化工原理设计换热器设计计算

合集下载

化工原理课程设计换热器

化工原理课程设计换热器

化工原理课程设计换热器
换热器设计是化工原理课程设计中一个重要的部分。

下面将为您介绍步骤和注意事项。

一、设计步骤:
1. 确定换热器类型:根据工艺要求及介质性质,选择适合的换热器类型,如管壳式、板式、螺旋板式等。

2. 估算传热系数:根据换热器类型、流体类型、流量、温度等因素,估算出传热系数。

3. 计算传热面积:根据所需传热量和传热系数,计算指定温度下需求的传热面积。

4. 选择换热器管径及壳体规格:根据所需传热面积和换热器类型,选择合适的换热器管径及壳体规格。

5. 设计热损失:根据换热器使用环境,计算换热器热损失量,以确保能量转化的高效。

6. 设计流路:结合工艺流程及介质性质,确定换热器内部介质的流路和流速,
以确保传热效率。

二、注意事项:
1. 选用合适的换热器类型,以确保传热效率和占用空间的合理性。

2. 估算传热系数要考虑介质性质、流量、温度等因素,更加科学地估算传热系数。

3. 所需传热面积要根据实际需要,同时结合换热器的大小、材质等因素做出合理的选择。

4. 选择换热器管径及壳体规格要遵循一定的社会标准及安全规范,以确保换热器使用的稳定性和安全性。

5. 设计热损失要考虑换热器使用环境,以确保能量转化的高效。

同时,必须符合国家有关规定。

化工原理课程设计换热器

化工原理课程设计换热器

化工原理课程设计换热器本文主要介绍化工原理课程设计中涉及到的换热器的相关知识和设计思路。

换热器是化工工业中常用的设备之一,其主要功能是通过传导、对流和辐射的方式实现热量的传递,从而将一个流体的热量传递给另一个流体。

因此,在化工原理课程设计中涉及到换热器的设计,既需要考虑流体的物理性质,也需要考虑热力学参数的影响。

换热器的类型繁多,按照传热方式的不同可分为对流式换热器和辐射式换热器。

常用的对流式换热器包括管壳式换热器、板式换热器和螺旋式换热器等。

在换热器的设计中,需要首先确定换热器所要实现的传热方式和工作条件,如流体流速、进出口温度和压力等。

接下来需要考虑的问题是如何选择合适的材料以满足流体的物理性质和热力学参数的要求。

在化工原理课程设计中,换热器的设计重点之一是热力学计算。

为了实现对流体的热量传递,需要考虑流体的传热系数。

传热系数与流体的物理性质密切相关,包括流体的密度、比热、粘度和导热系数等。

通过对这些参数的测量和分析,可以计算出传热系数,并进而确定换热器的传热效率。

另外,在化工原理课程设计中,换热器的设计还需要考虑到换热器的尺寸、材料和结构等方面的问题。

尺寸的设计需要考虑工作流体的容积和流速等因素,以保证换热器的实现效率和安全性。

材料选择需要考虑到流体的化学性质,以避免流体与材料发生反应和腐蚀。

结构设计需要兼顾容易清洗、拆卸和维护的要求,以方便日常运行和维护。

总之,在化工原理课程设计中,换热器的设计是一个系统性的工程,包括物理学、化学和工程学等多个学科领域的综合运用。

只有充分理解流体的物理性质和热力学参数,才能做出合理的设计并实现高效的换热效果。

同时,还需要考虑到实际工程的应用需求,以满足生产的需要和安全的要求。

化工原理---传热.第三讲-2016.5.12 (1)

化工原理---传热.第三讲-2016.5.12 (1)
(2)高温换热器中,逆流时t2和T1集中在一端,采用
并流,可降低该处壁温,延长换热器使用寿命。 34
小结
LMTD法------对数平均温差法
Q KStm
Q qm,hcp,h T1 T2 Q qm,ccp,c t2 t1
1 Ko
1
o

Rso

bdo
dm
Rsi
15
2. 总传热系数
当两侧对流传热系数相差较大时,K近似等
于 i ,o 中小者。
欲提高K值,强化传热,最有效的办法是减
小控制热阻。
有人曾作过实验,数据如下:
0(w/m2.K) i(w/m2.K) K(w/m2.K)
5000
40
39.7
10000 40
39.8
5000
80
78.8
例5-5?
16
2. 总传热系数
2)K的实验查定
Q KStm
3)总传热系数的经验值 在有关传热手册和专著中载有某些情况下
K 的经验数值,可供设计参考。
17
列管换热器总传热系数K的经验数据
流体种类
水—气体 水—水 水—煤油 水—有机溶剂 气体—气体 饱和水蒸气—水 饱和水蒸气—气体 饱和水蒸气—油 饱和水蒸气—沸腾油
dQ
w
w
w
w

T t
1
b
1
1
b
1




dS dS dS
ii
m
oo
dS dS dS
ii
m
oo
上式两边均除以 dSO
dQ
T t

dS o

化工原理课程设计---列管式换热器的设计

化工原理课程设计---列管式换热器的设计

化工原理课程设计---列管式换热器的设计列管式换热器是一种常用的换热器类型,其结构简单、传热效率高、维修方便等优点使其在工业生产中得到广泛应用。

该换热器由多个平行排列的管子组成,热流体和冷流体分别流过管内外,通过管壁传递热量,实现热量交换。

根据不同的流体流动方式,列管式换热器又可分为纵向流式和横向流式两种形式。

其中,横向流式换热器传热效率更高,但结构较为复杂,维修难度较大,因此在实际应用中需要根据具体情况进行选择。

浮头式换热器的特点是管板和壳体之间没有固定连接,只有一个浮头,管束和浮头相连。

浮头可以在壳体内自由移动,以适应管子和壳体的热膨胀。

这种结构适用于温差较大或壳程压力较高的情况。

但是,由于管束和浮头的连接是松散的,因此需要注意防止泄漏。

U型管式换热器:U型管式换热器的管子呈U形,两端分别焊接在管板上,形成一个U型管束。

壳体内的流体从一端进入,从另一端流出,管内的流体也是如此。

这种结构适用于流体腐蚀性较强的情况,因为管子可以很容易地更换。

多管程换热器:多管程换热器是将管束分成多个组,每组管子单独连接到管板上,形成多个管程。

这种结构可以提高传热效率,但也会增加流体阻力。

因此,需要根据具体情况来选择多管程的数量。

总之,列管式换热器是一种广泛应用于化工及酒精生产的换热器。

不同的结构适用于不同的工艺条件,需要根据具体情况来选择合适的换热器。

在使用过程中,需要注意保养和维护,及时清洗和更换损坏的部件,以保证换热器的正常运行。

换热器的一块管板与外壳用法兰连接,另一块管板不与外壳连接,这种结构称为浮头式换热器。

浮头式换热器的优点是管束可以拉出以便清洗,管束的膨胀不受壳体约束,因此在两种介质温差大的情况下,不会因管束与壳体的热膨胀量不同而产生温差应力。

但其缺点是结构复杂,造价高。

填料式换热器的管束一端可以自由膨胀,结构比浮头式简单,造价也较低。

但壳程内介质有外漏的可能,因此不应处理易挥发、易燃、易爆和有毒的介质。

化工原理_17换热器的传热计算

化工原理_17换热器的传热计算
T2 T1 (T1 t1)
22
二、传热单元数法
(2)传热单元数 NTU 由换热器热平衡方程及总传热速率微分方程
dQ qm,hcphdT qm,ccpcdt K (T t)dS
对于冷流体 dt KdS
T t qm,ccpc
23
二、传热单元数法
积分上式得
t2 dt S KdS
(NTU )c t1 T t 0 qm,ccpc
11
一、平均温度差法
逆流:
采用逆流操作,若换热介质流量一定,则可 以节省传热面积,减少设备费;若传热面积一定, 则可减少换热介质的流量,降低操作费,因而工 业上多采用逆流操作。
并流:
若对流体的温度有所限制,如冷流体被加热 时不得超过某一温度,或热流体被冷却时不得低 于某一温度,则宜采用并流操作。
12
Qmax (qmcp )min (T1 t1)
较小者具 有较大温

换热器中可 能达到的最
大温差
式中 qmCp 称为流体的热容量流率,下标 min表 示两流体中热容量流率较小者,并称此流体为最
小值流体。
20
二、传热单元数法
若热流体为最小值流体,则传热效率为
qm,hcph (T1 T2 ) T1 T2
通常在换热器的设计中规定,t 值不应小
于0.8,否则值太小,经济上不合理。若低于此
值,则应考虑增加壳方程数,将多台换热器串
联使用,使传热过程接近于逆流。
18
二、传热单元数法
1. 传热效率ε 换热器的传热效率ε定义为
实际的传热量QT
最大可能的传热量Qmax
19
二、传热单元数法
定义最大可能传热量
基于冷流体的传热单元数

化工原理课程设计 换热器

化工原理课程设计 换热器

一、设计任务书二、确定设计方案2.1 选择换热器的类型本设计中空气压缩机的后冷却器选用带有折流挡板的固定管板式换热器,这种换热器适用于下列情况:①温差不大;②温差较大但是壳程压力较小;③壳程不易结构或能化学清洗。

本次设计条件满足第②种情况。

另外,固定管板式换热器具有单位体积传热面积大,结构紧凑、坚固,传热效果好,而且能用多种材料制造,适用性较强,操作弹性大,结构简单,造价低廉,且适用于高温、高压的大型装置中。

采用折流挡板,可使作为冷却剂的水容易形成湍流,可以提高对流表面传热系数,提高传热效率。

本设计中的固定管板式换热器采用的材料为钢管(20R钢)。

2.2 流动方向及流速的确定本冷却器的管程走压缩后的热空气,壳程走冷却水。

热空气和冷却水逆向流动换热。

根据的原则有:(1)因为热空气的操作压力达到1.1Mpa,而冷却水的操作压力取0.3Mpa,如果热空气走管内可以避免壳体受压,可节省壳程金属消耗量;(2)对于刚性结构的换热器,若两流体的的温度差较大,对流传热系数较大者宜走管间,因壁面温度与对流表面传热系数大的流体温度相近,可以减少热应力,防止把管子压弯或把管子从管板处拉脱。

(3)热空气走管内,可以提高热空气流速增大其对流传热系数,因为管内截面积通常比管间小,而且管束易于采用多管程以增大流速。

查阅《化工原理(上)》P201表4-9 可得到,热空气的流速范围为5~30 m·s-1;冷却水的流速范围为0.2~1.5 m·s-1。

本设计中,假设热空气的流速为8 m·s-1,然后进行计算校核。

2.3 安装方式冷却器是小型冷却器,采用卧式较适宜。

三、设计条件及主要物性参数3.1设计条件由设计任务书可得设计条件如下表:体积流量进口温度出口温度操作压力设计压力注:要求设计的冷却器在规定压力下操作安全,必须使设计压力比最大操作压力略大,本设计的设计压力比最大操作压力大0.1MPa 。

3.2确定主要物性数据3.2.1定性温度的确定可取流体进出口温度的平均值。

化工原理-17换热器的传热计算汇总

化工原理-17换热器的传热计算汇总

积分上式得
(NTU)c
t2
t1
dt Tt
S
0
KdS qm,ccpc
基于冷流体的传热单元数
对于热流体,同样可写出
(NTU)h
T1 T2
dT T t
基于热流体的传热单元数
24
二、传热单元数法
传热单元数是温度的量纲为一函数,它反 映传热推动力和传热所要求的温度变化,传热 推动力愈大,所要求的温度变化愈小,则所需 要的传热单元数愈少。
并流:
若对流体的温度有所限制,如冷流体被加热 时不得超过某一温度,或热流体被冷却时不得低 于某一温度,则宜采用并流操作。
12
一、平均温度差法
(2)错流和折流时的平均温度差 单管程,多管程 单壳程,多壳程
13
一、平均温度差法
图5-10 错流和折流示意图 14
一、平均温度差法
先按逆流计算对数平均温度差,然后再乘以
存在逆流和并流的缘故。
t(并 流 ) t(错 、 折 流 ) t(逆 流 )
通常在换热器的设计中规定, t 值不应小
于0.8,否则值太小,经济上不合理。若低于此 值,则应考虑增加壳方程数,将多台换热器串 联使用,使传热过程接近于逆流。
18
二、传热单元数法
1. 传热效率ε 换热器的传热效率ε定义为
KS qm,ccpc
27
二、传热单元数法
若热流体为最小值流体,则
1exp[(NTU)m in(1CR)]
1CR
式中
(NTU)min
KS Cmin
KS qm,hcph
CR
Cmin Cmax
qm,hcph qm,ccpc
28
二、传热单元数法

化工原理课程设计换热器《化工原理课程设计》报告换热器的设计

化工原理课程设计换热器《化工原理课程设计》报告换热器的设计

化工原理课程设计换热器《化工原理课程设计》报告换热器的设计《化工原理课程设计》报告换热器的设计目录概述1.1.换热器设计任务书 - 4 -1.2换热器的结构形式 - 7 -2.蛇管式换热器 - 7 -3.套管式换热器 - 7 -1.3换热器材质的选择 - 8 -1.4管板式换热器的优点 - 9 -1.5列管式换热器的结构 -10 -1.6管板式换热器的类型及工作原理 -11 -1.7确定设计方案 -12 -2.1设计参数 -12 -2.2计算总传热系数 -13 -2.3工艺结构尺寸 -14 -2.4换热器核算 -15 -2.4.1.热流量核算 -16 -2.4.2.壁温计算 -18 -2.4.3.换热器内流体的流动阻力-19 -概述在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。

在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。

35%~40%。

随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。

换热器的设计、制造、结构改进及传热机理的研究十分活跃,一些新型高效换热器相继问世。

随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。

在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算换热所需传热面积,并确定换热器的结构尺寸。

换热器按用途不同可分为加热器、冷却器、冷凝器、蒸发器、再沸器、深冷器、过热器等。

换热器按传热方式的不同可分为:混合式、蓄热式和间壁式。

其中间壁式换热器应用最广泛,按照传热面的形状和结构特点又可分为管壳式换热器、板面式换热器和扩展表面式换热器(板翅式、管翅式等),如表2-1所示。

表2-1 传热器的结构分类类型特点间壁式管壳式列管式固定管板式刚性结构用于管壳温差较小的情况(一般≤50℃),管间不能清洗带膨胀节有一定的温度补偿能力,壳程只能承受低压力浮头式管内外均能承受高压,可用于高温高压场合 U型管式管内外均能承受高压,管内清洗及检修困难填料函式外填料函管间容易泄漏,不宜处理易挥发、易爆炸及压力较高的介质内填料函密封性能差,只能用于压差较小的场合釜式壳体上部有个蒸发空间用于再沸、蒸煮双套管式结构比较复杂,主要用于高温高压场合和固定床反应器中套管式能逆流操作,用于传热面较小的冷却器、冷凝器或预热器螺旋管式沉浸式用于管内流体的冷却、冷凝或管外流体的加热喷淋式只用于管内流体的冷却或冷凝板面式板式拆洗方便,传热面能调整,主要用于粘性较大的液体间换热螺旋板式可进行严格的逆流操作,有自洁的作用,可用作回收低温热能平板式结构紧凑,拆洗方便,通道较小、易堵,要求流体干净板壳式板束类似于管束,可抽出清洗检修,压力不能太高混合式适用于允许换热流体之间直接接触蓄热式换热过程分阶段交替进行,适用于从高温炉气中回收热能的场合完善的换热器在设计或选型时应满足以下各项基本要求。

化工原理课程设计——换热器的设计

化工原理课程设计——换热器的设计

化工原理课程设计——换热器的设计1000字
该课程设计的目标是设计一个换热器,用于从一种热流体中传递热量到另一种热流体。

设计过程中需要考虑到热传递的效率和换热器的成本。

设计要求:
1.设定两种热流体的流量和进出口温度。

2.根据流量和温差计算出所需的传热量。

3.选择一种合适的换热器类型并计算出尺寸和效率。

4.根据选择的换热器类型确定换热管的材料,并计算出所需的管道长度。

5.确定换热器外壳材料和绝缘材料,并计算出所需的壁厚度。

在设计过程中,需要进行以下计算:
1.计算热传递量:
热传递量 = 流量 x 热容 x 温差
流量:两种热流体的流量
热容:热流体的比热容
温差:两种热流体的进出口温度差
2.选择换热器类型:
常见的换热器类型包括:管式热交换器、板式热交换器和壳管式热交换器。

在选择时需要考虑到传热效率、材料成本以及维护难度等因素。

3.计算换热管尺寸:
换热管的长度和直径需要根据流量和传热效率来计算,同时需要考虑到管壁的热传递系数和管壁的厚度。

4.确定换热器外壳材料和绝缘材料:
外壳的材料需要考虑到其耐腐蚀性和强度,同时需要计算出所需的壁厚度。

绝缘材料需要选用热传导系数较小的材料,以提高传热效率。

5.总体设计方案:
根据上述计算和选择,得到符合要求的换热器总体设计方案,并进行设计图纸和工艺流程图的绘制。

结论:
在设计过程中,需要考虑到换热器的热传递效率、成本、材料选用和维护难度等因素,从而得出符合要求的总体设计方案。

化工原理课程设计1列管式换热器[1]

化工原理课程设计1列管式换热器[1]

化⼯原理课程设计1列管式换热器[1]化⼯原理课程设计任务书材化学院专业班学⽣姓名学号:设计题⽬:列管式换热器设计设计时间:200 年⽉⽇——200 年⽉⽇指导⽼师:吴世彪设计任务:某炼油⼚⽤柴油将原油预热。

柴油和原油的有关参数如下表, 两侧的污垢热阻均可取1.72×10-4m2·K/W,换热器热损失忽略不计,管程的绝对粗糙度ε=0.1mm,要求两侧的阻⼒损失均不5设计内容:(1) 设计⽅案的确定及流程说明(2) 换热⾯积的估算(3) 管⼦尺⼨及数⽬计算(4) 管⼦在管板上的排列(5) 壳体内径的确定(6) 附件设计(选型)(7) 换热器校核(包括换热⾯积、压⼒降等)(8) 设计结果概要或设计⼀览表(9) 对本设计的评述或有关问题的分析讨论(10)参考⽂献图纸要求:1、换热器化⼯设备图(1#图纸)安徽建筑⼯业学院材化学院化⼯系⽬录第⼀章⽂献综述 ···················································································································第⼀节概述··················································································································⼀、换热器的概念⼆、换热器的分类三、列管式换热器的标准简介四、列管式换热器选型的⼯艺计算步骤第⼆节换热器设备应满⾜的基本要求········································································⼀、合理的实现所规定的⼯艺条件⼆、安全可靠性三、安装、操作及维护⽅便四、经济合理第三节列管式换热器结构及基本参数········································································⼀、管束及壳程分程⼆、传热管三、管的排列及管⼼距四、折流板和⽀撑板五、旁路挡板和防冲挡板六、其他主要附件七、列管式换热器结构基本参数第四节设计计算的参数选择·······················································································⼀、冷却剂和加热剂的选择⼆、冷热流体通道的选择三、流速的选择四、流向的选择第⼆章列管式换热器的设计计算·························································································第⼀节换热⾯积的估算································································································⼀、计算热负荷⼆、估算传热⾯积第⼆节换热器及主要附件的试选 ·················································································⼀、试选管型号⼆、换热器结构⼀些基本参数的选择第三节换热器校核 ········································································································⼀、核算总传热系数⼆、核算压强降第四节设计结果⼀览表 ································································································第五节设计总结及感想································································································⼀、设计总结⼆、感想参考⽂献 ···························································································································第⼀章⽂献综述(略)第⼆章列管式换热器的设计计算第⼀节换热⾯积的估算⼀、计算热负荷(不考虑热损失)由于设计条件所给为⽆相变过程。

化工原理课程设计计算公式

化工原理课程设计计算公式

化工原2 设计计算2.1确定设计方案2.1.1选择换热器的类型两流体温度变化情况:热流体进口温度80o C,出口温度45o C;冷流体(循环水)进口温度20o C,出口温度40o C。

该换热器用循一因数,估计该换热器的管壁温和壳体壁温之差较大,因此初步确定选用带膨胀节的固定管板式换热器。

2.1.2流动空间及流速确定由于循环冷却水交易结垢,为便于水垢清洗,应使用循环水走管程,油品走壳程。

选用Ф25×2.5的碳钢管每根管长L m6选管长管程Np0.956881设定管程数传热管总根数N9696设定管数2.5.3平均传热温差校正及壳程数P0.170R4温度差校正系数ΨΔt0.930单壳程二管程平均传热温差△t m ℃15.222.5.4传热管排列和分程方法管心距t=1.25d o mm31.25320.032横过管束中心线的管数n c10.78112.5.5壳体内径壳体内径D mm362.894000.42.5.6折流板切去的圆缺高度h mm100250折流板间距B=0.3D mm 1201500.15折流挡板数N B392.5.7接管接管内油品流速 m/s 1.5壳程流体进出口接管内径 m0.08取标准管径 mm150159-2*4.5接管内循环水流速 m/s 1.6管程流体进出口接管内径 m0.10取标准管径 mm207219-2*6传热类项△t 1 ℃△t 2 ℃△t m ' ℃顺流30513.95逆流251016.373 换热器核算3.1热量核算3.2压强降核算(1)管程对流传热系数(1)管程压强降管程流体截面积S i m 20.0301管程结垢后校正因数Ft 1.4管程流体流速υi m/s 0.428管程数Np 1管程流体雷诺数Re i 8954.1串联的壳程数Ns1设定Ns普兰特准数Pr6.60管程流通面积A i m 20.030a i W/(m 2•℃)2144.2管程流体流速υi m/s 0.428(2)壳程对流传热系数Re i8954.1壳程流通截面积S o m 20.01313管壁绝对粗糙度ε mm 0.1化工原理第二版夏清版壳程流体流速υo m/s 0.591管壁相对粗糙度ε/d i0.005当量直径d e m 0.0200查莫狄图得管壁摩擦系数λ0.037壳程流体雷诺数Re o 33403.4△P 1 Pa 1014.9普兰特准数Pr4.09△P 2 Pa 274.3a o W/(m 2•℃)1584.0∑△P i Pa 1804.935000(3)总传热系数K (2)壳程压强降K W/(m 2•℃)477.81壳程结垢后校正因数Fs 1.15(4)传热面积S 管子正三角形排列F0.5#DIV/0!传热面积S m 237.00横过管束中心线的管子数n c 11实际传热面积S p m 244.46折流挡板间距B m 0.15面积裕度H1.202折流挡板数N B391合格壳体内径D m 0.41壳程流通面积A o m 20.019按流通截面积A o 计算流速υo m/s 0.4140Re o29227.9壳程流体摩擦系数f o0.48△P 1' Pa 6943.8△P 2' Pa 7060.0∑△P o Pa16104.435000假实际情5×2.5的碳钢管4 换热器主要结构尺寸和计算结果换热器型式固定管板式化工原理课程设计查进口温度20o C ,出口温度40o C 。

化工原理课程设计列管式换热器

化工原理课程设计列管式换热器
缺陷: 1)在管子旳U型处易冲蚀,应控制管内流速; 2)管程不合用于结垢较重旳场合;
可用旳场合:
1)管程走清洁流体;
2)管程压力尤其高;
3)管壳程金属温差很大,固定管板换热器连设置膨胀节都无法 满足要求旳场合.
2、流动空间旳选择
3、流速旳拟定
4、流动方式旳选择
除逆流和并流之外,在列管式换热器中冷、 热流体还能够作多种多管程多壳程旳复杂 流动。当流量一定时,管程或壳程越多, 表面传热系数越大,对传热过程越有利。 但是,采用多管程或多壳程必造成流体阻 力损失,即输送流体旳动力费用增长。所 以,在决定换热器旳程数时,需权衡传热 和流体输送两方面旳损失。
5、流体出口温度旳拟定
若换热器中冷、热流体旳温度都由工艺条件所要求,则不存在 拟定流体两端温度旳问题。若其中一流体仅已知进口温度,则 出口温度应由设计者来拟定。例如用冷水冷却一热流体,冷水 旳进口温度可根据本地旳气温条件作出估计,而其出口温度则 可根据经济核实来拟定:为了节省冷水量,可使出口温度提升 某些,但是传热面积就需要增长;为了减小传热面积,则需要 增长冷水量。两者是相互矛盾旳。一般来说,水源丰富旳地域 选用较小旳温差,缺水地域选用较大旳温差。但是,工业冷却 用水旳出口温度一般不宜高于45℃,因为工业用水中所含旳部 分盐类(如CaCO3、CaSO4、 MgCO3和MgSO4等)旳溶解度 随温度升高而减小,如出口温度过高,盐类析出,将形成传热 性能很差旳污垢,而使传热过程恶化。假如是用加热介质加热 冷流体,可按一样旳原则选择加热介质旳出口温度。
取管长应根据出厂旳钢管长度合理截用。 我国生产系列原则中管长有1.5m,2m, 3m,4.5m,6m和9m六种,其中以3m和 6m更为普遍。同步,管子旳长度又应与管 径相适应,一般管长与管径之比,即L/D约 为4~6

化工原理精馏塔、换热器的设计计算

化工原理精馏塔、换热器的设计计算

浮阀塔设计说明书第一章引言第二章蒸馏塔的物料衡算第三章蒸馏塔的塔板数的确定第四章精馏塔的工艺条件及有关物性数据的计算第五章精馏塔的塔体工艺尺寸计算第六章精馏塔的塔板工艺尺寸计算第七章换热器的计算第一章引言蒸馏塔是稀有金属钛等材料及其合金材料制造的化工设备具有强度高、韧性大、耐高温、耐腐蚀、比重轻等特性;因此被广泛应用与化工、石油化工、冶金、轻工、纺织、制碱、制药、农药、电镀、电子等领域。

蒸馏的基本原理是将液体混合物部分气化,利用其中各组份挥发度不同(相对挥发度,α)的特性,实现分离目的的单元操作。

蒸馏按照其操作方法可分为:简单蒸馏、闪蒸、精馏和特殊精馏等。

本次课程设计以两组分的混合物系为研究对象,在分析简单蒸馏的基础上,通过比较和引申,讲解精馏的操作原理及其实现的方法。

第二章精馏塔的物料衡算2.1.原料液及塔顶、塔底产品的摩尔分率笨的摩尔质量M A = 78.11 kg/kmol甲苯的摩尔质量M B = 92.13 kg/kmolX F= 0.561X d = 0.992X W =0.0122.2原料液及塔顶、塔底产品的平均摩尔分率M F = 0.59 ⨯78.11+(1-0.59)⨯92.13 = 84.26 kg/kmolM D = 0.986 ⨯78.11+(1-0.986) ⨯92.13 = 78.22 kg/kmoM W = 0.012 ⨯78.11+(1-0.012) ⨯92.13 = 91.96kg/kmol2.3物料衡算原料处理量F= 9160 ÷84.26 =211.29 kg/kmol总物料衡算211.29= D + W笨物料衡算211.29 ⨯0.561 = 0.992⨯118.37+0.012W联立解得D=118.37 kg/kmolW=92.92 kg/kmol第三章塔板数的确定3.1理论板层数N T的求取笨-氯苯属理想物系。

可采用图解法求理论板层数。

3.1.1由手册查得笨-氯苯物系的气液平衡数据,绘制x-y 图3.1.2求最小回流比及操作回流比。

化工原理课程设计 换热器的设计

化工原理课程设计 换热器的设计

摘要换热器的应用贯彻化工生产过程的始终,换热器换热效果的好坏直接影响化工生产的质量和生产效益。

所以换热器是非常重要的化工生产设备,在化工领域中,它扮演着主力军的身份,它是实现化工生产过程中热量交换和传递不可缺少的设备,在化工设备中占大约50%以上的比重。

既然换热器在化工生产中扮演如此重要的角色,那么如何设计出换热效果好,设备健全合理,三废排放量更低,能源利用率更高,经济效益高的换热器是我们从事化工行业工作人员刻不容缓的职责。

为了完成年产 2.8万吨酒精的生产任务,设计换热器的总体思路:在正常的生产过程中,利用塔底的釜残液作为加热介质在塔底冷却器中进行第一次预热,然后用少量的水蒸汽便可在预热器中使原料液达到预期的温度进入精馏塔中。

塔顶酒精蒸汽经过全凝器,利用循环冷却水作为冷却介质使酒精蒸汽转为液体。

最后,在塔顶冷却器中再次用冷却水使其降到25。

C输送到储装罐中。

关键词:冷却器;再沸器;全凝器;对流传热系数;压降;列管式换热器;离心泵。

目录第一章换热器的设计..............................................1.1概述 .............................................................1.1.1流程方案的确定..............................................1.1.2 加热介质、冷却介质的选择 ...................................1.1.3 换热器类型的选择 ...........................................1.1.4 流体流动空间的选择 .........................................1.1.5 流体流速的确定 .............................................1.1.6换热器材质的选择............................................1.1.7换热器壁厚的确定............................................1.2.固定管板式换热器的结构...........................................1.2.1管程结构....................................................1.2.2壳程结构....................................................1.3 列管换热器的设计计算.............................................1.3.1 换热器的设计步骤 ...........................................1.3.2 计算所涉及的主要公式 ....................................... 第二章设计的工艺计算 ............................................2.1 全塔物料恒算.....................................................2.2 原料预热器的设计和计算...........................................2.2.1 确定设计方案 ...............................................2.2.2 根据定性温度确定物性参数 ...................................2.2.3换热器的选择................................................2.3塔顶全凝器的设计和计算 ...........................................2.3.1确定设计方案................................................2.3.2 根据定性温度确定物性参数 ...................................2.2.3 换热器的选择 ...............................................2.4 塔顶冷却器的设计.................................................2.4.1 确定设计方案 ...............................................2.4.2 根据定性温度确定物性参数 ...................................2.4.3 换热器的选择 ...............................................2.5 塔底冷却器的设计.................................................2.5.1 确定设计方案 ...............................................2.5.2 根据定性温度确定物性参数 ...................................2.5.3 换热器的选择 ...............................................2.6 再沸器的设计.....................................................2.6.1 确定设计方案 ...............................................2.6.2 根据定性温度确定物性参数 ...................................2.6.3再沸器的工艺计算............................................ 第三章附录 .....................................................................................................................................符号说明............................................................. 第四章设计感想..................................................................................................................... 参考文献............................................................第一章换热器的设计1.1概述工业生产过程,两种物料之间的热交换一般是通过热交换器完成的,所以换热器的设计就显的尤为重要。

化工原理设计换热器设计计算

化工原理设计换热器设计计算

化⼯原理设计换热器设计计算化⼯单元操作与单元设备设计任务书任务书之⼗⼀拟采⽤常压筛板(浮阀)塔分离苯-甲苯混合液。

已知原料流量为4000kg/h,原料含苯组成30%(摩尔百分数,下同),精馏分离使塔顶产品苯含量不低于97%,塔底产品甲苯含量不低于98%;沸点进料,沸点回流,操作回流⽐可取2.0;要求产品进⼊贮罐的温度不低于50℃,原料贮罐贮料、产品贮罐要满⾜⼋⼩时⽣产任务。

设计任务:1.画出流程⽅框图和带控制点⼯艺流程图2.做分离全过程做物料衡算与热量衡算3. 做换热器设计与精馏塔设计(1)换热器设计——塔底产品冷却器设计上述精馏⽣产过程中,需要将塔底产品从80℃冷却⾄45℃,要求换热器的管程和壳程压降不⼤于10kpa,试选⽤合适的换热器。

(2)精馏塔(筛板或浮阀)设计完成上述分离任务所需的精馏塔相关设计。

原始数据:精馏塔塔顶压强:4 kpa(表压),单板压降不超过0.7kPa,冷却循环⽔温度:25℃,饱和⽔蒸汽压⼒:0.25Mpa(表压),设备型式:筛板(浮阀)塔,建⼚地区压⼒:1atm组长:叶敏萍060组员:张光华030 贾国柱011 薛进军059 陈科云006 邢祥龙057【设计⽅案】【⼀】、选择换热器的类型(1)、两流体的温度变化情况:热流体进⼝的温度80℃出⼝的温度45℃冷流体的进⼝温度25℃出⼝温度35℃(注)、该换热器⽤凉⽔塔⽔冷却,初步确定选⽤带有膨胀节的固定板式换热器。

(2)、流动空间及流速的确定:由于利⽤凉⽔塔⽔冷却,⽽易结垢,为⽅便清洗,应使⽔⾛管程,甲苯⾛壳程。

选⽤φ25㎜*2.5㎜的碳钢管,管内流速为Ui=0.5m/s 。

【⼆】、确定物性参数(1)、平均温度差(2)、定性温度T=﹙T1+T2﹚/2=﹙80+45﹚÷2=62.5℃ ; t=﹙t1+t2﹚/2=﹙35+25﹚÷2=30℃平均温差Δt1=﹙80-35)=45℃ ;Δt2=﹙45-25﹚=20℃ Δt1/Δt2=45/20=2.25 Δt1/Δt2>2 Δt ′m=﹙Δt1-Δt2﹚/㏑﹙Δt1÷Δt2﹚=(45—20) ÷ln(45÷20)=30.83℃有关的物性参数数据如下:【三】、计算产品物料的总传热系数1、精馏塔的产品物料衡算:①、苯:M苯=78.11kg/kmol ;M甲苯=92.13kg/kmol产品摩尔百分数: X F=0.3 ;X D=0.97 ;X W=0.02②、原料液及精馏塔顶、塔底的产品的平均摩尔质量:M F=X F*M甲+(1-X F)* M甲苯=0.3×78.11+﹙1-0.3﹚×92.13=87.924㎏/kmol M D=X D*M甲+(1-X D)* M甲苯=0.97×78.11+﹙1-0.97﹚×92.13=78.53㎏/kmol M W=X W*M甲+(1-X W)* M甲苯=0.02×78.11+﹙1-0.02﹚×92.13=91.85㎏/kmol 2、物料衡算:原料处理量:F= q/M F=4000kg/h÷87.924kg/kmol≈45.49kmol/h总物料衡算:F= D + W ①苯物料衡算: F*X F=D* X D + W *X W ②联⽴①、②式得:X D =13.14kmol/hX W =32.08kmol/h甲苯流量转换:q甲苯=W*MW= 32.08kmol/h ×91.85kg/kmol =2947.00kg/h3、热流量:Q=q甲苯*Cp*﹙T1-T2﹚= q⽔*Cp*﹙t1+t2﹚Q=q甲苯*Cp*﹙T1-T2﹚=2947.00kg/h ×1.843kJ/kg.℃×(80-45)℃=190096.24kJ/h 则热流量为:Q=190096.24kJ/h ÷3600s =52.805 [kw] 4、冷却⽔⽤⽔量:q⽔ =Q/Cp*﹙t2-t1﹚=190096.24kJ/h÷4.171kJ/kg.℃÷(35-25)℃=4554.34kg/h5、总传热系数K :①、管程传热系数:(注:⽔在管程⾥流动,流体流速设为U i=0.5m/s)Re=di*ui*ρi/µi=0.02×0.5×995.7÷0.0008012 =12427.61Pr= Cp*µ/λ =4.171×10^3×0.0008012÷0.6171 =5.42ai=0.023*λi/di* Re^0.8*pr^0.4ai=0.023×0.6171÷0.02×12427.61^0.8×5.42^0.4 =2631.26则ai=2631.26②、壳程传热系数:假设壳程系数:ao=400w/(㎡.℃﹚则有化⼯⼿册查得甲苯及其⽔在该条件下的污垢热阻:冷却⽔的污垢热阻:Ri=0.000344㎡.℃/w甲苯的污垢热阻:Ro=0.000172㎡.℃/w选⽤的换热管的管壁厚度为b=0.0025 (m) ,则可选⽤的管壁导热系数λ=45w/m.℃6、总传热系数:K=1/[﹙do/ai*di﹚+﹙0.000344*do/di﹚+﹙b*di/λ*do﹚+0.000172+﹙1/ao﹚]K=1÷[(0.025÷2631.26÷0.02)+(0.000344×0.025÷0.02)+(0.0025×0.025÷0.02÷45)+0.000172+(1÷400)]K=274.35 w/㎡.℃【四】、计算换热器换热⾯积:S′=Q/K*Δt′m =52.805×10^3÷274.35÷30.83 =6.24﹙㎡﹚在设计时考虑的15%的⾯积裕度,则S=1.15×6.24=7.18﹙㎡﹚【五】、⼯艺结构尺⼨1、管径和管内流速:[ 管程内⾛⽔]选⽤φ25㎜×2.5㎜的碳钢传热管,取管内流体流速为Ui=0.5m/s 。

化工原理课程设计__换热器.

化工原理课程设计__换热器.

目录一、设计任务 (1)一、设计任务1.空气压缩机后冷却器设计操作参数;(1)空气处理量: 14m3/min;操作压强:1.45MPa(绝对压)。

空气进口温度160℃,终温:50℃(2)冷却剂:常温下的水初温:25°;终温:30℃;温升(3)冷却器压降:压降2.设计项目(1)确定设计方案,确定冷却器型式,流体流向和流速选择,冷却器的安装方式等。

(2)工艺设计:冷却器的工艺设计和强度计算,确定冷却剂用量,传热系数,传热面积,换人管长,管数,管间距,校对压力等。

(3)结构设计:管子在管板上的固定方式,管程分布和管子排列,分程隔板的连接,管板和壳体的连接,折流挡板等。

(4)机械设计:确定壳体,管板壁的厚度尺寸,选择冷却器的封头、法兰、接管法兰、支座等。

(5)附属设备选型3.设计分量(1)设计说明书一份;(2)冷却器装配图;(3)冷却器工艺流程图;(4冷却器的强度及支座等的估算一、设计任务书二、确定设计方案2.1 选择换热器的类型本设计中空气压缩机的后冷却器选用带有折流挡板的固定管板式换热器,这种换热器适用于下列情况:①温差不大;②温差较大但是壳程压力较小;③壳程不易结构或能化学清洗。

本次设计条件满足第②种情况。

另外,固定管板式换热器具有单位体积传热面积大,结构紧凑、坚固,传热效果好,而且能用多种材料制造,适用性较强,操作弹性大,结构简单,造价低廉,且适用于高温、高压的大型装置中。

采用折流挡板,可使作为冷却剂的水容易形成湍流,可以提高对流表面传热系数,提高传热效率。

本设计中的固定管板式换热器采用的材料为钢管(20R钢)。

2.2 流动方向及流速的确定本冷却器的管程走压缩后的热空气,壳程走冷却水。

热空气和冷却水逆向流动换热。

根据的原则有:(1)因为热空气的操作压力达到1.1Mpa,而冷却水的操作压力取0.3Mpa,如果热空气走管内可以避免壳体受压,可节省壳程金属消耗量;(2)对于刚性结构的换热器,若两流体的的温度差较大,对流传热系数较大者宜走管间,因壁面温度与对流表面传热系数大的流体温度相近,可以减少热应力,防止把管子压弯或把管子从管板处拉脱。

化工原理课程设计换热器设计

化工原理课程设计换热器设计

化工原理课程设计设计任务:换热器班级:13级化学工程与工艺(3)班姓名:魏苗苗学号:1320103090目录化工原理课程设计任务书 (2)设计概述 (3)试算并初选换热器规格 (6)1。

流体流动途径的确定 (6)2. 物性参数及其选型 (6)3。

计算热负荷及冷却水流量 (7)4. 计算两流体的平均温度差 (7)5。

初选换热器的规格 (7)工艺计算 (10)1. 核算总传热系数 (10)2. 核算压强降 (13)设计结果一览表 (16)经验公式 (16)设备及工艺流程图 (17)设计评述 (17)参考文献 (18)化工原理课程设计任务书一、设计题目:设计一台换热器二、操作条件: 1、苯:入口温度80℃,出口温度40℃。

2、冷却介质:循环水,入口温度32。

5℃。

3、允许压强降:不大于50kPa 。

4、每年按300天计,每天24小时连续运行。

三、设备型式: 管壳式换热器四、处理能力: 109000吨/年苯五、设计要求:1、选定管壳式换热器的种类和工艺流程。

2、管壳式换热器的工艺计算和主要的工艺尺寸的设计.3、设计结果概要或设计结果一览表.4、设备简图。

(要求按比例画出主要结构及尺寸)5、对本设计的评述及有关问题的讨论。

六、附表:1。

设计概述 1。

1热量传递 出口温度 40。

5℃壳体内部空间利用率 70%选定管程流速u (m/s ) 1壳程流体进出口接管流体流速u1(m/s ) 1的概念与意义1。

1。

1热量传递的概念热量传递是指由于温度差引起的能量转移,简称传热.由热力学第二定律可知,在自然界中凡是有温差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。

1.1.2化学工业与热传递的关系化学工业与传热的关系密切.这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量;又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工单元操作与单元设备设计任务书任务书之十一拟采用常压筛板(浮阀)塔分离苯-甲苯混合液。

已知原料流量为4000kg/h,原料含苯组成30%(摩尔百分数,下同),精馏分离使塔顶产品苯含量不低于97%,塔底产品甲苯含量不低于98%;沸点进料,沸点回流,操作回流比可取2.0;要求产品进入贮罐的温度不低于50℃,原料贮罐贮料、产品贮罐要满足八小时生产任务。

设计任务:• 1.画出流程方框图和带控制点工艺流程图• 2.做分离全过程做物料衡算与热量衡算• 3. 做换热器设计与精馏塔设计(1)换热器设计——塔底产品冷却器设计上述精馏生产过程中,需要将塔底产品从80℃冷却至45℃,要求换热器的管程和壳程压降不大于10kpa,试选用合适的换热器。

(2)精馏塔(筛板或浮阀)设计完成上述分离任务所需的精馏塔相关设计。

原始数据:精馏塔塔顶压强:4 kpa(表压),单板压降不超过0.7kPa,冷却循环水温度:25℃,饱和水蒸汽压力:0.25Mpa(表压),设备型式:筛板(浮阀)塔,建厂地区压力:1atm组长:叶敏萍060组员:张光华030 贾国柱011 薛进军059 陈科云006 邢祥龙057【设计方案】【一】、选择换热器的类型 (1)、两流体的温度变化情况: 热流体进口的温度80℃ 出口的温度45℃ 冷流体的进口温度25℃ 出口温度35℃(注)、该换热器用凉水塔水冷却,初步确定选用带有膨胀节的固定板式换热器。

(2)、流动空间及流速的确定:由于利用凉水塔水冷却,而易结垢,为方便清洗,应使水走管程,甲苯走壳程。

选用φ25㎜*2.5㎜的碳钢管,管内流速为Ui=0.5m/s 。

【二】、确定物性参数(1)、平均温度差(2)、定性温度T=﹙T1+T2﹚/2=﹙80+45﹚÷2=62.5℃ ; t=﹙t1+t2﹚/2=﹙35+25﹚÷2=30℃ 平均温差Δt1=﹙80-35)=45℃ ;Δt2=﹙45-25﹚=20℃ Δt1/Δt2=45/20=2.25 Δt1/Δt2>2Δt ´m=﹙Δt1-Δt2﹚/㏑﹙Δt1÷Δt2﹚ =(45—20) ÷ln(45÷20)=30.83℃有关的物性参数数据如下:【三】、计算产品物料的总传热系数1、精馏塔的产品物料衡算:①、苯:M苯=78.11kg/kmol ;M甲苯=92.13kg/kmol产品摩尔百分数: X F=0.3 ;X D=0.97 ;X W=0.02②、原料液及精馏塔顶、塔底的产品的平均摩尔质量:M F=X F*M甲+(1-X F)* M甲苯=0.3×78.11+﹙1-0.3﹚×92.13=87.924㎏/kmol M D=X D*M甲+(1-X D)* M甲苯=0.97×78.11+﹙1-0.97﹚×92.13=78.53㎏/kmol M W=X W*M甲+(1-X W)* M甲苯=0.02×78.11+﹙1-0.02﹚×92.13=91.85㎏/kmol2、物料衡算:原料处理量:F= q/M F=4000kg/h÷87.924kg/kmol≈45.49kmol/h总物料衡算:F= D + W ①苯物料衡算: F*X F=D* X D + W *X W ②联立①、②式得:X D =13.14kmol/hX W =32.08kmol/h甲苯流量转换:q甲苯=W*MW= 32.08kmol/h ×91.85kg/kmol =2947.00kg/h3、热流量:Q=q甲苯*Cp*﹙T1-T2﹚= q水*Cp*﹙t1+t2﹚Q=q甲苯*Cp*﹙T1-T2﹚=2947.00kg/h ×1.843kJ/kg.℃×(80-45)℃=190096.24kJ/h 则热流量为:Q=190096.24kJ/h ÷3600s =52.805 [kw] 4、冷却水用水量:q水 =Q/Cp*﹙t2-t1﹚=190096.24kJ/h÷4.171kJ/kg.℃÷(35-25)℃=4554.34kg/h5、总传热系数K :①、管程传热系数:(注:水在管程里流动,流体流速设为U i=0.5m/s)Re=di*ui*ρi/μi=0.02×0.5×995.7÷0.0008012 =12427.61Pr= Cp*μ/λ =4.171×10^3×0.0008012÷0.6171 =5.42ai=0.023*λi/di* Re^0.8*pr^0.4ai=0.023×0.6171÷0.02×12427.61^0.8×5.42^0.4 =2631.26则ai=2631.26②、壳程传热系数:假设壳程系数:ao=400w/(㎡.℃﹚则有化工手册查得甲苯及其水在该条件下的污垢热阻:冷却水的污垢热阻:Ri=0.000344㎡.℃/w甲苯的污垢热阻:Ro=0.000172㎡.℃/w选用的换热管的管壁厚度为b=0.0025 (m) ,则可选用的管壁导热系数λ=45w/m.℃6、总传热系数:K=1/[﹙do/ai*di﹚+﹙0.000344*do/di﹚+﹙b*di/λ*do﹚+0.000172+﹙1/ao﹚]K=1÷[(0.025÷2631.26÷0.02)+(0.000344×0.025÷0.02)+(0.0025×0.025÷0.02÷45)+0.000172+(1÷400)]K=274.35 w/㎡.℃【四】、计算换热器换热面积:S′=Q/K*Δt´m =52.805×10^3÷274.35÷30.83 =6.24﹙㎡﹚在设计时考虑的15%的面积裕度,则S=1.15×6.24=7.18﹙㎡﹚【五】、工艺结构尺寸1、管径和管内流速:[ 管程内走水]选用φ25㎜×2.5㎜的碳钢传热管,取管内流体流速为Ui=0.5m/s 。

2、管程数和传热管数依据传热管内径和流速确定单程传热管数ns=v/﹙π/4*di^2*ui﹚=4554.34÷3600÷995.7÷0.785÷0.02^2÷0.5=8.09 则ns≈9﹙根﹚按单管程计算,所需的传热管长度为L=S/π*do*ns =7.18÷3.14÷0.025÷9 =10.16﹙m﹚按单管程计算,所需的传热管过长,宜采用多管程结构,现取传热管的长度为标准长度ι=3.0(m﹚,则该换热器管程数为Np= L/ι=10.16÷3.0 =3.39≈4﹙管程﹚3、若采用4管程,每根传热管管长度ι=3﹙m﹚。

据此,由换热器系列标准,选定固定管板式换热器,换热管型号为φ25㎜×2.5㎜,有关参数如下表。

4、平均传热温差校正及壳程数平均传热温差校正系数:P=﹙t2-t1﹚/﹙T1-t1﹚=﹙35-25﹚÷﹙80-25﹚=0.182R=﹙T1-T2﹚÷﹙t2-t1﹚=﹙80-45﹚÷﹙35-25﹚=3.5按单壳程,四管程结构,温差校正系数查表得ψ△t =0.9 。

则平均传热温差:△t m =ψ△t *△t´m =30.83×0.9 =27.75 ℃5、传热管排列方法每程内均采用正三角形排列,取管心距为Pt=1.25*doPt=1.25×0.025=31.25≈32﹙mm﹚横过管束中心线的管数:nc=9﹙根﹚6、壳体内径采用多管程结构,取管板利用率η=0.7 ;壳体内径D=325﹙mm﹚。

7、折流板数采用弓形折流板,取弓形折流板圆缺高度为壳体的25%,则切去的圆缺高度为h=0.25×325 =81.25 ﹙mm﹚则取h= 80 ﹙mm﹚取折流板间距为B=0.3D ﹙0.2D<B<D﹚则B=0.3D = 0.3×325 = 97.5 ≈100﹙mm﹚折流板数NB=﹙L/B﹚-1 =﹙3000÷100﹚-1 = 29﹙块﹚折流板圆缺面水平装配。

8、接管①、壳程的流体进出口接管:取接管内甲苯的流速为uo=1.0m/s,则接管内径为d=(4*v/π*uo)^0.5 =(4×2947÷3600÷825÷3.14÷1.0)=0.03556(m)则取d=40 (mm)②、管程的流体进出口接管:取接管内水的流速为uo=1.5m/s,则接管内径为d=(4*v/π*uo)^0.5 =(4×4554.34÷3600÷995.7÷3.14÷1.5)=0.0328(m) 则取d=35(mm)【六】、换热器核算:1、热量核算:①、壳程对流传热系数,对圆缺形折流板,可采用克恩公式ai=0.36*λo/do* Reo^0.55*pr^0.33*(μo/μw)^0.14当量直径,由正三角形排列得de={4*[(3^0.5/2)*pt^2-(π/4)*do^2]}de={4×[(3^0.5÷2)×0.032^2-(3.14÷4)×0.025^2]} =0.02 (m)壳程流通截面积:So=B*D*(1-do/pt)So=0.1×0.325×(1-0.025÷0.032) =0.0071 (㎡)则So=0.0071 (㎡)壳程流体流速及其雷洛数分别为壳程流体流速uo=V甲苯/So=2947÷3600÷825÷0.0071 =0.14 (m/s)雷洛数Reo=de*uo*ρo/μo=0.02×0.14×825÷0.000422=5473.93普兰特准数Pr= Cp*μ/λ=1.843×10^3×0.000422÷0.1276=6.095液体粘度校正系数(μo/μw)^0.14≈1.05ao=0.36×0.1276÷0.02×5473.93^0.55×6.095^0.33×1.05 =498.22则ao=498.22②、管程对流传热系数ai=0.023*λi/di* Re^0.8*pr^0.4管程流通截面积Si=(π/4)*di^2*Np/NSi=3.14÷4×0.02^2×29÷4 =0.0023 (㎡)Si=0.0023(㎡)程流体流速ui=V水/Si=4554.34÷3600÷995.7÷0.0023=0.552 (m/s)ui=0.552 (m/s)雷洛数Re=di*ui*ρi/μi=0.02×0.552×995.7÷0.0008012 =13720.08Pr= Cp*μ/λ=4.171×10^3×0.0008012÷0.6171 =5.42ai=0.023*λi/di* Re^0.8*pr^0.4ai=0.023×0.6171÷0.02×13720.08^0.8×5.42^0.4 =2809.77则ai=2809.77③、传热系数KK=1/[﹙ao/ai*di﹚+﹙0.000344*do/di﹚+﹙b*di/λ*dm﹚+0.000172+﹙1/ao﹚]K=1÷[(0.025÷2809.77÷0.02)+(0.000344×0.025÷0.02)+(0.0025×0.025÷0.0225÷45)+0 .000172+(1÷498.22)]K=320.95 w/㎡.℃④、传热面积S=Q/K*Δtm =52.805×10^3÷320.95÷27.75 =5.93﹙㎡﹚该换热器的实际传热面积SpSp=π*do*L(N-nc)Sp=3.14×0.025×3.0×(40-9)=7.30﹙㎡﹚该换热器的面积裕度为H=(Sp-S)/S*100%H=(7.3-5.93)÷5.93×100%=23.10%H=23.10%2、换热器内流体的流动阻力①、管程流动阻力∑△Pi=(△P1+ △P2 )*Ft*Ns*NpNs = 1 Np =4 Ft =1.4 ι=3.0m△P1=(λi*ι/d)*(ρ*ui^2/2)△P2=ζ*(ρ*ui^2/2)由Re=10066.36,传热管相对粗糙度ε/d=0.005,查莫狄图得λi=0.035 w/m. ℃;流速ui=0.552 (m/s) ; ρi=995.7kg/m3 所以△P1=(λi*ι/d)*(ρ*ui^2/2)△P1=0.035×3.0÷0.02×995.7×0.552^2÷2 =796.41 (pa)△P2=ζ*(ρ*ui^2/2)△P2=3×995.7×0.552^2÷2 =455.09 (pa)∑△Pi=(△P1+ △P2 )*Ft*Ns*Np∑△Pi=(796.41+455.09) ×1.4×1×4 =7008.41(pa)∑△Pi=7008.41 (pa) <10 kpa管程流动阻力在允许的范围之内。

相关文档
最新文档