模电1--常用半导体器件PPT课件
合集下载
模电第1章常用的半导体器件资料
综上所述,PN结具有单向导电性,即加正向电压时导 通,加反向电压时截止。
1.2 半导体二极管
1.2.1 半导体二极管的结构、 1.结构符号 二极管的结构外形及在电路中的文字符号如图1.9 所示,在图1.9(b)所示电路符号中,箭头指向为正向导通 电流方向。
外壳
(阳极)
+
PN
(阴极)
-
阳极引线
阴极引线
(a)
(阳极) V
+
(阴极)
-
(b)
2AP 2C P
2CZ54 2CZ13
(c)
2C Z30
图1.9 二极管结构、 (a)结构;(b)符号;(c)外形
2.类型 (1)按材料分:有硅二极管,锗二极管和砷化镓二极 管等。 (2)按结构分:根据PN结面积大小,有点接触型、面 接触型二极管。 (3)按用途分:有整流、稳压、开关、发光、光电、 变容、阻尼等二极管。 (4)按封装形式分:有塑封及金属封等二极管。 (5)按功率分:有大功率、中功率及小功率等二极管。
图1.10 半导体器件的型号组成
1.2.3 半导体二极管的伏安特性
半导体二极管的核心是PN结,它的特性就是PN结的特 性——单向导电性。常利用伏安特性曲线来形象地描 述二极管的单向导电性。
若以电压为横坐标,电流为纵坐标,用作图法把电压、 电流的对应值用平滑的曲线连接起来,就构成二极管的 伏安特性曲线,如图1.11所示(图中虚线为锗管的伏安 特性,实线为硅管的伏安特性)。下面对二极管伏安特 性曲线加以说明。
V
+ 3V
-
2CZ54C S
H R
V
+
2CZ54C H
U
3V
-
R
S
(a)
(b)
1.2 半导体二极管
1.2.1 半导体二极管的结构、 1.结构符号 二极管的结构外形及在电路中的文字符号如图1.9 所示,在图1.9(b)所示电路符号中,箭头指向为正向导通 电流方向。
外壳
(阳极)
+
PN
(阴极)
-
阳极引线
阴极引线
(a)
(阳极) V
+
(阴极)
-
(b)
2AP 2C P
2CZ54 2CZ13
(c)
2C Z30
图1.9 二极管结构、 (a)结构;(b)符号;(c)外形
2.类型 (1)按材料分:有硅二极管,锗二极管和砷化镓二极 管等。 (2)按结构分:根据PN结面积大小,有点接触型、面 接触型二极管。 (3)按用途分:有整流、稳压、开关、发光、光电、 变容、阻尼等二极管。 (4)按封装形式分:有塑封及金属封等二极管。 (5)按功率分:有大功率、中功率及小功率等二极管。
图1.10 半导体器件的型号组成
1.2.3 半导体二极管的伏安特性
半导体二极管的核心是PN结,它的特性就是PN结的特 性——单向导电性。常利用伏安特性曲线来形象地描 述二极管的单向导电性。
若以电压为横坐标,电流为纵坐标,用作图法把电压、 电流的对应值用平滑的曲线连接起来,就构成二极管的 伏安特性曲线,如图1.11所示(图中虚线为锗管的伏安 特性,实线为硅管的伏安特性)。下面对二极管伏安特 性曲线加以说明。
V
+ 3V
-
2CZ54C S
H R
V
+
2CZ54C H
U
3V
-
R
S
(a)
(b)
模电-第1章-半导体器件PPT优秀课件
21
3.4 PN 结的电容效应
1) 势垒电容
PN结外加电压变化时,空间电荷区的宽度将发生变 化,有电荷的积累和释放的过程,与电容的充放电相 同,其等效电容称为势垒电容Cb。
2)扩散电容
PN结外加的正向电压变化时,在扩散路程中载流子 的浓度及其梯度均有变化,也有电荷的积累和释放的 过程,其等效电容称为扩散电容Cd。
注意
空杂穴质-半--导-体多中子,;多子的浓度决定于掺杂原子的浓度; 电子----少子少.子的浓度决定于温度。
13
3 PN结 3.1 PN结的形成
P区
N区
物质因浓度差而产生的运动称为扩散运动。气体、液体、 固体均有之,包括电子和空穴的扩散!
14
3.1 PN结的形成
I扩
在交界面,由于两种载流子的浓度差,产生 扩散运动。
小功率 二极管
大功率 二极管
稳压 二极管
发光 二极管
25
• 二极管的伏安特性及电流方程
二极管的电流与其端电压的关系称为伏安特性。
i f (u)
u
击穿
iIS(eU T1) (常温 U T下 2m 6 V)电压
温度的 电压当量
材料 硅Si 锗Ge
开启电压 0.5V 0.1V
导通电压 0.5~0.8V 0.1~0.3V
15
3.1 PN结的形成
耗尽层(电荷层、势垒层)
空间电荷区
I漂
在交界面,由于扩散运动,经过复合,出现空 间电荷区
16
3.1 PN结的形成
PN结
I扩 I漂
当扩散电流等于漂移电流时,达到动态 平衡,形成PN结。
17
1.由于扩散运动形成空间电荷区和内电场;
2.内电场阻碍多子扩散,有利于少子漂移;
3.4 PN 结的电容效应
1) 势垒电容
PN结外加电压变化时,空间电荷区的宽度将发生变 化,有电荷的积累和释放的过程,与电容的充放电相 同,其等效电容称为势垒电容Cb。
2)扩散电容
PN结外加的正向电压变化时,在扩散路程中载流子 的浓度及其梯度均有变化,也有电荷的积累和释放的 过程,其等效电容称为扩散电容Cd。
注意
空杂穴质-半--导-体多中子,;多子的浓度决定于掺杂原子的浓度; 电子----少子少.子的浓度决定于温度。
13
3 PN结 3.1 PN结的形成
P区
N区
物质因浓度差而产生的运动称为扩散运动。气体、液体、 固体均有之,包括电子和空穴的扩散!
14
3.1 PN结的形成
I扩
在交界面,由于两种载流子的浓度差,产生 扩散运动。
小功率 二极管
大功率 二极管
稳压 二极管
发光 二极管
25
• 二极管的伏安特性及电流方程
二极管的电流与其端电压的关系称为伏安特性。
i f (u)
u
击穿
iIS(eU T1) (常温 U T下 2m 6 V)电压
温度的 电压当量
材料 硅Si 锗Ge
开启电压 0.5V 0.1V
导通电压 0.5~0.8V 0.1~0.3V
15
3.1 PN结的形成
耗尽层(电荷层、势垒层)
空间电荷区
I漂
在交界面,由于扩散运动,经过复合,出现空 间电荷区
16
3.1 PN结的形成
PN结
I扩 I漂
当扩散电流等于漂移电流时,达到动态 平衡,形成PN结。
17
1.由于扩散运动形成空间电荷区和内电场;
2.内电场阻碍多子扩散,有利于少子漂移;
模拟电子技术基础常用半导体器件.ppt
PN结处载流子的运动
漂移运动
P型半导 体
---- - - ---- - -
---- - -
---- - -
N型半导 内电场E 体 + +++++ + +++++ + +++++ + +++++
空间电荷区
扩散运动
(1-14)
PN结处载流子的运动
漂移运动
P型半导 体
---- - - ---- - -
---- - -
(1-34)
1.2.4 二极管的等效电路
能够用简单、理想的模型来模拟电子 器件的复杂特性或行为的电路称为等效电路, 也称为等效模型。
能够模拟二极管特性的电路称为二极管的 等效电路,也称为二极管的等效模型。
(1-35)
一、由伏安特性折线化得到的等效电路
1. 理想模型
2. 恒压降模型
3. 折线模型
Uon Uon
如何判断二极管的工作状态?
什么情况下应选用二极管的什么等效电路?
对V和Ui二极管的模 型有什么不同?
iD
V
uD R
V与uD可比,则需图解: ID 实测特性
Q
uD=V-iR
UD
应用举例——补充
R
+
2. 限幅电路
D I
例2.4.2 提示
UREF
(1) uI (Uon UREF ) 3.5 V 时
型半导体和N型半导体,经过载流子的扩 散,在它们的交界面处就形成了PN结。
(1-12)
模拟电子技术课件——常用半导体器件
三极管外形图
EXIT
模拟电子技术
二、三极管的电流放大作用
实现电流放大的外部条件
发射结正偏 集电结反偏
NPN管, VC> VB> VE PNP管, VE> VB> VC
仿真电路
EXIT
模拟电子技术
IB
0
0.02
0.04
0.06
IC
<0.001
2.029
4.054
6.00
IE
<0.001
2.047
4.094
主要要求:
了解晶闸管的基本知识 熟悉晶闸管的使用
EXIT
模拟电子技术
螺栓型晶闸管
晶闸管模块
平板型晶闸管外形及结构
EXIT
模拟电子技术
一、晶闸管的外形、结构及符号
(a) 外形
A
四
层
G
半
K导 (b) 符号 体
A 阳极
三
P1
个
N1
PN
结
P2
控制极GG
N2
K 阴极
(c) 结构
EXIT
模拟电子技术
二、晶闸管的工作状态
P沟道
绝缘栅型 耗尽型 N沟道
P沟道
EXIT
模拟电子技术
二、结型场效应管 结构
EXIT
模拟电子技术
工作分析
EXIT
模拟电子技术
结论:
(1) JFET沟道中只有一种类型的多数载流子参与导 电,所以场效应管也称为单极型三极管; (2) JFET 栅极与沟道间的PN结是反向偏置的,因 此输入电阻很高; (3) JFET是电压控制电流器件,iD受vGS控制; (4)预夹断前iD与vDS呈近似线性关系;预夹断后,iD 趋于饱和。
EXIT
模拟电子技术
二、三极管的电流放大作用
实现电流放大的外部条件
发射结正偏 集电结反偏
NPN管, VC> VB> VE PNP管, VE> VB> VC
仿真电路
EXIT
模拟电子技术
IB
0
0.02
0.04
0.06
IC
<0.001
2.029
4.054
6.00
IE
<0.001
2.047
4.094
主要要求:
了解晶闸管的基本知识 熟悉晶闸管的使用
EXIT
模拟电子技术
螺栓型晶闸管
晶闸管模块
平板型晶闸管外形及结构
EXIT
模拟电子技术
一、晶闸管的外形、结构及符号
(a) 外形
A
四
层
G
半
K导 (b) 符号 体
A 阳极
三
P1
个
N1
PN
结
P2
控制极GG
N2
K 阴极
(c) 结构
EXIT
模拟电子技术
二、晶闸管的工作状态
P沟道
绝缘栅型 耗尽型 N沟道
P沟道
EXIT
模拟电子技术
二、结型场效应管 结构
EXIT
模拟电子技术
工作分析
EXIT
模拟电子技术
结论:
(1) JFET沟道中只有一种类型的多数载流子参与导 电,所以场效应管也称为单极型三极管; (2) JFET 栅极与沟道间的PN结是反向偏置的,因 此输入电阻很高; (3) JFET是电压控制电流器件,iD受vGS控制; (4)预夹断前iD与vDS呈近似线性关系;预夹断后,iD 趋于饱和。
电子技术精品课程模拟电路第1章 常用半导体器件 91页PPT课件
第1章 常用半导体器件
第1章 常用半导体器件
1.1 半导体基础和半导体二极管
1.2 双极型半导体三极管 1.3 场效应半导体三极管 1.4 晶闸管(可控硅SCR)
2020/7/22
回首页
1
整体概况
第1章 常用半导体器件
概况一
点击此处输入 相关文本内容
01
概况二
点击此处输入 相关文本内容
02
概况三
点击此处输入 相关文本内容
+
+N +
内电场
E
R
2020/7/22
回首页
12
② 外加反向电压(也叫反向偏置)
第1章 常用半导体器件
外加电场与内电场方向相同,增强了内电场,多子扩散难
以进行,少子在电场作用下形成反向电流I,因为是少子漂移 运动产生的,I很小,这时称PN结处于截止状态。
空间电荷区
变宽
P 区 空间电荷区
N区
+++
++ +
ห้องสมุดไป่ตู้
PN结的单向导电性
第1章 常用半导体器件
① 外加正向电压(也叫正向偏置) 外加电场与内电场方向相反,内电场削弱,多子扩散运动大
大超过少子漂移运动,形成较大的正向电流,这时称PN结处 于导通状态。
P 区 空间电荷区 N 区
++ + ++ + ++ +
内电场方向 PN 结及其内电场
空间电荷区 变窄
P IF 外 电 场
正向电压大于死区电压后 ,正向电流随着正向电压增 大迅速上升。通常死区电压 硅管约为0.5V,锗管约为 0.2V。
(2)反向特性(外加反向电压)
外加反向电压时, PN结处于截止状态,反向饱和电流IS很小。
反向电压大于击穿电压VBR时,反向电流急剧增加。
第1章 常用半导体器件
1.1 半导体基础和半导体二极管
1.2 双极型半导体三极管 1.3 场效应半导体三极管 1.4 晶闸管(可控硅SCR)
2020/7/22
回首页
1
整体概况
第1章 常用半导体器件
概况一
点击此处输入 相关文本内容
01
概况二
点击此处输入 相关文本内容
02
概况三
点击此处输入 相关文本内容
+
+N +
内电场
E
R
2020/7/22
回首页
12
② 外加反向电压(也叫反向偏置)
第1章 常用半导体器件
外加电场与内电场方向相同,增强了内电场,多子扩散难
以进行,少子在电场作用下形成反向电流I,因为是少子漂移 运动产生的,I很小,这时称PN结处于截止状态。
空间电荷区
变宽
P 区 空间电荷区
N区
+++
++ +
ห้องสมุดไป่ตู้
PN结的单向导电性
第1章 常用半导体器件
① 外加正向电压(也叫正向偏置) 外加电场与内电场方向相反,内电场削弱,多子扩散运动大
大超过少子漂移运动,形成较大的正向电流,这时称PN结处 于导通状态。
P 区 空间电荷区 N 区
++ + ++ + ++ +
内电场方向 PN 结及其内电场
空间电荷区 变窄
P IF 外 电 场
正向电压大于死区电压后 ,正向电流随着正向电压增 大迅速上升。通常死区电压 硅管约为0.5V,锗管约为 0.2V。
(2)反向特性(外加反向电压)
外加反向电压时, PN结处于截止状态,反向饱和电流IS很小。
反向电压大于击穿电压VBR时,反向电流急剧增加。
模拟电子技术第一章常用半导体器件l
课程背景
课程目标
通过本章节的学习,学生应掌握常用半导体器件的基本原理、特性及应用,为 后续章节的学习打下基础。
课程安排
本章节将通过PPT演示、实验操作等形式,帮助学生深入理解常用半导体器件的 工作原理和应用。
02
半导体基础知识
半导体的定义与特性
总结词
半导体的导电能力介于导体和绝缘体之间,其电阻率受温度、光照、电场、磁场 等因素影响。
工作原理
通过基极电流控制集电极和发射极的电流。
应用场景
放大、开关等。
场效应管
场效应管种类
结型场效应管和绝缘栅型场效应管。
工作原理
通过电场效应控制导电沟道的开闭,从而控制电流的流动。
应用场景
放大、开关、振荡等。Βιβλιοθήκη 04半导体器件的特性
参数与性能指标
半导体器件的参数定义与测量
伏安特性
描述半导体器件在工作区内的电压与电流关 系,可以通过实验测量得到。
03
常用半导体器件介
绍
二极管
二极管种类
包括硅二极管和锗二极管,还有肖特基二极管、快恢复二极管等 特殊类型。
工作原理
正向导通,反向截止。在正向电压下,电子从N极流入P极,电流 通过;在反向电压下,电子不能流动,电流截止。
应用场景
整流、检波、稳压等。
三极管
三极管种类
NPN和PNP型,还有场效应管等特殊类型。
截止频率
衡量半导体器件的高频性能,表示器件在高 频下的响应能力。
输入电阻和输出电阻
衡量半导体器件对信号的输入和输出能力, 可以通过计算得到。
噪声系数
衡量半导体器件在信号传输过程中引入的噪 声大小,影响信号质量。
模电第一节PPT(1-半导体基础知识)
扩散
在没有电场的情况下,载流子会从高浓度区域向低浓度区域 扩散。
载流子的产生与复合
产生
在半导体中,载流子的产生主要通过热激发和光激发两种方式。热激发是指电子从价带跃迁到导带; 光激发是指光子与价带电子相互作用,将其激发到导带。
复合
载流子在半导体中会相互复合,释放出能量。这种复合过程分为带间复合和带内复合两种类型。带间 复合是指电子和空穴分别从导带和价带跃迁回各自原来的能级;带内复合是指电子和空穴在同一能级 上发生相互作用,释放出能量。
详细描述
半导体可以根据其导电类型分为P型和N型两种。P型半导体中,多数载流子为空 穴;N型半导体中,多数载流子为电子。
半导体的特性
总结词
半导体的特性
详细描述
半导体的特性包括热敏性、光敏性和掺杂性。热敏性是指半导体材料的电阻随温度变化而变化的特性;光敏性是 指半导体材料能够将光能转换为电能的特性;掺杂性是指通过向半导体中添加其他元素来改变其导电性能的特性。
和热导率等。
常见的合金半导体有硅化物、氮 化物和硫化物等。
03
半导体中的载流子
电子与空穴
电子
带负电荷,是半导体的主要载流 子。在半导体中,电子可以在价 带和导带之间自由移动。
空穴
带正电荷,是电子缺失所产生的 虚拟粒子。在半导体中,空穴的 运动方向与电子相反。
载流子的运动与扩散
运动
在电场的作用下,载流子会沿着电场方向运动,形成电流。
度和性能。
三维集成技术
通过三维集成技术,将不同工艺 的芯片集成在一个封装内,实现
更高效的系统级集成。
柔性电子技术
柔性电子技术使得电子设备可以 弯曲、折叠,具有轻便、可穿戴 等特点,为新型电子产品提供了
模拟电子技术第1半导体器件精品PPT课件
根据放大电路输入信号的条件和对输出信号的要求, 放大器可分为四种类型,可以定义四种放大倍数。
第1讲
1.2.2.放大电路的主要技术指标
1. 放大倍数
放大电路有四种类型: 电压/电流放大器 互阻/互导放大器
(1)电压放大倍数定义为: (2)电流放大倍数定义为: (3)互阻放大倍数定义为: (4)互导放大倍数定义为:
用来实现电信号的产生、传输或处理的电路整体。 如:收音机、电视机 其设计目标为SOPC(单片可编程系统)
实用系统:在很多情况下,电子系统必须与
其它物理系统结合,从而构成完整的实用系统。 如:计算机系统有光驱、软驱等精密机械系统
工业生产中的许多生产设备,可能由电子、机械、 动力、热工、激光等多种物理系统组合而成。
电信号:代表一定信息的电压或电流信号。
利用变换设备,把语言、文字、图像等信息转换为 随时间作相应变化的电压或电流信号,以便于传输。
例1:无线电收音机——超外差式
射频
混频级
中频
中频载波 放大级
检波级
中频载波
音频
功率 放大级
音频
载波信号
小信号
大信号
信号
信号
1.1.1 信号及其分类
例2:电视收发系统
景物 摄 像 机
温度为300K时几种材料的电阻率(Ω·cm)
导体
半导体
银
铜
纯净锗 纯净硅 砷化镓
Ag
Cu
Ge
Si
GeAs
1.6×10-8
1.7×10-8
600
0.6
2.3×103
绝缘体
橡胶
其中的各个电子系统完成两方面工作: 1)对生产过程的监视与调控; 2)控制生产机械的驱动机构动作;
第1讲
1.2.2.放大电路的主要技术指标
1. 放大倍数
放大电路有四种类型: 电压/电流放大器 互阻/互导放大器
(1)电压放大倍数定义为: (2)电流放大倍数定义为: (3)互阻放大倍数定义为: (4)互导放大倍数定义为:
用来实现电信号的产生、传输或处理的电路整体。 如:收音机、电视机 其设计目标为SOPC(单片可编程系统)
实用系统:在很多情况下,电子系统必须与
其它物理系统结合,从而构成完整的实用系统。 如:计算机系统有光驱、软驱等精密机械系统
工业生产中的许多生产设备,可能由电子、机械、 动力、热工、激光等多种物理系统组合而成。
电信号:代表一定信息的电压或电流信号。
利用变换设备,把语言、文字、图像等信息转换为 随时间作相应变化的电压或电流信号,以便于传输。
例1:无线电收音机——超外差式
射频
混频级
中频
中频载波 放大级
检波级
中频载波
音频
功率 放大级
音频
载波信号
小信号
大信号
信号
信号
1.1.1 信号及其分类
例2:电视收发系统
景物 摄 像 机
温度为300K时几种材料的电阻率(Ω·cm)
导体
半导体
银
铜
纯净锗 纯净硅 砷化镓
Ag
Cu
Ge
Si
GeAs
1.6×10-8
1.7×10-8
600
0.6
2.3×103
绝缘体
橡胶
其中的各个电子系统完成两方面工作: 1)对生产过程的监视与调控; 2)控制生产机械的驱动机构动作;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.5ຫໍສະໝຸດ 1.1.0 半导体特性常用的半导体导体材料有如::金属 物元体素分半类导绝体缘:体硅(如S:i)橡、胶锗、(云G母e、)塑料等。
化合物半半导导体体:—砷化导镓电(能G力aA介s于)导体和绝缘体之间。 掺杂材料:硼(B)、铟(In);磷(P)、锑(Sb)。
• 半导体特性
掺杂特性 掺入杂质则导电率增加几百倍
2. 在外电场的作用下,产生电流 — 电子流和空穴流 电子流 自由电子作定向运动形成的
与外电场方向相反
自由电子始终在导带内运动
空穴流 价电子递补空穴形成的
用空穴移动产
与外电场方向相同
生的电流代表束缚电
始终在价带内运动
子移动产生的电流
.
10
1.1.2 杂质半导体
杂质半导体
掺入三价元素如B、Al、In等, 形成P型半导体,也称空穴型半导体
+4
.
8
本征半导体
共价键内的电子 挣脱原称子为核束束缚缚电的子 价带中电留子下称的为自由电子 空位称为空穴
导带
自由电子定向移 动形成电外子电流场E
禁带EG
束缚电子填补空穴的 定向移动形成空穴流
价带
.
9
本征半导体
1. 本征半导体中有两种载流子 — 自由电子和空穴 电子浓度ni = 空穴浓度pi
空穴的出现是半导体区别于导体的一个重要特点。
定其化学性质和导电性能 .
7
1.1.1 本征半导体
本征半导体
完全纯净、结构完整的半导体晶体。 纯度:99.9999999%,“九个9” 它在物理结构上呈单晶体形态。
T=常0K用且的无本外征半界导激体发,只有束缚电子,没有自由电子,本征 半导体相当于绝缘体;T=300K,本征激发,少量束缚电子
摆脱共S价i 键+成14为自2由8电子4 ,这种G现e象+称32为本2征8激1发8 。4
1.PN结的形成
多子的扩散运动
由杂质离子形成空间电荷区 空间电荷区形成内电场
内电场促使少子漂移 内电场阻止多子扩散
空间电荷区变窄,内电场减弱 扩散运动加强 相等
动态平衡
扩散运动
载流子从浓度大向浓度小的区域扩散,称扩散运动 扩散运动产生扩散电流
漂移运动 动态平衡
载流子在电场作用下的定向运动,称漂移运动, 漂移运动产生漂移电流。
热敏特性 温度增加使导电率大为增加
半光导敏体器器件 件 热光敏电器器件件
光敏特性 光照不仅使导电率大为增加还可以产生电动势
.
6
半导体的共价键结构
硅晶体的 空间排列
简硅化和模锗型的及原晶子体结结构构共共价有键价表电示子两所个形 成的束缚作用。
硅和锗都是四价元素,它们的原子
结价构 电外子层受电原子子核(价的电束子价缚)电数力子均最是为小我4,个们决,要研究的对象
第1章 常用半导体器件
.
1
作业
1.2 1.3 1.8 1.9(2,6) 1.12(b,c) 1.14
1.15
.
2
常用半导体器件
1.1.1 半导体基本知识 *1.1.2 半导体二极管 1.1.3 晶体三极管 1.1.4 场效应管 1.1.5 单结晶体管和晶闸管(自学) 1.1.6 集成电路中的元件(自学)
12
杂质半导体
N型半导体
在本征半导体中掺入五价元素如P。
由于五价元素很容易贡献电 子,因此将其称为施主杂质。 施主杂质因提供自由电子而 带正电荷成为正离子
杂质原子提供
由热激发形成
自由电子是多子
.
空穴是少子 13
1.1.3 PN结及其单向导电性
P区
N区
P型半导体中含有受主杂质,在常温下,受主杂质电
掺入杂质的本征半导体。 掺杂后半导体的导电率大为提高
掺入五价元素如P、Sb等, 形成N型半导体,也称电子型半导体
.
11
杂质半导体
P型半导体
在本征半导体中掺入三价元素如B。
因留下的空穴很容易俘获电 子,使杂质原子成为负离子。 三价杂质 因而也称为受主杂 质。
杂质原子提供 空穴是多子
由热激发形成
. 自由电子是少子
离为带正电的空穴和带负电的受主离子。
N型半导体中含有施主杂质,在常温下,施主杂质电 离为带负电的电子和带正电的施主离子。
除此之外,P型和N型半导体中还有少数受本征激发产 生的电子-空穴对,通常本征激发产生的载流子要比掺 杂产生的载流子少得多。
半导体中的正负电荷数相等
保持电中性
.
14
1.PN结的形成
2. PN结加反向电压时的导电情况 P区的电位低于N区的电位,称为加反向电压,简称反偏;
外电场与PN结内电场方
向相同,增强内电场。
内电场对多子扩散运动阻
碍增强,扩散电流大大减
小。少子在内电场的作用
下形成的漂移电流加大。
此时PN结区少子漂移电流
大于扩散电流,可忽略扩
散电流。
PN结呈现高阻性
.
外 内
19
P区
N区
内电场阻碍多子向对方的扩散 即阻碍扩散运动;同时促进少 子向对方漂移,即促进了漂移 运动
扩散运动
载流子从浓度大向浓度小 的区域扩散,称扩散运动。 形成的电流成为扩散电流
扩散运动=漂移运动时 达到动态平衡
空间电荷区内:电由场不能移 动的带电粒子组成,集 . 中在P区和N区的交界处 15
因浓度差
.
17
2.PN结的单向导电性
1. PN结加正向电压时的导电情况 P区的电位高于N区的电位,称为加正向电压,简称正偏;
外电场方向与PN结内电
外
场方向相反,削弱了内电
场。于是内电场对多子扩
散运动的阻碍减弱,扩散
电流加大。
扩散电流远大于漂移电
流,可忽略漂移电流的影
响。PN结呈现低阻性。
.
内
18
2.PN结的单向导电性
2.PN结的单向导电性
PN结加正向电压时,呈现低 电阻,具有较大的正向扩散 电流;
PN结加反向电压时,呈现高 电阻,具有很小的反向漂移 电流。
由此可以得出结论:PN结 具有单向导电性。
扩散电流=漂移电流,PN结内总电流=0。
PN 结 稳定的空间电荷区.又称高阻区也称耗尽层 16
内电场
PN结的接触电位
内电场的建立,使PN结中产 生电位差。从而形成接触电位V
接触电位V决定于材料及掺杂浓度
V
硅: V=0.7
锗: V=0.2
由于内电场的存在,电子要从N区到P区必须越过一个能量
高坡,一般称为势垒,所以空间电荷区又称势垒区。
.
3
本章要求:
1. 理解PN结的单向导电性,三极管的电流 分配和电流放大作用;
2. 了解二极管、稳压管和三极管的基本构造、 工作原理和特性曲线,理解主要参数的意义;
3. 会分析含有二极管的电路。
.
4
1.1 半导体基础知识
1.1.0 1.1.1 1.1.2 1.1.3
半导体特性 本征半导体 掺杂半导体 PN结及其单向导电性