六年级数学下册第3单元圆柱与圆锥2圆锥第2课时圆锥的体积教学案人教版.doc

合集下载

人教版六年级数学下册第三单元 圆柱与圆锥 单元概述和课时安排

人教版六年级数学下册第三单元  圆柱与圆锥 单元概述和课时安排

本单元内容是在学生已经探索并掌握了长方形、正方形和圆等一些常见的平面图形的特征,以及长方体、正方体的特征,并直观认识圆柱的基础上进行教学的。

前面的学习内容既为新知识的学习奠定了知识基础,同时也积累了探索的经验,准备了研究的方法。

学习新知识,既是学生认识上的一次飞跃,又拓宽了学习空间,知识结构得到了进一步的完善,为今后学习其他的立体图形打好了基础。

本单元教学内容主要包括:认识圆柱和圆锥的基本特征,圆柱侧面积和表面积的计算方法,圆柱的体积计算公式,圆锥的体积公式,以及解决相关的实际问题。

最后,对本单元的学习内容进行了整理与练习,沟通知识间的联系,进一步提高综合应用数学知识解决实际问题的能力。

学生已经探索并掌握了长方形、正方形和圆等一些常见的平面图形的特征,以及长方体、正方体的特征,并直观认识了圆柱与圆锥,并且已经掌握了有关“转化”的数学思想,积累了探索的经验,准备了研究的方法。

为探究圆柱的侧面积、表面积、体积以及圆锥的体积奠定了基础。

1. 使学生通过观察、操作等活动认识圆柱和圆锥,知道圆柱和圆锥底面、侧面和高的含义,掌握圆柱和圆锥的基本特征。

2. 使学生在具体情境中,经历操作、猜想、估计、验证、讨论、归纳等数学活动过程,探索并掌握圆柱侧面积和表面积的计算方法,以及圆柱和圆锥的体积计算公式,能解决与圆柱表面积以及圆柱圆锥体积计算相关的一些简单的实际问题。

3. 使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考的能力,培养初步的分析、综合、比较、抽象、概括和简单的判断、推理能力。

4. 使学生进一步体会图形与实际生活的联系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的自信心。

5. 体会类比、转化等数学思想,初步发展推理能力。

1. 加强数学知识与实际生活的联系,提高运用所学知识解决实际问题的能力。

这部分内容加强了与生活的联系,也为教师组织教学提供了思路。

如,在教学认识圆柱体和圆锥之前,可以让学生收集、整理生活中应用圆柱、圆锥的实例和信息资料,以便在课堂中交流。

新人教版小学数学六年级下册第三单元 圆柱与圆锥 教学设计

新人教版小学数学六年级下册第三单元 圆柱与圆锥 教学设计

第三单元:圆柱与圆锥课标要求:本单元观察物体,动手操作,掌握圆柱和圆锥的特征掌握各种计算公式。

单元内容分析:本单元是在认识了圆,掌握了长方体、正方体的特征;本单元包括圆柱与圆锥的特征、圆柱的表面积、圆柱的体积计算。

教学目标:1、使学生认识圆柱和圆锥,掌握它们的特征;认识圆;2、使学生理解求圆柱的侧面积和表面积的计算方法,;3、使学生理解求圆柱、圆锥体积的计算公式,并会运用。

本单元观察物体,动手操作,掌握圆柱和圆锥的特征及它们的组成;在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,归纳出圆柱的表面积、体积和圆锥的体积计算公式,并能正确计算;培养学生运用所学知识解决简单的实际问题的能力;初步参透数学的“转化”思想;初步养成乐于思考、勇于质疑、实事求是等良好品质。

2、使学生认识圆柱和圆锥,掌握它们的特征;认识圆柱的底面、侧面和高;认识圆锥的底面和高。

3、使学生理解求圆柱的侧面积和表面积的计算方法,并会正确计算。

4、使学生理解求圆柱、圆锥体积的计算公式,会运用公式计算体积、容积,解决有关的简单实际问题。

教学重点:掌握圆柱的表面积的计算方法和圆柱、圆锥体积的计算公式。

教学难点:圆柱、圆锥体积的计算公式的推导。

3.1 圆柱的认识教材分析:教材首先呈现了现实生活中具有圆柱特征的建筑物和生活用品的图片,让学生观察,并提出问题“这些物体的形状有什么共同点?”引导学生思考,并从实物中抽象出圆柱的立体图形,给出图形各部分的名称,使学生对圆柱的认识经历“抽象——表象——抽象”的过程。

教学目标:1、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。

2、培养学生细致的观察能力和一定的空间想像能力。

3、激发学生学习的兴趣。

教学重点:认识圆柱的特征。

教学难点:看懂圆柱的平面图。

教学过程:一、激趣导入1、出示教材第17页的建筑物及物品图,引导学生观察。

师:在生活中有许多这种形状的物体,谁知道它们都是什么形状?这节课我们就一起来认识这样的形状。

人教版数学六年级下册教学课件《圆锥的体积》

人教版数学六年级下册教学课件《圆锥的体积》

Ⅴ圆锥
= 13Ⅴ圆柱
=
1 3
Sh
圆锥的体积=
1 3
× 底面积×高
探究新知
工地上有一堆沙子,近似于一个圆锥(如下图)。这堆沙子 的体积大约是多少?如果每立方米沙子重1.5t,这堆沙子大 约重多少吨?
1.5m
Ⅴ圆锥
=
13Ⅴ圆柱=
1 3
Sh
想一想要求什么?先求 什么?再求什么?
4m
直径化 成半径
探究新知
工地上有一堆沙子,近似于一个圆锥(如下图)。这堆沙子 的体积大约是多少?如果每立方米沙子重1.5t,这堆沙子大 约重多少吨?
1.5m
(1)沙堆的底面积:
3.14×(42)2=3.14×4=12.56(m2)
4m
(2)沙堆的体积:
13×12.56×1.5=6.28(m3)
(3)沙堆重: 6.28×1.5=9.42(t) 答:这堆沙子大约重9.42t。
人教版 数学 六年级 下册
3 圆柱与圆锥
圆锥的体积
情境导入
看一看:学过的立体图形中,哪个图形 与圆锥有相似的地方?
情境导入
这想思堆一考沙想:子:其是怎它什么立么才体形能图状知形的道的?这体堆积沙都子可的以体用积公?式 现计在算给,出圆一锥些是数不,是你也的可以办?法还合适吗?
5m
2m
探究新知
说一说:哪个体积大?你发现了什么?
(1)沙堆的体积:
(2)所铺公路的长度:
13×28.26×2.5 =9.42×2.5
=23.55(m³)
2cm=0.02m
注意单位 转换哦!
23.55÷10÷0.02 =2.355÷0.02 =117.75(m)
答:能铺117.75了哪些知识?

【人教版】六年级下册数学:第3单元整理和复习 教案

【人教版】六年级下册数学:第3单元整理和复习 教案

第3单元圆柱与圆锥
2.圆锥
整理和复习
【教学目标】
1,通过整理和复习,使学生进一步认识圆柱、圆锥的特征,掌握圆柱表面积、体积,圆锥体积的计算方法。

2、综合运用所学知识,灵活地解决与圆柱、圆锥有关的数学问题。

【教学重难点】
重点:归纳整理有关圆柱和圆锥的知识,形成知识体系。

难点:综合运用所学知识,灵活地解决与圆柱、圆锥有关的数学问。

【教学过程】
一、谈话引入,揭示课题
同学们,第3单元我们学习了什么内容?今天,老师要检查你们对本单元的知识掌握情况。

二.新知探究
1.揭示课题:整理和复习
结合教材第37页第1题,回顾圆柱、圆锥的特征。

(1)圆柱的特征。

(2)圆锥的特征。

2.复习圆柱的侧面积和表面积
(1)出示圆柱的表面展开图,先让学生观察,然后让学生回答:圆柱的侧面是指哪一部分?它是什么形状的?
(2)表面积是由哪几部分组成的?(圆柱的侧面积+两个底面的面积)
(3)第37页第2题中求圆柱表面积的部分。

3.复习圆柱、圆锥的体积
(1)圆柱的体积怎样计算?(圆柱体的体积=底面积×高,用字母表示:V=Sh)
(2)怎样计算圆锥的体积?(圆锥体的体积等于和它等底等高
1Sh)的圆柱体体积的三分之一,计算圆锥体积的字母公式是V=
3(3)做第37页第2题中关于圆柱、圆锥体积的部分。

4.知识应用。

学生独立完成第37页第3、4题
三、课堂练习
完成练习七的第1、3、6题。

人教版六年级数学下册第三单元教案

人教版六年级数学下册第三单元教案

第三单元: 圆柱与圆锥单元教学计划一、教学目标:1.使学生认识圆柱和圆锥、掌握它们的基本特征。

并认识圆柱的底面、侧面和高,认识圆锥的底面和高。

2.引导学生探素并掌握圆柱的侧面积、表面积的计算方法以及圆柱、圆锥体积的计算公式、会运用公式计算体积、解决有关的简单实际间题。

3.通过观察、设计和制作圆柱、圆锥模型等活动,使学生了解平面图形与立体图形之间的联系、发展学生的空间观念。

4.使学生理解除了研究儿何图形的形状和特征,还要从数量的角度来研究儿何图形,如图形的面积、体积等、体会数形结合思想,5、通过圆柱和圆锥体积公式的探索,使学生体会转化、推理、极限、变中有不变等数学思想。

二、内容安排及其特点1、教学内容和作用本单元的主要内容有,圆柱和圆锥的认识,圆柱的表面积,圆柱的体积和圆锥的体积。

圆柱、圆锥是人们在生产、生活中经常遇到的儿何形体。

教学这一部分内容,有利于发展学生的空间观念,为进一步应用几何知识解决实际问题打下基础。

本单元具体的教材内容安排如下。

圆柱:圆柱的认识例1、例2圆柱的表面积例3、例4圆桂与圆圆柱的体积例5-例7圆锥:圆锥的认识例1圆锥的体积例2、例3从具体编排来说,“圆柱”分为三个层次(1)让学生结合实物探索圆柱的特征。

教材从生活情境引人,结合实物图片从整体上感知圆柱,帮助学生抽象出圆柱的表象。

然后引导学生通过观察、比较、交流等活动,进一步探索圆柱的特征。

在此基础上,结合圆柱的直观图,介绍圆柱的底面、侧面和高。

通过快速旋转长方形硬纸的操作活动,引导学生结合空间想象,体会立体图形的形成过程,发展学生的空间。

通过剪开圆柱形罐头盒的商标纸,让学生充分探究,把圆柱侧面展开后得到的长方形和宽与圆柱的相关量对应起来,为后面学习圆柱的表面积计算作准备。

(2)圆柱侧面展开图与圆柱的相关量之间的对应关系。

通过计算生活情境中圆柱形厨师帽布料,引导学生根据不同的问题情境灵活选择计算公式,提高解决同题的能力。

(3)引导学生探索并攀握圆柱的体积计算公式.教材重视让学生体会转化思想和极限思想,引导学生经历把圆柱切开、再拼成个近似长方体的逐步细分的过程,初步感悟直柱体体积的一般计算方法,从而得出圆柱体积的计算方法,在圆柱体积计算的应用中,数材编排了生活化的问题情境,重视提高学生的应用意识和问题解决策略,全面发展学生的问题解决能力。

人教版六年级数学下册第三单元《圆柱与圆锥》课件共10个精品课件

人教版六年级数学下册第三单元《圆柱与圆锥》课件共10个精品课件

柱的底面直径与高的比。
πd=h d :h = 1 :π
课堂总结
通过这节课的学习, 你有什么收获?
义务教育人教版六年级下册
第3单元 圆柱与圆锥 1.圆 柱
第 5 课时 圆柱的体积
复习导入
填空。 圆柱的侧面积=( 底面周长×高 ) 圆柱的表面积=( 侧面积+底面积×2 ) 长方体的体积=( 长×宽×高 ) 正方体的体积=(棱长×棱长×棱长)
底面 侧面
圆柱的底面都 是圆,并且大 小一样。
底面 圆柱的侧面是曲面。
哪个圆柱比较高?为什么?
底面 O
侧面 高
底面 O 侧面 高
底面 O
底面
圆柱两个底面之间的距离叫做高, 圆柱有无数条高。
动手操作: 如果把一张长方形的硬纸贴在木棒上,快速转
动木棒,想一想,转出来的是什么形状?
转动起来像一个圆柱。
8cm
要解决这个问题,就
是要计算什么?
10cm
杯子的容积
10cm
杯子的底面积: 杯子的容积:
8cm
3.14×(8÷2)2
50.24×10
=3.14×42
=502.4 (cm3 )
=3.14×16
=502.4 (mL)
=50.24 (cm2 )
答:因为502.4大于498,所以杯子能 装下这袋牛奶。
(长方体)
(正方体 )
( 圆柱 )
课堂总结
通过这节课的学习, 你有什么收获?
义务教育人教版六年级下册
第3单元 圆柱与圆锥 1.圆 柱
第 2 课时 圆柱的认识(2)
复习导入
圆柱由哪几部分组成? 有什么特征?
上、下底面:圆 侧面:曲面
探究新知

人教版小学六年级下册数学第三单元圆柱与圆锥 《圆锥的体积》 (1)

人教版小学六年级下册数学第三单元圆柱与圆锥 《圆锥的体积》 (1)

《圆柱的体积》说课稿一、说教材1.教学内容《圆柱的体积》是人教版小学数学第十二册第三单元的内容,它包括圆柱体的体积计算公式的推导和运用公式计算体积。

2.本节课在教材中所处的地位和作用本节课是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,学生已经有了把圆形拼成近似的长方形的经验,联想到把圆柱切拼成长方体并不难,学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。

3.教材的重点和难点圆柱体积的计算是本节课的教学重点。

圆柱体积公式的推导过程是本节课的难点。

弄清楚圆柱与转化后的近似长方体之间的关系是教学的关键。

4.教学目标知识与技能目标:经历认识圆柱体积、探索圆柱体积计算公式及简单应用的过程;探索并掌握圆柱体积公式;能计算圆柱的体积。

情感与态度目标:在探索圆柱体积的过程中,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学结论的确定性。

二、说教法1.直观演示,操作发现充分利用直观教具演示,引导学生观察比较,再让学生动手操作讨论,使学生在丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。

从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。

2.巧设疑问,充分发挥学生的主体地位把学生当作教学活动的主体,学习活动的主人,使学生在观察、比较、讨论、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的。

3.运用迁移,深化提高运用知识的迁移规律,培养学生利用旧知学习新知的能力,从而使学生主动学习,掌握知识,形成技能。

三、说学法本节课的教学,使学生掌握一些基本的学习方法1.学会通过观察、比较、推理能概括出圆柱体积的推导过程。

2.学会利用旧知转化成新知,解决新问题的能力。

3.学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。

六年级数学下册 2 圆柱与圆锥教案 人教版

六年级数学下册 2 圆柱与圆锥教案 人教版

圆柱、圆锥复习活动课教学目的:1、通过学生在复习中的整理、练习,系统掌握圆柱和圆锥的基础知识,进一步了解圆柱和圆锥的关系。

2、进一步提高运用知识解决实际问题的能力。

教学重点:系统整理,系统掌握圆柱和圆锥的基础知识。

教学过程:一. 出示课题,引人复习内容;同学们,今天这节课,我们来复习——圆柱和圆锥(板书课题)课件出示课题和活动板块。

二、知识整理(一)圆柱1.形体特征两个底面:圆形,面积相等。

侧面:长方形或正方形或平行四边形。

(说出与圆柱的关系如:长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高,长方形的面积相当于圆柱的侧面积。

)2.基本公式(板书)因为长方形的面积=长×宽所以圆柱侧面积=底面周长×高追问:给出半径的怎样计算?直径呢?(补充公式)圆柱的表面积=底面积×2+侧面积圆柱的体积=底面积×高(二)圆锥1.形体特征一个底面:圆形。

侧面:扇形。

圆锥的高:从圆锥的顶点到底面圆心的距离叫做高。

2.基本公式(板书)圆锥的体积= 底面积×高(补充:给出半径或直径的公式)(三)圆柱与圆锥的关系1、等底等高的圆柱和圆锥:圆锥体积是1份,圆柱是3份,相差2份。

2、体积相等,高相等:圆锥底面是圆锥的3倍。

3、体积相等,底面积相等:圆锥高是圆柱的3倍。

等底等高锥1份,柱3份,相差2份一共4份等积等高锥底是柱底的3倍等积等底锥高是柱高的3倍三、必答部分(一)补充完整:求表面积:S水桶=(底面积+侧面积)S油桶=(底面积×2+侧面积)S茶叶桶=(底面积×2+侧面积)S烟囱=(侧面积)(二)实际应用1、做一个圆柱形状的水桶,底面直径4分米,高5分米,需要多少平方分米的铁皮?2、圆柱体容器,底面周长18.84分米,高2分米,它的容积是多少?3、一个圆锥形状的沙堆,底面直径6米,高4米,这堆沙子有多少立方米?4、圆锥体积是25.12立方厘米,底面半径是2厘米,它的高是多少厘米?四、抢答部分1、甲乙两人分别利用一张长20厘米,宽15厘米的纸用两种不同的方法围成一个圆柱体(接头处不重叠),那么围成的圆柱()A高一定相等 B侧面积一定相等 C侧面积和高都相等 D侧面积和高都不相等2 、一个圆锥的体积是5立方米,和它等底等高的圆柱体的体积是()立方米。

圆柱和圆锥的体积(第二课时)

圆柱和圆锥的体积(第二课时)

圆柱和圆锥的体积(第二课时)一、串联情境唤醒旧知。

1.谈话:同学们,上节课我们通过研究冰淇淋盒的体积问题,学会了如何求圆柱的体积。

你能说说如何求圆柱的体积吗?计算公式是怎样推出的?2.口答练习:你能借助公式计算下面圆柱的体积吗?(1)底面半径15厘米,高8厘米。

(2)底面直径6米,高18米。

【设计意图】:通过复习公式,唤起学生的回忆,为下面利用公式解决打下基础。

二、巧用公式,解决问题。

1.出示课后练习第3题。

在美国加利福尼亚洲发现了一棵高达142米的巨衫。

它的树干上下几乎一样粗,横截面周长约是38米。

师谈话:你能提出什么问题?生:树干的体积会是多大呢?师:知道了树干横截面的周长,该如何求体积呢?2.学生独立解答。

3.交流算法。

4.师生总结解决此类问题的步骤:(1)根据周长求出底面的半径。

(2)根据半径求出底面的面积。

(3)根据体积公式求出树干的体积。

【设计意图】:让学生明确已知圆柱底面周长,求圆柱体积的计算方法。

三、综合练习,统一公式。

1.出示课后练习第10题:计算下面图形的体积。

2.交流算法。

3.师谈话:你能把上面三种图形的体积公式统一成一个吗?引导发现:体积=底面积×高【设计意图】:通过计算,发现长方体、正方体、圆柱体的体积公式可以统一成一个,感受到它们之间的密切联系,有助于提高学生的综合实践能力。

四.拓展练习,提高能力。

1.出示练习第12题。

引导学生发现:体积相等、底面积也相等的圆柱和圆锥,圆锥的高是圆柱高的3倍。

2.出示练习13题。

(1)用62.8厘米的边长做圆柱形小桶的底面周长,47.1厘米的边长做圆柱小桶的高。

(2)用47.1厘米的边长做圆柱形小桶的底面周长,62.8厘米的边长做圆柱小桶的高。

3.课后思考:练习第14题。

【设计意图】:在拓展练习中提高学生的解决实际问题的能力。

课后反思:灵活解决圆柱的实际问题,还需要加强练习。

第三课时教学目标:在现实生活中,通过观察、操作、比较等活动,结合具体情境,理解圆锥体积的计算方法,并能解决简单的实际问题。

圆锥的体积说课稿

圆锥的体积说课稿

《圆锥的体积》说课稿柴彩燕今天我说课的内容是人教版义务教育教科书六年级数学下册第三单元《圆柱与圆锥》中的“圆锥的体积”。

下面将从教材分析、学情分析、教学目标、教法学法、教学过程、课堂评价、板书设计等方面加以说明。

教材分析“圆锥的体积”教学是在学生学习了长方体、正方体、圆柱体的体积,认识了圆锥特征的基础上进行教学的,是小学阶段几何知识的最后一课时内容,学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。

数学课程标准对本节课的要求是“探索并掌握圆锥体积的计算方法”,教材突出了探索圆锥体积计算公式的过程,引导学生在装沙或装水的实验基础上,自主发现圆锥的体积计算公式,使学生进一步积累数学活动经验,经历数学化的过程,获得解决问题的方法。

学情分析六年级学生已有了一定的生活经验和空间观念,五年级学习了长方体、正方体的体积,在前面刚学了圆柱的体积以及圆锥的认识,现在学习圆锥的体积,学生有了认知基础。

可能遇到的问题:对学生来说,求体积并非陌生的新知识,只是像圆锥这样学生认为不规则几何体的图形,求体积有困难。

对于六年级的学生来说,分析问题,解决问题能力逐步增强,这为学生的自主探究及合作学习创造了有利条件。

他们已掌握了一些几何知识,了解部分几何图形之间的转化方法。

但学生的立体空间观念还不是完全成熟,形体之间的转化还有一定的困难。

学生能借助实验,亲身感受等底等高的圆柱与圆锥体积间的3倍关系。

但是他们不易发现隐藏在实验中的“等底等高”这一条件,为了突现这一条件,要借助体积的关系不是3倍的实验器材,引导学生去粗取精,由表及里,进行深度信息加工。

同时对于圆锥体积计算公式的实际运用,据以往的经验判断,学生对3倍的关系难以灵活应用,教师应设计相关练习帮助学生巩固。

教学目标知识与技能:通过参与实验,推导出圆锥体积的计算公式,能运用公式计算圆锥的体积,解决有关圆锥体积的实际问题。

过程与方法:在观察、操作、讨论等活动中探索圆锥的体积公式。

人教版六年级数学下册第三单元整体教学设计圆柱与圆锥

人教版六年级数学下册第三单元整体教学设计圆柱与圆锥

人教版六年级数学下册第三单元整体教学设计圆柱与圆锥一、单元内容分析1.教材地位《圆柱与圆锥》属于四大领域中的“图形与几何”部分,主要内容有:圆柱与圆锥的认识,圆柱的表面积,圆柱的体积和圆锥的体积。

《圆柱与圆锥》这一单元是在学生一年级认识了圆柱,五、六年级掌握了长方体、正方体、圆的有关知识的基础上对立体图形的进一步学习,也是小学阶段几何知识的最后一部分内容。

学习圆柱和圆锥的知识扩大了学生认识立体图形的范围,促进了空间观念的进一步发展,也为以后学生系统学习立体几何打下基础,是后继学习的前提。

2.渗透的数学思想数学思想,是对数学知识和方法的本质认识,是对数学规律的理性概括和认知。

数学思想是数学的灵魂,隐含在数学知识体系中,并且分散于各册教材的各章节中,是“无形”的。

在平时的教学中,要将数学思想的渗透作为重点,多个层面渗透。

本单元要通过圆柱和圆锥的探索,使学生体会转化、类比、推理、极限、变中有不变的数学思想。

3.核心素养关键词本单元教学内容体现的核心素养是“量感”、“空间观念”和“几何直观”。

4.学业要求认识圆柱,能说出圆柱的特征,能辨认圆柱的展开图,会计算圆柱的体积和表面积;认识圆锥,能说出圆锥的特征,会计算圆锥的体积;能用相应公式解决简单的实际问题,形成空间观念和初步的应用意识。

二、课时分析我们把本单元的内容整合为图形的认识,圆柱的表面积,圆柱的体积,圆锥的体积这四大块做以剖析。

首先是第一大块中圆柱的认识。

圆柱的认识这一部分,教材分三个层次编排,分别是圆柱的初步认识;圆柱的组成及其特征;圆柱侧面展开图及侧面和底面之间的关系。

1.圆柱的初步认识,也就是“数学建模”。

学生在一年级已经对圆柱有了初步认识,在这里通过生活中更多的圆柱形物体,来唤醒学生已有的认知。

通过观察,把众多圆柱形实物中其他属性剔除,只保留形状上的一致属性,进而抽象出圆柱的一般性直观模型,使学生对圆柱的认识经历由具体到表象的抽象过程。

接着让学生说说,生活中还见过哪些圆柱形物体,一方面让学生感受圆柱在生活中的广泛应用,另一方面,要求学生“根据几何图形想象出所描述的实际物体”。

三2第2课时《圆锥的体积》教案-人教版版数学六年级下册

三2第2课时《圆锥的体积》教案-人教版版数学六年级下册

上课解决方案教案设计教学目标知识与技能1.理解并掌握圆锥的体积计算公式,能正确地计算圆锥的体积。

2.能运用圆锥的体积计算公式解决有关的实际问题。

过程与方法经历自主探究圆锥的体积计算公式的过程,增强操作能力,体验观察、比较、分析、总结、归纳等学习方法。

情感、态度与价值观通过实验,培养学生勇于探索的求知精神,感受发现知识的快乐,体会数学与生活的密切联系,能积极参与数学活动,自觉养成与人合作交流和独立思考的良好习惯。

重点难点重点:掌握圆锥的体积计算公式,能运用公式解决简单的实际问题。

难点:理解圆锥的体积计算公式的推导过程。

课前准备教师准备PPT课件铅锤学生准备等底、等高的圆柱形和圆锥形容器沙子水教学过程板块一激发兴趣,问题导入1.提问激趣:怎样计算这个铅锤的体积?(出示铅锤)生:可以用排水法。

把铅锤全部浸入盛水的量杯中(水未溢出),升高那部分水的体积就是铅锤的体积。

2.追问:怎样求出沙堆的体积?(课件出示教材33页例3)工地上有一堆沙子,其形状近似于一个圆锥(如右图),这堆沙子的体积大约是多少?如果每立方米沙子大约重1.5 t,这堆沙子大约重多少吨?预设生1:用排水法好像不行。

生2:改变圆锥形沙堆的形状,堆成正方体,测出它的棱长后,计算它的体积。

生3:改变圆锥形沙堆的形状,堆成长方体,测出它的长、宽、高后,计算它的体积。

生4:改变圆锥形沙堆的形状,堆成圆柱,测出它的底面周长和高后,计算它的体积。

3.导入新知:大家都想到了用转化法求沙堆的体积,但如果我们在计算沙堆的体积时,必须把沙子重新堆放成以前学过的几何图形,这样做既麻烦又不容易成功,看来我们还需要寻求一种更普遍、更科学、更便利的求圆锥的体积的方法。

(板书课题:圆锥的体积) 操作指导通过提出问题,引发学生的认知冲突,激发学生的求知欲,培养学生自主探究的意识,感受学习数学的必要性。

板块二动手操作,探究新知活动1观察猜想,确定方向1.猜一猜:圆锥的体积可能与哪种立体图形的体积有关?(学生大胆猜想,可能与圆柱的体积有关)2.交流:探究圆锥的体积要借助一个什么样的圆柱呢?明确:探究圆锥的体积要借助一个与这个圆锥等底、等高的圆柱。

人教版数学六年级下册圆锥的体积说课稿(推荐3篇)

人教版数学六年级下册圆锥的体积说课稿(推荐3篇)

人教版数学六年级下册圆锥的体积说课稿(推荐3篇)人教版数学六年级下册圆锥的体积说课稿【第1篇】大家上午好!今天,我说课的题目是《圆锥的体积》,下面我将从教材分析、学情分析、教学目标、教学重难点、教法学法、教学过程,板书设计这几个方面展开我的说课。

一、说教材《圆锥的体积》这部分内容是小学阶段几何知识的重难点部分,在学生学习了立体图形——长方体、正方体、圆柱的基础上,认识了圆柱和圆锥的特征,会计算圆柱的表面积、体积的基础上进行教学的。

教材突出了探索体积公式的过程,引导学生在装沙和装米的实验基础上进行公式推导。

二、说学情本节课是学生在学习了长方体、正方体、圆柱这三种立体图形以及认识了圆锥特征的基础上进行的,学生已经具有了一定的“转化思想”和“类推能力”。

在展开研究中,学生分组操作,通过量一量、倒沙子的实验,亲身感受等底等高的圆柱与圆锥体积间的3倍关系。

三、说教学重难点根据对教材和学情的分析,我制定以下三维教学目标:知识与技能目标:掌握圆锥的体积公式,并能应用公式解决简单的.实际问题。

过程与方法目标:通过观察、操作、猜测、验证等数学活动,发展学生的推理能力。

情感态度与价值观目标:在体积公式的推导过程中,渗透转化的数学思想。

四、说教学重难点教学重点:理解并掌握圆锥体积的计算方法,并能解决简单的实际问题。

教学难点:理解圆锥体积公式的推导过程。

说教法学法为了突出重点突破难点,在教法上,我选择以动手操作法为主,以引导发现法、设疑激趣法、多媒体辅助法为辅,让学生全面、全程地参与教学的每一个环节。

学法上:我充分发挥学生的主体作用,以小组合作学习为主要形式,让学生全面参与新知的发生、发展和形成的过程。

说教学过程课堂教学是学生获取数学知识,发展能力的重要途径,结合“学.学.导.练”的教学模式,我设计了以下四个教学环节:第一环节:自主学习第二环节合作学习第三环节:教师讲导第四环节:精练强化五、说板书设计圆锥的体积=×圆柱的体积=×底面积×高S=sh人教版数学六年级下册圆锥的体积说课稿【第2篇】教学内容:第25-26页,例2及练习四的第3、4题。

《圆柱与圆锥》教学设计

《圆柱与圆锥》教学设计

《圆柱与圆锥》教学设计第一篇:《圆柱与圆锥》教学设计教学目标:1、梳理圆柱与圆锥的特征、面积、体积计算公式,能灵活地根据问题情境,选择合理的方法进行计算。

2、沟通立体图形之间的内在联系,构建图形网格,使所学知识进一步条理化和系统化。

3、引导学生以类的观点去观察与分析图形,体会解决问题的乐趣,发展空间观念教学重点、难点:重点:掌握圆柱与圆锥的相关特点与特征,并能熟练地运用公式进行圆柱、圆锥表面积或体积的计算。

难点:通过对知识进行整理,提高学生自主获取知识与概括知识的能力。

教学准备:多媒体课件,圆柱、圆柱图片教学过程:一、梳理知识,构建体系1、导入师:认识这个图形吗?如果它的一个底面向圆心无限缩小到一个点的时候,它变成了什么图形?生:圆锥师:圆柱和圆锥之间有什么关系?圆柱和圆锥之间还有很多的奥秘和联系,今天我们继续学习圆柱和圆锥。

板书:圆柱与圆锥2、梳理汇报圆柱圆锥的知识(1)特征(观察平面图形与立体图形的关系)(2)表面积、侧面积(3)体积【设计意图:为了让学生整体、系统地感悟知识,形成良好的认知结构,疏通环节很重要,通过圆柱变圆锥,及平面图形与圆柱圆锥的关系,唤醒已有的知识、方法及经验,以“平移”“旋转”等方式在再现与强化立体图形的运动,很好地完成了对单元知识纵向和横向的结构化】二、变式应用1、根据情境选择合适的解决策略师:运用我们所整理的这些知识,能够解决很多生活中的实际问题。

请看下图:师:这是一个圆柱形的木桶。

根据图中的信息,你能不能提出一些实际问题呢?生提问题师总结问题,并解决问题师:生活中能不能直接使用这些数据来准备材料?小结:解决问题时要结合生活实际确定最合适的取值2、根据圆柱的动态变化解决问题师:我们继续奔跑,都说孩子们有天生的创造力,我给你们一个圆柱,你想怎样加工和创造呢?生罗列加工方法师根据加工方法提出数学问题师:联系我们解决的问题,你有什么体会小结:复杂的数学问题都是有简单的数学问题演变而来的。

人教版小学数学六年级下册第三单元3 圆柱与圆锥 单元概述和课时安排

人教版小学数学六年级下册第三单元3 圆柱与圆锥 单元概述和课时安排
学情分析
学生已经探索并掌握了长方形、正方形和圆等一些常见的平面图形的特征,以及长方体、 正方体的特征,并直观认识了圆柱与圆锥,并且已经掌握了有关“转化”的数学思想,积累 了探索的经验,准备了研究的方法。为探究圆柱的侧面积、表面积、体积以及圆锥的体积奠 定了基础。
教学识圆柱和圆锥,知道圆柱和圆锥底面、侧面和高的含 义,掌握圆柱和圆锥的基本特征。
2.让学生经历探索知识的过程,提高自主解决问题的能力。 本单元加强了对图形特征、计算方法的探索。使学生在经历观察、操作、推理、想象的 过程中掌握知识,发展空间观念。教学时,注意提供给学生积极思考,充分参与探索活动的 时间和空间。其中圆锥的体积等于与它等底等高的圆柱的体积的,应让学生在试验探究的过 程中获取,改变仅通过演示得出结论的做法。 3.通过猜想与验证,探索圆柱和圆锥的体积公式。 教学圆柱的体积公式,分两步进行。第一步认识底面相等,高也相等(简称等底等高)的 长方体、正方体和圆柱;第二步推导圆柱的体积公式。教学圆锥的体积公式时,先让学生直 观估计圆锥的体积是与它等底等高的圆柱的体积的几分之几。然后验证估计,探索等底等高 的圆柱和圆锥的体积关系。猜想、验证是发展的规律,是创新知识的常用策略,教材从学生 的实际能力出发,把圆柱和圆锥的体积公式的教学设计成鼓励猜想、引导验证的过程,有利 于培养学生的创新能力和科学态度。
人教版小学数学六年级下册第三单元
圆柱与圆锥
教材分析
本单元内容是在学生已经探索并掌握了长方形、正方形和圆等一些常见的平面图形的特 征,以及长方体、正方体的特征,并直观认识圆柱的基础上进行教学的。前面的学习内容既 为新知识的学习奠定了知识基础,同时也积累了探索的经验,准备了研究的方法。学习新知 识,既是学生认识上的一次飞跃,又拓宽了学习空间,知识结构得到了进一步的完善,为今 后学习其他的立体图形打好了基础。本单元教学内容主要包括:认识圆柱和圆锥的基本特征, 圆柱侧面积和表面积的计算方法,圆柱的体积计算公式,圆锥的体积公式,以及解决相关的 实际问题。最后,对本单元的学习内容进行了整理与练习,沟通知识间的联系,进一步提高 综合应用数学知识解决实际问题的能力。

《圆柱与圆锥——圆锥的体积》数学教学PPT课件(4篇)

《圆柱与圆锥——圆锥的体积》数学教学PPT课件(4篇)
人教版六年级下册
圆锥的体积
一、问题导入、引入新课
看,小麦堆得像小山一
样,小麦丰收了!张小
玲和爷爷笑得合不搅嘴
这时,爷爷用竹子量了量麦堆的
高和底面的直径,出了个难题要
考一考小玲,让小玲算一算这堆
小麦大约有多少立方米?
二、探索新知
• 等底等高
1.估一估:你能估计出这个
圆锥的体积是圆柱几分之几
吗?
2.想一想:可以用什么
1、圆锥的体积等于圆柱体积的1/3( )
2、因为圆锥的体积等于圆柱体积的1/3,所以圆柱的体积比圆锥的体积大
( )
3、等底等高的圆柱与圆锥的体积比是3:1 ( )
4、把一个圆柱加工成一个与它等底的圆锥,削去部分的体积是这个圆锥体积的2倍( )
第一关
第二关:
一个圆锥形的零件,底面积是19平方厘米,高是12厘米,
与它等底等高的圆柱体铝坯。
15 ÷ 3 = 5(个)
)个
5
等底等高的圆柱和圆锥
1
圆锥 = 圆柱
3
2.计算下面各圆锥的体积。
1
9×3.6×3
=10.8(㎡)
1
3×3×3.14×8×3
=75.36(d㎡)
1
(8÷2)²×3.14×12×3
=200.96(cm²)
3. 一个圆锥形的零件,底面积是19cm2 ,高是12cm,
这个零件的体积是多少?
规范解答:

圆锥 =


×19×12=76(cm³)

答:这个零件的体积是76 cm3 。
4. 一个圆柱的底面周长是12.56dm,高是4.5dm,将它削成
最大的圆锥,削去部分的体积是多少?

《圆锥的体积》说课稿

《圆锥的体积》说课稿

《圆锥的体积》说课稿各位领导、各位同仁:大家好!今天我说课的内容是《六年级数学》(人教版)下册第二单元《圆柱和圆锥》中的第二课时《圆锥的体积》。

本次说课包括五个内容:说教材、说教法、说学法、说教学程序和说板书。

一、说教材1、教材分析“圆锥的体积”教学是在学生学习了立体图形——长方体、正方体、圆柱体的基础上,认识了圆柱和圆锥的特征,会计算圆柱的表面积、体积的基础上进行教学的。

教材突出了探索体积计算公式的过程,引导学生在装沙或装米的实验基础上进行公式推导。

通过观察,比较,分析,推理,概括和抽象,自主发现圆锥的体积计算公式,进一步积累数学活动经验.经历数学化的过程,获得解决问题的方法.2、学情分析学生以前学习了长方体、正方体,在此前又学了由曲面和圆围成的立体图形——圆柱,且经历了圆柱体积计算方法的推导过程,具有了初步的类比思维意识。

通过前一节《圆锥的认识》,学生对圆锥的特征也有了一些了解,对学生来说,求体积并非陌生的新知识,只是像圆锥这样学生认为不规则几何体的图形,求体积有困难。

对于六年级的学生来说, 绝大多数学生的动手实践能力比较强,有一定的空间观念基础,但公式的推导过程却比较抽象、枯燥,对于他们来说该部分内容是一个难点。

同时对于圆锥体积计算的实际运用,从以往的经验判断,学生对3倍的关系难以理解,教师应帮助学生理解。

3、教学目标知识与技能目标:通过学生参与实验,从而推导出圆锥体积的计算公式,并运用公式计算圆锥的体积;解决一些有关圆锥体积的实际问题。

过程与方法目标:通过实验推导圆锥体积公式的过程,增强学生的实践操作能力,并培养学生观察、比较、分析、总结归纳的学习方法。

情感与价值目标:通过实验,引导学生探索知识的内在联系,渗透转化思想,并感受发现知识的快乐,激发学习的兴趣,感受数学与生活的密切联系,培养学数学、用数学的乐趣。

4、教学重难点教学重点:理解和掌握公式,能正确运用公式解决实际问题教学难点:圆锥体积公式的推导过程5、教具、学具准备教具:一个圆柱、2个与圆柱等底、等高的圆锥、沙子;学生自制的圆柱及各类型的圆锥若干、三角尺、直尺二、说教法在公式推导阶段,为了打破枯燥无味的公式推导过程,在教授本节课时,结合小学生的认知规律,以引导法、实验法、观察法,探索法为主,以讨论法、练习法为辅,实现教学目标。

第2课时 圆锥的体积——2025学年六年级下册数学人教版

第2课时  圆锥的体积——2025学年六年级下册数学人教版
义务教育人教版六年级下册
第3单元 圆柱与圆锥 2.圆 锥
第 2 课时 圆锥的体积
情境导入
圆锥的体积 如何计算呢 ?
你能算出这堆小麦大约有 多少立方米吗?
探究新知
2
圆锥的体积可能与哪 种图形的体积有关?
圆柱的底面是圆, 圆锥的底面也是圆。
下面通过实验,探究一下圆锥和圆柱体 积之间的关系。
(1)各组准备好沙子和水,还有等底等高的圆柱、 圆锥形容器。
3 工地上有一堆沙子,其形状近似于一个圆锥(如
下图)。这堆沙子的体积大约是多少?如果每立
方米沙子大约重1.5t,这堆沙子大约重多少吨?
1.5m
沙堆的底面积: 3.14×(4÷2)2=12.56(m2)
4m
沙堆的体积:13×12.56×1.5= 6.28(m3)
沙堆重:6.28×1.5=9.42(t)
(2)一个圆锥的体积是141.3m3,与它等底、等高的 圆柱的体积是(423.9)m3。
课堂总结
通过这节课的学习,你有
我把圆柱装满沙子, 再往圆锥里倒。
圆锥装满后,我把沙子倒 进盒子里,正好倒了三次。
三次正好倒满。
你发现圆锥的体积与同它等底、等高的圆柱的 体积之间的关系了吗?
等底等高
圆柱的体积等于圆锥体积的3倍
圆锥的体积等于圆柱体积的 1
3
1
1
V圆锥=3 V圆柱= 3 Sh
铅锤底面积:3.14×(4÷2)2=12.56 (cm2)
铅锤的体积:
1 3
×12.56×6
=25.12(cm3)
铅锤的质量: 25.12×7.9 ≈198(g)
答:这个铅锤大约重198克 。
(教材P34 练习六T3)

人教版小学数学六年级下册第三单元《立体图形整理》课时教学设计

人教版小学数学六年级下册第三单元《立体图形整理》课时教学设计

组织学生分组议一议,动手写一写,并互相交流。

教师巡视指导。

引导学生逐步归纳出下表:
②长方体与正方体的关系:
教师:上面我们比较了长方体和正方体的异同点,那么长方体与正方体有什么关系?
组织学生分组议一议,相互交流。

并指名学生回答,教师板书。

6.圆柱和圆锥。

教师:圆柱和圆锥各有什么特点呢?你能说一说吗?
组织学生观察,书面写一写,小组议一议。

指名学生汇报,引导学生逐步归纳,并板书:
教师活动:
1、教师:长方体与正方体分别有什么特点?你能归纳整理吗?
组织学生分组议一议,动手写一写,并互相交流。

引导学生逐步归纳出下表:2、圆柱和圆锥各有什么特点呢?你能说一说吗?
指名学生汇报,引导学生归纳。

学生活动:
2、圆柱:三个面,上下两个圆是底面,侧面是一个曲面。

圆锥:两个面,底面是一个圆,侧面是一个曲面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时圆锥的体积
教学内容
教材第33~34页例2、例3。

教学目标
知识与技能
1.通过实验探究理解和掌握圆锥体积的计算公式。

2.会运用圆锥的体积公式计算圆锥的体积,并解决简单的实际问题。

过程与方法
1.经历圆锥体积公式的推导过程,体验观察、比较、分析、总结、归纳的学习方法。

2.经历计算圆锥体积的过程,体验数学知识的广泛应用性。

情感态度与价值观
感受发现知识的快乐,激发学习的兴趣,感受数学与生活的联系,培养学数学、用数学的乐趣。

重点、难点
重点掌握圆锥体积的计算公式,能运用其解决实际问题。

难点理解圆锥体积计算公式的推导过程。

教法与学法
教法小组合作学习法。

学法实验探究,发现规律。

教学准备
教具准备:PPT课件。

学具准备:圆柱、与圆柱等底等高和不等底不等高的圆锥各一个,水(或沙子)。


一、引入新课。

师:如果我们把一个圆柱的其中一个底
面缩到圆心时,这时它就变成了和原来的圆
柱等底等高的圆锥。

此时,圆柱的体积到底
和圆锥的体积有怎样的关系呢?今天,我们
就一起来研究圆锥的体积。

(板书课题:圆
锥的体积)
学生倾听老师谈话,进
入新课学习。

1.等底等高的圆柱和圆锥,圆
柱的体积是12立方分米,圆锥的
体积是( 4 )立方分米。

2.用15个同样的圆锥铝坯,可
以铸造成( 5 )个与它等底等高
的圆柱体铝坯。

3.把一个体积为24cm3的圆柱
削成一个最大的圆锥,削去部分的
体积是多少立方厘米?
答案:24×(1-
1
3
)=16(cm3)
答:削去部分的体积是160cm3。

4.一个圆锥和一个圆柱的体
积相等,高也相等,圆柱的底面积
是6cm2,圆锥的底面积是多少平方
厘米?
6×3=18(平方厘米)
答:圆锥的底面积是18平方
厘米。

5.一个圆锥形沙堆,底面周长
是25.12米,高3米,如果每立方
米沙重1.7吨,用一辆载重5吨的
车来运,几次可以运完?
答案:25.12÷3.14÷2=4(米)
3.14×42×3×
1
3
×1.7÷5≈
18(次)
答:18次可以运完。

二、自主探索,体验新知。

1.探究圆锥体积公式:(教学例2)
(1)把等底等高的圆锥体套在透明的
圆柱里,猜一猜,它们的体积之间有什么样
的关系?
(2)实验探究圆锥和圆柱体积之间的
关系
①每个小组都准备了一桶水,还有等底
等高和不等底不等高的各种圆柱、圆锥的容
器。

实验要求:各组根据需要选用实验用具,
小组成员分工合作,轮流操作,做好实验数
据的收集整理。

(每组发一张实验记录单)
a.学生动手操作,教师巡视指导。

b.各组汇报实验过程和结果;
c.观察并根据汇报结果,说说你的发
现。

②进一步分析:什么情况下圆柱刚好能
装下三个圆锥的水?
师用PPT演示等底等高的圆锥和圆柱
装水实验一次。

1.(1)猜想等底等高
的圆柱与圆锥体积之间的
关系。

(2)实验探究
①生说实验方法
②学生观察分析得出:
当圆柱、圆锥等底等高时,
圆柱刚好能装下三个圆锥
的水。

③组内讨论并尝试总
结实验结果。

2.(1)读题,分析题
意。

(2)生讨论:先利用
直径求出半径,再用
S=πr2,求底面积。

(3)生解答例3。

(4)全班汇报,订正
结果。

③结论:圆锥的体积是和它等底等高的
圆柱体积的1 3
师板书V圆锥=1
3
V圆柱=
1
3
Sh
2.应用圆锥的体积公式解决问题(教学例3)
(1)示例3,引导学生分析:沙堆近似圆锥形,可以利用圆锥体积公式来求。

(2)题中没有直接给出圆锥的底面积,应先求什么?
(3)求出底面积,就可以求出圆锥的体积了。

(4)交流总结。

三、巩固练习。

1.完成教材P34“做一做”。

2.完成教材P35第7题,P36第9、10
题。

学生独立完成后集体
订正。

教学过程中老师的疑问:
四、课堂总结。

1.说一说本节课的收获。

2.布置作业。

学生谈本节课的内容。

五、教学板书
六、教学反思
本节课让学生经历“猜想估计——实验验证——发现算法”的自主探究学习的过程。

教师适当的引导,学生根据自己的设想探究圆柱与圆锥体积的关系,并能根据探究结论,将求圆锥体积的公式在实际应用中加。

相关文档
最新文档