初一数学第一二单元练习题
初一数学一二单元测试题
初一数学一二单元测试题一、选择题1. 下列哪个小数是负数?A. 0.25B. -1.5C. 3.8D. 2.62. 如果a = -5,b = 3,c = 2,那么a + b - c的值是多少?A. -6B. -4C. 0D. 43. 在数轴上,数-2与2中间有多少个整数?A. 0B. 1C. 2D. 34. 已知奇数n与偶数m相加的结果是奇数,那么n乘以m的结果是奇数还是偶数?A. 奇数B. 偶数5. 一根绳子长7/8米,要截取其中的1/4,截取下来的绳子长度是多少米?A. 1/32B. 1/8C. 7/32D. 7/64二、填空题1. -12÷4=____2. |-8|+5=____3. 7/9 + 1/9 =____4. 化简:3/4 + 1 1/2 =____5. 化简:5/6 × 2/3 =____三、解答题1. 小明家庭一共用了75度电。
如果他们用了3天,每天用电相同,那么每天用了多少度电?答:75 ÷ 3 = 25度电2. 某汽车从A地到B地需要3小时,从B地到A地需要4小时。
求两地的距离,已知汽车的速度不变。
答:假设汽车的速度为x公里/小时,则从A到B的距离为3x公里,从B到A的距离为4x公里。
根据题意,3x = 4x,解得x = 0,因此无解。
3. 在一张长方形桌子的角上放了一个特殊的方块,角上的三个数相加等于30,而且相邻两个数的和等于15。
求长方形桌子的边长。
答:设长方形桌子的边长为x,对角上的三个数分别为a、b、c。
根据题意,a + b + c = 30,a + b = 15,b + c = 15。
将第二个式子代入第一个式子得:a + (a + 15) = 30,化简得2a = 15,解得a = 7.5。
将a的值代入第三个式子得:(7.5 + 15) + c = 30,化简得c = 7.5。
因此,长方形桌子的边长为15米。
4. 某商场举办五一特惠活动,原价为120元的商品打7折,原价为80元的商品打9折,原价为200元的商品打5折,小明购买了1件120元的商品、2件80元的商品和3件200元的商品,请计算他一共花了多少钱?答:打折后,120元的商品价格为120 × 0.7 = 84元,80元的商品价格为80 × 0.9 = 72元,200元的商品价格为200 × 0.5 = 100元。
人教版初一七年级数学第二单元整式的加减单元测试题4套
第二单元 整式的加减 单元测试题1一、选择题:(本大题共10个小题,每小题4分,共40分) 1. 12-的倒数是( ) A .2 B .2- C .12 D .12- 2. 如下图,在数轴上表示到原点的距离为3个单位的点有( )A .D 点B .A 点C .A 点和D 点 D .B 点和C 点3. 下列计算结果正确的是( )A.257x y xy +=B.235224a a a += C.22431a a -= D.2222a b a b a b -+=- 4.其中温差最大的是( )A .1月1日B .1月2日C .1月3日D .1月4日5. 关于x 的方程172mx +=0是一元一次方程,则m 的值是( ) A .1 B .-1 C .1或-1 D .06. 甲车队有汽车56辆,乙车队有汽车32辆,要使两车队汽车一样多,设由甲队调出x 辆汽车给乙队,则可得方程 ( )A.56+x =32-xB.56-x =32+xC.56-x =32D.32+x =56 7. -(n m -)去括号得 ( )A .n m - B.n m -- C.n m +- D.n m + 8. 下列方程中,解为x=-2的方程是( )A .2x+5=1-xB .3-2(x -1)=7-xC .x -5=5-xD .1-14x=34x 9. 下列变形中,正确的是( )A.若ac=bc ,则a=b.B.若cbc a =,则a=b.C.若a =b ,则a=b. D.若a 2=b 2,则a=b. 10. 若代数式22x +3y -7的值为8,则代数式42x +6y +10的值为( )A.40B. 30C. 15D.25 二、填空题:(本大题共10个小题,每小题3分,共30分)11. 化简:85a a -= . 12. 单项式2345x y -的系数是__________,次数是___________. 13.2010年10月1日下午18时59分57秒,中国探月二期工程先导星“嫦娥二号”在西昌点火升空,并准确入轨.“嫦娥二号”的飞行速度是54000千米/时,用科学记数法表示它的飞行速度为 千米/时.14.若3x =是关于x 的方程20x a +=的解,则a = . 15. 若21x +与5x -互为相反数,则x = . 16. 若25(3)0m n -++=,则m n += . 17.定义新运算:我们定义cadb=ad -bc ,例如42 53=2×5-3×4=-2.则=-5243 (填最后的结果).18. 今年11月12日~14日,CBA 季前赛的部分比赛在铜梁金龙体育馆举行,某单位有名同志去看比赛,购甲、乙两种票共用去3700元,甲种票每张100元,乙种票本每张50元.设某单位购买了甲种票张,由此可列出方程: . 19. 按如下规律摆放三角形:则第(4)堆三角形的个数为______ __;第(n )堆三角形的个数为__________.20. 某超市对顾客实行优惠购物,规定如下:若一次购物少于200元,则不予优惠;若一次购物满200元,但不超过500元,按标价给予九折优惠;若一次购物超过500元,其中不超过500元部分给予九折优惠,超过500元部分给予八折优惠。
初一下册数学__第一二单元测试
初一下学期数学第二章测试班级 姓名 学号一:单项选择(共12题,每题3分,共36分) 1.下图中,∠1和∠2是同位角的是( )A .B .C .D .2.点A(-4,-7.8)在第( )象限A: 1 B: 2 C:3 D: 4 3. 邻补角是( )A. 和为180°的两个角B. 有公共顶点且互补的两个角C. 有一条公共边且相等的两个角D. 有公共顶点且有一条公共边,另一边互为反向延长线的两个角4.点B(7,-5)到X 轴,Y 轴的距离分别为( ) A: 5,7 B: 7,5 C: 0,0 D:7,-55. 如图6,属于内错角的是( )A. ∠1和∠2B. ∠2和∠3C. ∠1和∠4D. ∠3和∠46. 如图5,已知ON ⊥l, OM ⊥l , 所以OM 与ON 重合,其理由是( )A. 过两点只有一条直线B. 经过一点有且只有一条直线垂直于已知直线C. 垂线段最短D. 过一点只能作一条垂线 7 .点A(,)关于轴对称的点的标是 ( ) A (,) B (,) C (, ) D (,)8.如图(2)所示,∥,AB ⊥,∠ABC=130°,那么∠α的度数为( )l图5OM N2134图6A .60°B .50°C .40°D .30°9. 在直角坐标系中,点P(,)关于轴对称的点P 1的坐标是 ( )A(,) B(,) C(, ) D(,)10.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,则两次拐弯的角度可以是( )A .第一次向右拐40°,第二次向左拐140°B .第一次向左拐40°,第二次向右拐40°C .第一次向左拐40°,第二次向右拐140°D .第一次向右拐40°,第二次向右拐40°11、在直角坐标系内顺次连结下列各点,不能得到正方形的是( ) A 、(-2,2) (2,2) (2,-2) (-2,-2) (-2,2); B 、(0,0) (2,0) (2,2) (0,2) (0,0); C 、(0,0) (0,2) (2,-2) (-2,0) (0,0); D 、(-1,-1) (-1,1) (1,1) (1,-1) (-1,-1)。
测试题单元测试初一数学第二单元测试题
测试题单元测试初一数学第二单元测试题测试题:单元测试——初一数学第二单元第一部分:选择题(共40分,每小题2分)1. 下列哪个数是无理数?A. 2.5B. 0.75C. √6D. 3/42. 在数轴上表示数 -2.7 时,其坐标点的位置在:A. -2的右侧B. 0的左侧C. -2的左侧D. -3的右侧3. 以下哪种关系符号在数轴上表示两个数的大小?A. <B. >C. =D. <=4. 当a=3,b=-4时,下列哪个式子成立?A. a+b=7B. a-b=1C. a*b=-12D. a/b=-3/45. 已知长方形的长是5 cm,宽是3 cm,它的面积是:A. 8 cm²B. 12 cm²C. 15 cm²D. 25 cm²第二部分:填空题(共30分)1. 2.5是一个______数。
2. 两条互相垂直的直线的斜率之积为______。
3. 在△ABC中,若∠C=90°,BC=5 cm,AC=3 cm,则AB的长度为______ cm。
4. 已知一个矩形的面积是12 cm²,宽度为2 cm,求其长度为______ cm。
5. 已知一个长方体的长、宽、高分别是4 cm、3 cm、2 cm,则其体积为______ cm³。
第三部分:解答题(共30分)1. 简答题:什么是最简形式?请举一个例子说明。
2. 计算题:已知三角形的底边长为4 cm,高为3 cm,请计算其面积并保留一位小数。
3. 解方程:求方程2x + 5 = 13的解。
4. 计算题:若一个矩形的宽度是3 cm,面积是15 cm²,求其长度并保留两位小数。
5. 推理题:已知三角形ABC和三角形DEF的对应边比例分别为AB:DE = 3:2,AC:DF = 4:3,求证三角形ABC与三角形DEF相似。
答案:第一部分:选择题1. C2. C3. A4. B5. B第二部分:填空题1. 有理2. -13. 44. 65. 24第三部分:解答题1. 最简形式是指分子与分母没有共同的约数,即无法再进行约分的形式。
初一数学一二单元加减计算题
初一数学一二单元加减计算题摘要:1.初一数学一二单元加减计算题概述2.加法运算规则与示例3.减法运算规则与示例4.混合运算规则与示例5.解题技巧与注意事项6.练习题目与答案正文:一、初一数学一二单元加减计算题概述初一数学一二单元加减计算题主要涉及有理数的加法和减法运算,这是初中数学的基础知识,对于学生掌握运算技巧和培养解题能力具有重要意义。
本文将对加减法运算规则进行详细讲解,并给出一些典型示例和解题技巧,最后提供一些练习题目供同学们巩固所学知识。
二、加法运算规则与示例1.同号相加:两个正数或两个负数相加,取相同的符号,并把绝对值相加。
例如:2 + 3 = 5,-2 + -3 = -52.异号相加:一个正数与一个负数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
例如:2 + (-3) = -1,-2 + 3 = 13.加法交换律:a + b = b + a4.加法结合律:(a + b) + c = a + (b + c)三、减法运算规则与示例1.有理数减法可以转化为加法:a - b = a + (-b)2.减法运算规则与加法类似,同样遵循同号相加、异号相加的原则。
3.减法运算示例:5 - 3 = 2,-5 - (-3) = -5 + 3 = -2四、混合运算规则与示例1.先进行乘除运算,后进行加减运算。
例如:2 + 3 ×4 = 2 + 12 = 14,5 - 2 ÷2 = 5 - 1 = 42.乘除运算遵循乘法分配律和除法的倒数原则。
例如:(2 + 3) ×4 = 2 ×4 + 3 ×4 = 8 + 12 = 20,5 ÷(2 + 3) = 5 ÷5 = 1五、解题技巧与注意事项1.认真审题,理解题意,找出题目中的已知条件和待求解的问题。
2.善于运用运算定律简化计算过程。
3.注意运算顺序,遵循先乘除后加减的原则。
初一第二单元数学题
初一第二单元数学题一、选择题(每题3分,共30分)1. 下列式子中,是单项式的是()- A. x + y- B. (1)/(x)- C. π r^2- D. 2x - y- 解析:单项式是由数与字母的积组成的代数式或是单个的数或字母。
A选项x + y是多项式;B选项(1)/(x)是分式,不是单项式;C选项π r^2是数π与字母r的平方的积,是单项式;D选项2x - y是多项式。
所以答案是C。
2. 单项式-frac{2x^2y}{3}的系数和次数分别是()- A. -(2)/(3),3- B. (2)/(3),3- C. -(2)/(3),2- D. (2)/(3),2- 解析:单项式中的数字因数叫做单项式的系数,所以-frac{2x^2y}{3}的系数是-(2)/(3)。
单项式的次数是所有字母的指数和,x的指数是2,y的指数是1,所以次数是2 + 1=3。
答案是A。
3. 多项式3x^2-2x - 1的各项分别是()- A. 3x^2,2x,1- B. 3x^2, - 2x, - 1- C. -3x^2,2x,1- D. -3x^2, - 2x, - 1- 解析:在多项式中,每个单项式叫做多项式的项,所以多项式3x^2-2x - 1的各项分别是3x^2,-2x,-1。
答案是B。
4. 下列运算正确的是()- A. a^2+a^3=a^5- B. a^2· a^3=a^6- C. (a^2)^3=a^6- D. (ab)^2=ab^2- 解析:A选项,a^2与a^3不是同类项,不能合并;B选项,a^2· a^3=a^2 + 3=a^5≠ a^6;C选项,(a^2)^3=a^2×3=a^6,正确;D选项,(ab)^2=a^2b^2≠ ab^2。
所以答案是C。
5. 若x = 2,则代数式x^2-1的值为()- A. 1- B. 3- C. 5- D. 7- 解析:当x = 2时,x^2-1=2^2-1 = 4 - 1=3。
年七年级人教版数学下册第一二单元练习题(答案)
1实数参考答案一、选择题1.B 2.C 3.A 4.A 5.B 6.D 7. C 8.D二、填空题9.3± 10.5± 11.3 12.2或3 13.-2 14.1 15.2x 16.01.1± 17.81 18. 2010三、解答题19.解: 有理数集合: {-1112..0.23,3.14 …} 无理数集合,-4π…} 负实数集合:{-11124π…} 20.解:(1)-2 (2)=5- (3) 24-21.(1)解:56±=x (2)0=x 22.解:由a +b =0, cd =1得022=+b a 原式=0-1=-1.23.解:11=x24.解:(1)n n -+1(2)原式=)99100()24()23()12(-++-+-+- = 99100342312-++-+-+-=110- = 925.解:设在定价销售额为40010000⨯元的情况下,采用打折销售的实际销售金额为1W 元,采用有奖销售的实际销售金额为2W 元,由题意有140010000953800000W =⨯⨯=%(元),240010000(230001010002030010010020050500010)W =⨯-⨯+⨯+⨯+⨯+⨯+⨯ 3908000=(元), 比较知:21W W >. 在定价销售额相同的情况下,实际销售额大,收益就大,∴就商场的收益而言,选用有奖销售方式,更为合算.26. 解:(1)点B 坐标是(33,3);(2)向左平移3个单位长度后,各点的纵坐标不变,横坐标都减少3,所以A ′(O, 3)、B ′(23,3)、C ′(3,0),O ′(-3,0).(3)平行四边形的面积为23·3=2(3)2=2×3=6.。
(必考题)七年级数学上册第二单元《整式加减》-解答题专项经典练习题(含答案解析)(1)
一、解答题1.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,中间是边长为(a+b)米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化,(1)绿化的面积是多少平方米?(用含字母a、b的式子表示)(2)求出当a=20,b=12时的绿化面积.解析:(1)(5a2+3ab)平方米;(2)2720平方米【分析】(1)根据割补法,用含有a,b的式子表示出整个长方形的面积,然后用含有a,b的式子表示出中间空白处正方形的面积,然后两者相减,即可求出绿化部分的面积.(2)将a=20,b=12分别代入(1)问中求出的关系式即可解决.【详解】解:(1)(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣(a2+2ab+b2)=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,答:绿化的面积是(5a2+3ab)平方米;(2)当a=20,b=12时5a2+3ab=5×202+3×20×12=2000+720=2720,答:当a=20,b=12时的绿化面积是2720平方米.【点睛】(1)本题考查了割补法,多项式乘多项式和完全平方式的运算法则,解决本题的关键是正确理解题意,能够熟练掌握多项式乘多项式的运算法则.(2)本题考查了整式的化简求值,解决本题的关键是熟练掌握整式的运算法则和步骤.2.生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条x,分别回答下列的反面):如果由信纸折成的长方形纸条(图①)长为26cm,宽为cm问题:(1)为了保证能折成图④的形状(即纸条两端均超出点P ),试求P 的取值范围. (2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P 的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M 与点P 的距离(用P 表示) 解析:(1) x <5.2(2) 13-1.5x【详解】分析:(1)按图中方式折叠后可得到除去两端,纸条使用的长度为5x ,那么纸条使用的长度应大于0,小于纸条总长度.(2)是轴对称图形,那么AM=AP+x .解答:解:(1)由折纸过程可知0<5x <26,∴0<x <5.2.(2)∵图④为轴对称图形,∴AM=2652x -+x=13-1.5x , 即点M 与点A 的距离是(13-1.5x )cm . 点评:本题考查学生的动手操作能力,难点是得到纸条除去两端使用的纸条的长度. 3.如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积.解析:(1)22111222a ab b ++;(2)492【分析】(1)阴影部分为两个直角三角形,根据面积公式即可计算得到答案;(2)将3a =,5b =代入求值即可.(1)()21122a a b b ⨯++, 22111222a ab b =++; (2)当3a =,5b =时,原式221113355222=⨯+⨯⨯+⨯492=. 【点睛】 此题考察列式计算,根据图形边长正确列式表示图形的面积即可.4.窗户的形状如图所示(图中长度单位:cm ),其中上部是半圆形,下部是边长相同的四个小正方形. 已知下部小正方形的边长是acm.(1)计算窗户的面积(计算结果保留π).(2)计算窗户的外框的总长(计算结果保留π).(3)安装一种普通合金材料的窗户单价是175元/平方米,当a=50cm 时,请你帮助计算这个窗户安装这种材料的费用(π≈3.14,窗户面积精确到0.1).解析:(1)2214a +a 2π;(2)6a a π+;(3)245.【分析】(1)根据图示,窗户的面积等于4个小正方形的面积加上半径是a 的半圆的面积;(2)根据图示,窗户外框的总长就是用3条长度是2acm 的边的长度加上半径是acm 的半圆的长度;(3)根据窗户的总面积,代入求值即可.【详解】 解:(1)窗户的面积为:()()222214a a 422a a a cm ππ⎛⎫⨯+=+ ⎪⎝⎭ (2)窗户的外框的总长为:()()132a 262a a a cm ππ⨯+⨯=+ (3)当a=50cm ,即:a=0.5m 时,窗户的总面积为:()2220.540.5128m ππ⎛⎫⨯+=+ ⎪⎝⎭ 取π≈3.14,原式=1+0.3925≈1.4(m 2)安装窗户的费用为:1.4×175=245(元).本题考查的知识点是求组合图形的面积与周长,将已知图形分解为所熟悉的简单图形是解此题的关键.5.化简并求值:已知2232A a b ab abc =-+,小明错将“2A B -”看成“2A B +”,算得结果22434C a b ab abc =-+.(1)计算B 的表达式;(2)小强说正确结果的大小与c 的取值无关,对吗?请说明理由.(3)若18a =,15b = ,求正确结果的代数式的值. 解析:(1)2222a b ab abc -++;(2)小强的说法对,正确结果的取值与c 无关,理由见解析;(3)0.【分析】(1)由2A+B=C 得B=C-2A ,将C 、A 代入根据整式的乘法计算可得B ;(2)将A 、B 代入2A-B ,根据整式的加减运算法则进行化简,由化简后的代数式中无字母c 可知其值与c 无关;(3)将a 、b 的值代入计算即可.【详解】解:(1)∵2A B C +=,∴2B C A =-.B 22224342(32)a b ab abc a b ab abc =-+--+2222434642a b ab abc a b ab abc =-+-+-2222a b ab abc =-++;(2)222222(32)(22)A B a b ab abc a b ab abc -=-+--++222264222a b ab abc a b ab abc =-++--2285a b ab =-.因正确结果中不含c ,所以小强的说法对,正确结果的取值与c 无关;(3)将18a =, 15b =代入(2)中的代数式,得: 22221111858()5()8585a b ab -=⨯⨯-⨯⨯0= . 【点睛】本题主要考查整式的乘法,熟练掌握整式的乘法法则是解题的关键.6.当0.2x =-时,求代数式22235735x x x x -+-+-的值。
初一数学上册第一二单元综合测试题
初一数学上册第一二单元综合测试题一选择题10*3=30分1.在-5,-101,-3.5,-0.01,-2,-212各数中,最大的数是( ) A.-12 B.-101C .-0.01 D.-52.如果一个数的平方与这个数的差等于0,那么这个数只能是( )A.0B.-1 C .1 D.0或15、绝对值大于或等于1,而小于4的所有的正整数的和是( )A. 8B.7C. 6D.53.比-7.1大,而比1小的整数的个数是( )A .6 B.7 C. 8 D.94.已知有理数a 、b 在数轴上的位置如图所示,下列结论正确的是( ) A 、a >b B 、ab <0 C 、b —a >0 D 、a +b >05.现有以下四个结论:①绝对值等于其本身的有理数只有零;②相反数等于其 本身的有理数只有零;③倒数等于其本身的有理数只有1;•④平方等于其本 身的有理数只有1.其中正确的有( )A .0个B .1个C .2个D .大于2个 6.用科学记数法表示为1.999×103的数是( )A .1999B .199.9C .0.001999D .19990 7.如果a<2,那么│-1.5│+│a-2│等于( )A .1.5-aB .a-3.5C .a-0.5D .3.5-a 8.数a 四舍五入后的近似值为3.1, 则a 的取值范围是( )(A) 3.05≤a <3.15 (B) 3.14≤a <3.15 (C) 3.144≤a ≤3.149 (D) 3.0≤a ≤3.29.—43,—65,—87的大小顺序是( )(A )-87<-65<-43 (B )-87<-43<-65(C )-65<-87<-43 (D )-43<-65<-8710.若-a 不是负数,那么a 一定是( )。
(A )负数 (B )正数 (C )正数和零 (D )负数和零 二填空题13*3=39分 1.1--的相反数是______,138⎛⎫-- ⎪⎝⎭的倒数是_________.2.一个数的倒数的相反数是3,这个数是________.3.我国的国土面积约为九佰六十万平方千米,用科学记数法写成约为___________2km .4. +5.7的相反数与-7.1的绝对值的和是 。
初一数学上册第一二单元测试题
亲爱的云茹小同学,这份试卷将记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光,相信你一定会慢慢对数学产生兴趣。
请一定要认真审题,看清要求,仔细答题哦,祝你成功!七年级数学上册 阶段测试试卷满分:120分 时间:120分钟一、选一选,比比谁细心(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.12-的绝对值是( ). (A) 12 (B)12- (C)2 (D) -22.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m ,用科学记数法表示这个数为( ).(A)1.68×104m (B)16.8×103 m (C)0.168×104m (D)1.68×103m 3.如果收入15元记作+15元,那么支出20元记作( )元. (A)+5 (B)+20 (C)-5 (D)-204.已知b a m225-和n b a -347是同类项,则2m - n 的值是( ) (A )6 (B )4 (C )3 (D )25.已知p 与q 互为相反数,且p ≠0,那么下列关系式正确的是( ). (A).1p q = (B)1qp= (C) 0p q += (D) 0p q -= 6.方程5-3x=8的解是( ).(A )x=1 (B )x=-1 (C )x=133 (D )x=-1337.下列变形中, 不正确的是( ).-(A) a +(b +c -d)=a +b +c -d (B) a -(b -c +d)=a -b +c -d (C) a -b -(c -d)=a -b -c -d (D) a +b -(-c -d)=a +b +c +d 8.如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( ).(A) b -a>0 (B) a -b>0 ab >0 (D) a +b>0 91022.0099取近似值, 其中错误的是( ).(A)1022.01(精确到0.01) (B)1.0×103(保留2个有效数字) (C)1020(精确到十位) (D)1022.010(精确到千分位)10.x 2 +ax-2y+7- (bx 2 -2x+9y-1)的值与x 的取值无关,则a+b 的值为( )A.-1;B.1;C.-2D.211. 如果一个数的平方等于它的倒数,那么这个数一定是( ) A 、0B 、1C 、-1D 、1或-112.已知a 、b 互为相反数,c 、d 互为倒数,x 等于-4的2次方,则式子1()2cd a b x x ---的值为( ). (A)2 (B)4 (C)-8 (D)8二、填一填, 看看谁仔细(本大题共4小题, 每小题3分, 共12分, 请将你的答案写在“_______”处) 13.若xP +4x3-qx2-2x +5是关于x 的五次四项式,则q -p= 。
初一数学第一第二单元测试题
初一数学第一、二单元测试题一、选择题(每题 3 分,共30 分)1.下列各数中,是负数的是()。
A. 0B. -2C. 1D. 22.有理数-3 的绝对值是()。
A. -3B. 3C. -1/3D. 1/33.比-2 大3 的数是()。
A. 1B. -1C. -5D. 54.下列计算正确的是()。
A. -2+1=-1B. -2-1=-1C. -2×1=-2D. -2÷1=-25.若数轴上表示数a 的点在原点左边,则a 是()。
A. 正数B. 负数C. 零D. 任意有理数6.两个有理数的和为负数,那么这两个数一定()。
A. 都是负数B. 至少有一个负数C. 有一个是0D. 绝对值不相等7.计算(-2)×(-3)的结果是()。
A. 6B. -6C. 5D. -58.若|a|=3,|b|=2,且a>b,则a+b 的值为()。
A. 5B. 1C. 5 或1D. -5 或-19.一个数的相反数是它本身,则这个数是()。
A. 0B. 1C. -1D. 不存在10.下列说法正确的是()。
A.一个数的绝对值一定是正数B.绝对值等于它本身的数只有0C.绝对值等于它的相反数的数只有负数D.互为相反数的两个数的绝对值相等二、填空题(每题 3 分,共15 分)1.若上升3 米记作+3 米,那么下降5 米记作______米。
2.-1/2 的相反数是______。
3.比较大小:-3______-2。
4.绝对值最小的有理数是______。
5.若|x-2|=0,则x =______。
三、计算题(每题 5 分,共25 分)1.(-5)+(-3)2.(-8)-(-6)3.(-4)×34.(-12)÷(-3)5.-2²+(-3)²四、解答题(每题10 分,共30 分)1.已知a、b 互为相反数,c、d 互为倒数,m 的绝对值是2,求|a+b|/2m²+4m-3cd 的值。
初一数学一二单元测试题
1 初一数学第一二单元测试测试题班级姓名成绩一、填空题1、某地一天最低气温是零下八摄氏度,应写作()。
2、在0.5, -3, +90%, 12, 0, - 23这几个数中这几个数中,,正数有正数有( ),( ),负数有负数有( ),( ),( ),(()既不是正数,也不是负数。
3、+4.05读作(),负四分之三写作()4、向东走9m 记作记作+9m +9m +9m,那么,那么,那么-7m -7m 表示(),9m 表示()5、银行存折上的“2000.00”表示存入2000元,那么“-500.00”表示()6、所有的负数都在0的()边,也就是负数都比0();而正数都比0(),负数都比正数()。
7、在数轴上,、在数轴上,-2-2在-5的()边。
8、上楼共跨了40级台阶记作+级台阶记作+404040,下楼跨了,下楼跨了22级台阶记作(). 9、温度上升1010℃记作+℃记作+℃记作+101010℃,下降℃,下降8℃记作(). 1010、、淘淘向东走48米,记作+记作+4848米,那么淘淘向西走60米记作()米;如果淘淘向南走36米记作+36米,那么淘淘走-52米表示他向()走了()二、判断对错二、判断对错1、零上1212℃(+℃(+℃(+121212℃)和零下℃)和零下1212℃(-℃(-℃(-121212℃)是两种相反意义的量。
(℃)是两种相反意义的量。
(℃)是两种相反意义的量。
( ))2、0是正数。
(是正数。
( ))3、数轴上左边的数比右边的数小。
(、数轴上左边的数比右边的数小。
( ))4、死海低于海平面400米,记作+米,记作+400400米。
(米。
( ))5、在8.28.2、-、-、-44、0、6、-、-2727中,负数有3个。
(个。
( ))三、选择正确答案的序号填在括号里三、选择正确答案的序号填在括号里1、低于正常水位0.16米记为-米记为-0.160.160.16,高于正常水位,高于正常水位0.02米记作(米记作( )。
人教版初一七年级数学第二单元知识点及练习题
第二章整式的加减一.知识框架二.知识概念1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
通过本章学习,应使学生达到以下学习目标:1. 理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
2. 理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。
在准确判断、正确合并同类项的基础上,进行整式的加减运算。
3. 理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
【2.1.1列代数式】一.选择题1.某种商品进价为a元/件,在销售旺季,商品售价较进价高30%;销售旺季过后,商品又以7折(即原售价的70%)的价格开展促销活动,这时一件该商品的售价为()A.a元 B.0.7a元 C.0.91a元D.1.03a元2.一个两位数x,还有一个两位数y,若把两位数x放在y前面,组成一个四位数,则这个四位数为()A.10x+y B.xy C.100x+y D.1000x+y3.购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()A.(a+b)元B.3(a+b)元 C.(3a+b)元 D.(a+3b)元4.某商品原价每件x元,后来店主将每件增加10元,再降价25%,则现在的单价(元)是()A.25%x+10 B.(1-25%)x+10 C.25%(x+10)D.(1-25%)(x+10)月份的产值是()A.(1-10%)(1+15%)x万元B.(1-10%+15%)x万元C.(x-10%)(x+15%)万元D.(1+10%-15%)x万元6.如图,表示阴影部分面积的代数式是()A.ab+bc B.ad+c(b-d)C.c(b-d)+d(a-c) D.ab-cd二.填空题7.某机关单位2015年3月的三公经费为a万元,为响应省委提倡节俭的号召,开始减少三公经费,a的式子表示).10.某市出租车收费标准为:起步价10元,3千米后每千米价1.8元.则某人乘坐出租车x(x>3)三.解答题11.列代数式:(1)比a的一半大3的数(2)a与b的差的c倍(3)a的一半与b的平方的差.(4)王明同学买2本练习册花n元,那么买m本练习册要花多少元?(5)正方体的棱长为a,那么它的表面积是多少?体积呢?【2.1.2单项式】一.选择题A.3个 B.4个C.5个D.6个A.系数是-35,次数是2 B.系数是35,次数是2C.系数是-3,次数是3 D.系数是-35,次数是3A.49,7 B.49π,6 C.4π,6 D.49π,4A.2 B.3 C.5 D.65.已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.-2xy2B.3x2C.2xy3D.2x36.下列说法中正确的是()A.-13 xy2是单项式B.xy2没有系数C.x-1是单项式D.0不是单项式二.填空题三.解答题12.若(a-4)x3y b+2是关于x,y的四次单项式,求a,b应满足的条件.【2.1.3多项式】一.选择题A.2个B.3个C.4个D.5个2.多项式1-2xy+xy3的次数是()A.1 B.2 C.3 D.4A.三次四项式B.三次三项式 C.四次四项式 D.二次四项式A.1个B.2个C.3个D.4个5.多项式1+xy-xy2的次数及最高次项的系数分别是()A.2,1 B.2,-1 C.3,-1 D.5,-16.当x=1时,代数式4-3x的值是()A.1 B.2 C.3 D.4二.填空题三.解答题12.若a,b互为相反数,c,d互为倒数,x的绝对值为4,求代数式a+b-cd+x2的值.【2.2.1合并同类项】一.选择题1.下列各式中,是3a2b的同类项的是()A.2x2y B.-2ab2C.a2b D.3ab2.如果2x2y3与x2y n+1是同类项,那么n的值是()A.1 B.2 C.3 D.43.计算-a2+3a2的结果为()A.-2a2B.2a2C.4a2D.-4a24.下列计算正确的是()A.3a2-2a2=1 B.5-2x3=3x3C.3x2+2x3=5x5D.a3+a3=2a35.当a=-5时,多项式a2+2a-2a2-a+a2-1的值为()A.29 B.-6 C.14 D.246.如果x2+xy=2,xy+y2=1,则x2+2xy+y2的值是()A.0 B.1 C.2 D.3二.填空题三.解答题11.合并同类项(1)4a2+3b2-2ab-3a2-5b2;(2)3xy2-5xy+0.5x2y-3xy2-4.5x2y;(3)3x3+x3;(4)xy2;(5)4a2+3b2+2ab−4a2−4b2.13.先化简,再求值:2x+7+3x-2,其中x=2.【2.2.2去括号合并同类项】一.选择题1.化简-16(x-0.5)的结果是()A.-16x-0.5 B.-16x+0.5 C.16x-8 D.-16x+82.学习了去括号后,李欣、曹敏、李犇和朱晓洋同学在,去括号:-(-a+b-1)时分别得到下面的,其中正确的是()A.-a+b-1 B.a+b+1 C.a-b+1 D.-a+b+13.下列各题去括号所得结果正确的是()A.x2-(x-y+2z)=x2-x+y+2z B.x-[-y+(-3x+1)]=x+y+3x-1C.3x-[5x-(x-1)]=3x-5x-x+1 D.(x-1)-(x2-2)=x-1-x2-24.下列等式成立的是()A.-(3m-1)=-3m-1 B.3x-(2x-1)=3x-2x+1C.5(a-b)=5a-b D.7-(x+4y)=7-x+4y5.已知a-b=-3,c+d=2,则(b+c)-(a-d)的值为()A.1 B.5 C.-5 D.-16.若(a+1)2+|b-2|=0,化简a(x2y+xy2)-b(x2y-xy2)的结果为()A.3x2y B.-3x2y+xy2.-3x2y+3xy2D.3x2y-xy2二.填空题9.去括号,合并同类项得:3b-2c-[-4a+(c+3b)]+c= .三.解答题11.先去括号,再合并同类项(1)2(2b-3a)+3(2a-3b)(2)4a2+2(3ab-2a2)-(7ab-1)12.先化简,再求值:【2.2.3整式的加减】一.选择题1.化简(2x-3y)-3(4x-2y)结果为()A.-10x-3y B.-10x+3y C.10x-9y D.10x+9y2.ab减去a2-ab+b2等于()A.a2+2ab+b2B.-a2-2ab+b2C.-a2+2ab-b2D.-a2+2ab+b23.李老师做了个长方形教具,其中一边长为2a+b,另一边为a-b,则该长方形周长为()A.6a+b B.6a C.3a D.10a-b4.若多项式3x2-2xy-y2减去多项式M所得的差是-5x2+xy-2y2,则多项式M是()A.-2x2-xy-3y2B.2x2+xy+3y2C.8x2-3xy+y2D.-8x2+3xy-y2[5.若代数式2x3-8x2+x-1与代数式3x3+2mx2-5x+3的和不含x2项,则m等于()A.2 B.-2 C.4 D.-46.若A和B都是五次多项式,则A+B一定是()A.十次多项式B.五次多项式C.数次不高于5的整式D.次数不低于5次的多项式二.填空题9.三个小队植树,第一队种x棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比10.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:三.解答题11.已知A=3a2b-2ab2+abc,小明错将“2A-B”看成“2A+B”,算得结果C=4a2b-3ab2+4abc.(1)计算B的表达式;值.12.已知A=2x2+3xy-2x-1,B=-x2+xy-1:(1)求3A+6B;(2)若3A+6B的值与x无关,求y的值。
2020年秋人教版数学七年级上册第一、第二单元测试题及答案解析(各一套)
人教版数学七年级上册第一单元测试题及答案解析(时间:90分钟分值:120分)一、选择题(本大题10小题,每小题3分,共30分)1.(3分)在1,0,2,﹣3这四个数中,最大的数是()A.1 B.0 C.2 D.﹣32.(3分)2的相反数是()A.B.C.﹣2 D.23.(3分)﹣5的绝对值是()A.5 B.﹣5 C.D.﹣4.(3分)﹣2的倒数是()A.2 B.﹣2 C.D.﹣5.(3分)下列说法正确的是()A.带正号的数是正数,带负号的数是负数B.一个数的相反数,不是正数,就是负数C.倒数等于本身的数有2个D.零除以任何数等于零6.(3分)在有理数中,绝对值等于它本身的数有()A.1个B.2个C.3个D.无穷多个7.(3分)比﹣2大3的数是()A.1 B.﹣1 C.﹣5 D.﹣68.(3分)下列算式正确的是()A.3﹣(﹣3)=6 B.﹣(﹣3)=﹣|﹣3|C.(﹣3)2=﹣6 D.﹣32=9 9.(3分)据报道,2014年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为()A.0.136×1012元B.1.36×1012元C.1.36×1011元D.13.6×1011元10.(3分)近似数2.7×103是精确到()A.十分位B.个位C.百位D.千位二、填空题(本大题6小题,每小题4分,共24分)11.(4分)如果温度上升3℃记作+3℃,那么下降3℃记作.12.(4分)已知|a|=4,那么a=.13.(4分)在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是.14.(4分)比较大小:3223.15.(4分)若(a﹣1)2+|b+2|=0,那么a+b=.16.(4分)观察下列依次排列的一列数:﹣2,4,﹣6,8,﹣10…按它的排列规律,则第10个数为.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)把下列各数在数轴上表示出来,并用“>“号连结起来.﹣3,﹣1.5,﹣1,2.5,4.18.(6分)﹣8﹣6+22﹣919.(6分)计算:﹣8÷(﹣2)+4×(﹣5).四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)小强有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?21.(7分)计算:(﹣+﹣)×(﹣12).22.(7分)计算:﹣22+3×(﹣1)4﹣(﹣4)×2.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)若|a|=5,|b|=3,求a+b的值.24.(9分)某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.25.(9分)一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向(如:+7表示汽车向北行驶7千米),当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.(单位:千米)问:(1)B地在A地的何方,相距多少千米?(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)1.(3分)在1,0,2,﹣3这四个数中,最大的数是()A.1 B.0 C.2 D.﹣3【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣3<0<1<2,故选:C.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)2的相反数是()A.B.C.﹣2 D.2【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:2的相反数是﹣2,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.(3分)﹣5的绝对值是()A.5 B.﹣5 C.D.﹣【考点】绝对值.【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.【点评】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.4.(3分)﹣2的倒数是()A.2 B.﹣2 C.D.﹣【考点】倒数.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.5.(3分)下列说法正确的是()A.带正号的数是正数,带负号的数是负数B.一个数的相反数,不是正数,就是负数C.倒数等于本身的数有2个D.零除以任何数等于零【考点】有理数.【分析】利用有理数的定义判断即可得到结果.【解答】解:A、带正号的数不一定为正数,例如+(﹣2);带负号的数不一定为负数,例如﹣(﹣2),故错误;B、一个数的相反数,不是正数,就是负数,例如0的相反数是0,故错误;C、倒数等于本身的数有2个,是1和﹣1,正确;D、零除以任何数(0除外)等于零,故错误;故选:C.【点评】此题考查了有理数,熟练掌握有理数的定义是解本题的关键.6.(3分)在有理数中,绝对值等于它本身的数有()A.1个B.2个C.3个D.无穷多个【考点】绝对值.【分析】根据绝对值的意义求解.【解答】解:在有理数中,绝对值等于它本身的数有0和所有正数.故选D.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.7.(3分)比﹣2大3的数是()A.1 B.﹣1 C.﹣5 D.﹣6【考点】有理数的加法.【分析】先根据题意列出算式,然后利用加法法则计算即可.【解答】解:﹣2+3=1.故选:A.【点评】本题主要考查的是有理数的加法法则,掌握有理数的加法法则是解题的关键.8.(3分)下列算式正确的是()A.3﹣(﹣3)=6 B.﹣(﹣3)=﹣|﹣3|C.(﹣3)2=﹣6 D.﹣32=9【考点】有理数的乘方;相反数;有理数的减法.【分析】根据有理数的减法和有理数的乘方,即可解答.【解答】解:A、3﹣(﹣3)=6,正确;B、﹣(﹣3)=3,﹣|﹣3|=﹣3,故本选项错误;C、(﹣3)2=9,故本选项错误;D、﹣32=﹣9,故本选项错误;故选:A.【点评】本题考查了有理数的减法和有理数的乘方,解决本题的关键是熟记有理数的乘方和有理数的减法.9.(3分)据报道,2014年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为()A.0.136×1012元B.1.36×1012元C.1.36×1011元D.13.6×1011元【考点】科学记数法—表示较大的数.【分析】根据科学记数法的表示方法:a×10n,可得答案.【解答】解:1.36万亿元,用科学记数法表示为1.36×1012元,故选:B.【点评】本题考查了科学记数法,科学记数法中确定n的值是解题关键,指数n是整数数位减1.10.(3分)近似数2.7×103是精确到()A.十分位B.个位C.百位D.千位【考点】近似数和有效数字.【分析】由于2.7×103=2700,而7在百位上,则近似数2.7×103精确到百位.【解答】解:∵2.7×103=2700,∴近似数2.7×103精确到百位.故选C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起,到这个数完为止,所有这些数字叫这个数的有效数字.二、填空题(本大题6小题,每小题4分,共24分)11.(4分)如果温度上升3℃记作+3℃,那么下降3℃记作﹣3℃.【考点】正数和负数.【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负.【解答】解:∵温度上升3℃记作+3℃,∴下降3℃记作﹣3℃.故答案为:﹣3℃.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.12.(4分)已知|a|=4,那么a=±4.【考点】绝对值.【分析】∵|+4|=4,|﹣4|=4,∴绝对值等于4的数有2个,即+4和﹣4,另外,此类题也可借助数轴加深理解.在数轴上,到原点距离等于4的数有2个,分别位于原点两边,关于原点对称.【解答】解:∵绝对值等于4的数有2个,即+4和﹣4,∴a=±4.【点评】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.本题是绝对值性质的逆向运用,此类题要注意答案一般有2个,除非绝对值为0的数才有一个为0.13.(4分)在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是﹣5或﹣1.【考点】数轴.【专题】探究型.【分析】由于所求点在﹣3的哪侧不能确定,所以应分在﹣3的左侧和在﹣3的右侧两种情况讨论.【解答】解:当所求点在﹣3的左侧时,则距离2个单位长度的点表示的数是﹣3﹣2=﹣5;当所求点在﹣3的右侧时,则距离2个单位长度的点表示的数是﹣3+2=﹣1.故答案为:﹣5或﹣1.【点评】本题考查的是数轴的特点,即数轴上右边的点表示的数总比左边的大.14.(4分)比较大小:32>23.【考点】有理数的乘方;有理数大小比较.【专题】计算题.【分析】分别计算32和23,再比较大小即可.【解答】解:∵32=9,23=8,∴9>8,即32>23.故答案为:>.【点评】本题考查了有理数的乘方以及有理数的大小比较,是基础知识要熟练掌握.15.(4分)若(a﹣1)2+|b+2|=0,那么a+b=﹣1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b,然后相加即可得解.【解答】解:根据题意得,a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,a+b=1+(﹣2)=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.(4分)观察下列依次排列的一列数:﹣2,4,﹣6,8,﹣10…按它的排列规律,则第10个数为20.【考点】规律型:数字的变化类.【分析】观察不难发现,这列数的绝对值是从2开始的连续偶数,并且第偶数个数是正数,第奇数个数是负数,然后写出第10个数即可.【解答】解:∵﹣2,4,﹣6,8,﹣10…,∴第10个数是正数数,且绝对值为2×10=20,∴第10个数是20,故答案为:20.【点评】本题是对数字变化规律的考查,比较简单,难点在于从绝对值和符号两个部分考虑求解.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)把下列各数在数轴上表示出来,并用“>“号连结起来.﹣3,﹣1.5,﹣1,2.5,4.【考点】有理数大小比较;数轴.【分析】先在数轴上表示各个数,再比较即可.【解答】解:4>2.5>﹣1>﹣1.5>﹣3.【点评】本题考查了有理数的大小比较,数轴的应用,能正确在数轴上表示各个数是解此题的关键,注意:在数轴上表示各个数,右边的数总比左边的数大.18.(6分)﹣8﹣6+22﹣9【考点】有理数的加减混合运算.【分析】直接进行有理数的加减运算.【解答】解:原式=﹣23+22=﹣1.【点评】本题考查有理数的运算,属于基础题,注意运算的顺序是关键.19.(6分)计算:﹣8÷(﹣2)+4×(﹣5).【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘除运算,再计算加减运算即可得到结果.【解答】解:原式=4﹣20=﹣16,故答案为:﹣16【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)小强有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?【考点】规律型:数字的变化类.【分析】分析几个数可知要使抽取的数最大,需同时抽两个最大正数或两个最小的负数,即可使乘积最大.【解答】解:抽取﹣3和﹣8.最大乘积为(﹣3)×(﹣8)=24.【点评】两个负数的乘积为正数,且这两个负数越小,其乘积越大.21.(7分)计算:(﹣+﹣)×(﹣12).【考点】有理数的混合运算.【专题】计算题.【分析】根据有理数的混合运算的运算方法,应用乘法分配律,求出算式的值是多少即可.【解答】解:(﹣+﹣)×(﹣12)=(﹣)×(﹣12)+×(﹣12)﹣×(﹣12)=2﹣9+5=﹣2【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意乘法运算定律的应用.22.(7分)计算:﹣22+3×(﹣1)4﹣(﹣4)×2.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣4+3+8=7.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)若|a|=5,|b|=3,求a+b的值.【考点】有理数的加法;绝对值.【分析】|a|=5,则a=±5,同理b=±3,则求a+b的值就应分几种情况讨论.【解答】解:∵|a|=5,∴a=±5,同理b=±3.当a=5,b=3时,a+b=8;当a=5,b=﹣3时,a+b=2;当a=﹣5,b=3时,a+b=﹣2;当a=﹣5,b=﹣3时,a+b=﹣8.【点评】正确地进行讨论是本题解决的关键.规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.24.(9分)某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.【考点】正数和负数.【分析】(1)根据正负数的意义解答即可;(2)求出所有记录的和的平均数,再加上基准分即可.【解答】解:(1)最高分为:80+12=92分,最低分为:80﹣10=70分;(2)8﹣3+12﹣7﹣10﹣3﹣8+1+0+10=8+12+1+10+0﹣3﹣7﹣10﹣3﹣8=31﹣31=0,所以,10名同学的平均成绩80+0=80分.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.25.(9分)一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向(如:+7表示汽车向北行驶7千米),当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.(单位:千米)问:(1)B地在A地的何方,相距多少千米?(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?【考点】正数和负数.【专题】应用题.【分析】(1)把当天记录相加,然后根据正数和负数的规定解答即可;(2)先求出行驶记录的绝对值的和,再乘以0.35计算即可得解.【解答】解:(1)18﹣9+7﹣14﹣6+12﹣6+8=45﹣35=10,所以,B地在A地北方10千米;(2)18+9+7+14+6+12+6+8=80千米80×0.35=28升.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.人教版数学七年级上册第二单元测试题及答案解析(时间:90分钟分值:120分)一、选择题(每题3分,共24分)1.(3分)下列等式中正确的是()A.2x﹣5=﹣(5﹣2x)B.7a+3=7(a+3)C.﹣a﹣b=﹣(a﹣b)D.2x﹣5=﹣(2x﹣5)2.(3分)下列说法正确的是()A.0不是单项式B.x没有系数C.+x是多项式D.﹣xy是单项式3.(3分)下列各式中,去括号或添括号正确的是()A.a2﹣(2a﹣b+c)=a2﹣2a﹣b+c B.a﹣3x+2y﹣1=a+(﹣3x+2y﹣1)C.3x﹣[5x﹣(2x﹣1)]=3x﹣5x﹣2x+1 D.﹣2x﹣y﹣a+1=﹣(2x﹣y)+(a﹣1)4.(3分)原产n吨,增产30%之后的产量应为()A.n70% 吨B.n130% 吨C.n+30% 吨D.n30% 吨5.(3分)代数式a=,4xy,,a,2014,a2b,﹣中,单项式的个数有()A.3个B.4个C.5个D.6个6.(3分)下列计算中正确的是()A.6a﹣5a=1 B.5x﹣6x=11x C.m2﹣m=m D.﹣x3﹣6x3=﹣7x37.(3分)两个3次多项式相加,结果一定是()A.6次多项式B.3次多项式C.次数不高于3的多项式D.次数不高于3次的整式8.(3分)计算:(m+3m+5m+…+2013m)﹣(2m+4m+6m+…+2014m)=()A.﹣1007m B.﹣1006m C.﹣1005m D.﹣1004m二、填空题(每题3分,共30分)9.(3分)计算:3a2b﹣2a2b=.10.(3分)“x的平方与2x﹣1的和”用代数式表示为.11.(3分)写出一个关于x的二次三项式,使得它的二次项系数为﹣5,则这个二次三项式为.12.(3分)三个连续数中,2n+1是中间的一个,这三个数的和为.13.(3分)张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入元.14.(3分)已知单项式3a m b与﹣a4b n﹣1是同类项,那么4m﹣n=.15.(3分)化简(x+y)+2(x+y)﹣4(x+y)=.16.(3分)若多项式2x2+3x+7的值为10,则多项式6x2+9x﹣7的值为.17.(3分)若(m+2)2x3y n﹣2是关于x,y的六次单项式,则m≠,n=.18.(3分)观察下列板式:22﹣12=2+1=3; 32﹣22=3+2=5;42﹣32=4+3=7; 52﹣42=5+4=9; 62﹣52=6+5=11;…若字母n表示自然数,请把你观察到的规律用含n的式子表示出来:.三、解答题(共46分)19.(21分)计算:(1)2a﹣(3b﹣a)+b(2)5a﹣6(a﹣)(3)3(x2﹣y2)+(y2﹣z2)﹣2(z2﹣y2)20.(9分)2x2﹣[x2﹣2(x2﹣3x﹣1)﹣3(x2﹣1﹣2x)]其中:.21.(8分)如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为400米,宽为100米,圆形花坛的半径为10米,求广场空地的面积(计算结果保留π).22.(8分)试说明:不论x取何值代数式(x3+5x2+4x﹣3)﹣(﹣x2+2x3﹣3x﹣1)+(4﹣7x﹣6x2+x3)的值是不会改变的.参考答案与试题解析一、选择题(每题3分,共24分)1.(3分)下列等式中正确的是()A.2x﹣5=﹣(5﹣2x)B.7a+3=7(a+3)C.﹣a﹣b=﹣(a﹣b)D.2x﹣5=﹣(2x﹣5)【考点】整式的加减.【分析】此题只需根据整式加减的去括号法则,对各选项的等式进行判断.【解答】解:A、2x﹣5=﹣(5﹣2x),正确;B、7a+3=7(a+3),错误;C、﹣a﹣b=﹣(a﹣b),错误,﹣a﹣b=﹣(a+b);D、2x﹣5=﹣(2x﹣5),错误,2x﹣5=﹣(﹣2x+5);故选A.【点评】本题考查了整式的加减,比较简单,容易掌握.注意去括号时,括号前是负号,去括号时各项都要变号.2.(3分)下列说法正确的是()A.0不是单项式B.x没有系数C.+x是多项式D.﹣xy是单项式【考点】单项式.【分析】根据单项式和多项式的定义解答.【解答】解:A、单独的一个数是单项式,故本选项错误;B、x的系数是1,故本选项错误;C、分母中有字母,不是整式,故本选项错误;D、﹣xy符合单项式定义,故本选项正确.故选D.【点评】本题考查了单项式和多项式,要知道数字或字母的积叫单项式,几个单项式的和叫多项式.3.(3分)下列各式中,去括号或添括号正确的是()A.a2﹣(2a﹣b+c)=a2﹣2a﹣b+c B.a﹣3x+2y﹣1=a+(﹣3x+2y﹣1)C.3x﹣[5x﹣(2x﹣1)]=3x﹣5x﹣2x+1 D.﹣2x﹣y﹣a+1=﹣(2x﹣y)+(a﹣1)【考点】去括号与添括号.【分析】根据去括号和添括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【解答】解:A、a2﹣(2a﹣b+c)=a2﹣2a+b﹣c,故错误;B、a﹣3x+2y﹣1=a+(﹣3x+2y﹣1),故正确;C、3x﹣[5x﹣(2x﹣1)]=3x﹣5x+2x﹣1,故错误;D、﹣2x﹣y﹣a+1=﹣(2x+y)+(﹣a+1),故错误;只有B符合运算方法,正确.故选B.【点评】本题考查去括号和添括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号.4.(3分)原产n吨,增产30%之后的产量应为()A.n70% 吨B.n130% 吨C.n+30% 吨D.n30% 吨【考点】列代数式.【分析】原产量n吨,增产30%之后的产量为n×(1+30%),再进行化简即可.【解答】解:由题意得,增产30%之后的产量为n×(1+30%)=n130%吨.故选:B.【点评】本题考查了根据实际问题列代数式,列代数式要分清语言叙述中关键词语的意义,理清它们之间的数量关系.5.(3分)代数式a=,4xy,,a,2014,a2b,﹣中,单项式的个数有()A.3个B.4个C.5个D.6个【考点】整式.【分析】直接利用单项式的定义得出即可.【解答】解:代数式a=,4xy,,a,2014,a2b,﹣中,单项式的个数有:4xy,a,2014,a2b,﹣一共有5个.故选:C.【点评】此题主要考查了单项式的定义,正确把握单项式的定义是解题关键.6.(3分)下列计算中正确的是()A.6a﹣5a=1 B.5x﹣6x=11x C.m2﹣m=m D.﹣x3﹣6x3=﹣7x3【考点】合并同类项.【分析】根据合并同类项的法则结合选项求解.【解答】解:A、6a﹣5a=a,原式计算错误,故本选项错误;B、5x﹣6x=x,原式计算错误,故本选项错误;C、m2和m不是同类项,不能合并,故本选项错误;D、﹣x3﹣6x3=﹣7x3,计算正确,故本选项正确.故选D.【点评】本题考查了合并同类项的知识,解答本题的关键是掌握合并同类项的法则.7.(3分)两个3次多项式相加,结果一定是()A.6次多项式B.3次多项式C.次数不高于3的多项式D.次数不高于3次的整式【考点】整式的加减.【专题】计算题.【分析】两个3次多项式相加,结果一定为次数不高于3次的整式.【解答】解:两个3次多项式相加,结果一定是次数不高于3的整式.故选D【点评】此题考查了整式的加减运算,是一道基本题型.8.(3分)计算:(m+3m+5m+…+2013m)﹣(2m+4m+6m+…+2014m)=()A.﹣1007m B.﹣1006m C.﹣1005m D.﹣1004m【考点】整式的加减.【分析】先去括号,然后合并同类项求解.【解答】解:原式=m+3m+5m+...+2013m﹣2m﹣4m﹣6m﹣ (2014)=(m﹣2m)+(3m﹣4m)+(5m﹣6m+)…+(2013m﹣2014m)=﹣1007m.故选A.【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.二、填空题(每题3分,共30分)9.(3分)计算:3a2b﹣2a2b=a2b.【考点】合并同类项.【分析】根据合并同类项的法则求解.【解答】解:3a2b﹣2a2b=a2b.故答案为:a2b.【点评】本题考查了合并同类项的知识,解答本题的关键是掌握合并同类项的法则.10.(3分)“x的平方与2x﹣1的和”用代数式表示为x2+2x﹣1.【考点】列代数式.【分析】首先求x的平方,再加上2x﹣1求和即可.【解答】解:x平方为x2,与2x﹣1的和为x2+2x﹣1.故答案为:x2+2x﹣1.【点评】列代数式的关键是正确理解文字语言中的关键词,比如该题中的“平方”、“倍”、“差”等,从而明确其中的运算关系,正确地列出代数式11.(3分)写出一个关于x的二次三项式,使得它的二次项系数为﹣5,则这个二次三项式为﹣5x2+x+1(答案不唯一).【考点】多项式.【专题】开放型.【分析】根据二次三项式的概念,所写多项式的次数是二次,项数是三项,本题答案不唯一.【解答】解:本题答案不唯一,符合﹣5x2+ax+b(a≠0,b≠0)形式的二次三项式都符合题意.例:﹣5x2+x+1.【点评】本题考查二次三项式的概念,解题的关键了解二次三项式的定义,并注意答案不唯一.12.(3分)三个连续数中,2n+1是中间的一个,这三个数的和为6n+3.【考点】整式的加减.【分析】先表示出其它两个数,然后相加即可.【解答】解:另外两个数为:2n,2n+2,则三个数之和为:2n+2n+1+2n+2=6n+3.故答案为:6n+3.【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.13.(3分)张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入(0.3b﹣0.2a)元.【考点】列代数式.【专题】压轴题.【分析】注意利用:卖报收入=总收入﹣总成本.【解答】解:依题意得,张大伯卖报收入为:0.5b+0.2(a﹣b)﹣0.4a=0.3b﹣0.2a.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.14.(3分)已知单项式3a m b与﹣a4b n﹣1是同类项,那么4m﹣n=14.【考点】同类项.【分析】根据同类项的概念求解.【解答】解:∵单项式3a m b与﹣a4b n﹣1是同类项,∴m=4,n﹣1=1,∴m=4,n=2,则4m﹣n=4×4﹣2=14.故答案为:14.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.15.(3分)化简(x+y)+2(x+y)﹣4(x+y)=﹣x﹣y.【考点】合并同类项.【分析】把x+y当作一个整体,利用合并同类项的法则:系数相加作为系数,字母和字母的指数不变,即可求解.【解答】解:原式=(1+2﹣4)(x+y)=﹣(x+y)=﹣x﹣y.故答案是:﹣x﹣y.【点评】本题主要考查合并同类项得法则.即系数相加作为系数,字母和字母的指数不变.16.(3分)若多项式2x2+3x+7的值为10,则多项式6x2+9x﹣7的值为2.【考点】整式的加减—化简求值.【分析】由题意得2x2+3x=3,将6x2+9x﹣7变形为3(2x2+3x)﹣7可得出其值.【解答】解:由题意得:2x2+3x=36x2+9x﹣7=3(2x2+3x)﹣7=2.【点评】本题考查整式的加减,整体思想的运用是解决本题的关键.17.(3分)若(m+2)2x3y n﹣2是关于x,y的六次单项式,则m≠﹣2,n= 5.【考点】单项式.【分析】根据题意可知m+2≠0,3+n﹣2=6,由此可得出结论.【解答】解:∵(m+2)2x3y n﹣2是关于x,y的六次单项式,∴m+2≠0,3+n﹣2=6,解得m≠﹣2,n=5.故答案为:﹣2,5.【点评】本题考查的是单项式的定义,熟知一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键.18.(3分)观察下列板式:22﹣12=2+1=3; 32﹣22=3+2=5;42﹣32=4+3=7; 52﹣42=5+4=9; 62﹣52=6+5=11;…若字母n表示自然数,请把你观察到的规律用含n的式子表示出来:(n+1)2﹣n2=n+1+n=2n+1.【考点】规律型:数字的变化类.【分析】观察各式,发现:运用了平方差公式,其中由于两个数相差是1,差等于1,所以最后结果等于两个数的和.【解答】解:第n个式子:(n+1)2﹣n2=n+1+n=2n+1.故答案为:(n+1)2﹣n2=n+1+n=2n+1.【点评】此题考查数字的变化规律,熟练掌握平方差公式是解决问题的关键.三、解答题(共46分)19.(21分)计算:(1)2a﹣(3b﹣a)+b(2)5a﹣6(a﹣)(3)3(x2﹣y2)+(y2﹣z2)﹣2(z2﹣y2)【考点】整式的加减.【分析】(1)先去括号,然后合并同类项;(2)先去括号,然后合并同类项;(3)先去括号,然后合并同类项.【解答】解:(1)2a﹣(3b﹣a)+b=2a﹣3b+a+b=3a﹣2b;(2)5a﹣6(a﹣)=5a﹣6a+2(a+1)=a+2;(3)3(x2﹣y2)+(y2﹣z2)﹣2(z2﹣y2)=3x2﹣3y2+y2﹣z2﹣2z2+2y2=3x2﹣3z2.【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.20.(9分)2x2﹣[x2﹣2(x2﹣3x﹣1)﹣3(x2﹣1﹣2x)]其中:.【考点】整式的加减—化简求值.【分析】本题应先对整式去括号,合并同类项,将整式化为最简,然后再把x 的值代入解题即可.【解答】解:原式=2x2﹣(x2﹣2x2+6x+2﹣3x2+3+6x)=2x2﹣(﹣4x2+12x+5)=6x2﹣12x﹣5∵x=,代入原式可得:6×﹣12×﹣5=﹣.【点评】本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.21.(8分)如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为400米,宽为100米,圆形花坛的半径为10米,求广场空地的面积(计算结果保留π).【考点】列代数式;代数式求值.【专题】几何图形问题.【分析】(1)观察可得空地的面积=长方形的面积﹣圆的面积,把相关数值代入即可;(2)把所给数值代入(1)得到的代数式求值即可.【解答】解:(1)空地的面积=ab﹣πr2;(2)当a=400,b=100,r=10时,空地的面积=400×100﹣π×102=40000﹣100π(平方米).【点评】考查列代数式及代数式的相关计算;得到空地部分的面积的关系式是解决本题的关键.22.(8分)试说明:不论x取何值代数式(x3+5x2+4x﹣3)﹣(﹣x2+2x3﹣3x﹣1)+(4﹣7x﹣6x2+x3)的值是不会改变的.【考点】整式的加减.【分析】解答本题要先将代数式进行化简,化简后代数式中不含x,所以不论x 取何值,代数式的值是不会改变的.【解答】解:将代数式(x3+5x2+4x﹣3)﹣(﹣x2+2x3﹣3x﹣1)+(4﹣7x﹣6x2+x3)去括号化简可得原式=2,即此代数式中不含x,∴不论x取何值,代数式的值是不会改变的.【点评】本题关键是将代数式化简,比较简单,同学们要熟练掌握.。
七年级数学上册第一二单元测试题
七年级数学上册第一二单元测试题本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March2第一、二单元练习题一、填空1、在215-,0,-(-,-│-5│,2,411,24中,整数是 .2、A 地海拔高度是-30米,B 地海拔高度是10米,C 地海拔高度是-10米,则地势最高的与地势最低的相差__________米.3、某地一周内每天最高与最低气温如下表,则温差最大的一天是星期______4、在数轴上距原点3个单位长度的点表示的数是___________.5、已知P 是数轴上的一点4-,把P 点向左移动3个单位后再向右移1个单位长度,那么P 点表示的数是______________.6、311-的相反数是_______,它的倒数是_______,它的绝对值是______.7、(1)倒数等于本身的数是_______ ; (2)平方等于本身的数是_______ (3)立方等于本身的数是_______. 8、(1)比-π大的负整数有_____________; (2)大于而不大于3的所有整数的和是______ (3)绝对值小于的所有整数之积是___________ (4)若a=4 ,b 的相反数是-5,则a-b 的值是_________.(5)已知a ,b 互为相反数,m 、n 互为倒数,| s |=3求a+b+mn+s 的值是_________.3(6)既不是正数也不是负数的数是_________,其相反数是________. (7)最大的负整数是 _________,最小的正整数是_________ . 9、5960000用科学记数法表示为_____________.10、在274⎪⎭⎫⎝⎛-中的底数是__________,指数是_____________. 11、()1-2003+()20041-=______________。
2021-2022学年湘教版七年级数学下册《第1章二元一次方程组》单元综合练习题(附答案)
2021-2022学年湘教版七年级数学下册《第1章二元一次方程组》单元综合练习题(附答案)一.选择题1.已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=﹣1B.m=﹣1,n=1C.D.2.下列各式,属于二元一次方程的个数有()①xy+2x﹣y=7;②4x+1=x﹣y;③+y=5;④x=y;⑤x2﹣y2=2⑥6x﹣2y⑦x+y+z=1 ⑧y(y﹣1)=2y2﹣y2+x.A.1B.2C.3D.43.二元一次方程x+3y=10的非负整数解共有()对.A.1B.2C.3D.44.二元一次方程x+2y=3的解的个数是()A.1B.2C.3D.无数5.知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20B.x+y=20C.5x﹣2y=60D.5x+2y=606.现有一批脐橙运往外地销售,A型车载满一次可运3吨,B型车载满一次可运4吨,现有脐橙31吨,计划同时租用A,B两种车型,一次运完且恰好每辆车都载满脐橙,租车方案共有()A.2种B.3种C.4种D.5种7.在方程组,,,,中,是二元一次方程组的有()A.2个B.3个C.4个D.5个8.若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A.﹣B.C.D.﹣9.现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,而一个盒身与两个盒底配成一个盒子,设用x张铁皮做盒身,y张铁皮做盒底,则可列方程组为()A.B.C.D.10.玩具车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若甲种玩具零件一个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在60天内组装出最多的玩具设生产甲种玩具零件x天,乙种玩具零件y天,则有()A.B.C.D.11.有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需()A.1.2元B.1.05元C.0.95元D.0.9元二.填空题12.若是某个二元一次方程的一个解,则该方程可能是(请写出满足条件的一个答案即可).13.若是方程2x+y=0的解,则6a+3b+2=.14.若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是.15.已知关于x,y的二元一次方程组的解互为相反数,则k的值是.三.解答题16.某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本Q(元)与月产销量y(个)满足如下关系:月产销量y(个)…160200240300…每个玩具的固定成本Q(元)…60484032…(1)写出月产销量y(个)与销售单价x(元)之间的函数关系式;(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?17.解二元一次方程组:(1);(2).18.(1)解方程:;(2)解方程组:.19.解方程、方程组.(1);(2).20.一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可盈利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)21.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:利润=售价﹣进价)甲乙进价(元/件)1535售价(元/件)2045若商店计划销售完这批商品后能使利润达到1100元,问甲、乙两种商品应分别购进多少件?22.已知关于x,y的方程组和有相同解,求(﹣a)b值.23.解三元一次方程组.参考答案一.选择题1.解:∵方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴,解得:,故选:A.2.解:①xy+2x﹣y=7,不是二元一次方程,因为其未知数的最高次数为2;②4x+1=x﹣y,是二元一次方程;③+y=5,不是二元一次方程,因为不是整式方程;④x=y是二元一次方程;⑤x2﹣y2=2不是二元一次方程,因为其未知数的最高次数为2;⑥6x﹣2y,不是二元一次方程,因为不是等式;⑦x+y+z=1,不是二元一次方程,因为含有3个未知数;⑧y(y﹣1)=2y2﹣y2+x,是二元一次方程,因为变形后为﹣y=x.故选:C.3.解:∵x+3y=10,∴x=10﹣3y,∵x、y都是非负整数,∴y=0时,x=10;y=1时,x=7;y=2时,x=4;y=3时,x=1.∴二元一次方程x+3y=10的非负整数解共有4对.故选:D.4.解:由二元一次方程的解的定义知,任意一个二元一次方程都有无数个解.故选:D.5.解:设圆圆答对了x道题,答错了y道题,依题意得:5x﹣2y+(20﹣x﹣y)×0=60.故选:C.6.解:设租用A型车x辆,B型车y辆,由题意得:3x+4y=31,则x=,∵x、y为正整数,∴或或,∴租车方案共有3种,故选:B.7.解:有三个未知数,故不是二元一次方程组;符合二元一次方程组的定义;符合二元一次方程组的定义;xy的次数是二次,不是二元一次方程组;中有分式不是二元一次方程组,故选:A.8.解:,①+②得:2x=14k,即x=7k,将x=7k代入①得:7k+y=5k,即y=﹣2k,将x=7k,y=﹣2k代入2x+3y=6得:14k﹣6k=6,解得:k=.故选:B.9.解:根据共有190张铁皮,得方程x+y=190;根据做的盒底数等于盒身数的2倍时才能正好配套,得方程2×8x=22y.列方程组为.故选:A.10.解:根据总天数是60天,可得x+y=60;根据乙种零件应是甲种零件的2倍,可列方程为2×24x=12y.则可列方程组为.故选:C.11.解:设购一支铅笔,一本练习本,一支圆珠笔分别需要x,y,z元,根据题意得,②﹣①得x+y+z=1.05(元).故选:B.二.填空题12.解:x+y=3+5=8,故答案为:x+y=8(答案不唯一).13.解:把代入方程2x+y=0,得2a+b=0,∴6a+3b+2=3(2a+b)+2=2.故答案为:2.14.解:若方程组是关于x,y的二元一次方程组,则c+3=0,a﹣2=1,b+3=1,解得c=﹣3,a=3,b=﹣2.所以代数式a+b+c的值是﹣2.或c+3=0,a﹣2=0,b+3=1,解得c=﹣3,a=2,b=﹣2.所以代数式a+b+c的值是﹣3.综上所述,代数式a+b+c的值是﹣2或﹣3.故答案为:﹣2或﹣3.15.解:解方程组得:,因为关于x,y的二元一次方程组的解互为相反数,可得:2k+3﹣2﹣k=0,解得:k=﹣1.故答案为:﹣1.三.解答题16.解;(1)由于销售单价每降低1元,每月可多售出2个,所以月产销量y(个)与销售单价x(元)之间存在一次函数关系,设y=kx+b,则(280,300),(279,302)满足函数关系式,得:,解得:,所以,月产销量y(个)与销售单价x(元)之间的函数关系式为:y=﹣2x+860.(2)观察函数表可知两个变量的乘积为定值,所以固定成本Q(元)与月产销量y(个)之间存在反比例函数关系.设Q=,将Q=60,y=160代入得:m=9600,∴Q=.(3)当Q=30时,y==320,∵y=﹣2x+860,∴x===270,即销售单价为270元,∴=,∴成本占销售价的.(4)若y≤400,则Q≥,即Q≥24,固定成本至少是24元,400≥﹣2x+860,解得x≥230,即销售单价最低为230元.17.解:(1),把②代入①,得y﹣9+3y=7,解得y=4,把y=4代入②,得x=﹣5,故方程组的解为;(2),①+②,得3x=8,解得x=,把x=代入②,得y=,故方程组的解为.18.解:(1),去分母,得3(4x﹣3)﹣15=5(7x﹣2),去括号,得12x﹣9﹣15=35x﹣10,移项,得12x﹣35x=9+15﹣10,合并同类项,得﹣23x=14,系数化为1,得;(2),①+②×2,得11x=﹣11,解得x=1,把x=1代入②,得y=2,故方程组的解为.19.解:(1),去分母,得3(x+1)﹣(x+2)=6+4x,去括号,得3x+3﹣x﹣2=6+4x,移项,得3x﹣x﹣4x=6+2﹣3,合并同类项,得﹣2x=5,系数化为1,得x=﹣;(2)原方程组可化为,②﹣①×2,得5y=9,解得y=,把y=代入①,得x=,故方程组的解为.20.解:(1)设:甲组工作一天商店应付x元,乙组工作一天商店付y元.由题意得解得答:甲、乙两组工作一天,商店各应付300元和140元.(2)单独请甲组需要的费用:300×12=3600元.单独请乙组需要的费用:24×140=3360元.答:单独请乙组需要的费用少.(3)请两组同时装修,理由:甲单独做,需费用3600元,少盈利200×12=2400元,相当于损失6000元;乙单独做,需费用3360元,少盈利200×24=4800元,相当于损失8160元;甲乙合作,需费用3520元,少盈利200×8=1600元,相当于损失5120元;因为5120<6000<8160,所以甲乙合作损失费用最少.答:甲乙合作施工更有利于商店.21.解:设甲种商品应购进x件,乙种商品应购进y件,依题意得:,解得:,答:甲种商品应购进100件,乙种商品应购进60件.22.解:因为两组方程组有相同的解,所以原方程组可化为,解方程组(1)得,代入(2)得,解得:.所以(﹣a)b=(﹣2)3=﹣8.23.解:②×3+③,得11x+10z=35 ④①与④组成方程组解得,把代入方程②得,y=,三元一次方程组的解为.。
初一数学上册第二单元测试题
一.选择题(共10题,每题3分,共30分) 1. 单项式-3πab 2的系数是 ,次数是 .2. 若a 、b 互为相反数,c 、d 互为倒数,则+2cd= .3. 已知A=x 2-2xy ,B=y 2+3xy ,则化简2A-3B 是 .4. 单项式−x 2y 3的系数是 ,次数 ;多项式2xy 2-3x 2y 3-8是 次 项式.5. 单项式7a 3b 2的次数是 .6. 按如图所示的运算程序,能使输出的结果为12的是( )7. 下列关于单项式-5xy 32的说法中,正确的是( )第7讲 整式的加减9. 观察下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,9×4+5=41,⋯⋯ 根据以上所反映的规律,猜想,第 n 个等式 ( n 为正整数)应为 ( ) A. 9(n −1)+n =10(n −1)+1 B. 9n +n =(n −1)+n C. 9n +(n −1)=n 2−1D. 9n +n =10n +110. 若输入 x =100, 输出结果是 501,若输入 x =25, 输出结果是 631,若开始输入的 x 值为正整数,最后输出的结果为 556,则开始输入的 x 值可能有 ( )A. 1 种B. 2 种C. 3 种D. 4 种二.填空题(共7题,每题3分,共21分) 1.单项式7πa 2b 3的次数是 .2.已知A=x 2-2xy ,B=y 2+3xy ,则化简2A-3B 是 .3.若代数式3a 5b m+1与-2a n b 2是同类项,那么m+n= .4.单项式−x 2y 3的系数是 ,次数 ;多项式2xy 2-3x 2y 3-8是 次 项式.5.已知:x +3−2y =0,则代数式 (2y −x )2−3x +6y −3 的值为 .1. 计算:(1) [12-3+56-(-112)]÷(-136).(2) -m+4(m-3n)-2(n-4m).(3)-(-1)4+(1÷2×1-4)×|12-(2)2|.25. 将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,⋯,依此规律,第6个图形有个圆.6.已知代数式(a2+a+2b)−(a2+3a+mb)的值与b的值无关,则m的值为.7. 对整数按以下方法进行加密;每个数字的数字变为与7乘积的个位数字,再把每个数位上的数字a变为10−a.如果一个数按照上面的方法加密后为473392,则该数为.三.解答题(共5题,第1题,7分;2-3题,每题12分;4-5题,每题10分)1. 关于x的多项式(a−4)x3−x b+x−b的次数是2,求当x=−2时这个多项式的值.2.化简下列各题:(1)7xy﹣x2+2x2﹣5xy﹣3x2;(2)4a2﹣〔a2+(5a2﹣2a)﹣(3a2﹣2a)+3〕+1;(3).3.先化简,再求值.(1)已知(a+2)2+|b﹣|=0,求a2b﹣[2a2﹣2(ab2﹣2a2b)﹣4]﹣2ab2的值.(2)已知a﹣b=2,求多项式(a﹣b)2﹣9(a﹣b)﹣(a﹣b)2﹣5(b﹣a).(3)已知:a+b=﹣2,a﹣b=﹣3,求代数式:2(4a﹣3b﹣2ab)﹣3(2a﹣)的值.4.先化简,再求值:4(a2b-ab2)-(5a2b-4ab2),其中a=1,b=3.25.已知M=﹣xy2+3x2y﹣1,N=4x2y+2xy2﹣x(1)化简:4M﹣3N;(2)当x=﹣2,y=1时,求4M﹣3N的值.第7讲整式的加减一.选择题(共10题,每题3分,共30分)1. 单项式-3πab2的系数是,次数是.【答案】-3π32. 若a、b互为相反数,c、d互为倒数,则+2cd=.3. 已知A=x2-2xy,B=y2+3xy,则化简2A-3B是.【答案】2x2-13xy-3y24. 单项式−x2y的系数是,次数;多项式2xy2-3x2y3-8是次项式.3【答案】−1三五三35. 单项式7a3b2的次数是.6. 按如图所示的运算程序,能使输出的结果为12的是()A x=3y=3B x=-4y=-2C x=2y=4D x=4y=2【答案】C7. 下列关于单项式-5xy3的说法中,正确的是()2【答案】3的值是()9. 观察下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,9×4+5=41,⋯⋯根据以上所反映的规律,猜想,第n个等式(n为正整数)应为( )A. 9(n−1)+n=10(n−1)+1B. 9n+n=(n−1)+nC. 9n+(n−1)=n2−1D. 9n+n=10n+1【答案】A10. 若输入x=100,输出结果是501,若输入x=25,输出结果是631,若开始输入的x 值为正整数,最后输出的结果为556,则开始输入的x值可能有( )A. 1种B. 2种C. 3种D. 4种【答案】B【解析】∵输出结果为556,∴5x+1=556,x=111.而111<500,当5x+1等于111时最后输出结果为556,即5x+1=111,x=22;当5x+1=22时最后输出结果为556,即,解得x=4.2(不合题意,舍去),所以开始输入的x值可能为22或111.二.填空题(共7题,每题3分,共21分) 1.单项式7πa 2b 3的次数是 . 【答案】5已知A=x 2-2xy ,B=y 2+3xy ,则化简2A-3B 是 . 【答案】2x 2-13xy-3y 23.【答案】三,四,−7x 3,1若代数式3a 5b m+1与-2a n b 2是同类项,那么m+n= . 【答案】64.单项式−x 2y 3的系数是 ,次数 ;多项式2xy 2-3x 2y 3-8是 次 项式.【答案】−13 三 五 三5.已知:x +3−2y =0,则代数式 (2y −x )2−3x +6y −3 的值为 . 【答案】14【解析】∵x +3−2y =0, ∴x −2y =−3.∴2y −x =3,−3x +6y =9. ∴原式=32+9−3=15.2. 计算:(3) [12-3+56-(-112)]÷(-136).(4) -m+4(m-3n)-2(n-4m).(3)-(-1)4+(1÷2×12-4)×|12-(2)2|.5. 将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,⋯,依此规律,第6个图形有个圆.【答案】46【解析】由题意可知第1个图形有小圆4+2=6个;第2个图形有小圆4+(2+4)=10个;第3个图形有小圆4+(2+4+6)=16个;第4个图形有小圆4+(2+4+6+8)=24个;第5个图形有小圆4+(2+4+6+8+10)=34个;∴第n个图形有小圆4+(2+4+6+8+⋯+2n)个,故第6个图形有小圆4+(2+4+6+8+10+12)=46个.7.已知代数式(a2+a+2b)−(a2+3a+mb)的值与b的值无关,则m的值为.【答案】27. 对整数按以下方法进行加密;每个数字的数字变为与7乘积的个位数字,再把每个数位上的数字a变为10−a.如果一个数按照上面的方法加密后为473392,则该数为.【答案】见解析【解析】对于任意一个数位数字(0−9),经加密后对应的数字是唯一的.规律如下:例如数字4,4与7相乘的末位数字是8,再把8变2,也就是说4对应的是2;同理可得:1对应3,2对应6,3对应9,4对应2,5对应5,6对应8,7对应1,8对应4,9对应7,0对应0;∴如果加密后的数为473392,那么原数是891134.四.解答题(共5题,第1题,7分;2-3题,每题12分;4-5题,每题10分)1. 关于x的多项式(a−4)x3−x b+x−b的次数是2,求当x=−2时这个多项式的值.【答案】见解析【解析】由题意得:{a −4=0,b =2.∴{a =4,b =2.所以多项式为 −x 2+x −2,当 x =−2 时,原式 =−4−2−2=−8. 2.化简下列各题:(1)7xy ﹣x 2+2x 2﹣5xy ﹣3x 2;(2)4a 2﹣〔a 2+(5a 2﹣2a )﹣(3a 2﹣2a )+3〕+1; (3).【答案】见解析【解析】解:(1) 7xy ﹣x 2+2x 2﹣5xy ﹣3x 2=﹣2x 2+2xy ; (2) 4a 2﹣[a 2+(5a 2﹣2a )﹣(3a 2﹣2a )+3]+1 =4a 2﹣(a 2+5a 2﹣2a ﹣3a 2+2a+3)+1 =4a 2﹣3a 2﹣3+1 =a 2﹣2;(3)原式=a ﹣a+4b+6c ﹣6c+6b =﹣a+10b . 3.先化简,再求值.(1)已知(a+2)2+|b ﹣|=0,求a 2b ﹣[2a 2﹣2(ab 2﹣2a 2b )﹣4]﹣2ab 2的值. (2)已知a ﹣b=2,求多项式(a ﹣b )2﹣9(a ﹣b )﹣(a ﹣b )2﹣5(b ﹣a ). (3)已知:a+b=﹣2,a ﹣b=﹣3,求代数式:2(4a ﹣3b ﹣2ab )﹣3(2a ﹣)的值.【答案】见解析【解析】解:(1)∵(a+2)2+|b ﹣|=0, ∵a+2=0,解得a=﹣2, b ﹣=0,解得b=;a 2b ﹣[2a 2﹣2(ab 2﹣2a 2b )﹣4]﹣2ab 2=a 2b ﹣[2a 2﹣2ab 2+4a 2b ﹣4]﹣2ab 2=a 2b ﹣2a 2+2ab 2﹣4a 2b+4﹣2ab 2=﹣3a 2b ﹣2a 2+4=﹣6﹣8+4=﹣10.(2)∵a ﹣b=2,(a ﹣b )2﹣9(a ﹣b )﹣(a ﹣b )2﹣5(b ﹣a )=﹣(a ﹣b )2﹣4(a ﹣b )=﹣1﹣8=﹣9.(3)∵a+b=﹣2,a ﹣b=﹣3,∵(a+b )2﹣(a ﹣b )2=a 2+2ab+b 2﹣a 2+2ab ﹣b 2=4ab=4﹣9=﹣5,∵ab=﹣1.25,∵2(4a ﹣3b ﹣2ab )﹣3(2a ﹣)=8a ﹣6b ﹣4ab ﹣6a+8b+ab=2a+2b ﹣3ab=2(a+b )﹣3ab=﹣4+3.75=﹣0.25.4.先化简,再求值:4(a 2b-ab 2)-(5a 2b-4ab 2),其中a=12,b=3. 【答案】解:原式=4a 2b-4ab 2-5a 2b+4ab 2=-a 2b ,把a=12,b=3代入得:原式=-34.5.已知M=﹣xy 2+3x 2y ﹣1,N=4x 2y+2xy 2﹣x(1)化简:4M ﹣3N ;(2)当x=﹣2,y=1时,求4M﹣3N的值.【解答】解:(1)4M﹣3N=4(﹣xy2+3x2y﹣1)﹣3(4x2y+2xy2﹣x)=﹣4xy2+12x2y﹣4﹣12x2y﹣6xy2+3x=﹣10xy2+3x﹣4;(2)当x=﹣2,y=1时,4M﹣3N=﹣10×(﹣2)×1+3×(﹣2)﹣4=20﹣6﹣4=10.。
初一数学一二单元测试题
初一数学一二单元测试题一、选择题(每小题 3 分,共 30 分)1、下列各数中,是负数的是()A 0B -2C 1D 22、有理数-3 的相反数是()A 3B -3C 1/3D -1/33、计算-2 + 3 的结果是()A -5B 1C -1D 54、绝对值等于 5 的数是()A 5B -5C ±5D 0 和 55、下列式子中,正确的是()A |-2| = 2B |-5| =-5C (-5) = 5D (-5) =-56、比较-2,0,(-2),|-2| 的大小,正确的是()A |-2| >-2 > 0 >(-2)B (-2) > 0 >-2 >|-2|C (-2) > 0 >|-2| >-2D -2 >|-2| > 0 >(-2)7、下列计算错误的是()A -3 5 =-8B 3÷(-1/3) =-9C (-2)^3 =-8D 2×(-5) = 108、若 a 是有理数,则下列各式一定成立的是()A a > aB a^2 > 0C a^2 + 1 > 0D |a| = a9、计算(-1)^2020 +(-1)^2021 的结果是()A 0B -2C 2D -110、下列说法正确的是()A 整数包括正整数和负整数B 零是最小的有理数C 有理数包括正有理数、负有理数和零D 正数和负数统称为有理数二、填空题(每小题 3 分,共 30 分)11、如果收入 100 元记作+100 元,那么支出 50 元记作______元。
12、数轴上表示-3 的点到原点的距离是______。
13、比较大小:-1/2______ -1/3 。
14、化简:(-3) =______。
15、计算:(-2)^2 =______。
16、若|a| = 5,则 a =______。
17、最大的负整数是______。
18、规定 ab = 2a b ,则 3(-2) =______。
19、观察下列数:1,-2,3,-4,5,-6,…,第 2020 个数是______。
初一七年级上学期人教版全套数学单元检测第二章 检测1及解析
龙安小学七年级上整式加减测试题一.选择题(共10小题共20分)1.(2015•镇江)计算﹣3(x﹣2y)+4(x﹣2y)的结果是()A.x﹣2yB.x+2yC.﹣x﹣2yD.﹣x+2y2.(2015•临淄区校级模拟)若2y m+5x n+3与﹣3x2y3是同类项,则m n=()A. B. C.1 D.﹣23.(2015•盐城校级三模)下列各式中,是3a2b的同类项的是()A.2x2yB.﹣2ab2C.a2bD.3ab4.(2015•石峰区模拟)若﹣x3y m与x n y是同类项,则m+n的值为()A.1B.2C.3D.45.(2015•达州模拟)下列计算正确的是()A.3a﹣2a=1B.B、x2y﹣2xy2=﹣xy2C.3a2+5a2=8a4D.3ax﹣2xa=ax6.(2015•重庆校级模拟)若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是()A.m=3,n=9B.m=9,n=9C.m=9,n=3D.m=3,n=37.(2015•宝应县校级模拟)下列判断错误的是()A.若x<y,则x+2010<y+2010B.单项式的系数是﹣4C.若|x﹣1|+(y﹣3)2=0,则x=1,y=3D.一个有理数不是整数就是分数8.(2015•泰安模拟)化简m﹣n﹣(m+n)的结果是()A.0B.2mC.﹣2nD.2m﹣2n9.(2015•泗洪县校级模拟)已知a,b两数在数轴上对应的点的位置如图所示,则化简代数式|a+b|﹣|a﹣2|+|b+2|的结果是()A.2a+2bB.2b+3C.2a﹣3D.﹣110.(2015春•淅川县期末)若x﹣y=2,x﹣z=3,则(y﹣z)2﹣3(z﹣y)+9的值为()A.13B.11C.5D.7二.填空题(共10小题共30分)11.(2015•遵义)如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2015=.12.(2015•泗洪县校级模拟)若单项式2x2y m与的和仍为单项式,则m+n的值是.13.(2015•诏安县校级模拟)若﹣2x2y m与6x2n y3是同类项,则mn=.14.(2015•衡阳县校级二模)单项式﹣4x2y3的系数是,次数.15.(2015•长沙校级二模)单项式的系数与次数之积为.16.(2015•徐州模拟)多项式与m2+m﹣2的和是m2﹣2m.17.(2015秋•开封校级月考)多项式﹣2m2+3m ﹣的各项系数之积为.18.(2015春•乐平市期中)在代数式3xy2,m,6a2﹣a+3,12,,中,单项式有个,多项式有个.19.(2014•高港区二模)单项式﹣2πa2bc的系数是.20.(2015春•滨海县校级月考)观察一列单项式:x,3x2,5x3,7x,9x2,11x3…,则第2013个单项式是.三.解答题(共6小题共70分21题每小题4分、每题6分、27与28题各8分21.(2014秋•镇江校级期末)合并同类项/化简(每小题4分)(1)3a﹣2b﹣5a+2b (2)(2m+3n﹣5)﹣(2m﹣n﹣5)(3)7x﹣y+5x﹣3y+3 (4)2(x2y+3xy2)﹣3(2xy2﹣4x2y)(5)a2+(2a2﹣b2)+b2 (6)6a2b+(2a+1)﹣2(3a2b﹣a)23、已知|a﹣2|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]的值(6分)24、已知x=3时,多项式ax3﹣bx+5的值是1,求当x=﹣3时,ax3﹣bx+5的值(6分)25.(2014秋•江西期末)化简:8n2﹣[4m2﹣2m﹣(2m2﹣5m)].(6分)26.(武侯区期末)已知代数式mx3+x3﹣nx+2015x﹣1的值与x的取值无关.求m x的值;(6分) 27.(2014秋•腾冲县校级期末)已知:A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1.若3A+6B的值与x 的值无关,求y的值.(8)28.(2014•咸阳模拟)已知A=5a+3b,B=3a2﹣2a2b,C=a2+7a2b﹣2,当a=1,b=2时,求A﹣2B+3C的值.(8)2015年10月27日113859的初中数学组卷参考答案与试题解析一.选择题(共10小题)1.(2015•镇江)计算﹣3(x ﹣2y)+4(x ﹣2y)的结果是( ) A.x ﹣2y B.x+2y C .﹣x ﹣2y D .﹣x+2y2.(2015•临淄区校级模拟)若2y m+5x n+3与﹣3x 2y 3是同类项,则m n =( ) A.B.C.1 D .﹣2=﹣3.(2015•盐城校级三模)下列各式中,是3a 2b 的同类项的是( ) A.2x 2y B.﹣2ab 2 C.a 2b D.3ab4.(2015•石峰区模拟)若﹣x 3y m 与x n y 是同类项,则m+n 的值为( ) A.1 B .2 C .3 D .45.(2015•达州模拟)下列计算正确的是( )A.3a﹣2a=1B.x2y﹣2xy2=﹣xy2C.3a2+5a2=8a4D.3ax﹣2xa=ax6.(2015•重庆校级模拟)若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是()A.m=3,n=9B.m =9,n=9C.m=9,n=3D.m=3,n=3,7.(2015•宝应县校级模拟)下列判断错误的是()A.若x<y,则x+2010<y+2010B.单项式的系数是﹣4C.若|x﹣1|+(y﹣3)2=0,则x=1,y=3D.一个有理数不是整数就是分数、∵单项式﹣的数字因数是﹣,∴此单项式的系数是﹣8.(2015•泰安模拟)化简m﹣n﹣(m+n)的结果是()A.0B.2mC.﹣2nD.2m﹣2n9.(2015•泗洪县校级模拟)已知a,b两数在数轴上对应的点的位置如图所示,则化简代数式|a+b|﹣|a﹣2|+|b+2|的结果是()A.2a+2bB.2b+3 C .2a ﹣3 D.﹣110.(2015春•淅川县期末)若x ﹣y =2,x ﹣z =3,则(y ﹣z)2﹣3(z ﹣y)+9的值为( ) A.13 B.11 C.5 D .7二.填空题(共10小题)11.(2015•遵义)如果单项式﹣xy b+1与x a ﹣2y 3是同类项,那么(a ﹣b)2015= 1 .12.(2015•泗洪县校级模拟)若单项式2x 2y m 与的和仍为单项式,则m+n 的值是 5 .13.(2015•诏安县校级模拟)若﹣2x 2y m 与6x 2n y 3是同类项,则mn = 3 .∴解得14.(2015•衡阳县校级二模)单项式﹣4x 2y 3的系数是 ﹣4,次数是 5 .15.(2015•长沙校级二模)单项式的系数与次数之积为 ﹣2 .,其系数与次数之积为﹣×16.(2015•徐州模拟)多项式 ﹣3m+2 与m 2+m ﹣2的和是m 2﹣2m.17.(2015秋•开封校级月考)多项式﹣2m 2+3m ﹣的各项系数之积为 3 .﹣的各项系数之积为﹣18.(2015春•乐平市期中)在代数式3xy 2,m,6a 2﹣a+3,12,,中,单项式有 3 个,多项式有 2 个.﹣xy ,﹣xy19.(2014•高港区二模)单项式﹣2πa 2bc 的系数是 ﹣2π .20.(2015春•滨海县校级月考)观察一列单项式:x,3x 2,5x 3,7x,9x 2,11x 3…,则第2013个单项式是 4025x 3 .∵=三.解答题(共6小题)21.(2014秋•镇江校级期末)合并同类项 ①3a ﹣2b ﹣5a+2b ②(2m+3n ﹣5)﹣(2m ﹣n ﹣5) ③2(x 2y+3xy 2)﹣3(2xy 2﹣4x 2y)22.(2014秋•海口期末)化简: (1)16x ﹣5x+10x (2)7x ﹣y+5x ﹣3y+3 (3)a 2+(2a 2﹣b 2)+b 2 (4)6a 2b+(2a+1)﹣2(3a 2b ﹣a)23.(2014秋•江西期末)化简:8n 2﹣[4m 2﹣2m ﹣(2m 2﹣5m)].24.(2014秋•武侯区期末)已知代数式mx 3+x 3﹣nx+2015x ﹣1的值与x 的取值无关. (1)求m x 的值; (2)若关于y 的方程﹣y =2的解是y=m x ,求|1﹣2a|的值.25.(2014秋•腾冲县校级期末)已知:A=2x2+3xy﹣2x﹣1,B=﹣x2+xy ﹣1.若3A+6B的值与x 的值无关,求y的值.=. 26.(2014•咸阳模拟)已知A=5a+3b,B=3a2﹣2a2b,C=a2+7a2b﹣2,当a=1,b=2时,求A﹣2B+3C的值.。
石家庄市第二中学七年级数学上册第一单元《有理数》-解答题专项经典练习卷(培优提高)
一、解答题1.计算:()2213113244812⎛⎫-+--⨯-- ⎪⎝⎭. 解析:13【分析】运用乘法的分配律去括号,再按有理数混合运算的顺序计算.【详解】解:原式()19692=-+---()85=--13=【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.2.出租车司机张师傅11月1日这一天上午的营运全在一条东西向的街道上进行,如果规定向东为正,那么他这天上午载了五位乘客所行车的里程如下(单位:km ):8+,6-,3+,7-,1+.(1)将最后一名乘客送到目的地时,张师傅距出车地点的位置如何?(2)若汽车耗油为0.08L/km ,则这天上午汽车共耗油多少升?解析:(1)在出车地点西边1千米处;(2)2升【分析】(1)计算张师傅行驶的路程的和即可;(2)计算出每段路程的绝对值的和后乘以0.08,即为这天上午汽车共耗油数.【详解】解:(1)规定向东为正,则向西为负,(+8)+(-6)+(+3)+(-7)+(+1)=8-6+3-7+1=-1千米.答:将最后一名乘客送到目的地,张师傅在出车地点西边1千米处.(2)(8+6+3+7+1)×0.08=2升.答:这天午共耗油2升.【点睛】本题考查了有理数的混合运算,注意要针对不同情况用不同的计算方法.3.某校七年级(1)至(4)班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:(2)这4个班实际共购书多少本?(3)书店给出一种优惠方案:一次购买不少于15本,其中2本书免费.若每本书的售价为30元,请计算这4个班整体购书的最低总花费是多少元?解析:(1)42,+3,22;(2)118本;(3)3120元.【分析】(1)由于4班实际购入21本,且实际购买数量与计划购买数量的差值=-9,即可得计划购书量=30,进而可把表格补充完整;(2)把每班实际数量相加即可;(3)根据已知求出总费用即可.【详解】解:(1)由于4班实际购入21本书,实际购入数量与计划购入数量的差值=-9,可得计划购入数量=30(本),所以一班实际购入30+12=42本,二班实际购入数量与计划购入数量的差值=33-30=3本,3班实际购入数量=30-8=22本.故答案依次为42,+3,22;(2)4个班一共购入数量=42+33+22+21=118(本);(3)由118157÷=余13得,如果每次购买15本,则可以购买7次,且最后还剩13本书需单独购买,得最低总花费=30×(15-2)×7+30×13=3120(元).. 【点睛】本题考查了正负数的应用.在生活实际中利用正负数的计算能力,并通过相关运算来比较大小,进而得出最佳方案;这里要注意,生活中在选择方案时,要注意所有可能的情况. 4.计算:(1)412115(2)5⎡⎤⎛⎫----⨯-÷- ⎪⎢⎥⎝⎭⎣⎦(2)1111243812⎛⎫÷-+- ⎪⎝⎭(要求简便方法计算) 解析:(1)-21;(2)17-【分析】 (1)先进行幂的运算,再算括号里面的,去括号应注意括号前的负号,再算加减. (2)除数和被除数同时乘24可得1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦再算括号里的可得出答案. 【详解】解:(1)原式=﹣16﹣[-11+1]÷(-2)=﹣16-5=-21;(2)原式=1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦=[]1832÷-+-1(7)=÷- =17- 【点睛】本题考查的是有理数的加减、乘除以及乘方的运算,熟练掌握运算法则是解题的关键. 5.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减产记为负)(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?解析:(1)该厂本周实际生产自行车1409辆;(2)产量最多的一天比产量最少的一天多生产自行车26辆;(3)该厂工人这一周工资总额是70558元.【分析】(1)根据每天的增减量,依次相加,可得答案;(2)根据每天的增减量,用最多的一天减去最少的一天即可;(3)该厂一周工资=实际自行车产量×50+超额自行车产量×12.【详解】解:(1)1400+5-2-4+13-10+16-9=1409(辆),答:该厂本周实际生产自行车1409辆;(2)16-(-10)=26(辆),答:产量最多的一天比产量最少的一天多生产自行车26辆;(3)50×1409+12×9=70558.答:该厂工人这一周工资总额是70558元.【点睛】本题考查有理数加、减运算的应用,用正数和负数表示.明白“+”是比计划多、“-”是比计划少是解题的关键.6.计算:(1)113623⎛⎫-⨯- ⎪⎝⎭ (2)2233(3)3(2)|4|-÷-+⨯-+-解析:(1)2;(2)-21.【分析】(1)根据有理数的混合运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)113623⎛⎫-⨯-⎪⎝⎭ =1136623-⨯+⨯ =332-+=2;(2)2233(3)3(2)|4|-÷-+⨯-+-=993(8)4-÷+⨯-+=1244--+=-21.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.7.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭. 解析:12-. 【分析】 根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可.【详解】原式311222⎛⎫=-++-=- ⎪⎝⎭. 【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键.8.如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为________cm ;(2)图中点A 所表示的数是_______,点B 所表示的数是_______;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?解析:(1)8;(2)14,22;(3)奶奶现在的年龄为67岁.【分析】(1)由观察数轴可知三根这样长的木棒的长度,即可求出这根木棒的长;(2)由所求出的这根木棒的长,结合图中的已知条件即可求得A 和B 所表示的数; (3)根据题意,设数轴上小木棒的A 端表示妙妙的年龄,小木棒的B 端表示奶奶的年龄,则小木棒的长表示二人的年龄差,由此参照(1)中的方法结合已知条件分析解答即可.【详解】(1)观察数轴可知三根这样长的木棒长为30624cm -=,则这根木棒的长为2438cm ÷=;(2)由这根木棒的长为8cm ,所以A 点表示为6+8=14,B 点表示为6+8+8=22;(3)借助数轴,把妙妙和奶奶的年龄差看做木棒AB ,奶奶像妙妙这样大时,可看做点B 移动到点A ,此时点A 向左移后所对应的数为37-,可知奶奶比妙妙大()11937352⎡⎤⎣÷⎦--=,则奶奶现在的年龄为1195267-=(岁). 【点睛】此题考查认识数轴及用数轴表示有理数和有理数的加减法,难度一般,读懂题干要求是关键.9.计算:(1)()213433⎛⎫---+-+ ⎪⎝⎭; (2)()()202011232---+-+. 解析:(1)-6;(2)132- 【分析】(1)先化为省略括号的形式,将整数及分数分别相加,再计算加法;(2)先计算乘方,同时计算绝对值及去括号,再计算加减法.【详解】(1)解:原式=213433-+-+()213433⎛⎫=--++ ⎪⎝⎭71=-+6=-;(2)解:原式=11232--+ =142- =132-. 【点睛】 此题考查有理数的混合运算,掌握有理数加减混合运算法则及有理数乘方运算法则是解题的关键.10.计算:(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)131121346⎛⎫-⨯-+ ⎪⎝⎭解析:(1)1;(2)9-【分析】(1)先算括号里面的,再算括号外面的即可;(2)根据乘法分配律计算即可;【详解】(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 11463⎡⎤=-+-⨯⎢⎥⎣⎦, 121=-+=;(2)131121346⎛⎫-⨯-+ ⎪⎝⎭, ()()()431121212346=-⨯--⨯+-⨯, 16929=-+-=-;【点睛】本题主要考查了有理数的混合运算,准确计算是解题的关键.11.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A和点B表示的数;(2)写出在点B左侧,并与点B距离为9.5厘米的直尺左端点C表示的数;(3)若直尺长度为a厘米,移动直尺,使得直尺的长边CD的中点与数轴上的点A重合,求此时左端点C表示的数.解析:(1)点A表示的数是-3,点B表示的数是3;(2)点C表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A和点B表示的数是互为相反数,即可得到结果;(2)利用点B表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a个单位计算即可.【详解】(1)∵AB=8-2=6,点A和点B表示的数是互为相反数,∴点A表示的数是-3,点B表示的数是3;(2)点C表示的数是:3-9.5=-6.5;(3)∵直尺长度为a厘米,直尺中点表示的数是-3,∴直尺此时左端点C表示的数-3-0.5a.【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.A B C,回答下列问题:12.如图,在数轴上有三个点,,(1)若将点B向右移动5个单位长度后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到,A C两点的距离相等,写出点D表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E 表示的数.-(2)0.5(3)3-或7-解析:(1)1【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D是线段AC的中点;(3)在点B左侧找一点E,点E到点A的距离是到点B的距离的2倍,依此即可求解.【详解】解:(1)点B表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D 表示的数为(-1+2)÷2=1÷2=0.5;(3)点E 在点B 的左侧时,根据题意可知点B 是AE 的中点,AB=|-1+4|=3则点E 表示的数是-4-3=-7.点E 在点B 的右侧时,即点E 在AB 上,则点E 表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.13.小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,-8,12,-6,11,14,-3(超过30分钟的部分记为“+”,不足30分钟的部分记为“-”)(1)小李跑步时间最长的一天比最短的一天多跑几分钟?(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米? 解析:(1)22分钟;(2)24千米.【分析】(1)时间差=标准差的最大值-标准差的最小值;(2)先计算出一周的总运动时间,利用路程,速度,时间的关系计算即可.【详解】(1)()14822--=(分钟).故小李跑步时间最长的一天比最短的一天多跑22分钟.(2)()30710812611143240⨯+-+-++-=(分钟),0.124024⨯=(千米).故这七天他共跑了24千米.【点睛】本题考查了有理数的混合运算,熟练运用标准差计算时间差,标准时间计算总时间是解题的关键.14.计算:(1)()()128715--+--; (2)()()3241223125---÷+⨯--. 解析:(1)2-;(2)7.【分析】(1)先去括号,再进行有理数运算即可;(2)根据有理数混合运算顺序和运算法则计算可得.【详解】解:(1)12﹣(﹣8)+(﹣7)﹣15=12+8﹣7﹣15=(12+8)+(﹣7﹣15)=20﹣22=﹣2(2)﹣12﹣(﹣2)3÷45 +3×|1﹣(﹣2)2| =﹣12﹣(﹣8)×54+3×|1﹣4| =﹣12+10+3×|﹣3|=﹣12+10+9=7【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.15.计算题:(1)3×(﹣4)﹣28÷(﹣7);(2)﹣12020+(﹣2)3×1123⎛⎫-+ ⎪⎝⎭. 解析:(1)﹣8;(2)13. 【分析】(1)先计算乘除,再计算加减,即可得到答案;(2)先计算乘方、然后计算乘法和括号内的运算,再计算加法即可.【详解】解:(1)3×(﹣4)﹣28÷(﹣7)=(﹣12)+4=﹣8;(2)﹣12020+(﹣2)3×1123⎛⎫-+ ⎪⎝⎭. =-1+(-8)×16⎛⎫-⎪⎝⎭ =413-+=13. 【点睛】本题考查了有理数的加减乘除运算,解题的关键是熟练掌握运算法则进行解题. 16.计算:2334[28(2)]--⨯-÷-解析:21-.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-, []942(1)=--⨯--, 943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.17.计算:(1)[]2(2)18(3)24-+--⨯÷ (2)()()243513224⎡⎤----⨯÷-⎢⎥⎣⎦解析:(1)10;(2)-15【分析】(1)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】(1)解:原式=4+[18-(-6)]÷4=4+24÷4=4+6=10;(2)解:原式=-1-[9-10÷(-2)]=-1-[9-(-5)]=-1-14=-15.【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法. 18.赣州享有“世界橙乡”的美誉,中华名果赣南脐橙热销世界各地.刚大学毕业的小明把自家的脐橙产品放到了网上售卖,他原计划每天卖100kg 脐橙,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:kg ).)根据记录的数据可知前三天共卖出 kg (2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 kg ;(3)若脐橙按4.5元/kg出售,且小明需为买家支付运费(平均0.5元/kg),则小明本周一共赚了多少元?解析:(1)296;(2)29;(3)2868元【分析】(1)将前三天的销售量相加即可;(2)根据表格销量最多的一天为周六,最少的一天为周五,用周六的销量减去周五的销量即可得到答案;(3)先计算出本周的总销量,再乘以每千克的利润即可.【详解】(1)4-3-5+300=296(kg),故答案为:296;(2)(+21)-(-8)=29(kg),故答案为:29;(3)4-3-5+14-8+21-6=17(kg),17+100×7=717(kg),717×(4.5-0.5)=2868(元),小明本周一共赚了2868元.【点睛】此题考查正负数的实际应用,有理数混合运算的实际应用,正确理解表格意义列式计算是解题的关键.19.计算:(1)157(36)2612⎛⎫--⨯-⎪⎝⎭(2)2138(2)3⎛⎫⨯-+÷-⎪⎝⎭解析:(1)33;(2)1.【分析】(1)根据乘法分配律可以解答本题;(1)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)原式=157(36)(36)(36)2612⨯--⨯--⨯-= -18+30+21=33;(2)原式= -1+2=1.【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.计算:(1)117483612⎛⎫-+-⨯⎪⎝⎭;(2)20213281(2)(3)3---÷⨯-.解析:(1)36-;(2)26.【分析】(1)利用乘法分配律进行简便运算即可;(2)先算乘方,再算乘除,最后计算加减即可.【详解】解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭ 1174848483612=-⨯+⨯-⨯ 16828=-+-36=-;(2)20213281(2)(3)3---÷⨯- 31(89)8=---⨯⨯ 127=-+26=.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.21.计算:(1)6÷(-3)×(-32) (2)-32×29-+(-1)2019-5÷(-54) 解析:(1)3;(2)1.【分析】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】解:(1)原式=6×1-3⎛⎫ ⎪⎝⎭ ×(-32)=3; (2)原式=-9×29+(-1)-5×4-5⎛⎫ ⎪⎝⎭=-2-1+4=1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 22.计算:(1)45(30)(13)+---;(2)32128(2)4-÷-⨯-. 解析:(1)28;(2)-2【分析】 (1)有理数的加减混合运算,从左往右依次计算即可;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)45(30)(13)+---=4530+13-=15+13=28(2)32128(2)4-÷-⨯- =18844-÷-⨯ =11--=-2.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 23.如图,数轴上A ,B 两点之间的距离为30,有一根木棒MN ,设MN 的长度为x .MN 数轴上移动,M 始终在左,N 在右.当点N 移动到与点A ,B 中的一个重合时,点M 所对应的数为9,当点N 移动到线段AB 的中点时,点M 所对应的数是多少?解析:点M 所对应的数为24或-6.【分析】设MN=x ,然后分类计算即可:①当点N 与点A 重合时,点M 所对应的数为9,则点N 对应的数为x+9;②当点N 与点B 重合时,点M 所对应的数为9,则点N 对应的数为x+9.【详解】设MN=x ,①当点N 与点A 重合时,点M 所对应的数为9,则点N 对应的数为x+9,∵AB=30,∴当N 移动到线段AB 的中点时,点N 对应的数为x+9+15=x+24,∴点M 所对应的数为x+24-x=24;②当点N 与点B 重合时,点M 所对应的数为9,则点N 对应的数为x+9,∵AB=30,∴当N 移动到线段AB 的中点时,点N 对应的数为x+9-15=x-6,∴点M 所对应的数为x-6-x=-6;综上,点M 所对应的数为24或-6.【点睛】本题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.数形结合并分类讨论是解题的关键.24.点A 、B 在数轴上所表示的数如图所示,回答下列问题:(1)将A 在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C ,求出B 、C 两点间的距离是多少个单位长度?(2)若点B 在数轴上移动了m 个单位长度到点D ,且A 、D 两点间的距离是3,求m 的值.解析:(1)B 、C 两点间的距离是3个单位长度;(2)m 的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C 所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC =|2﹣5|=3;(2)分类考虑当点D 在点A 的左侧与右侧,利用AD=3,求出点D 所表示的数,再利用BD=m 求出m 的值即可.【详解】解:(1)点C 所表示的数为﹣3﹣1+9=5,∴BC =|2﹣5|=3.(2)当点D 在点A 的右侧时,点D 所表示的数为﹣3+3=0,所以点B 移动到点D 的距离为m =|2﹣0|=2,当点D 在点A 的左侧时,点D 所表示的数为﹣3﹣3=﹣6,所以点B 移动到点D 的距离为m =|2﹣(﹣6)|=8,答:m 的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD 的距离分类讨论点D 的位置是解题关键. 25.计算:(1)152|18|()263-⨯-+; (2)20203221124(2)3()3-+÷--⨯. 解析:(1)6;(2)-5【分析】(1)先去掉绝对值,然后根据乘法分配律即可解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)152|18|()263-⨯-+ =18×(12﹣56+23) =18×12﹣18×56+18×23=9﹣15+12 =6;(2)20203221124(2)3()3-+÷--⨯ =﹣1+24÷(﹣8)﹣9×19=﹣1+(﹣3)﹣1=﹣5.【点睛】 此题主要考查有理数的混合运算,熟练掌握混合运算顺序是解题关键.26.画一条数轴,把1-12,0,3各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.解析:数轴表示见解析;-3<112-<0<112<3.【分析】先画出数轴,把各数依次表示出来,从左到右用“<”把各数连接起来即可.【详解】解:112-的相反数是112,0的相反数是0,3的相反数是-3,在数轴上的表示如图所示:从左到右用“<”连接为:-3<112-<0<112<3.故答案为:-3<112-<0<112<3.【点睛】本题考查的是数轴的特点、相反数的定义及有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.27.计算:(1)4222(37)2(1)-+--⨯-; (2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭. 解析:(1)-2;(2)-19【分析】(1)先括号里,再计算乘方、乘法,最后相加减即可;(2)利用乘法的分配率进行计算.【详解】(1)4222(37)2(1)-+--⨯-=16162-+-=-2;(2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭=157(36)(36)(36)2912⨯--⨯-+⨯- =-18+20-21=-19【点睛】 考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.28.在数轴上,一只蚂蚁从原点O 出发,它先向左爬了2个单位长度到达点A ,再向右爬了3个单位长度到达点B ,最后向左爬了9个单位长度到达点C .(1)写出A ,B ,C 三点表示的数;(2)根据点C 在数轴上的位置回答,蚂蚁实际上是从原点出发,向什么方向爬了几个单位长度?解析:(1)A ,B ,C 三点表示的数分别是-2,1,-8;(2)向左爬了8个单位.【分析】(1)向左用减法,向右用加法,列式求解即可写出答案;(2)根据C 点表示的数,向右为正,向左为负,继而得出答案.【详解】解:(1)A 点表示的数是0-2=-2,B 点表示的数是-2+3=1,C 点表示的数是1-9=-8;(2)∵O 点表示的数是0;C 点表示的数是-8,∴蚂蚁实际上是从原点出发,向左爬了8个单位.【点睛】本题考查了数轴的知识及有理数的加减法的应用,属于基础题,比较简单,理解向左用减法,向右用加法,是关键.29.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“-”表示成绩小于14秒.解析:9秒.【分析】根据平均成绩的计算方法,先列式计算表格中所有数据的平均数,再加上标准成绩即可得出结果.【详解】解: 1.20.7010.30.20.30.50.18-++--+++=-(秒) 140.113.9-=(秒).答:这个小组8名男生的平均成绩是13.9秒.【点睛】此题考查了有理数的混合运算的实际应用,正确理解题目中正数和负数的含义是列式计算的关键.30.计算(1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()34011 1.950.50|5|5---+-⨯⨯--+.解析:(1)14;(2)0【分析】(1)先计算乘法和除法,再计算加法;(2)分别计算乘方、乘法和绝对值,再计算加法和减法.【详解】解:(1)原式=2124633⎛⎫⎛⎫-⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭()162=+-14=;(2)原式011055=-++-+=0.【点睛】本题考查有理数的混合运算.(1)中注意要先把除法化为乘法再计算;(2)中注意多个有理数相乘时,只要有一个因数为0,那么积就为0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学练习卷
一、选择题(本大题共6小题,共18.0分)
1.已知x2−2(m−3)x+16是一个完全平方式,则m的值是()
A. −7
B. 1
C. −7或1
D. 7或−1
2.若(x2−x+m)(x−8)中不含x的一次项,则m的值为()
A. 8
B. −8
C. 0
D. 8或−8
3.下列说法:①两点之间的所有连线中,线段最短;②过一点有且只有一条直线与
已知直线垂直;③连接直线外一点与直线上各点的所有线段中,垂线段最短;④直线外一点到这条直线的垂线段叫做点到直线的距离,其中正确的个数有()
A. 4个
B. 3个
C. 2个
D. 1个
4.长方形的面积为4a2−6ab+2a,若它的一边长为2a,则它的周长为()
A. 4a-3b
B. 8a-6b
C. 4a-3b+1
D. 8a-6b+2
5.下列说法中正确的个数有()
①经过一点有且只有一条直线;
②连接两点的线段叫做两点之间的距离;
③射线比直线短;
④ABC三点在同一直线上且AB=BC,则B是线段AC的中点;
⑤在同一平面内,两条直线的位置关系有两种:平行与相交;
⑥在8:30时,时钟上时针和分针的夹角是75°.
A. 1个
B. 2个
C. 3个
D. 4个
6.如图,矩形ABCD的顶点A、C分别在直线a、b上,
且a//b,∠1=60°,则∠2的度数为()
A. 30°
B. 45°
C. 60°
D. 75°
二、填空题(本大题共3小题,共9.0分)
7.如图,直线a,b被直线c所截,若a//b,∠1=110°,
∠2=40°,则∠3=______°.
8.用一张长方形纸条折成如图所示图形,如果∠1=130°,那
么∠2=______.
9.若x m=2,x n=3,则x m+2n的值为______.
三、计算题(本大题共2小题,共12.0分
10.计算
(1)(2x+y−2)(2x+y+2)
(2)(x+5)2−(x−2)(x−3)
四、解答题(本大题共6小题,共48.0分)
11.如图,要在长方形木板上截一个平行四边形,使它的一组对边
在长方形木板的边缘上,另一组对边的一条边为AB.请过点C画
出与AB平行的另一条边CD.(尺规作图,不写作法,保留作图痕
迹.)
12.化简:(x+y)(x−y)−(2x−y)(x+3y)
)的结果中不含关于字母x的一次项,求(a+2)2-
13.化简求值:已知:(x+a)(x-3
2
(1-a)(-a-1)的值.
14.欢欢与乐乐两人共同计算(2x+a)(3x+b),欢欢抄错为(2x-a)(3x+b),得到的
结果为6x2-13x+6;乐乐抄错为(2x+a)(x+b),得到的结果为2x2-x-6.
(1)式子中的a、b的值各是多少?
(2)请计算出原题的正确答案
15.如图1,CE平分∠ACD,AE平分∠BAC,且∠EAC+∠ACE=90°.
(1)请判断AB与CD的位置关系,并说明理由;
(2)如图2,当∠E=90°且AB与CD的位置关系保持不变,当直角顶点E点移动
时,写出∠BAE与∠ECD的数量关系,并说明理由;
(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点,且AB与CD的位置关系保持不变,当点Q在射线CD上运动时(点C除外),∠CPQ+∠CQP与
∠BAC有何数量关系?写出结论,并加以证明.。