x 的线性无关的特征向量个数之和有于n 。
大学线性代数第五章第一节矩阵的特征值与特征向量
在解决实际问题时,特征值和特征向量可以帮助我们理解数据的变化趋势和模式,例如在图像处理、信 号处理等领域有广泛应用。
在矩阵分解中的应用
01
矩阵分解是将一个复杂的矩阵 分解为几个简单的、易于处理 的矩阵,例如三角矩阵、对角 矩阵等。
矩阵的分解,如三角分解、 QR分解等,都涉及到特征值 和特征向量的应用,它们是构 造这些分解的基础。
02
矩阵的特征值与特征向量的定义
特征值的概念
特征值是指一个矩阵在某个非零常数倍下的不变性,即当矩阵A 乘以一个非零向量x得到0时,称该非零向量x为矩阵A的对应于 特征值λ的特征向量。
特征值可以通过求解矩阵的特征多项式得到,即|λE-A|=0。
密切的关系。
02
特征值和特征向量的关系可以通过矩阵的行列式、转
置、共轭等运算得到进一步的理解。
03
特征值和特征向量的关系性质在解决实际问题中具有
广泛的应用,如信号处理、控制系统等领域。
05ห้องสมุดไป่ตู้
矩阵特征值与特征向量的应用
在线性变换中的应用
矩阵特征值与特征向量是线性变换的一个重要工具,它们可以描述一个线性变换对一个向量空间的影 响。
特征值和特征向量在解决线性方程组、矩阵的相似变换、矩阵的 分解等领域有广泛应用。
矩阵特征值与特征向量的重要性
在解决线性方程组时,特征值 和特征向量可以提供一种有效 的解法,特别是对于一些特殊 类型的线性方程组。
在矩阵的相似变换中,特征值 和特征向量是确定相似变换的 关键,有助于理解矩阵的性质 和行为。
大学线性代数第五章第一节矩 阵的特征值与特征向量
第五章 求矩阵特征值和特征向量
第五章 求矩阵特征值与特征向量n 阶方阵A 的n 个特征值就是其特征方程det()0λ-=A I的n 个根,方程A 属于特征值λ的特征向量x 是线性方程组λ=A x x的非零解。
本章讨论求方阵A 的特征值和特征向量的两个常用的数值方法。
以及求实对称矩阵特征值的对分法。
5.1 幂 法在实际问题中,矩阵的按模最大特征根起着重要的作用。
例如矩阵的谱半径即矩阵的按模最大特征根的值,它决定了迭代矩阵是否收敛。
本节先讨论求实方阵的按模最大特征根的常用迭代法:幂法。
5.1.1幂法的基本思想幂法是求实方阵A 按模最大特征值及其特征向量的一种迭代方法。
它的基本思想是:先任取非零初始向量0x ,然后作迭代序列1k k +=x A x ,0,1,k =⋅⋅⋅ (5。
1)再根据k 增大时,k x 各分量的变化规律:按模最大的特征向量会愈来愈突出,从而可求出方阵A 的按模最大特征值及其特征向量。
先看一个计算实例。
例1 设矩阵1221⎛⎫=⎪⎝⎭A 用特征方程容易求得A 的两个特征值为11-=λ,32=λ下面用幂法来计算,取初始向量()01,0T=x ,计算向量序列 1k k +=x A x ,0,1,k =⋅⋅⋅ 具体结果如表5.1所示.表5.1 幂法计算结果k()1k x()2k x0 1 01 2 3 1 5 13 2 4 14 4 5 6 741 121 365 109340 122 364 1094考察两个相邻向量对应分量之比:5)1(1)2(1=xx ,6.2)2(1)3(1=xx ,(4)1(3)13.154x x=,(5)1(4)12.951x x=,(6)1(5)13.016x x=,(7)1(6)12.994x x=2)1(2)2(2=x x ,5.3)2(2)3(2=x x ,(4)2(3)22.857x x =,(5)2(4)23.05x x =,(6)2(5)22.983x x =,(7)2(6)23.005x x =由上面计算看出,两相邻向量对应分量之比值,随k 的增大而趋向于一个固定值3,而且这个值恰好就是矩阵A 的按模最大的特征值。
第五章特征值与特征向量
设 λ1, λ2 是A的特征值,则
推论 A可逆的充要条件是A的所有特征值
|A|= λ1 λ2… λn
都不等于零.
特征值的其他简单性质:
一般地,定理5.1.3
1. 若λ是矩阵A的一个特征值,则
设λ是方阵A的特征值, 则
(1) kλ是矩阵kA的一个特征值;
f (λ)是f(A)的特征值.
对于 2I-A=
求方程组(2I-A)x = O的非零解.
同解方程组: x1= -x2+x3 令
得到方程组的基础解系:
每个都是A的特征向量.
对应于λ2=λ3=2的全部特征向量:c1v21+c2v22
其中,c1, c2不全为零.
命题1 任一 n 阶方阵在复数域内都有 n 个特征根.
命题2 若x是A的对应于特征值λ的特征向量,则kx(k≠0)也是 A的对应于λ的特征向量;
= 2λ
Ax = λx (1)
λx -Ax = O
(λI -A)x = O (2)
齐 次 线 性 方 程 组
(3)
矩阵A的对应于λ的特征向量就是方程组(3)或(2)的非零解.
定义5.1.2
为A的特征方程.
λI–A为A的特征矩阵, |λI-A|(λ的n次多项式)称为A的特征多项式.
特征方程的根叫做A的特征根,即A的特征值.
即是矩阵A的对应于特征值λi的特征向量.
例1
解: 矩阵A的特征多项式为
-2 -2
-3
-1
令| λI-A|=0得A的特征值为 :
3I-A=
0 -1 1 -1 00
对应于特征值λ1=3的全部特征向量:
令x3=1得基础解系. 是属于
λ1=3的 一个特
线性代数(慕课版)第五章 矩阵的特征值与特征向量
解得x 4.
故应填 4
14
有关特征值的性质
性质5.2 矩阵A与AT 有相同的特征值.
证 AT E ( A E)T A E
性质5.3 设A 是n 阶可逆矩阵, 为其特征值,则(1) 0;
(2) 1 是A1 的特征值.
证 (1) 假设 0,则由定义知A 0 0.
而矩阵A可逆,故上式两端同时左乘A1 得 A10 0.
(1) 12 n A ; (2) 1 2 n a11 a22 ann.
定义5.2 设矩阵A aij nn ,称a11 a22 ann为矩阵A 的迹.
7 4 1
例1
已知三阶矩阵A
4
7 1 有特征值1 2 3,
4 4 x
3 =12,则x ______ .
解 1 2 3 a11 a22 a33, 即3 3 12 7 7 x,
这与特征向量 0矛盾,故 0.
(2) 由条件知有非零向量 满足A ,两边左乘以A1 得 A1
因 0,于是有 A1 1 ①
所以 1 为A1的特征值.
15
有关特征值的性质
性质5.4 若是A 的特征值,则f ()是f ( A) 的特征值.
代数多项式 f (x) am xm am1xm1 a1x a,0 矩阵多项式 f ( A) am Am am1Am1 a1A a0E. 例2 已知三阶矩阵A 的特征值 1,1,2,求 A3 5A2 .
7
特征值与特征向量的定义
2 1 1
求矩阵的特征值与特征向量:A
0
2 0.
4 1 3
对2 3 2,解方程组( A 2E) X 0,
4 1 1 4 1 1
A
2E
0
0
0
五章矩阵的特征值和特征向量ppt课件
,n
的列(行)
向量都是单位向量且两两正交.
由此可知A的列向量组构成 Rn的 一个标准正交基。
同样的方法,行向量组也是。
例3 判别下列矩阵是否为正交矩阵.
1
1 1
2
1 2 1
1 3 1 2,
1 3 1 2 1
解 (2)由于
1
9 8
8 9 1
4
9 4
1
9 8
9 9
4 9
4 9
9 7 9
1 1
,
e2
2 2
,
,er
r r
,
那么 e1, e2 , , er为W的一个标准正交基 .
上述
由线
性无关
向量
组1
,,
构造
r
出正交
向量组1,, r的过程,称为施密特正交化过程 .
例1 用施密特正交化方法,将向量组
a1 (1,1,1,1)T , a2 (1, 1, 0, 4)T , a3 (3, 5,1, 1)T
9 4
9
所以它是正交矩阵.
2
1
9 8
8 9 1
4
9 4
.
9 9 9
4 9
4 9
7 9
8 9 1
4
9 4
T
1 0
0 1
0 0
9 4
9
9 7
9
0
0
1
提示:此法为 定义法,利用定理3如何证明?
定理2 设A, B皆是n阶正交矩阵,则
1 A 1或1
2 AT 即A1 也是正交矩阵.
A1 x 1 x 故 1是矩阵A 1的特征值, 且x是A 1对应于 1
线性代数 第五章第一节 矩阵的特征值与特征向量
第一步:写出矩阵A的特征方程,求出全 部特征值(注明重数).
解
l 1 1 lE A 1 l 1 (l 2)( l 1) 2 1 1 l
l 代入齐次线性方程组
所以A的特征值为 l1 2, l2 l3 1.
第二步:对每个特征值
2 1 1 2 1 1 2 E A 1 2 1 1 2 1 1 1 2 0 0 0
A l E x 0, 求基础解系。 当l1 2 时,解方程组 (2 E A) x 0 . 由
1 1ቤተ መጻሕፍቲ ባይዱ
故l0 是矩阵A 的特征值, 且X 0是A
1
1
1
对应于l0 的特征向量.
1
如何求得矩阵A的特征值和特征 向量呢? 式子AX=lX(lE-A)X=0. 由于X是非零向量, 故齐次线性方 程组(lE-A)X=0有非零解, 而这等 价于 |λE-A|=0.
定义 称
为A的特征多项式, 它是以l为未知数的一 元n次多项式, 也记为f(l). 称|lEA|=0为A的特征方程. λE-A称为A的 特征矩阵。
若l0,使得 A(X 1 X 2) l0 X 1 X 2) (
则有
(l1 l0)X 1 l2 l0)X 2 0 (
A左乘 λ1左乘
式两端:l1 l0)l1 X 1 l0 l2)l2 X 2 0 ( ( ( ( 式两端:l1 l0)l1 X 1 l0 l2)l1 X 2 0
(l0 l2)l2 X 2 l0 l2)l1 X 2 (
l2 l1 , X 2 0
l0 l2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 矩阵的特征值与特征向量
5.1矩阵的特征值与特征向量
5.1.1矩阵的特征值与特征向量的概念
设A 是n 阶矩阵,若存在数λ及非零的n 维列向量α,使得:λαα=A (0≠α)成立,则称λ是矩阵A 的特征值,称非零向量α是矩阵A 属于特征值λ的特征向量.
5.1.2矩阵的特征值与特征向量的求法
把定义公式λαα=A 改写为()0=-αλA E ,即α是齐次方程组()0=-x A E λ的非零解.根据齐次方程组有非零解的充分条件可得:0=-A E λ.
所以可以通过0=-A E λ求出所有特征值,然后对每一个特征值i
λ,分别求出齐
次方程组()0=-x A E i λ的一个基础解系,进而再求得通解.
【例5.1】求⎥⎥⎥
⎦
⎤
⎢⎢⎢⎣⎡------=324262423A 的特征值和特征向量.
解:根据()()0273
2
4
26
24
23
2
=+-=---=
-λλλλλλA E ,可得71=λ,22-=λ. 当7=λ时,⎥⎥⎥
⎦
⎤
⎢⎢⎢⎣⎡≅
⎥⎥⎥
⎦⎤⎢⎢⎢⎣⎡=-0000002124242124247A E ,
所以()07=-x A E 的一个基础解系为:()T 0,2,11-=α,()T 1,0,12-=α,则相应的特征向量为2211ααk k +,其中21,k k 是任意常数且()()0,0,21≠k k .
当2-=λ时,⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡--≅
⎥⎥⎥
⎦
⎤⎢⎢⎢⎣⎡---=--00012014152428242
52A E ,所以()02=--x A E 的一个基础解系为()T
2,1,23=α,则相应的特征向量为33αk ,其中3k 是任意常数且
03≠k .
5.1.3矩阵的特征值与特征向量的性质
(1)特征值的和等于矩阵主对角线上元素之和,特征值的积等于A ; (2)n 阶矩阵A 和T A 有相同的特征值;
(3)若λ是矩阵A 的特征值,则对任何正整数k ,k λ是k A 的特征值;
(4)属于不同特征值的特征向量是线性无关的,并且当i λ是矩阵A 的k 重特征值
时,矩阵A 属于i λ的线性无关的特征向量的个数不超过k 个.
5.2相似矩阵
5.2.1相似矩阵的概念
设A ,B 是n 阶矩阵,如存在可逆矩阵P ,使B AP P =-1,则称矩阵A 和B 相似,记为B A ~.
5.2.2相似矩阵的性质 若B A ~,则:
(1)A ,B 有相同的特征值;
证:由于A 与B 相似,所以必有可逆矩阵,使B AP P =-1,
那么()A E P A E P P A E P AP P EP P B E -=-=-=-=-----λλλλλ1
111.
所以A ,B 有相同的特征值. (2)B A ≅; (3)B A =;
(4)相似矩阵都可逆或都不可逆,当它们可逆时,它的逆矩阵一定相似; (5)T T B A ~;
(6)当C B ~时,C A ~. 5.3矩阵的相似对角化
5.3.1矩阵可相似对角化的概念
如果n 阶矩阵A 与对角矩阵Λ相似,则称A 可以相似对角化,记为Λ~A ,并称
Λ是A 的相似标准型.
5.3.2矩阵可相似对角化的性质
(1)n 阶矩阵A 可相似对角化的充要条件为: ①矩阵A 有n 个线性无关的特征向量;
②每个i k (1≥i k )重特征值i λ对应i k 个线性无关的特征向量.;
(2)设可逆矩阵()n P ααα,,,21 =,且⎥⎥⎥⎥
⎦
⎤⎢⎢⎢
⎢
⎣
⎡=-n AP P λλλ
2
11
,则列向量i
α是
矩阵A 属于特征值i λ的特征向量. 5.3.3实对称矩阵的特征 (1)实对称矩阵必可对角化;
(2)特征值全是实数,特征向量都是实数; (3)不同特征值的特征向量互相正交;
证:设1λ,2λ是对称矩阵A 的两个特征值,1P ,2P 是对应的特征向量,则:
111Ap P =λ,222Ap P =λ,21λλ≠.
因为A 对称,即T A A ≠,
所以()()A P A P AP P P T
T T T T T 1111111====λλ,同理A P P
T T 222=λ, 于是()21222121211P P P P AP P P P T T T T λλλ===, 所以()02121=-P P T λλ,
又因为21λλ≠,所以021=P P T
,则1P 和2P 正交.
【例5.2】设矩阵⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡---=24242221a A 的特征值有重根,试求正交矩阵Q ,使AQ Q T 为对角形.
解:()()()[]
0203322
=+--+-=-a a A E λλλλ,
由于()()()222033k a a -≠+--+λλλ,所以只能2=λ是特征重根, 于是必有2=λ使得()()020332=+--+a a λλ成立, 即:()()02033222=+--+a a ,得2-=a , 从而得到矩阵A 的特征值221==λλ,73-=λ.
对于2=λ,由()02=-x A E ,()⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-≅⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-0000002214424422212A E , 所以得到线性无关的特征向量()T 0,1,21-=α,()T 1,0,22=α. 用Schmidt 正交化方法先正交化,有:
()T
0,1,211-==αβ,()()()T
5,4,25
1,,1111222=-
=ββββααβ.
再将1β,2β单位化,得:
()T 0,1,251
111-=
=
ββγ,()T 5,4,25
31222==ββγ. 对于7-=λ,由()07=--x A E ,()⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡--≅⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------=--0001104525424522287A E , 所以得到特征向量()T
2,2,13-=α,单位化为:()T
2,2,13
1333-==
ααγ. 那么,令()⎥⎥⎥⎥
⎥⎥⎦
⎤⎢⎢⎢⎢
⎢⎢⎣
⎡--
==325
3503253451
3153252,,321γγγQ , 则有⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-==-7221
AQ Q AQ Q T .。