中考数学:常用几何模型及构造方法(全)

合集下载

2024年中考数学几何模型归纳(全国通用):全等与相似模型-半角模型(教师版)

2024年中考数学几何模型归纳(全国通用):全等与相似模型-半角模型(教师版)

专题16全等与相似模型-半角模型全等三角形与相似三角形在中考数学几何模块中占据着重要地位。

相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。

如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了。

本专题就半角模型进行梳理及对应试题分析,方便掌握。

模型1.半角模型半角模型概念:过多边形一个顶点作两条射线,使这两条射线夹角等于该顶角一半。

思想方法:通过旋转(或截长补短)构造全等三角形,实现线段的转化。

解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。

半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论。

【模型展示】1)正方形半角模型条件:四边形ABCD是正方形,∠ECF=45°;结论:①△BCE≌△DCG;②△CEF≌△CGF;③EF=BE+DF;④ AEF的周长=2AB;⑤CE、CF分别平分∠BEF和∠EFD。

2)等腰直角三角形半角模型条件: ABC是等腰直角三角形,∠DAE=45°;结论:①△BAD≌△CAG;②△DAE≌△GAE;③∠ECG==90°;④DE2=BD2+EC2;3)等边三角形半角模型(120°-60°型)条件: ABC 是等边三角形, BDC 是等腰三角形,且BD =CD ,∠BDC =120°,∠EDF =60°;结论:①△BDE ≌△CDG ;②△EDF ≌△GDF ;③EF =BE +FC ;④ AEF 的周长=2AB ;⑤DE 、DF 分别平分∠BEF 和∠EFC 。

4)等边三角形半角模型(60°-30°型)条件: ABC 是等边三角形,∠EAD =30°;结论:①△BDA ≌△CFA ;②△DAE ≌△FAE ;③∠ECF =120°;④DE 2=(12BD +EC)2+2;5)半角模型(2 - 型)条件:∠BAC =2 ,AB =AC ,∠DAE = ;结论:①△BAD ≌△CAF ;②△EAD ≌△EAF ;③∠ECF=180°-2 。

初中数学常用几何模型及构造方法大全

初中数学常用几何模型及构造方法大全

初中数学常用几何模型及构造方法大全初中数学中常用的几何模型有点线面体等,下面是一些具体的模型及其构造方法的介绍。

1.点:点是最基本的几何模型,没有大小和形状,通常用字母表示,如点A。

构造一个点的方法是利用直尺和量角器可以在纸上画出一个点。

2.线段:线段是由两个点A、B确定的一段有限长度的直线。

构造一个线段的方法是使用直尺在纸上连接两个点A、B。

3.直线:直线是不限长度的连续的直线,由无数个点连成。

构造一条直线的方法是使用直尺和铅笔,通过两个点A、B可以画出一条直线。

4.射线:射线是起始点A和其中一点B组成的,且延伸方向上没有终点的线段,A点称为射线的起点。

构造一个射线的方法是先画一个点A,然后通过这个点再延伸一段。

5.角:角是由两条射线共享一个端点所组成的图形,其中这个端点称为角的顶点,两条射线称为角的腿。

构造一个角的方法是先画出射线,然后再画出另一条射线与之相交,两射线的交点即为角的顶点。

6.平行线:平行线是在同一个平面上永远不会相交的直线。

构造平行线的方法是使用直尺和量角器,通过已知的一条直线上的一点和一条角度相等的直线可以画出平行线。

7.相交线:相交线是在同一个平面上交叉的直线。

构造相交线的方法是使用直尺和量角器,在纸上画出两条直线,交点即为相交线的点。

8.三角形:三角形是由三条线段组成的图形。

构造一个三角形的方法是使用直尺和量角器,先画出一个线段作为一条边,再使用量角器构造两条角度相等的线段作为其它两边。

9.直角三角形:直角三角形是一个角为90度的三角形。

构造直角三角形的方法是使用直尺和量角器,首先画出一条线段,然后构造一个90度的角作为其中一条边。

10.等边三角形:等边三角形是三边相等的三角形。

构造等边三角形的方法是使用直尺和量角器,首先画出一条线段作为其中一条边,然后通过量角器构造另外两条边,使得三边相等。

除了以上列举的几何模型,还有圆、四边形、多边形等,它们的构造方法有一些特定的规则,可以通过直尺、圆规和量角器等几何工具进行构造。

初中数学中考数学常用几何模型及构造方法大全

初中数学中考数学常用几何模型及构造方法大全

初中数学中考数学常用几何模型及构造方法大全
1.线段和角的构造:
(1)线段的平分线构造:通过线段的两个端点构造出它的平分线;
(2)角的平分线构造:通过角的两条边构造出它的平分线。

2.直线和角的性质:
(1)同位角和内错角的性质:对于两条平行线与同位角以及内错角的
关系给出了详细的构造方法;
(2)顶角与底角的性质:对于两个交角的顶角和底角的关系给出了构
造方法。

3.平面图形的特点与性质:
(1)正方形、矩形、菱形和平行四边形的构造方法:通过给出一些特
定线段的长度构造出相应的平面图形;
(2)三角形的构造方法:根据给定的边长或者角度构造出相应的三角形;
(3)全等三角形的构造方法:利用三个已知条件构造出全等的三角形;
(4)利用三角形的角平分线构造三角形的内心;
(5)利用三角形的垂心、外心和重心的构造方法。

4.圆的构造与性质:
(1)圆的半径的构造方法:通过给出的圆心和一个端点构造出圆的半径;
(2)弦的构造方法:通过给出圆上的两个点构造出相应的圆弦;
(3)弓形的构造方法:通过给出的端点和圆心构造出相应的弓形;
(4)圆的切线的构造方法:通过给出的切点构造出相应的圆的切线。

5.相似与全等的构造:
(1)利用角的平分线构造相似三角形:通过给出的角的平分线构造出相似的三角形;
(2)利用比的性质构造相似三角形:通过给出的比例构造出相似的三角形;
(3)利用比的性质构造全等三角形:通过给出的比例构造出全等的三角形。

以上是初中数学中考常用的几何模型及构造方法的大致内容。

当然,具体的内容还包括一些相关的定义和定理,这些都需要在学习中进一步深入理解和掌握。

中考数学常见几何模型全等模型-倍长中线与截长补短

中考数学常见几何模型全等模型-倍长中线与截长补短

专题01 全等模型--倍长中线与截长补短全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(倍长中线模型、截长补短模型)进行梳理及对应试题分析,方便掌握。

模型1.倍长中线模型【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.(注:一般都是原题已经有中线时用,不太会有自己画中线的时候)。

【常见模型及证法】1、基本型:如图1,在三角形ABC 中,AD 为BC 边上的中线.证明思路:延长AD 至点E ,使得AD =DE . 若连结BE ,则BDE CDA ∆≅∆;若连结EC ,则ABD ECD ∆≅∆;2、中点型:如图2,C 为AB 的中点.证明思路:若延长EC 至点F ,使得CF EC =,连结AF ,则BCE ACF ∆≅∆; 若延长DC 至点G ,使得CG DC =,连结BG ,则ACD BCG ∆≅∆. 3、中点+平行线型:如图3, //AB CD ,点E 为线段AD 的中点.证明思路:延长CE 交AB 于点F (或交BA 延长线于点F ),则EDC EAF ∆≅∆.1.(2022·山东烟台·一模)(1)方法呈现:如图①:在ABC 中,若6AB =,4AC =,点D 为BC 边的中点,求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E 使DE AD =,再连接BE ,可证ACD EBD △≌△,从而把AB 、AC ,2AD 集中在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是_______________,这种解决问题的方法我们称为倍长中线法;(2)探究应用:如图②,在ABC 中,点D 是BC 的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,判断BE CF +与EF 的大小关系并证明;(3)问题拓展:如图③,在四边形ABCD 中,//AB CD ,AF 与DC 的延长线交于点F 、点E 是BC 的中点,若AE 是BAF ∠的角平分线.试探究线段AB ,AF ,CF 之间的数量关系,并加以证明.【答案】(1)1<AD <5,(2)BE +CF>EF ,证明见解析;(3)AF +CF =AB ,证明见解析.【分析】(1)由已知得出AC ﹣CE <AE <AC +CE ,即5﹣4<AE <5+3,据此可得答案;(2)延长FD 至点M ,使DM =DF ,连接BM 、EM ,同(1)得△BMD △△CFD ,得出BM =CF ,由线段垂直平分线的性质得出EM =EF ,在△BME 中,由三角形的三边关系得出BE +BM >EM 即可得出结论;(3)如图③,延长AE ,DF 交于点G ,根据平行和角平分线可证AF =FG ,易证△ABE △△GEC ,据此知AB =CG ,继而得出答案.【详解】解:(1)延长AD 至E ,使DE =AD ,连接BE ,如图①所示,△AD 是BC 边上的中线,△BD =CD ,在△BDE 和△CDA 中,△BD CD BDE CDA DE AD =⎧⎪∠=∠⎨⎪=⎩,△△BDE △△CDA (SAS ),△BE =AC =4,在△ABE 中,由三角形的三边关系得:AB ﹣BE <AE <AB +BE ,△6﹣4<AE <6+4,即2<AE <10,△1<AD <5;故答案为:1<AD <5,(2)BE +CF >EF ;证明:延长FD 至点M ,使DM =DF ,连接BM 、EM ,如图②所示. 同(1)得:△BMD △△CFD (SAS ),△BM =CF ,△DE △DF ,DM =DF ,△EM =EF ,(3)AF +CF =AB .如图③,延长AE ,DF 交于点G ,【点睛】此题是三角形综合题,主要考查了三角形的三边关系、全等三角形的判定与性质、分内容:如图,在ABC 中,D 是边BC 的中点,过点C 画直线CE ,使//CE AB ,交AD 的延长线于点E ,求证:AD ED =证明△//CE AB (已知)△ABD ECD ∠=∠,BAD CED ∠=∠(两直线平行,内错角相等).在ABD △与ECD 中,△ABD ECD ∠=∠,BAD CED ∠=∠(已证),BD CD =(已知),△()A.A.S ABD ECD △△≌,△AD ED =(全等三角形的对应边相等).(1)【方法应用】如图①,在ABC 中,6AB =,4AC =,则BC 边上的中线AD 长度的取值范围是______.(2)【猜想证明】如图②,在四边形ABCD 中,//AB CD ,点E 是BC 的中点,若AE 是BAD ∠的平分线,试猜想线段AB 、AD 、DC 之间的数量关系,并证明你的猜想;(3)【拓展延伸】如图③,已知//AB CF ,点E 是BC 的中点,点D 在线段AE 上,EDF BAE ∠=∠,若5AB =,2CF =,求出线段DF 的长.【答案】(1)1<AD <5;(2)AD =AB +DC .理由见解析;(3)DF =3.【分析】(1)延长AD 到E ,使AD =DE ,连接BE ,证△ADC △△EDB ,推出AC =BE =4,在△ABE 中,根据三角形三边关系定理得出AB -BE <AE <AB +BE ,代入求出即可;(2)结论:AD =AB +DC .延长AE ,DC 交于点F ,证明△ABE △△FEC (AAS ),推出AB =CF ,再证明DA =DF 即可解决问题;(3)如图③,延长AE 交CF 的延长线于点G ,证明AB =DF +CF ,可得结论.【详解】解:(1)延长AD 到E ,使AD =DE ,连接BE ,△AD 是BC 边上的中线,△BD =CD ,在△ADC 和△EDB 中,AD DE ADC EDB DC DB =⎧⎪∠=∠⎨⎪=⎩,△△ADC △△EDB (SAS ),△AC =BE =4, 在△ABE 中,AB -BE <AE <AB +BE ,△6-4<2AD <6+4,△1<AD <5,故答案为:1<AD <5;(2)结论:AD =AB +DC .理由:如图②中,延长AE ,DC 交于点F ,△AB △CD ,△△BAF =△F ,在△ABE 和△FCE 中,AEB FEC BAE F BE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ABE △△FCE (AAS ),△CF =AB , △AE 是△BAD 的平分线,△△BAF =△F AD ,△△F AD =△F ,△AD =DF ,△DC +CF =DF ,△DC +AB =AD ;(3)如图③,延长AE 交CF 的延长线于点G ,△E 是BC 的中点,△CE =BE ,△AB △CF ,△△BAE =△G ,在△AEB 和△GEC 中,BAE G AEB GEC BE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△AEB △△GEC (AAS ),△AB =GC , △△EDF =△BAE ,△△FDG =△G ,△FD =FG ,△AB =DF +CF ,△AB =5,CF =2,△DF =AB -CF =3.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质、角平分线的性质、三角形三边关系等知识点,解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 3.(2022·河北·中考模拟)倍长中线的思想在丁倍长某条线段(被延长的线段a 要满足两个条件:①线段a 一个端点是图中一条线段b 的中点;②线段a 与这条线段b 不共线),然后进行连接,构造三角形全等,再进一步将某些线段进行等量代换,再证明全等或其他的结论,从而解决问题.【应用举例】如图(1),已知:AD 为ABC ∆的中线,求证:2AB AC AD +>.简证:如图(2),延长AD到E,使得DE AD=,连接CE,易证ABD ECD∆≅∆,得AB=,在ACE∆中,AC CE+>,2AB AC AD+>.【问题解决】(1)如图(3),在ABC∆中,AD是BC边上的中线,E是AD上一点,且BE AC=,延长BE交AC于F,求证:AF EF=.(2)如图(4),在ABC∆中,90,A D∠=︒是BC边的中点,E F、分别在边AB AC、上,DE DF⊥,若3,4BE CF==,求EF的长.(3)如图(5),AD是ABC∆的中线,,AB AE AC AF==,且90BAE FAC∠=∠=︒,请直接写出AD与EF的数量关系_ 及位置关系_ .【答案】,CE AE;(1)详见解析;(2)5;(3)2EF AD=,EF AD⊥【分析】【应用举例】由全等的性质可得AB=EC,由三角形三边关系可得AC+CE>AE,即AB+AC>2AD;故答案为EC,AE;【问题解决】(1)由题意不难得到,ACD GBD∆≅∆所以△BGD=△BED=△AEF=△DAC,△有AF=EF;(2)延长ED 到G ,使DG=ED ,连结CG 、FG ,不难得到EF=FG ,另同(1)有△BDE△△CDG ,所以△FCG=△FCD+△GCD=△FCD+△EBD=90°,CG=BE=3,由勾股定理可得FG 即EF 的长;(3)由全等三角形的性质可以得到解答.【详解】【应用举例】,CE AE【问题解决】()1如图()1延长AD 到G ,使得,DG AD =连接,BG 易证,ACD GBD ∆≅∆得,BG AC G DAC =∠=∠,,BE AC =,BE BG ∴=,G BEG ∴∠=∠,BEG AEF ∠=∠,AEF EAC ∴∠=∠AF EF ∴=.()2如图()2,延长ED 到G ,使得,DG ED =连接,CG FG 、易证,BDE CDG ∆≅∆得,,CG BE ED GD B DCG ==∠=∠,,DE DF ⊥DF ∴垂直平分,EG ,FE FG ∴=90,A ∠=︒90,B ACB ∴∠+∠=︒90,DCG ACB ∴∠+∠=︒即90,FCG ∠=︒在Rt FCG ∆中,3,4CG BE CF ===,5,FG ∴=5,EF ∴=()32EF AD EF AD =⊥,,理由如下:如图3,延长AD 到G ,使AD=DG ,延长DA 交EF 于P ,连结BG ,则不难得到△BGD△△CAD , △BG=AC ,△GBD=△ACD ,△DGB=△DAC ,又AF=AC ,△BG=AF ,△△ABG=△ABD+△GBD=△ABD+△ACD=180°-△ BAC=△EAF ,△在△ABG 和△EAF 中,AB AE ABG EAF BG AF =⎧⎪∠=∠⎨⎪=⎩,△△ABG△△EAF ,△EF=AG=2AD ,△EFA=△DGB=△DAC ,△△DAC+△PAF=180°-△FAC=180°-90°=90°,△△EFA+△PAF=90°,△△APF=90°,△EF△AD .【点睛】本题考查全等三角形的综合运用,熟练掌握全等三角形的判定和性质是解题关键 .模型2.截长补短模型【模型解读】截长补短的方法适用于求证线段的和差倍分关系。

初中数学三角形全等常用几何模型及构造方法大全初二

初中数学三角形全等常用几何模型及构造方法大全初二

初二数学三角形全等常用几何模型及构造方法大全掌握它轻松搞定全等题!全等是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,这次整理了常用的各大模型,一定要认真掌握~全等变换类型:(一)平移全等:平行等线段(平行四边形)(二)对称全等模型:角平分线或垂直或半角1:角平分线模型;2:对称半角模型;(三)旋转全等模型:相邻等线段绕公共顶点旋转1.旋转半角模型2.自旋转模型3.共旋转模型4.中点旋转如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE分析:将△ACE平移使EC与BD重合。

B\D,上方交点,左右两个三角形,两边和大于第三边!1:角平分线模型:说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

2:对称半角模型说明:上图依次是45°、30°、 45+ °、对称(翻折)15°+30°直角三角形对称(翻折) 30+60+90直角三角形对称(翻折)翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

1.半角:有一个角含1/2角及相邻线段2.自旋转:有一对相邻等线段,需要构造旋转全等3.共旋转:有两对相邻等线段,直接寻找旋转全等(共顶点)4.中点旋转:倍长中点相关线段转换成旋转全等问题(专题七)1、旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

2、自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称3、共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“8”字模型可以证明。

(接上------共旋转模型)模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形混用。

高中数学中的常用几何模型及构造方法

高中数学中的常用几何模型及构造方法

全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“8”字模型可以证明。

模型变换说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。

当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。

证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。

几何最终模型对称最值(两点间线段最短)对称最值(点到直线垂线段最短)说明:通过对称进行等量代换,转换成两点间距离及点到直线距离。

2021中考数学必会8大几何模型与实例巩固

2021中考数学必会8大几何模型与实例巩固

中考必会八大几何模型归纳模型一 中点四大模型模型1:倍长中线或类中线(与中点有关的线段)构造全等三角形②图①图构造全等倍长类中线倍长中线DCBAF F ACABCDCA模型分析如图①,AD 是△ABC 的中线,延长AD 至点E 使DE =AD ,易证:△ADC ≌△EDB (SAS ). 如图②,D 是BC 中点,延长FD 至点E 使DE =FD ,易证:△FDB ≌△EDC (SAS ) 当遇见中线或者中点的时候,可以尝试倍长中线或类中线,构造全等三角形,目的是对已知条件中的线段进行转移模型实例例题1 如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,连接BE 并延长交AC 于点F ,AF =EF ,求证:AC =BE .FEA巩固提升1.如图,在△ABC 中,AB =12,AC =20,求BC 边上中线AD 的范围.BA【解析】延长AD 到E ,使AD =DE ,连接BE , ∵AD 是△ABC 的中线, ∴BD =CD ,在△ADC 与△EDB 中,⎪⎩⎪⎨⎧=∠=∠=DE AD BDE ADC CD BD ,∴△ADC ≌△EDB (SAS ),∴EB =AC =20,根据三角形的三边关系定理:20-12<AE <20+12, ∴4<AD <16,故AD 的取值范围为4<AD <16.2.如图,在△ABC 中,D 是BC 的中点,DM ⊥DN ,如果BM 2+CN 2=DM 2+DN 2,求证:AD 2=41(AB 2+AC 2). NMA【证明】如图,过点B 作AC 的平行线交ND 的延长线于E ,连ME .∵BD =DC ,∴ED =DN .在△BED 与△CND 中,∵⎪⎩⎪⎨⎧=∠=∠=DN ED CDN BDE DC BD ,∴△BED ≌△CND (SAS ).∴BE =NC .∵∠MDN =90°,∴MD 为EN 的中垂线.∴EM =MN .∴BM 2+BE 2=BM 2+NC 2=MD 2+DN 2=MN 2=EM 2,∴△BEM 为直角三角形,∠MBE =90°. ∴∠ABC +∠ACB =∠ABC +∠EBC =90°.∴∠BAC =90°. ∴AD 2=(21BC )2=41(AB 2+AC 2).模型2:已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”模型分析等腰三角形中有底边中点时,常作底边的中线,利用等腰三角形“三线合一”的性质得到角相等,为解题创造更多的条件,当看见等腰三角形的时候,就应想到: “边等、角等、三线合一”.模型实例例题2 如图,在△AB C 中,AB =A C =5,B C =6,M 为B C 的中点,MN ⊥A C 于点N ,求MN 长度.NMC BA【解析】连接AM∵AB =AC =5,BC =6,点M 为BC 中点,∴AM ⊥BC ,BM =CM =21BC =3 ∵AB =5,∴AM =4352222=-=-BM AB∵MN ⊥AC ,∴S △ANC =21MC ·AM =21AC ·MN 即21×3×4=21×5×MN ,∴MN =512巩固提升1.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AE ⊥DE ,AF ⊥DF ,且AE =AF ,求证:∠EDB =∠FDC .FECB A【证明】连结AD ,∵AB =AC ,D 是BC 的中点,∴AD ⊥BC ,∠ADB =∠ADC =90° 在Rt △AED 与Rt △AFD 中,⎩⎨⎧==ADAD AFAB ,∴Rt △AED ≌Rt △AFD .(HL ),∴∠ADE =∠ADF ,∵∠ADB +∠ADC =90°,∴∠EDB =∠FDC2.已知Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .(1)当∠EDF 绕D 点旋转到DF ⊥AC 于E 时(如图①),求证:S △DEF +S △CEF =21S △ABC ; (2)当∠EDF 绕D 点旋转到DE 和AC 不垂直时,在图②和图③这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立, S △DEF 、S △CEF 、S △ABC 又有怎样的数量关系?请写出你的猜想,不需要证明.③图②图①图ABCDEFACDDCA【解析】(1)连接CD ;如图2所示: ∵AC =BC ,∠ACB =90°,D 为AB 中点∴∠B =45°,∠DCE =21∠ACB =45°,CD ⊥AB ,CD =21AB =BD ∴∠DCE =∠B ,∠CDB =90°,∵∠EDF =90°,∴∠1=∠2在△CDE 和△BDF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠B DCB BD CD 21,∴△CDE ≌△BDF (ASA )∴S △DEF +S △CEF =S △ADE +S △BDF =21S △ABC ; (2)不成立;S △DEF −S △C EF =21S △ABC ;理由如下:连接CD ,如图3所示:同(1)得:△DEC ≌△DBF ,∠DCE =∠DBF =135°∴S △DEF =S 五边形DBFEC =S △CFE +S △DBC =S △CFE +21S △ABC ,∴S △DEF -S △CFE =21S △ABC ∴S △DEF 、S △CEF 、S △ABC 的关系是:S △DEF -S △CEF =21S △ABC21ABCDE模型3:已知三角形一边的中点,可考虑中位线定理构造中位线取另一边中点EDD模型分析在三角形中,如果有中点,可构造三角形的中位线,利用三角形中位线的性质定理: DE ∥BC ,且DE =21BC 来解题.中位线定理中既有线段之间的位置关系又有数量关系,该模型可以解决角问题,线段之间的倍半、相等及平行问题.模型实例例题3 如图,在四边形ABCD 中,AB =CD ,E 、F 分别是BC 、AD 的中点,连接EF 并延长,分别与BA 、CD 的延长线交于点M ,N .求证:∠BME =∠CNE .NM FEDBA【解析】如图,连接BD ,取BD 的中点H ,连接HE 、HF . ∵E 、F 分别是BC 、AD 的中点,∴FH =21AB ,FH ∥AB ,HE =21DC ,HE ∥NC . 又∵AB =CD ,∴HE =HF ,∴∠HFE =∠HEF .∵FH ∥MB ,HE ∥NC , ∴∠BME =∠HFE ,∠CNE =∠FEH ,∴∠BME =∠CNE .模型4:已知直角三角形斜边中点,可以考虑构造斜边中线构造直角三角形斜边上的中线DCBADB A模型分析在直角三角形中,当遇见斜边中点时,经常会作斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,即CD =12AB ,来证明线段间的数量关系,而且可以得到两个等腰三角形:△ACD 和△BCD ,该模型经常会与中位线定理一起综合应用. 模型实例例题4 如图,在△ABC 中,BE ,CF 分别为AC ,AB 上的高,D 为BC 的中点,DM ⊥ EF 于点M ,求证:FM =EM .M FEDCBA【证明】连接DE ,DF .∵BE ,CF 分别为边AC ,AB 上的高,D 为BC 的中点,∴DF =12BC ,DE =12BC∴DF =DE ,即△DEF 是等腰三角形,DM ⊥EF ,∴点M 是EF 的中点,即FM =EM .ABCEFM巩固提升1.如图,在△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 的中点,AB =10,求DM 的长度.N D CBA【解析】取AB 中点N ,连接DN ,MN .在Rt △ADB 中,N 是斜边AB 上的中点, ∴DN =12AB =BN =5.∴∠NDB =∠B .在△ABC 中,M ,N 分别是BC ,AB 的中点, ∴MN ∥AC ∴∠NMB =∠C ,又∵∠NDB 是△NDM 的外角,∴∠NDB =∠NMD +∠DNM . 即∠B =∠NMD +∠DNM =∠C +∠DNM .又∵∠B =2∠C ,∴∠DNM =∠C =∠NMD . ∴DM =DN .∴DM =5.2.已知,△ABD 和△ACE 都是直角三角形,且∠ABD =∠ACE =90°,连接DE ,M 为DE 的中点,连接MB ,MC ,求证:MB =MC .MDCBA【证明】延长BM 交CE 于G ,∵△ABD 和△ACE 都是直角三角形,∴CE ∥BD ,∴∠BDM =∠GEM .又∵M 是DE 中点,即DM =EM ,且∠BMD =∠GME ,∴△BMD ≌△GME ∴BM =MG ,∴M 是BG 的中点,∴在Rt △CBG 中,BM =CM .3.问题1:如图①,三角形ABC 中,点D 是AB 边的中点,AE ⊥ BC ,BF ⊥AC ,垂足分别为点E ,F .AE 、BF 交于点M ,连接DE ,DF ,若DE =kDF ,则k 的值为 . 问题2:如图②,三角形ABC 中,CB =CA ,点D 是AB 边的中点,点M 在三角形ABC 内部,且∠MAC =∠MBC ,过点M 分别作ME ⊥BC ,MF ⊥ AC ,垂足分别为点E ,F ,连接DE ,DF ,求证:DE =DF .问题3:如图③,若将上面问题2中的条件“CB =CA ”变为“CB ≠CA ”,其他 条件不变,试探究DE 与DF 之间的数量关系,并证明你的结论.图1MF E DCBA图2ABCDFM 图3ABCDF M【解析】∵(1)AE ⊥BC ,BF ⊥AC ,∴△AEB 和△AFB 都是直角三角形, ∵D 是AB 的中点,∴DE =12AB ,DF =12AB .∴DE =DF .∵DE =KDF ,∴k =1. (2)∵CB =CA ,∴∠CBA =∠CAB .∵∠MAC =∠MBC ,∴∠CBA -∠MBC =∠CAB -∠MAC ,即∠ABM =∠BAM .∴AM =BM . ∵ME ⊥BC ,MF ⊥AC ,∴∠MEB =∠MF A =90°.又∵∠MBE =∠MAF ,∴△MEB ≌△MF A (AAS ),∴BE =AF .∵D 是AB 的中点,即BD =AD ,又∵∠DBE =∠DAF ,∴△DBE ≌△DAF (SAS ),∴DE =DF . (3)DE =DF .如图,作AM 的中点G ,BM 的中点H ,连DG ,FG ,DH ,EH . ∵点D 是边AB 的中点,∴DG ∥BM ,DG =12BM .同理可得:DH ∥AM ,DH =12AM . ∵ME ⊥BC 于E ,H 是BM 的中点.∴在Rt △BEM 中,HE =12BM =BH .∴∠HBE =∠HEB ,∴∠MHE =2∠HBE .又∵DG =12BM ,HE =12BM ,∴DG =HE .同理可得:DH =FG . ∠MGF =2∠MAC .∵DG ∥BM ,DH ∥GM ,∴四边形DHMG 是平行四边形.∴∠DGM =∠DHM . ∵∠MGF =2∠MAC , ∠MHE =2∠MBC , ∠MBC =∠MAC , ∴∠MGF =∠MHE . ∴∠DGM +∠MGF =∠DHM +∠MHE .∴∠DGF =∠DHE .在△DHE与△FGD中,DG HEDGF DHEDH FG=⎧⎪∠=∠⎨⎪=⎩,∴△DHE≌△FGD(SAS),∴DE=DF.模型二截长补短辅助线模型模型:截长补短如图①,若证明线段AB、CD、EF之间存在EF=AB+CD,可以考虑截长补短法截长法:如图②,在EF上截取EG=AB,再证明GF=CD即可补短法:如图③,延长AB至H点,使BH=CD,再证明AH=EF即可模型分析截长补短的方法适用于求证线段的和差倍分关系. 截长,指在长线端中截取一段等于已知的线段;补短,指将一条短线端延长,延长部分等于已知线段. 该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程.模型实例例题1 如图,已知在△ABC中,∠C=2∠B,∠1=∠2 .求证:AB=AC+CD.证法一,截长法:如图①,在AB 上取一点E ,使AE =AC ,连接DE .∵AE =AC ,∠1=∠2,AD =AD ,∴△ACD ≌△AED ,∴CD =DE ,∠C =∠3 . ∵∠C =2∠B ,∴∠3=2∠B =∠4+∠B ,∴∠4=∠B ,∴DE =BE ,∴CD =BE . ∵AB =AE +BE ,∴AB =AC +CD .证法二,补短法:如图②,延长AC 到点E ,使CE =CD ,连接DE .∵CE =CD ,∴∠4=∠E .∵∠3=∠4+∠E ,∴∠3=2∠E .∵∠3=2∠B ,∴∠E =∠B . ∵∠1=∠2,AD =AD ,∴△EAD ≌△BAD ,∴AE =AB . 又∵AE =AC +CE ,∴∴AB =AC +CD . 巩固提升1. 在△ABC 中,∠ABC =600,AD 、CE 分别平分∠BAC 、∠ACB . 求证:AC =AE +CD .【解析】如图,在AC 边上取点F ,使AE =AF ,连接O F . ∵∠ABC =600,∴∠BAC +∠ACB =1800-∠ABC =1200 . ∵AD 、CE 分别平分∠BAC 、∠ACB , ∴∠O AC =∠O AB =2BAC ,∠O CA =∠O CB =2ACB, ∴∠A O E =∠C O D =∠O AC +∠O CA =2BACACB=600,∴∠A O C =1800-∠A O E =1200 .∵AE=AF,∠EA O=∠F A O,A O=A O,∴△A O E≌△A O F(S A S),∴∠A O F=∠A O E=600,∴∠C O F=∠A O C-∠A O F=600,∴∠C O F=∠C O D.∵C O=C O,CE平分∠ACB,∴△C O D≌△C O F(A S A),∴CD=CF.∵AC=AF+CF,∴AC=AE+CD,2. 如图,∠ABC+∠BCD=1800,BE、CE分别平分∠ABC、∠DCB .求证:AB+CD=BC .【解析】证法一:截长如图①,在BC上取一点F,使BF=AB,连接EF.∵∠1=∠ABE,BE=BE,∴△ABE≌△FBE,∴∠3=∠4 .∵∠ABC+∠BCD=1800,BE、CE分别平分∠ABC、∠DCB,∴∠1+∠2=12∠ABC+12∠DCB=12×1800=900,∴∠BEC=900,∴∠4+∠5=900,∠3+∠6=900 .∵∠3=∠4 ,∴∠5=∠6 .∵CE=CE,∠2=∠DCE,∴△CEF≌△CED,∴CF=CD .∵BC=BF+CF,AB=BF,∴AB+CD=BC证法二:补短如图②,延长BA到点F,使BF=BC,连接EF .∵∠1=∠ABE,BE=BE,∴△BEF≌△BEC,∴EF=EC,∠BEC=∠BEF .∵∠ABC+∠BCD=1800,BE、CE分别平分∠ABC、∠DCB,∴∠1+∠2=12∠ABC+12∠DCB=12×1800=900,∴∠BEC=900,∴∠BEF=∠BEC=900,∴∠BEF+∠BEC=1800,∴C、E、F三点共线 .∵AB∥CD,∴∠F=∠FCD.∵EF=EC,∠FEA=∠DEC,∴△AEF≌△DEC,∴AF=CD .∵BF=AB+AF,∴BC=AB+CD .4.如图,在△ABC中,∠ABC=900,AD平分∠BAC交BC于D,∠C=300,BE⊥AD于点E.求证:AC-AB=2BE .【解析】延长BE交AC于点M.∵BE⊥AD,∴∠AEB=∠AEM=900.∵∠3=900-∠1,∠4=900-∠2,∠1=∠2,∴∠3=∠4,∴AB=AM.∵BE⊥AE,∴BM=2BE.∵∠ABC=900,∠C=300,∴∠BAC=600.∵AB=AM,∴∠3=∠4=600,∴∠5=900-∠3=300,∴∠5=∠C,∴CM=BM,∴AC-AB=CM=BM=2BE .模型三角平分线四大模型模型1:角平分线的点向两边作垂线如图,P是∠M O N的平分线上一点,过点P作P A⊥O M于点A,PB⊥O N于点B,则PB=P A模型分析利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口模型实例例题1 (1)如图①,在△ABC中,∠C=90°,AD平分∠CAB,BC=6,BD=4,那么点D到直线AB的距离是【解析】如图,过点D作DE⊥AB于点E,∵AD平分∠CAB,∴CD=DE,∵CB=6,BD=4,∴DE=CD=2即点D到直线AB的距离是2(2)如图②,∠1=∠2,∠3=∠4,求证:AP平分∠BAC【证明】如图,过点P作PD⊥AB于点D,PE⊥BC于点E,PF⊥AC于点F,∵∠1=∠2,∴PD=PE,∵∠3=∠4,∴PE=PF,∴PD=PF又∵PD⊥AB,PF⊥AC,∴AP平分∠BAC(角平分线的判定)巩固提升1.如下图,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC,求证:∠BAD+∠BCD=180°【证明】作DE⊥BC于E,作DF⊥BA的延长线于F,∴∠F=∠DEC=90°,∵BD平分∠ABC,∴DF=DE,又∵AD=DC,∴△DFA≌DEC,∴∠FAD=∠C∵∠F AD+∠BAD=180°,∴∠BAD+∠BCD=180°2. 如图,△ABC的外角∠ACD∠的平分线CP与内角∠ABC的平分线BP相交于点P,若∠BPC=40°,则∠CAP=.【解析】如图所示,作PN⊥BD于N,作PF⊥BA,交BA延长线于F,作PM⊥AC于M∵BP、CP分别是∠CBA和∠DCA的角平分线,∴∠ABP=∠CBP,∠DCP=∠ACP,PF=PN=PM,∵∠BAC=∠ACD-∠ABC,∠BPC=∠PCD-∠PBC(外角性质)∴∠BAC=2∠PCD-2∠PBC=2(∠PCD-∠PBC)=2∠BPC=80°∴∠CAF=180°-∠BAC=100°,∵PF=PM∴AP是∠F AC的角平分线,∴∠CAP=∠P AF=50°模型2:截取构造对称全等如图,P是∠M O N的平分线上的一点,点A是射线O M上任意一点,在O N上截取O B=O A,连接PB,则△O PB≌△O P A模型分析利用角平分线图形的对称性,在铁的两边构造对称全等三角形,可以得到对应边,对应角相等,利用对称 性把一些线段或角进行转移,这是经常使用的一种解题技巧模型实例例题2 如图①所示,在△ABC 中,AD 是△BAC 的外角平分线,P 是AD 上异于点A 的任意一点,试比较PB +PC 与AB +AC 的大小,并说明理由解题:PB +PC >AB +AC【证明】在BA 的延长线上取点E , 使AE =AB ,连接PE,∵AD 平分∠CAE∴∠CAD =∠EAD ,在△AEP 与△ACP 中,∵AE =AB ,∠CAD =∠EAD ,AP =AP ,∴△AEP ≌△ACP (S A S ),∴PE =PC∵在△PBE 中:PB +PE >BE ,BE =AB +AE =AB +AC ,∴PB +PC >AB +AC巩固提升1. 已知,在△ABC 中,∠A =2∠B ,CD 是∠ACB 的平分线,AC =16,AD =8, 求线段BC 的长【解析】如图在BC 边上截取CE =AC ,连结DE ,在△ACD 和△ECD 中,⎪⎩⎪⎨⎧=∠=∠=CD CD ECD ACD EC AC ,∴△ACD ≌△ECD (S A S)∴AD =DE , ∠A =∠1 ,∵∠A =2∠B ,∴∠1=2∠B ,∵∠1=∠B+∠EDB,∴∠B=∠EDB∴EBB=ED,∴EB=DA=8,BC=EC+BE=AC+DA=16+8=242.在△ABC中,AB=AC,∠A=108°,BD平分∠ABC,求证:BC=AB+CD【证明】在BC上截取BE=BA,连结DE,∵BD平分∠ABC,BE=AB,BD=BD,∴△ABD≌△EBD(S A S),∴∠DEB=∠A=108°,∴∠DEC=180°-108°=72°∵AB=AC,∴∠C=∠ABC=12(180°-108°)=36°,∴∠EDC=72°∴∠DEC=∠EDC,∴CE=CD,∴BE+CE=AB+CD,∴BC=AB+CD3.如图所示,在△ABC中,∠A=100°,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD,求证:BC=AB+CE【证明】在CB上取点F,使得BF=AB,连结DF,∵BD平分∠ABC,BD=BD∴△ABD≌△FBD,∴DF=AD=DE,∠ADB=∠FDB,∴BD平分∠ABC∴∠ABD=20°,则∠ADB=180°-20°-100°=60°=∠CDE∠CDF=180°-∠ADB-∠FDB=60°,∴∠CDF=∠CDE,在△CDE和△CDF中,⎪⎩⎪⎨⎧=∠=∠=CDCDCDECDFDFDE,∴△CDE≌CDF,∴CE=CF,∴BC=BF+FC=AB+CE模型3:角平分线+垂线构造等腰三角形如图,P是∠M O N的平分线上一点,AP丄O P于P点,延长AP交O N于点.B,则△A O B 是等腰三角形.模型分析构造此模型可以利用等腰三角形的"三线合一”,也可以得到两个全等的直角三角形.进而得到对应边.对应角相等.这个模型巧妙地把角平分线和三线合一联系了起来.模型实例例题3 如图,己知等腰直角三角形ABC中,∠A=90°,AB=AC,BD平分∠ABC,C£丄BD.垂足为E.求证:BD=2C£.【解析】如图,延长CE、BA交于点F,∵CE丄BD于E,∠BAC=90°,∴∠BAD=∠CED ∴∠ABD=∠ACF。

(完整版)初中数学常用几何模型及构造方法大全

(完整版)初中数学常用几何模型及构造方法大全

n d A l l t h i n g s i n t h e i r b e i n g a r e g o o d f o r s o 初中数学常用几何模型及构造方法大全,掌握它轻松搞定压轴题!几何是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,这次整理了常用的各大模型,一定要认真掌握哦~全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题a t i m e a n d A l l t h i n g s i n t h e i rb e i n g a r e g o o d f o r s o 旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型构造方法:遇60度旋60度,造等边三角形; 遇90度旋90度,造等腰直角;遇等腰旋顶点,造旋转全等; 遇中点旋180度,造中心对称.共旋转模型a t i m e a n d A l l t h i n g s i n t h e i rb e i n g a r e g o o d f o r s o 说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

中考数学几何五大模型

中考数学几何五大模型

一、等积变换模型⑴等底等高的两个三角形面积相等;其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。

如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。

⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△五大模型1S 2S图1 图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

梯形中比例关系(“梯形蝴蝶定理”)①2213::S S a b =②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2a b +.四、相似模型相似三角形性质:金字塔模型 沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22::ADE ABC S S AF AG =△△。

所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方.五、燕尾定理模型S △ABG :S △AGC =S △BGE :S △EGC =BE :EC S △BGA :S △BGC =S △AGF :S △FGC =AF :FC S △AGC :S △BCG =S △ADG :S △DGB =AD :DB典型例题精讲例1 一个长方形分成4个不同的三角形,绿色三角形面积是长方形面积的0。

(完整版)初中数学——最全:初中数学几何模型.docx

(完整版)初中数学——最全:初中数学几何模型.docx

最全:初中数学几何模型几何是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,小编整理了常用的各大模型,一定要认真掌握哦~全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

对称半角模型说明:上图依次是 45°、30°、22.5°、15°及有一个角是 30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

旋转全等模型半角:有一个角含1/2 角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型构造方法:遇 60 度旋 60 度,造等边三角形;遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等;遇中点旋180 度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“8”字模型可以证明。

模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。

当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。

证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。

中考数学必学几何模型大全(含解析)

中考数学必学几何模型大全(含解析)

中考数学必学几何模型大全(含解析)模型一:截长补短模型如图①,若证明线段AB、CD、EF之间存在EF=AB+CD,可以考虑截长补短法。

截长法:如图①,在EF上截取EG=AB,再证明GF=CD即可。

补短法:如图①,延长AB至H点,使BH=CD,再证明AH=EF即可。

模型分析截长补短的方法适用于求证线段的和差倍分关系。

截长,指在长线段中截取一段等于已知线段;补短,指将短线段延长,延长部分等于已知线段。

该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程。

例题精讲1、如图,AC平分①BAD,CE①AB于点E,①B+①D=180°,求证:AE=AD+BE.解析:如图,在EA上取点F,使EF=BE,连接CF,①CE①AB,①CF=CB,①CFB=①B①①AFC+①CFB=180°,①D+①B=180°,①①D=①AFC①AC平分①BAD,即①DAC=①F AC在①ACD和①ACF中,①D=①AFC,①DAC=①F AC,AC=AC①ACD①①ACF(AAS),①AD=AF,①AE=AF+EF=AD+BE2、如图,已知在①ABC中,①C=2①B,①1=①2,求证:AB=AC+CD解析:在AB上取一点E,使AE=AC,连接DE,①AE=AC,①1=①2,AD=AD,①①ACD①①AED,①CD=DE,①C=①3①①C=2①B,①①3=2①B=①4+①B,①①4=①B,①DE=BE,CD=BE①AB=AE+BE,①AB=AC+CD3、如图,在五边形ABCDE中,AB=AE,BC+DE=CD,①B+①E=180°,求证:AD平分①CDE.解析:延长CB至点F,使BF=DE,连接BF=DE,连接AF,AC①①1+①2=180°,①E+①1=180°,①①2=①E①AB=AE,①2=①E,BF=DE,①①ABF①①AED,①F=①4,AF=AD①BC+BF=CD,即FC=CD又①AC=AC,①①ACF①①ACD,①①F=①3①①F=①4,①①3=①4,①AD平分①CDE.4、已知四边形ABCD中,①ABC+①ADC=180°,AB=BC,如图,点P,Q分别在线段AD,DC上,满足PQ=AP+CQ,①ADC求证:①PBQ=90°-12解析:如图,延长DC,在上面找一点K,使得CK=AP,连接BK,①①ABC+①ADC=180°,①①BAD+①BCD=180°①①BCD+①BCK=180°,①①BAD=①BCK在①BAP和①BKC中AP =CK ,①BAP =①BCK ,AB =BC ,①①BP A ①①BKC (SAS ),①①ABP =①CBK ,BP =BK①PQ =AP +CQ ,①PQ =QK①在①BPQ 和①BKQ 中,BP =BK ,BQ =BQ ,PQ =KQ①①BPQ ①①BKQ (SSS ),①①PBQ =①KBQ ,①①PBQ =12①ABC ①①ABC +①ADC =180°,①①ABC =180°-①ADC①12①ABC =90°-12①ADC ,①①PBQ =90°-12①ADC5、如图,在①ABC 中,①B =60°,①ABC 的角平分线AD 、CE 相交于点O ,求证:AE +CD =AC .解析:由题意可得①AOC =120°①①AOE =①DOC =180°-①AOC =180°-120°=60°在AC 上截取AF =AE ,连接OF ,如图在①AOE 和①AOF 中,AE =AF ,①OAE =①OAF ,OA =OA①①AOE ①①AOF (SAS ),①①AOE =①AOF ,①①AOF =60°,①①COF =①AOC -①AOF =60°又①COD =60°,①①COD =①COF同理可得:①COD ①①COF (ASA ),①CD =CF又①AF =AE ,①AC =AF +CF =AE +CD ,即AE +CD =AC6、如图所示,AB ①CD ,BE ,CE 分别是①ABC ,①BCD 的平分线,点E 在AD 上,求证:BC =AB +CD .解析:在BC 上取点F ,使BF =AB①BE ,CE 分别是①ABC ,①BCD 的平分线,①①ABE =①FBE ,①BCE =①DCE①AB ①CD ,①①A +①D =180°在①ABE和①FBE中,AB=FB,①ABE=①FBE,BE=BE①①ABE①①FBE(SAS),①①A=①BFE,①①BFE+①D=180°①①BFE+①EFC=180°,①①EFC=①D在①EFC和①EDC中,①EFC=①D,①BCE=①DCE,CE=CE ①①EFC①①EDC(AAS),①CF=CD①BC=BF+CF,①BC=AB+CD7、四边形ABCD中,BD>AB,AD=DC,DE①BC,BD平分①ABC (1)证明:①BAD+①BCD=180°(2)DE=3,BE=6,求四边形ABCD的面积.【解析】(1)过点D作BA的垂线,得①DMA①DEC(HL)①①ABC+①MDE=180°,①ADC=①MDE①①ABC+①ADC=180°,①①BAD+①BCD=180°(2)S四边形ABCD=2S①BED=188、已知:在①ABC中,AB=CD-BD,求证:①B=2①C.【解析】在CD上取一点M使得DM=DB则CD-BD=CM=AB①①AMD=①B=2①C模型二:倍长中线法模型分析:①ABC中AD是BC边中线方式1:延长AD到E,使DE=AD,连接BE方式2:间接倍长,作CF①AD于F,作BE①AD的延长线于E,连接BE方式3:延长MD到N,使DN=MD,连接CD例题精讲:1、已知,如图①ABC中,AB=5,AC=3,则中线AD的取值范围是.【解答】1<AD<4.2、如图,①ABC 中,E ,F 分别在AB ,AC 上,DE ①DF ,D 是中点,试比较BE +CF 与EF 的大小.【解答】解:BE +CF >FP =EF .延长ED 至P ,使DP =DE ,连接FP ,CP ,①D 是BC 的中点,①BD =CD ,在①BDE 和①CDP 中,{DP =DE∠EDB =∠CDP BD =CD①①BDE ①①CDP (SAS ),①BE =CP ,①DE ①DF ,DE =DP ,①EF =FP ,(垂直平分线上的点到线段两端点距离相等)在①CFP 中,CP +CF =BE +CF >FP =EF .3、已知:在①ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE =AC ,延长BE 交AC 于F ,求证:AF =EF .【解答】证明:如图,延长AD 到点G ,使得AD =DG ,连接BG .①AD 是BC 边上的中线(已知),①DC =DB ,在①ADC 和①GDB 中,{AD =DG∠ADC =∠GDB(对顶角相等)DC =DB,①①ADC ①①GDB (SAS ),①①CAD =①G ,BG =AC又①BE =AC ,①BE =BG ,①①BED =①G ,①①BED =①AEF ,①①AEF =①CAD ,即:①AEF =①F AE ,①AF =EF .4、已知:如图,E 是BC 的中点,点A 在DE 上,且①BAE =①CDE .求证:AB =CD .【解答】证明:延长DE 到F ,使EF =DE ,连接BF ,①E 是BC 的中点,①BE =CE ,①在①BEF 和①CED 中{BE =CE ∠BEF =∠CED EF =DE,①①BEF ①①CED .①①F =①CDE ,BF =CD .①①BAE =①CDE ,①①BAE =①F .①AB =BF ,又①BF =CD ,①AB =CD .5、如图,①ABC 中,AB =AC ,点D 在AB 上,点E 在AC 的延长线上,DE 交BC 于F ,且DF =EF ,求证:BD =CE .【解答】证明:如图,过点D 作DG ①AE ,交BC 于点G ;则①DGF ①①ECF ,①DG :CE =DF :EF ,而DF =EF ,①DG =CE ;①AB =AC ,①①B =①ACB ;①DG ①AE ,①①DGB =①ACB ,①①DBG =①DGB ,①DG =BD ,①BD =CE .模型三:角平分线四大模型1、角平分线的性质2、角平分线的对称性3、角平分线+平行线,等腰现4、角平分线+垂线,等腰归例题精讲:1、如图,D是①EAF平分线上的一点,若①ACD+①ABD=180°,请说明CD=DB的理由.【解答】解:过点D分别作AE,AF的垂线,交AE于M,交AF于N,则①CMD=①BND=90°,①AD是①EAF的平分线,①DM=DN,①①ACD+①ABD=180°,①ACD+①MCD=180°,①①MCD=①NBD,在①CDM和①BDN中,①CMD=①BND=90°,①MCD=①NBD,DM=DN,①①CDM①①BDN,①CD=DB.2、如图,BD和CD分别平分①ABC的内角①EBA和外角①ECA,BD交AC于点F,连接AD.(1)求证:①BDC=12∠BAC;(2)若AB=AC,请判断①ABD的形状,并证明你的结论.【解答】(1)证明:①BD和CD分别平分①ABC的内角①EBA和外角①ECA,①①ABC=2①DBC,①ACE=2①DCE,①①ACE=①BAC+①ABC,①DCE=①BDC+①DBC,①2①DCE=2①BDC+2①DBC,①①BAC=2①BDC,即①BDC=12①BAC;(2)①ABD是等腰三角形,证明:①AB=AC,①①ABC=①ACB,过D作DQ①AB于Q,DR①BC于R,DW①AC于W,①BD和CD分别平分①ABC的内角①EBA和外角①ECA,①DQ=DR,DW=DR,①DQ=DW,①DQ①AB,DW①AC,①①GAC=2①GAD=2①CAD,①①GAC=①ABC+①ACB,①①GAD=①ABC,①AD①BC,①①ADB=①DBC,①①ABD=①DBC,①①ADB=①ABD,①AB=AD,即①ABD是等腰三角形.3、如图,在①ABC中,①ABC=90°,AB=7,AC=25,BC=24,三条角平分线相交于点P,求点P到AB的距离.【解答】解:过点P作PD①AB于D,PE①BC于E,PF①AC于F,①点P是①ABC三条角平分线的交点,①PD=PE=PF①S ①ABC =S ①P AB +S ①PBC +S ①P AC =12PD •AB +12PE •BC +12PF •AC =12PD •(AB +BC +AC )=12PD •(7+25+24)=28PD 又①①ABC =90°,①S ①ABC =12AB •BC =12×7×24=7×12,①7×12=28PD ,①PD =3 答:点P 到AB 的距离为3.4、如图,AD 是①ABC 中①BAC 的平分线,P 是AD 上的任意一点,且AB >AC ,求证:AB −AC >PB −PC .【解答】证明:如图,在AB 上截取AE ,使AE =AC ,连接PE ,①AD 是①BAC 的平分线,①①BAD =①CAD ,在①AEP 和①ACP 中,{AE =AC ∠BAD =∠CAD AP =AP,①①AEP ①①ACP (SAS ),①PE =PC ,在①PBE 中,BE >PB −PE 即AB −AC >PB −PC .5、在①ABC 中,AD 是①BAC 的外角平分线,P 是AD 上的任意一点,试比较PB +PC 与AB +AC 的大小, 并说明理由.【解答】解:PB +PC >AB +AC如图,在BA 的延长线上取一点E ,使AE =AC ,连接EP .由AD 是①BAC 的外角平分线,可知①CAP =①EAP ,又AP 是公共边,AE =AC ,故①ACP ①①AEP从而有PC =PE ,在①BPE 中,PB +PE >BE而BE =AB +AE =AB +AC ,故PB +PE >AB +AC ,所以PB +PC >AB +AC6、已知:如图,在①ABC 中,①A =2①B ,CD 平分①ACB ,且AC =6,AD =2.求BC 的长.【解答】解:如图,在BC 上截取CE =CA ,连接DE ,①CD平分①ACB,①①1=①2,在①ACD和①ECD中{CA=CE∠1=∠2CD=CD,①①ACD①①ECD(SAS),①AD=ED,①A=①CED,①①A=2①B,①①CED=2①B,①①CED=①B+①BDE,①①BDE=①B,①BE=ED,①AC=6,AD=2,①AD=BE=2,AC=CE=6,①BC=BE+CE=2+6=8.7、如图,①AOB=30°,OD平分①AOB,DC①OA于点C,DC=4cm,求OC的长.【解答】过点D作DE//OB,交OA于点E.OC=CE+OE=CE+DE=8+43.8、(1)如图①ABC中,BD、CD分别平分①ABC,①ACB,过点D作EF①BC交AB、AC于点E、F,试说明BE+CF=EF的理由.(2)如图,①ABC中,BD、CD分别平分①ABC,①ACG,过D作EF①BC交AB、AC于点E、F,则BE、CF、EF有怎样的数量关系?并说明你的理由.【解答】解:(1)①BD平分①ABC,①①ABD=①CBD,①EF①BC,①①EDB=①DBC,①①ABD=①EDB,①BE=ED,同理DF=CF,①BE+CF=EF;(2)BE−CF=EF,由(1)知BE=ED,①EF①BC,①①EDC=①DCG=①ACD,①CF=DF,又①ED−DF=EF,①BE−CF=EF.9、如图,在①ABC ,AD 平分①BAC ,E 、F 分别在BD 、AD 上,且DE =CD ,EF =AC ,求证:EF ①AB .【解答】解:过E 作AC 的平行线于AD 延长线交于G 点, ①EG ①AC在①DEG 和①DCA 中,{∠ADC =∠GDE CD =ED ∠DEG =∠DCA,①①DEG ①①DCA (ASA ), ①EG =EF ,①G =①CAD ,又EF =AC ,故EG =AC ①AD 平分①BAC ,①①BAD =①CAD ,①EG =EF ,①①G =①EFD ,①①EFD =①BAD ,①EF ①AB .10、已知等腰直角三角形ABC ,BC 是斜边.①B 的角平分线交AC 于D ,过C 作CE 与BD 垂直且交BD 延长线于E ,求证:BD =2CE .【解答】证明:如图,分别延长CE ,BA 交于一点F . ①BE ①EC ,①①FEB =①CEB =90°, ①BE 平分①ABC ,①①FBE =①CBE , 又①BE =BE ,①①BFE ①①BCE (ASA ). ①FE =CE .①CF =2CE .①AB =AC ,①BAC =90°,①ABD +①ADB =90°,①ADB =①EDC , ①①ABD +①EDC =90°.又①①DEC =90°,①EDC +①ECD =90°,①①FCA =①DBC =①ABD . ①①ADB ①①AFC .①FC =DB ,①BD =2EC .11、如图.在①ABC 中,BE 是角平分线,AD ①BE ,垂足为D ,求证:①2=①1+①C .【解答】证明:如图,延长AD 交BC 于点F ,①BE 是角平分线,AD ①BE ,①①ABF 是等腰三角形,且①2=①AFB , 又①①AFB =①1+①C ,①①2=①1+①C .12、(1)如图(a )所示,BD 、CE 分别是①ABC 的外角平分线,过点A 作AD ①BD ,AE ①CE ,垂足分别为D 、E ,连接DE ,求证:DE ①BC ,DE =12(AB +BC +AC );(2)①如图(b )所示,BD 、CE 分别是①ABC 的内角平分线,其他条件不变;①如图(c )所示,BD 为①ABC 的内角平分线,CE 为①ABC 的外角平分线,其他条件不变;则在图(b )、图(c )两种情况下,DE 与BC 还平行吗?它与①ABC 三边又有怎样的数量关系?请写出你的猜测,并对其中一种情况进行证明.【解答】解:(1)如图1,分别延长AE 、AD 交BC 于H 、K , 在①BAD 和①BKD 中,{∠ABD =∠DBK BD =BD ∠BDA =∠BDK ,①①BAD ①①BKD (ASA ), ①AD =KD ,AB =KB ,同理可证,AE =HE ,AC =HC ,①DE =12HK ,又①HK =BK +BC +CH =AB +BC +AC ,①DE =12(AB +AC +BC ); (2)①猜在想结果:图2结论为DE =12(AB +AC −BC ). 证明:分别延长AE 、AD 交BC 于H 、K , 在①BAD 和①BKD 中,{∠ABD =∠DBK BD =BD ∠BDA =∠BDK,①①BAD ①①BKD (ASA ),①AD =KD ,AB =KB , 同理可证,AE =HE ,AC =HC ,①DE =12HK ,又①HK =BK -BH =AB +AC -BC ,①DE =12(AB +AC −BC ); ①图3的结论为DE =12(BC +AC −AB ).证明:分别延长AE 、AD 交BC 或延长线于H 、K , 在①BAD 和①BKD 中,{∠ABD =∠DBK BD =BD ∠BDA =∠BDK,①①BAD ①①BKD (ASA ),①AD =KD ,AB =KB 同理可证,AE =HE ,AC =HC ,①DE =12KH又①KH =BC -BK +HC =BC +AC -AB .①DE =12(BC +AC −AB ).模型四:手拉手模型模型:如图,①ABC 是等腰三角形、①ADE 是等腰三角形,AB =AC ,AD =AE , ①BAC =①DAE = 。

初中数学 三角形全等 常用几何模型及构造方法大全 初二

初中数学 三角形全等 常用几何模型及构造方法大全 初二

初二数学三角形全等常用几何模型及构造方法大全掌握它轻松搞定全等题!全等是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,这次整理了常用的各大模型,一定要认真掌握~全等变换类型:(一)平移全等:平行等线段(平行四边形)(二)对称全等模型:角平分线或垂直或半角1:角平分线模型;2:对称半角模型;(三)旋转全等模型:相邻等线段绕公共顶点旋转1. 旋转半角模型2. 自旋转模型3. 共旋转模型4. 中点旋转一、平移全等变换如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE分析:将△ACE平移使EC与BD重合。

B\D,上方交点,左右两个三角形,两边和大于第三边!二、对称全等模型1:角平分线模型:说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

2:对称半角模型说明:上图依次是45°、30°、45+ 22.5°、对称(翻折)15°+30°直角三角形对称(翻折)30+60+90直角三角形对称(翻折)翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

三、旋转全等模型1. 半角:有一个角含1/2角及相邻线段2. 自旋转:有一对相邻等线段,需要构造旋转全等3. 共旋转:有两对相邻等线段,直接寻找旋转全等(共顶点)4. 中点旋转:倍长中点相关线段转换成旋转全等问题(专题七)1、旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

2、自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称3、共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

初中数学常用几何模型与构造方法大全

初中数学常用几何模型与构造方法大全

初中数学常用几何模型与构造方法大全1.线段:线段是几何中最简单的图形,长度可以用尺或其他测量工具进行测量。

线段是其他几何图形的基础。

2.角:角是由两条射线共同决定的,可以按照角度的大小进行分类,如钝角、直角、锐角等。

角的大小可以使用角度表示,也可以使用弧度表示。

3.三角形:三角形是由三条线段组成的图形,根据三边之间的关系,可以分为等边三角形、等腰三角形和普通三角形等。

三角形是计算几何中最常见的图形之一4.四边形:四边形是由四个线段组成的图形,根据四边形的特征,可以分为矩形、正方形、菱形等。

四边形是平面几何中常见的图形之一5.圆:圆是由一条曲线围成的图形,圆的特点是任意一点到圆心的距离都相等,这个距离叫做半径。

圆是计算几何中重要的图形。

6.正多边形:正多边形是指所有边和内角相等的多边形,如正三角形、正四边形、正五边形等。

正多边形是几何中的基本构造之一除了几何模型之外,还有一些常用的构造方法可以帮助初中生更全面地理解几何知识:1.作图:作图是几何学习的基本方法之一,通过作图可以观察和研究几何图形的特点和性质。

常用的作图工具有直尺、圆规等,作图步骤需要按照几何要求进行。

2.投影:投影是指将一个图形放在平面上,通过其中一种方法得到该图形在平面上的影子。

投影可以帮助初中生理解图形的形状和大小。

3.平移:平移是指将一幅图形在平面上沿着一定方向移动一段距离而不改变形状和大小。

平移可以帮助初中生研究几何图形之间的关系和性质。

4.旋转:旋转是指将一个图形绕着一个点或一条线旋转一定的角度而不改变形状和大小。

旋转可以帮助初中生研究图形的对称性和碰撞角度等性质。

5.翻折:翻折是指将一幅图形沿着条线对折,使得图形的两部分重合在一起。

翻折可以帮助初中生研究图形的对称性和性质。

除了上述常用的几何模型和构造方法,初中数学还有许多其他重要的几何知识和方法。

掌握这些几何模型与构造方法,可以帮助初中生更好地理解和运用几何知识,提高解题能力和思维能力。

初中数学三角形全等常用几何模型及构造方法大全

初中数学三角形全等常用几何模型及构造方法大全

初二数学三角形全等常用几何模型及构造方法大全掌握它轻松搞定全等题!全等是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,这次整理了常用的各大模型,一定要认真掌握~全等变换类型:(一)平移全等:平行等线段(平行四边形)(二)对称全等模型:角平分线或垂直或半角1:角平分线模型;2:对称半角模型;(三)旋转全等模型:相邻等线段绕公共顶点旋转1.旋转半角模型2.自旋转模型3.共旋转模型4.中点旋转如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE分析:将△ACE平移使EC与BD重合。

B\D,上方交点,左右两个三角形,两边和大于第三边!1:角平分线模型:说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

2:对称半角模型说明:上图依次是45°、30°、 45+ 22.5°、对称(翻折)15°+30°直角三角形对称(翻折) 30+60+90直角三角形对称(翻折)翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

1.半角:有一个角含1/2角及相邻线段2.自旋转:有一对相邻等线段,需要构造旋转全等3.共旋转:有两对相邻等线段,直接寻找旋转全等(共顶点)4.中点旋转:倍长中点相关线段转换成旋转全等问题(专题七)1、旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

2、自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称3、共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“8”字模型可以证明。

(接上------共旋转模型)模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形混用。

初中数学 三角形全等 常用几何模型及构造方法大全初二

初中数学 三角形全等 常用几何模型及构造方法大全初二

初二数学三角形全等常用几何模型及构造方法大全掌握它轻松搞定全等题!全等是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,这次整理了常用的各大模型,一定要认真掌握~全等变换类型:(一)平移全等:平行等线段(平行四边形)(二)对称全等模型:角平分线或垂直或半角1:角平分线模型;2:对称半角模型;(三)旋转全等模型:相邻等线段绕公共顶点旋转1. 旋转半角模型2. 自旋转模型3. 共旋转模型4. 中点旋转如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE分析:将△ACE平移使EC与BD重合。

B\D,上方交点,左右两个三角形,两边和大于第三边!1:角平分线模型:说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

2:对称半角模型说明:上图依次是45°、30°、45+ 22.5°、对称(翻折)15°+30°直角三角形对称(翻折)30+60+90直角三角形对称(翻折)翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

1. 半角:有一个角含1/2角及相邻线段2. 自旋转:有一对相邻等线段,需要构造旋转全等3. 共旋转:有两对相邻等线段,直接寻找旋转全等(共顶点)4. 中点旋转:倍长中点相关线段转换成旋转全等问题(专题七)1、旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

2、自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称3、共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“8”字模型可以证明。

(接上------共旋转模型)模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形混用。

7.中考数学必会几何模型31个模型轻松搞定所有中考几何题

7.中考数学必会几何模型31个模型轻松搞定所有中考几何题

中考必会几何模型——31个模型轻松搞定所有中考几何题目录第一章8字模型与飞镖模型 (2)第二章角平分线四大模型 (5)第三章截长补短 (10)第四章手拉手模型 (13)第五章三垂直全等模型 (15)第六章将军饮马 (18)第七章蚂蚁行程 (24)第八章中点四大模型 (27)第九章半角模型 (33)第十章相似模型 (37)第十一章圆中的辅助线 (47)第十二章辅助圆 (54)第一章 8字模型与飞镖模型模型1 角的“8”字模型如图所示,AB 、CD 相交于点O ,连接AD 、BC 。

结论:∠A +∠D =∠B +∠C 。

模型分析8字模型往往在几何综合题目中推导角度时用到。

模型实例观察下列图形,计算角度:(1)如图①,∠A +∠B +∠C +∠D +∠E = ;(2)如图②,∠A +∠B +∠C +∠D +∠E +∠F = 。

热搜精练 1.(1)如图①,求∠CAD +∠B +∠C +∠D +∠E = ; (2)如图②,求∠CAD +∠B +∠ACE +∠D +∠E = 。

2.如图,求∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H = 。

OD CBA图12图EABCDEFD CBAOO图12图EABC DEDCBA模型2 角的飞镖模型 如图所示,有结论: ∠D =∠A +∠B +∠C 。

模型分析飞镖模型往往在几何综合题目中推导角度时用到。

模型实例如图,在四边形ABCD 中,AM 、CM 分别平分∠DAB 和∠DCB ,AM 与CM 交于M 。

探究∠AMC 与∠B 、∠D 间的数量关系。

热搜精练1.如图,求∠A +∠B +∠C +∠D +∠E +∠F = ;2.如图,求∠A +∠B +∠C +∠D = 。

HG EF DCBADCBAMDCBAO135EFDC BA模型3 边的“8”字模型如图所示,AC 、BD 相交于点O ,连接AD 、BC 。

结论:AC +BD >AD +BC 。

2024年中考数学常见几何模型全归纳(全国通用):圆中的重要模型之辅助线模型(八大类)(解析版)

2024年中考数学常见几何模型全归纳(全国通用):圆中的重要模型之辅助线模型(八大类)(解析版)

质,熟练掌握相似三角形的判定和性质度量是解题的关键.
模型 2、遇弦作弦心距(解决有关弦长的问题) 【模型解读】已知 AB 是⊙O 的一条弦,过点 OE⊥AB,则 AE=BE,OE2+AE2=OA2。
在圆中,求弦长、半径或圆心到弦的距离时,常添加弦心距,或作垂直于弦的半径(或直径)或再连结过
弦的端点的半径。利用垂径定理、圆心角及其所对的弧、弦和弦心距之间的关系、弦的一半、弦心距和半
AD 的度数为 35°,则 BE 的度数是_____.
【答案】105°. 【分析】连接 OD、OE,根据圆心角、弧、弦的关系定理求出∠AOD=35°,根据等腰三角形的性质和三角 形内角和定理计算即可. 【解析】解:连接 OD、OE,
∵ AD 的度数为 35°,∴∠AOD=35°,∵CD=CO,∴∠ODC=∠AOD=35°,
A.30°
B.25°
C.20°
D.10°
【答案】C
【分析】如图,连接 OB,OD,AC,先求解 OAC OCA 100 ,再求解 PAO PCO 50 ,从而可
得 BOA COD 260 ,再利用周角的含义可得 BOD 360 80 260 20 ,从而可得答案.
【详解】解:如图,连接 OB,OD,AC,
∵∠1=∠DOE+∠E,∴∠1=2∠E,而 OC=OD,∴∠C=∠1,
∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=
13∠AOC=
1 3
×84°=28ห้องสมุดไป่ตู้.故选:B.
【点评】本题考查了圆的认识:掌握与圆有关的概念( 弦、直径、半径、弧、半圆、优弧、劣弧、等圆、 等弧等).也考查了等腰三角形的性质. 例 3.(2023·江苏沭阳初三月考)如图,已知点 C 是⊙O 的直径 AB 上的一点,过点 C 作弦 DE,使 CD=CO.若

中考数学:常用几何模型及构造方法全

中考数学:常用几何模型及构造方法全

中考数学:常用几何模型及构造方法(全)2019年1月27日几何是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间。

步全等变换盍尸平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型—导角分线模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

—三对称半角模型湾—说明:上图依次是45 °、30 °、22.5 °、15。

及有一个角是30 ° 角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

三—旋转全等模型二m半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题与旋转半角模型―AT1 7说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

一自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称一二一共旋转模型•空说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“ 8”字模型可以证明。

—三模型变形爸=左说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。

当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

泮常;y中点旋转■说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。

证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学:常用几何模型及构造方法(全)
2019年1月27日
几何是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间。

全等变换
平移:平行等线段(平行四边形)
对称:角平分线或垂直或半角
旋转:相邻等线段绕公共顶点旋转
对称全等模型
说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

对称半角模型
说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

旋转全等模型
半角:有一个角含1/2角及相邻线段
自旋转:有一对相邻等线段,需要构造旋转全等
共旋转:有两对相邻等线段,直接寻找旋转全等
中点旋转:倍长中点相关线段转换成旋转全等问题
旋转半角模型
说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型
构造方法:
遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等
遇中点旋180度,造中心对称
共旋转模型
说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“8”字模型可以证明。

模型变形
说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。

当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

中点旋转
说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。

证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。

几何最值模型
对称最值(两点间线段最短)
对称最值(点到直线垂线段最短)
说明:通过对称进行等量代换,转换成两点间距离及点到直线距离。

旋转最值(共线有最值)
说明:找到与所要求最值相关成三角形的两个定长线段,定长线段的和为最大值,定长线段的差为最小值。

剪拼模型
三角形→四边形
四边形→四边形
说明:剪拼主要是通过中点的180度旋转及平移改变图形的形状。

矩形→正方形
说明:通过射影定理找到正方形的边长,通过平移与旋转完成形状改变
正方形+等腰直角三角形→正方形
面积等分
旋转相似模型
说明:两个等腰直角三角形成旋转全等,两个有一个角是300角的直角三角形成旋转相似。

推广:两个任意相似三角形旋转成一定角度,成旋转相似。

第三边所成夹角符合旋转“8”字的规律。

相似模型
说明:注意边和角的对应,相等线段或者相等比值在证明相似中起到通过等量代换来构造相似三角形的作用。

说明:
(1)三垂直到一线三等角的演变,三等角以30度、45度、60度形式出现的居多。

(2)内外角平分线定理到射影定理的演变,注意之间的相同与不同之处。

另外,相似、射影定理、相交弦定理(可以推广到圆幂定理)之间的比值可以转换成乘积,通过等线段、等比值、等乘积进行代换,进行证明得到需要的结论。

说明:相似证明中最常用的辅助线是做平行,根据题目的条件或者结论的比值来做相应的平行线。

相关文档
最新文档