长方体与正方体重点专项题型

合集下载

完整版)长方体正方体经典题型汇总

完整版)长方体正方体经典题型汇总

完整版)长方体正方体经典题型汇总1.这个长方体的棱长总和是64分米。

2.这个长方体框架的高是15分米。

3.需要42厘米长的塑料带。

4.这个正方体的棱长是4厘米。

5.这个长方体的棱长总和是30分米。

6.这个长方体框架的高是20厘米。

7.这个正方体的棱长是28米÷4=7米。

8.这个长方体的棱长总和是21厘米。

9.每个正方体木块的棱长总和是40厘米。

1.至少需要36平方分米铁皮。

2.这张商标纸的面积是320平方厘米。

3.原来正方形铁皮的面积是625平方厘米。

4.这个长方体的表面积是162平方厘米。

5.粉刷水泥的面积是63平方米,需要252千克水泥。

6.至少需要480平方厘米铁皮,12节需要5760平方厘米铁皮。

7.20个这样的长方体需要400平方厘米的硬纸。

1.商标纸面积问题:一盒饼干长20厘米,宽15厘米,高30厘米。

要在它的四周贴上高6厘米的商标纸,求商标纸的面积。

解:首先计算长方体的表面积,即2(长×宽+长×高+宽×高),得到2(20×15+20×30+15×30)=2700平方厘米。

然后计算加上商标纸后的长方体的表面积,即2[(20+2×6)×(15+2×6)+(20+2×6)×(30+2×6)+(15+2×6)×(30+2×6)] =2×(32×27+32×42+27×42)=2×3024=6048平方厘米。

商标纸的面积即为加上商标纸后的表面积减去原表面积,即6048-2700=3348平方厘米。

2.侧面积问题:一个长方体侧面积是360平方厘米,高是9厘米,长是宽的3倍。

求它的表面积。

解:由题可得,长方体的宽为120/9=40厘米,长为3×40=120厘米。

因此,长方体的表面积为2(40×9+120×9+40×120)=2×(360+1080+4800)=2×6240=平方厘米。

六数上册长方体正方体知识点及重点题型及解析

六数上册长方体正方体知识点及重点题型及解析

长方体和正方体知识点汇总一、长方体和正方体的认识一个长方体至少可以有两个面是正方形,最多可以有6各面是正方形,但不会存在3个、4个、5个面是正方形!长方体有六个面,最多可以看到3个面,最少看到一个面,一个长方体至少4条棱相等的,最多8条棱相等的!练习:(1)判断并改正:1、长方体的六个面一定是长方形; ( )2、正方体的六个面面积一定相等; ( )3、一个长方体(非正方体) 最多有四个面面积相等; ( )4、相交于一个顶点的三条棱相等的长方体一定是正方体。

( )7、长方体的三条棱分别叫做长、宽、高。

( )8、有两个面是正方形的长方体一定是正方体。

( )9、有三个面是正方形的长方体一定是正方体。

()11、有两个相对的面是正方形的长方体,另外四个面的面积是相等的。

()12、长方体和正方体最多可以看到3个面。

()14、正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等。

()15、长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等。

()16、一个长方体中最少有4条棱长度相等,最多有8条棱长度相等。

()(2)填空:1、一个长方体最多有()个面是正方形,最多有()条棱长度相等。

2、一个长方体的底面是一个正方形,则它的4个侧面是()形。

3、正方体不仅相对的面相等,而且所有相邻的面(),它的六个面都是相等的()形。

4、把长方体放在桌面上,最多可以看到()个面。

最少可以看到()个面。

【知识点2】棱长和公式:长方体棱长和=(长+宽+高)×4 长+宽+高=棱长和÷4长方体棱长和=下面周长×2+高×4长方体棱长和=右面周长×2+长×4长方体棱长和=前面周长×2+宽×4正方体棱长和=棱长×12 棱长=棱长和÷12棱长和的变形:突破口:几长+几宽+几高+结头处=包装绳总长3、如图,有一个长5分米、宽和高都是3分米的长方体硬纸箱,用绳子将箱子捆扎起来,打结处共用2分米。

长方体正方体专项训练应用题

长方体正方体专项训练应用题

长方体正方体专项训练应用题一、长方体正方体的基本概念1. 长方体- 长方体有6个面,每个面都是长方形(可能有两个相对的面是正方形),相对的面完全相同。

- 长方体有12条棱,相对的棱长度相等,可以分为三组,每组有4条棱。

- 长方体有8个顶点。

2. 正方体- 正方体是特殊的长方体,它的6个面都是正方形,且6个面完全相同。

- 正方体有12条棱,12条棱的长度都相等。

- 正方体有8个顶点。

二、长方体正方体的表面积相关应用题1. 题目- 一个长方体的长是5厘米,宽是4厘米,高是3厘米,求这个长方体的表面积。

- 解析:- 长方体表面积公式为S=(ab + ah+bh)×2(其中a为长,b为宽,h为高)。

- 把a = 5厘米,b = 4厘米,h = 3厘米代入公式。

- 首先计算ab=5×4 = 20平方厘米,ah = 5×3=15平方厘米,bh=4×3 = 12平方厘米。

- 然后(ab + ah+bh)×2=(20 + 15+12)×2=(35 + 12)×2 = 47×2=94平方厘米。

2. 题目- 一个正方体的棱长为6分米,求它的表面积。

- 解析:- 正方体表面积公式为S = 6a^2(其中a为棱长)。

- 把a = 6分米代入公式,S=6×6^2=6×36 = 216平方分米。

三、长方体正方体的体积相关应用题1. 题目- 一个长方体的长是8米,宽是5米,高是4米,求这个长方体的体积。

- 解析:- 长方体体积公式为V=abh(其中a为长,b为宽,h为高)。

- 把a = 8米,b = 5米,h = 4米代入公式,V = 8×5×4=40×4 = 160立方米。

2. 题目- 一个正方体的棱长为7厘米,求它的体积。

- 解析:- 正方体体积公式为V=a^3(其中a为棱长)。

- 把a = 7厘米代入公式,V=7^3=7×7×7 = 343立方厘米。

人教版五年级下册长方体正方体重难点习题

人教版五年级下册长方体正方体重难点习题

长方体、正方体重难点习题班级:姓名:等第:一、基础填空1、长方体和正方体都有()个面,()个顶点,()条棱。

2、长方体相对的面(),相对的棱长度(),相交于一个顶点的三条棱的长度分别叫做长方体的()、()、()。

3、正方体的6个面是完全相同的()形,所有的棱长度()。

4、正方体是长、宽、高都()的长方体。

(是特殊的长方体)。

5、长方体、正方体(),叫做它的表面积。

6、物体所占空间的大小叫做物体的(),容器所能容纳的物体的体积叫做它的()。

7、常用的体积单位有(),(),()常用的容积单位是()和()。

8、相邻两个长度单位间的进率是(),相邻两个面积单位间的进率是(),相邻两个体积单位间的进率是()。

9、长方体或正方体容器的容积的计算方法与体积的计算方法()但要从容器的()量长、宽、高。

10、长方体的棱长和=(),用字母表示()11、正方体的棱长和=(),用字母表示()12、长方体的表面积=()用字母表示()13、正方体的表面积=(),用字母表示()14、长方体体积=(),用字母表示()15、正方体体积=(),用字母表示()16、长方体、正方体体积=()×()。

用字母表示()m13()cm317、1L=()mL1dm 3()cm33dm 3=()L二、提升训练一、判断1、长方体(不是正方体)最多有2个面是正方形。

()2、长方体是特殊的正方体。

()3、冰箱的体积大于它的容积。

()4、长方体相对的面完全相同,正方体6个面都完全相同。

()5、杯子里装了半杯水,有100mL,所以杯子的容积是100mL.。

()二、找对面A 的对面是()B 的对面是()D 的对面是()三、计算题(单位:cm)8体积:体积:2、正方体的展开图有()型,()型,()成阶梯,()日相连,()不能有。

三、解决问题1、小卖部要做一个1.8m,宽70cm,高50cm 的玻璃柜台,现在需要在柜台各边都安上角铁,至少需要多少米角铁?54555棱长和:棱长和:表面积:表面积:ABC DEF2、一个长方体包装盒长80cm,宽60cm,高30cm,现在用一条彩带捆扎这个包装盒,(如图)如果打结处彩带长40cm,求这条彩带的长度。

五年级长方体与正方体必会的题型汇编

五年级长方体与正方体必会的题型汇编

长方体与正方体必须掌握的几种题型一、高的变化引起表面积的变化。

1、一个长方体,如果高增加2厘米就成了正方体,而且表面积要增加56平方厘米,原来这个长方体的体积是多少立方厘米?2、一个长方体,如果高减少2厘米就成了正方体,而且表面积要减少56平方厘米,原来这个长方体的体积是多少立方厘米?3、一个长方体,如果长减少2厘米就成了一个正方体,而且表面积要减少56平方厘米。

原来这个长方体的体积是多少立方厘米?4、一个长方体,长a分米,宽b分米,高h分米,如果高减少3分米,这个长方体表面积比原来减少()平方分米?体积比原来减少()立方分米?二、段的变化1、一个长方体长2米,截面是边长3厘米的正方形,将这个长方体木料锯成五段后,表面积一共增加了多少平方厘米?2、将一个长3米的长方体木料平均截成3段,表面积一共增加了0.36平方分米,这根木料的体积是多少立方分米?三、切1、一个正方体的表面积是48平方厘米,将它平均分成两个小长方体,每个小长方体的表面积是多少?2、一个正方体的表面积是96平方厘米,将它平均分成两个小长方体,每个小长方体的体积是多少立方厘米?3、一个正方体的体积是125立方厘米,它的表面积是多少平方厘米?四、拼。

(拼表面积发生变化,体积不变)1、用8个棱长都是2厘米的正方体拼成一个长方体,拼成的长方体的表面积最多是多少平方厘米?最少是多少平方厘米?2、用12个棱长都是2厘米的正方体拼成一个长方体,一共有多少种拼法,每种拼法拼成的长方体的表面分别是多少?3、用四个棱长都是3厘米的正方体拼成一个长方体,拼成的长方体的表面积可能是多少?五、切1、将一个长8厘米,宽6厘米,高5厘米的长方体切成两个小长方体,表面积最多增加多少平方厘米?最少增加多少平方厘米?2、将三个长8厘米,宽6厘米,高5厘米的长方体拼成一个大长方体,表面积最多减少多少平方厘米?最少减少多少平方厘米?六、扩大和增加倍数。

1、一个正方体棱长扩大2倍,表面积扩大()倍,体积扩大()倍,表面积增加()倍,体积增加()倍。

长方体正方体知识点及重点题型

长方体正方体知识点及重点题型

长方体和正方体的知识点1 1 一、正方体部分①最少要八个..相同..的小正方体才能拼成一个较大的正方体。

②正方体有十一种展开图。

③正方形涂色B :把一个正方体的表面都涂满颜色,然后切成棱长为1的小正方体。

(长方体同)三面有颜色:有8个,在顶点上二面有颜色:有(棱长-2)×12 在棱长上 实际上求棱长减去2以后正方体的棱长和一面有颜色:有(棱长-2)2 ×6在表面上 实际上求棱长减去2以后正方体的表面积没有颜色:(棱长-2)3 在正方体的内部 实际是求棱长减去2以后正方体的体积。

④正方体的棱长扩大到原来的2倍,表面积扩大到原来的4倍,增加了...原来的3倍,面积是原来的平方倍; 正方体的棱长扩大到原来的2倍体积扩大到8倍,增加了...原来的7倍。

正方体体积是原来的立方倍。

⑤设一个正方体的棱长为a ,则它的棱长和=12a ,表面积S :S=6×a×a =6a 2 体积V= a×a×a = a3 长方体和正方体都有:12条棱、6个面、8个顶点正方体的总棱长= 棱长 × 12 (单位:长度单位)正方体的表面积 =(棱长 × 棱长)×6 (单位:平方单位)正方体的体积 = 棱长 × 棱长 × 棱长 即: V= a 3 (单位:立方单位)长方体(或正方体)的体积= 底面积×高 即: V=sh (单位:平方单位)⑥体积单位有:立方米、立方分米、立方厘米 1立方分米=1000立方厘米 1立方米=1000立方分米 容积单位有:立方米、升、 毫升 1升=1立方分米 1毫升=1立方厘米 1升=1000毫升二、长方体①长方体有六个面,12条棱,8个顶点,最多可以看到3个面,最少看到一个面,长方体不包括正方体, 最多有两个面是正方形,最多有四个面相等,最多有8条棱相等。

②长、宽、高均不相等的长方体的表面展开图:一四一式27种;二三一式18种;二二二式6种;三三式3种,共计54种。

长方体、正方体必考题型练习题

长方体、正方体必考题型练习题

A.正方体大 B.球大 C.长方体大 D.一样大
一个正方体的铁块的棱长是4分米,把它熔铸成 一个最大的圆柱,圆柱的体积( )立方分米。
用一只棱长6厘米的正方体容器盛满水后,倒入
一只长12厘米,宽6厘米,高5厘米的长方体水箱
里,水面高
厘米
几个物体锻造成一个物体,体积不变 把8块边长是1分米的正方体铁块熔成一个大
C、长方体的长宽各扩大3倍,高缩小3倍
D、长方体的长不变,宽和高各扩大3倍。
长方体的长缩小3倍,宽扩大3倍,要使体积扩大3
倍,那么高应该

长方体的体积=长×宽×高
如果长方体的长、宽、高分别扩大到原来的2 倍,3倍,4倍,则体积扩大 到 原来 的 倍
一根长方体的木料的体积是20立方分米,横截 面积是4平方分米,木料长是( )
6.一个长方体的礼品盒,长20厘米、宽15厘米、 高10厘米,现在要用红绸带进行十字形捆扎 (最大的面朝上),打结处20厘米,一共需要
绸带
厘米。
正方体的棱长总和=棱长×12
1.一个正方体的棱长是6厘米,它的棱长总和
是 厘米,表面积是

2.正方体的棱长之和是36分米,它的棱长是 分米,体积是 立方分米 。
边长是6dm的正方体,它的表面积和体积比较


容积与容积单位
3.06m3=
dm3 3.8L=
m3
250ml=
L
4.05dm3=
L
ml
7.5L=
ml
56cm2=
dm2
785ml=
cm3=
dm3
(★★★★★):一个长方体的水槽,横截 面是一个长5分米,宽3分米的长方形,如果

第3单元《长方体和正方体》高频考点题(试题) 五年级下册数学人教版

第3单元《长方体和正方体》高频考点题(试题) 五年级下册数学人教版

人教版数学五年级下册《长方体和正方体》高频考点题一、填空题(共10分,每题2分)1.一个正方体的一个面的周长为24 dm,这个正方体的表面积是()。

2.一个长方体的饮料盒长、宽、高分别是6.5cm、4cm和10cm。

如果围着它贴一圈商标纸(上、下面不贴),这张商标纸的面积至少是()cm2。

3.一个长方体游泳池,长50m、宽25m、深2m。

这个长方体游泳池的占地面积是()m2。

4.一个长方体油箱,从里面量,长是20 dm,宽是15dm,高是10dm,这个长方体油箱的容积为()dm3。

5.妈妈准备将一桶5 L的色拉油分装在250 mL的小油瓶里,共需要( )个小油瓶。

二、选择题(共15分,每题3分)1.将一个正方体铁块锻造成长方体铁块,则正方体铁块和长方体铁块比较()。

A.表面积相等.体积不相等B.体积表面积都相等C.体积相等,表面积不相等2.求加工一个长方体水箱(有盖)要用多少铁皮,就是求这个水箱的()。

A.表面积B.体积C.容积3.如果一个长方体中有4个面完全相同,那么其他两个面一定是( )。

A.长方形B.正方形C.不确定4.下面几种说法中,错误的是( )。

A.长方体有6个面,12条棱,8个顶点。

B.长方体的12条棱中,长、宽、高各有4条。

C.长方体除了相对面的面积相等,不可能有两个相邻面的面积相等。

5.一个正方体的棱长扩大到原来的3倍,则棱长总和扩大到原来的()。

A.3倍B.6倍C.9倍三、几何题(共20分,每题5分)1.下图是一个长方体的表面展开图,已经标出了三个面(1)在图上标出另外三个面。

(2)这个长方体的长是()cm,宽是()cm,高是()cm。

(3)长方体棱长总和是()cm。

2.计算下面图形的表面积。

3.如下图所示,从三个棱长均为8cm的正方体的不同处各挖去一个棱长为3cm 的小正方体,你能算出它们各自剩余部分的表面积吗?4.小红用几个棱长为1cm的小正方体拼成一个几何体,下面是从不同方向观察这个几何体看到的形状,这个几何体的体积是多少立方厘米?(请你用算式表示你的想法)四、解决问题(共50分,每题10分)1.一间长方体仓库的长为8 m、宽为6 m、高为3.5 m,库装有一扇门,门的宽为1m、高为2m。

五年级第三单元长方体和正方体常考题型汇总

五年级第三单元长方体和正方体常考题型汇总

长方体和正方体重点题型总结这单元的题型种类颇多,但是都脱离不了公式。

对公式必须熟烂于心。

综合题型的强度比较大,要求我们在做题时必须灵活,随机应变。

综合题型一、等体问题:1. 有一块棱长是20厘米的正方体的铁块,现在要把它溶铸成一个横截面积是20平方厘米的长方体,这个长方体的长是多少厘米?2. 一个棱长4分米的正方体容器,盛满水后倒入一个长8分米,宽2分米,高5分米的长方体水槽中,水深多少分米?3.把12立方米的黄沙铺在一个长8米,宽3米的长方体沙坑里,可以铺多厚?4.一个封闭的长方体容器,长是10厘米,宽是10厘米,高15厘米,里面水的高度是9厘米。

如果把这个容器由竖放改成横放,现在水面的高度是多少厘米?综合题型二、切、拼求表面积和体积问题:1.一个长方体正好可以切成5个同样大小的正方体,切成的5个正方体的表面积比原来长方表面积多了200平方厘米,求原来长方体的表面积和体积分别是多少?2.把三个棱长都是4厘米的正方体拼成一个长方体,拼成的长方体表面积和体积分别是多少?3.把4个棱长2厘米的正方体拼成一个长文体一,拼成的长方体体积是多少,表面积是多少?综合题型三、挖小正方体求剩下图形的表面积和体积:2.王师傅在一个棱长为6厘米的正方体木块上挖下一个棱长2厘米的小正方体,剩下部分表面积可能是多少平方厘米?3.有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)4.一个零件形状大小如下图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)综合题型四、长方体切最大正方体问题:1.在一个长23分米,宽5分米,高5分米的长方体木上切一个最大的正方体,切成的正方体的表面积和体积分别是多少?最多能切多少个?2.在一个长20分米,宽6分米,高5分米的长方体木上切一个最大的正方体,切成的正方体的表面积和体积分别是多少?综合题型五、长方体切成小正方体,求个数问题:1. 把一个长6分米,宽4分米,高5分米的长方体木块切成,棱长为1分米的小正方体木块,最多能切多少个?2.在一个长23分米,宽5分米,高5分米的长方体木上切棱长为2分米的正方体能切多少个?综合题型六、长方体高增加或减少后成正方体,求表面积、体积问题:1.一个长方体,如果高增加3厘米,就成为一个正方体。

长方体和正方体的表面积和体积重难点应用题训练题40题带详细答案

长方体和正方体的表面积和体积重难点应用题训练题40题带详细答案

长方体与正方体的表面积和体积重难点应用题训练40题1、将一根长52厘米的铁丝焊接成一个长6厘米、宽4厘米的长方体框架,这个长方体框架的表面积是多少平方厘米?[52 - 4 X (6 + 4)] + 4 = 3 (厘米)表面积:2 X (6 X 4 + 6 X 3 + 4 X 3) = 108 (平方厘米)2、将一根长84厘米的铁丝焊接成一个正方体框架,这个正方体框架的表面积是多少平方厘米?棱长:84 + 12 = 7 (厘米)表面积:6 X 7 X 7 = 294 (平方厘米)3、小高老师要做一个长1.2米、宽45厘米、高L5米的陈列箱,陈列箱除了正面用玻璃,其余各面都用木板。

小高老师需要准备多少平方米木板?正面二长X高少了一个正面后的表面积:1.2 X 1.5 + 2 X(1.2 X 045 + 0.45 X 1.5) = 4.23 (平方米)4、舞蹈教室的长是8米,宽是6米,高是3.5米,现在要粉刷墙壁和天花板。

如果门窗和镜子的面积一共是22平方米,每平方米需要0.25千克涂料,那么粉刷这间教室一共需要多少千克涂料?教室只需要粉刷墙壁和天花板粉刷的总面积:8x6 + 2x(8x3.5 + 6x 3.5)- 22 = 124 (平方米)需要涂料:124x0.25 = 31 (千克)5、有一个长方体,如果将它的高增加3厘米,那么它就会变成一个正方体,这时表面积会比原来增加96平方厘米。

这个长方体的表面积是多少平方厘米?长=宽=96 + 3 + 4 = 8 (厘米)原高:8-3 = 5 (厘米)表面积:2x (8x84-8x5 + 8x8) =336 (平方厘米)6、如果把一个正方体木块一刀切成两个长方体后表面积增加了60平方厘米,那么这个木块的表面积是多少平方厘米?一个正方体一刀切成两个长方体后,增加了两个面每个面的面积:60 + 2 = 30 (平方厘米)原正方体的表面积:6 X 30 = 180 (平方厘米)7、一个长方体的底面是面积为4平方米的正方形,它的侧面展开图正好也是一个正方形,这个长方体高是多少?表面积是多少?4=2x2,底面正方形的边长是2米,则周长为2x4=8 (米)高:8米表面积:2x8x4+4x2=72 (平方米)8、桌子上有一根长L5米的长方体木料,木料有两面是正方形。

长方体与正方体重点专项题型

长方体与正方体重点专项题型

棱长加深拓展:
如图,有一个长5分米、宽和高都是3分米的长方体硬纸箱,如果用绳子将箱子横着捆两道,长着捆一道, 打结处共用2分米。

一共要用绳子多长?
表面积:
4、如图,把一个长方体木料沿着虚线正好锯成3个完全一样的小正方体后,表面积增加了48平方分米。

这根木料的表面
积是多少平方分米?
容积体积转化:
5、一个正方体水箱容积是343立方分米,把这一满水箱的水全部注入到一个长方体水箱内,已知长方体水箱长10分米,
宽7分米,这个水箱内的水深多少分米?
7、有一只长150厘米,宽50厘米,高40厘米的水盒,里面装满水,这时放入一块高和长都是20厘米的长方体石块,水溢岀4升,这块石头的宽是多少厘米?
1 / 21 / 2。

长方体与正方体必须掌握的九种题型练习及解析

长方体与正方体必须掌握的九种题型练习及解析

长方体与正方体必须掌握的九种题型练习及解析一、长方体与正方体必须掌握的几种题型1 --高的变化引起表面积的变化1、一个长方体,如果高增加2厘米就成了正方体,而且表面积要增加56平方厘米,原来这个长方体的体积是多少立方厘米?2、一个长方体,如果高减少2厘米就成了正方体,而且表面积要减少56平方厘米,原来这个长方体的体积是多少立方厘米?3、一个长方体,长a分米,宽b分米,高h分米,如果高减少3分米,这个长方体表面积比原来减少()平方分米?体积比原来减少()立方分米二、长方体与正方体必须掌握的几种题型2 --段的变化1、一个长方体长2米,截面是边长3厘米的正方形,将这个长方体木料锯成五段后,表面积一共增加了多少平方厘米2、将一个长3米的长方体木料平均截成3段,表面积一共增加了0.36平方分米,这根木料的体积是多少立方分米3、一段长2m的长方体木料,将它截成5段后,表面积增加了40平方分米,这根木料的体积是多少立方分米?4、把一根长3米的长方体木料据成3段后,表面积增加18平方分米这根木料原来的体积是多少立方米1、一个正方体的表面积是48平方厘米,将它平均分成两个小长方体,每个小长方体的表面积是多少2、一个正方体的表面积是96平方厘米,将它平均分成两个小长方体,每个小长方体的体积是多少立方厘米3、一个正方体的体积是125立方厘米,它的表面积是多少平方厘米4、一个正方体切成两个小长方体后,表面积增加18平方厘米。

两个小长方体表面积的和是多少?四、长方体与正方体必须掌握的几种题型4 --拼的变化1、用8个棱长都是2厘米的正方体拼成一个长方体,拼成的长方体的表面积最多是多少平方厘米最少是多少平方厘米?2、用12个棱长都是2厘米的正方体拼成一个长方体,一共有多少种拼法,每种拼法拼成的长方体的表面分别是多少?3、用四个棱长都是3厘米的正方体拼成一个长方体,拼成的长方体的表面积可能是多少4、用6个棱长是1厘米的正方体,拼成一个表面积是最小的长方体,这个长方体的表面积是多少?倍数1、一个正方体棱长扩大2倍,表面积扩大()倍,体积扩大()倍,表面积增加()倍,体积增加()倍。

长方体和正方体基本题型归纳

长方体和正方体基本题型归纳

长方体和正方体基本题型归纳1.鱼缸表面积问题:一个长90厘米、宽30厘米、高60厘米的长方体无盖玻璃鱼缸,制作这个鱼缸至少需要多大面积的玻璃?2.排气管道问题:一节横截面为正方形,边长为2厘米的排气管道长1米,制作这样一节排气管道至少需要多少平方米的铁皮?3.粉刷房间问题:一间长5米、宽4米、高3米的房间,门窗面积为8平方米,这间房的粉刷面积是多少?4.加工机套问题:制作1000个洗衣机机套(没有低面),每台洗衣机的长、宽、高分别为59.5厘米、42.5厘米、80厘米,至少需要多少平方米的布料?5.游泳池贴瓷砖问题:一个长50米、宽25米、深2.5米的游泳池,四周和低面都需要贴瓷砖,共需要多少平方米的瓷砖?6.长方体体积问题:一个底面积为20平方厘米、高为8厘米的长方体,体积是多少?7.截长方体成正方体问题:将一个长12厘米、宽10厘米、高5厘米的长方体截成一个体积最大的正方体,这个正方体的体积是多少?8.长方体表面积问题:一根2米长的长方体木块,平均截成两段后表面积增加了0.6平方米,原来长方体木块的体积是多少?9.游泳池注水问题:往一个长50米、宽30米的游泳池中注水,如果每小时能注水200平方米,多少时间才能使水深达2.4米?10.蓄水池问题:挖一个长10米、宽8米、深5米的长方体蓄水池,其占地面积、蓄水量、贴瓷砖面积和水位线长度分别是多少?11.长方体体积问题:一个长3米、宽0.5米、厚0.12米的长方体木料,其体积是多少?合多少立方分米?12.土坑问题:建筑工地要挖一个长50米、宽30米、深0.5米的长方体土坑,挖出多少方的土?13.方木体积问题:家具厂订购500根横截面面积为24平方分米、长为3米的方木,这些木料共多少方?14.围墙问题:一道长15厘米、厚24厘米、高3米的围墙需要多少块砖?15.木地板问题:一间长5米、宽3米的房间地面铺设了2厘米厚的木地板,至少需要多少立方米的木材。

五年级数学第三单元重点难题

五年级数学第三单元重点难题

五年级数学第三单元重点难题一、长方体和正方体的认识相关。

1. 一个长方体的长是8厘米,宽是6厘米,高是4厘米。

这个长方体的棱长总和是多少厘米?- 解析:长方体的棱长总和=(长 + 宽+高)×4。

所以该长方体棱长总和=(8 + 6+4)×4=(18×4)=72(厘米)。

2. 正方体的棱长为5分米,它的棱长总和是多少分米?- 解析:正方体的棱长总和 = 棱长×12。

所以这个正方体棱长总和=5×12 = 60(分米)。

3. 一个长方体的棱长总和是120厘米,长是15厘米,宽是10厘米,高是多少厘米?- 解析:长方体棱长总和=(长 + 宽 + 高)×4,所以高=棱长总和÷4 - 长 - 宽。

即120÷4 - 15 - 10 = 30 - 15 - 10 = 5(厘米)。

二、长方体和正方体的表面积相关。

4. 一个长方体,长6厘米,宽4厘米,高3厘米,求它的表面积。

- 解析:长方体表面积=(长×宽+长×高+宽×高)×2。

所以表面积=(6×4 + 6×3+4×3)×2=(24+18 + 12)×2=(54×2)=108(平方厘米)。

5. 正方体的棱长是8分米,求它的表面积。

- 解析:正方体表面积 = 棱长×棱长×6。

所以表面积=8×8×6 = 64×6 = 384(平方分米)。

6. 一个无盖的长方体鱼缸,长8分米,宽5分米,高6分米,制作这个鱼缸需要多少平方分米的玻璃?- 解析:无盖长方体的表面积=长×宽+(长×高+宽×高)×2。

所以需要玻璃8×5+(8×6+5×6)×2 = 40+(48 + 30)×2=40+(78×2)=40 + 156 = 196(平方分米)。

五年级数学下册长方体正方体重点题型

五年级数学下册长方体正方体重点题型

正方体长方体复习资料基础知识填空(1)正方体、长方体有个面,个顶点,棱组成;每个顶点所连接的三条棱分别叫做它们的,,。

(2)长方体最多有面是正方形,最多有面相同。

(3)长方体的棱长和:(用文字表示),用字母表示为:正方体的棱长和:(用文字表示),用字母表示为:(4)长方体的表面积:(用文字表示),用字母表示为:正方体的表面积:(用文字表示),用字母表示为:(5)长方体的体积:(用文字表示),用字母表示为:正方体的体积:(用文字表示),用字母表示为:(6)长方体正方体体积公式都可以表示为:(用文字表示),用字母表示为:(7)物体占地面积就是底面积常考题型一:棱长和1、用一根长36cm的铁丝焊接成一个正方体框架,其表面积是,其体积是2、一个正方体的体积是27cm3,他的棱长是,它的表面积是3、用一根铁丝焊接成一个棱长为8cm的正方体,若用这根铁丝焊接成一个长方体,长为10cm,宽为8cm,其高为cm常考题型二:求表面积1、一根长5m的,宽和高都是1m的通风管,如果做10根这样的通风管道需要多少铁皮?2、贝智教育一教室要粉刷,其教室长9米,宽6米,高4米,门窗占地18平方米,要粉刷四周墙壁和顶棚,如果每平方米用0.25千克白灰,则粉刷这教室一共要用多少白灰?常考题型三:长方体,正方体的拼接和切割储备知识:切割一次会增加两个表面,相反拼接一次会减少两个面1、用三个棱长为1cm的正方体,拼成一个长方体,这个长方体的表面积是,体积是2、一个长方体长2米,截面是一个边长为3分米的正方形,将这个长方体木料锯成5段后,其表面积一共增加了平方分米。

3、将一个3米长方体木料平均截成3段,其表面积增加了0.36平方分米,这根木料的体积是。

常考题型四:底面是正方形,高变化引起表面积变化1、一个长方体如果高增加了2厘米成了正方体,而且表面积要增加56平方厘米,求原来这个长方体的体积?2、一个长方体,如果高减少2厘米,变成了一个正方体,并且表面积减少了56平方厘米,求原来这个长方体的体积是多少?常考题型五:棱长、面积、体积它们变化关系1、一个正方体,其棱长扩大两倍,棱长和夸大倍,表面积扩大倍,体积扩大倍。

第三单元《长方体和正方体》常考题型总结(专项训练)-2023-2024学年人教版五年级下册数学

第三单元《长方体和正方体》常考题型总结(专项训练)-2023-2024学年人教版五年级下册数学

一、长方体和正方体的棱长总和(长度单位)长方体棱长和=(长+宽+高)×4. 公式:4bL(a=c+)⨯+长变形:长=棱长和÷4-宽-高L正方体棱长和=棱长×12 公式:a=L12正棱长=棱长和÷12常见关键词:做一个长方体或正方体的框架、围成等。

典型题型:①用一根长84厘米的铁丝焊接成一个正方体的框架,这个正方体的棱长是多少?②用一根长72厘米的铁丝做一个宽5厘米,高5厘米的长方体灯笼框架,长是多少厘米?③一根铁丝可以扎成一个长9厘米,宽5厘米,高1厘米的长方体,如果用这根铁丝扎成一个正方体,这个正方体的棱长是多少?④一个长方体的棱长总和是160厘米,它的长是12厘米,宽是5厘米,这个长方体的高是多少厘米?⑤一个长方体的棱长总和是240厘米,相交于一个顶点的三条棱的长度和是多少?⑥一个长方体的棱长和是72厘米,它的长是9厘米,宽6厘米,它的表面积是多少平方厘米?⑦.用一根彩带困扎一种礼盒,如果接头处的彩带长30cm,求这条彩带的长度。

二、长方体和正方体的表面积(面积单位)前面=长×高右面=宽×高上面=长×宽长方体表面积=(前面+右面+上面)×2 正方体表面积=棱长×棱长×61.公式:2)⨯++=abbhahS(长26a S=正2.根据实际情况求表面积有时求5个面(如无盖鱼缸,粉刷墙面,铺瓷砖等),4个面(如烟囱(无上下),通风管(无左右),抽水管(无左右)等)。

典型题型:注意单位换算①一个装饼干的方形铁盒,底面是正方形,边长是20厘米,高是30厘米,这个铁盒的四周印满商标,商标的面积是多少平方厘米?②在校园里建一个长方体形状的游泳池,长50米,宽25米,深2.5米,在这个游泳池的四周和池底铺瓷砖,铺瓷砖的面积是多少平方米?③用60厘米长的铁丝焊接成一个正方体的框架,这个正方体的表面积是多少立方分米?④一个通风管的横截面是边长为5分米的正方形,长25米,如果用铁皮做这样的通风管50个,需要多少平方米的铁皮?⑤一张办公桌有3个抽屉,每个抽屉长50厘米,宽30厘米,高10厘米。

长方体与正方体(精选题型)

长方体与正方体(精选题型)

重点知识点击1、长方体是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。

〔1〕长方体有6个面。

每组相对的两个面完全相同;〔2〕长方体有12条棱,相对的四条棱长度相等且互相平行。

按长度可分为三组,每一组有4条棱;〔3〕长方体有8个顶点。

每个顶点连接三条棱。

三条棱分别叫做长方体的长,宽,高;(4) 长方体相邻的两条棱互相垂直。

长方体的表面积的计算公式是: (长×宽+长×高+宽×高)×2长方体的总棱长=(长+宽+高)×4长方体的侧面积=底面周长×高长方体体积=长×宽×高或:长方体的体积=底面积×高2、用六个完全相同的正方形围成的立体图形叫正方体。

侧面和底面均为正方形的直平行六面体叫正方体,即棱长都相等的六面体,又称“立方体”、“正六面体”。

正方体是特殊的长方体。

〔1〕正方体有8个顶点,12条棱,每条棱长度相等。

(2)正方体有6个面,每个面都是正方形且面积相等。

正方体的表面积=棱长×棱长×6正方体的总棱长=棱长×12正方体体积=棱长×棱长×棱长或:正方体的体积=底面积×高常用的体积单位有:立方米、立方分米、立方厘米。

它们之间的进率是1000.3、容积和容积单位:箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。

计量容积,一般就用体积单位。

计量液体的体积,如水、油等,常用容积单位升和毫升,也可以写成L和ML.另外,长方体或正方体容积的计算方法,跟体积的计算方法相同。

但要从容器里面量得长、宽、高。

4、容积单位和体积单位之间的关系。

1升=1立方分米1毫升=1立方厘米1升=1000毫升=1000立方厘米二、知识巩固练习1.一个铁丝可以折成一个长6分米,宽4分米,高2分米的长方体框架,如果用这根铁丝折成一个正方体框架,这个正方体的棱长是()分米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题长方体与正方体(重难点专项题型)
重、难点
1.棱长加深拓展
2.体积与容积互化的应用题(通常会出应用题)
3.长方体的拼合,切割--------涉及知识点:表面积和体积增加减少问题
4.不规则物体体积,表面积的计算方法----------涉及到的知识点:表面
积,体积,棱长总和,单位换算
4.截面与体积表面积的关系
习题讲解(相应题型的练习)
棱长加深拓展:
如图,有一个长5分米、宽和高都是3分米的长方体硬纸箱,如果用绳子将箱子横着捆两道,长着捆一道,打结处共用2分米。

一共要用绳子多长?

表面积:
4、如图,把一个长方体木料沿着虚线正好锯成3个完全一样的小正方体后,表面积增加了48平方分米。

这根木料的表面积是多少平方分米?
容积体积转化:
5、一个正方体水箱容积是343立方分米,把这一满水箱的水全部注入到一个长方体水箱内,已知长方体水箱长10分米,宽7分米,这个水箱内的水深多少分米?
7、有一只长150厘米,宽50厘米,高40厘米的水盒,里面装满水,这时放入一块高和长都是20厘米的长方体石块,水溢出4升,这块石头的宽是多少厘米?
8、一个玻璃鱼缸,长10分米,宽6分米,高8分米,鱼缸中原有水深7分米,现在一块假山石放入水中并浸没,水溢出48升.
这块假石的体积有多少立方米?
9、把10升水倒入一个长2.5分米,宽2分米,高6分米的长方体水缸中。

⑴这时水面的高度离容器口有多少分米?
⑵此时,将一个正方体铁块全部浸入水中,水面离容器口还有2.4分米,你能求出正方体铁块的棱长吗?
不规则图形体积和表面积的计算:
求体积,及表面积(
单位:cm)
30cm
30cm
30cm。

相关文档
最新文档