南京理工大学电子电工综合实验
电工电子综合实验1--裂相电路仿真实验报告格-2
电子电工综合实验论文专题:裂相〔分相〕电路院系:自动化学院专业:电气工程及其自动化:小格子学号:指导老师:徐行健裂相(分相)电路摘要:本实验通过仿真软件Mulitinism7,研究如何将一个单相的交流分裂成多相交流电源的问题。
用如下理论依据:电容、电感元件两端的电压和电流相位差是90度,将这种元件和与之串联的电阻当作电源,这样就可以把单相交流源分裂成两相交流电源、三相电源。
同时本实验还研究了裂相后的电源接不同的负载时电压、功率的变化。
得到如下结论:1.裂相后的电源接相等负载时两端的电压和负载值成正相关关系;2.接适当的负载,裂相后的电路负载消耗的功率将远大于电源消耗的功率;3.负载为感性时,两实验得到的曲线差异较小,反之,则较大。
关键词:分相两相三相负载功率阻性容性感性引言根据电路理论可知,电容元件和电感元件最容易改变交流电的相位,又因它们不消耗能量,可用作裂相电路的裂相元件。
所谓裂相,就是将适当的电容、电感与三相对称负载相配接,使三相负载从单相电源获得三相对称电压。
而生活和工作中一般没有三相动力电源,只有单相电源,如何利用单相电源为三相负载供电,就成了值得深入研究的问题了。
正文1.实验材料与设置装备本实验是理想状态下的实验,所有数据都通过在电路专用软件Multisim 7中模拟实验测得的;所有实验器材为〔均为理想器材〕实验原理:(1). 将单相电源分裂成两相电源的电路结构设计把电源U1分裂成U1和U2输出电压,如下列图所示为RC桥式分相电压原理,可以把输入电压分成两个有效值相等,相位相差90度的两个电压源。
上图中输出电压U1和U2与US之比为Us U 1=2)11(11C wR + Us U 2=2)221(11C wR +对输入电压Us 而言,输出电压U1和U2与其的相位为: Φ1=-tg (wR1C1) Φ2=tg (221C wR )或 ctg φ2=wR2C2=-tg(φ2+90°) 假设 R1C1=R2C2=RC 必有 φ1-φ2=90°一般而言,φ1和φ2与角频率w 无关,但为使U1与U2数值相等,可令wR1C1=wR2C2=1则在确定R,C 数值时,可先确定C=10µF ,则根据上式可确定R=318.31Ω。
南京理工大学EDA1实验报告(模电部分)
南京理工大学EDA课程设计(一)实验报告专业:自动化班级:姓名:学号:指导老师:2013年10月摘要在老师的悉心指导下,通过实验学习和训练,我已经掌握基了于Multisim的电路系统设计和仿真方法。
在一周的时间内,熟悉了Multisim软件的使用,包括电路图编辑、虚拟仪器仪表的使用和掌握常见电路分析方法。
能够运用Multisim软件对模拟电路进行设计和性能分析,掌握EDA设计的基本方法和步骤。
实验一:单级放大电路的仿真及设计,设计一个分压偏置的单管电压放大电路,并进行测试与分析,主要测试最大不失真时的静态工作点以及上下限频率。
实验二:负反馈放大电路的设计与仿真,设计一个阻容耦合两级电压放大电路,给电路引入电压串联深度负反馈,,观察负反馈对电路的影响。
实验三:阶梯波发生器的设计与仿真,设计一个能产生周期性阶梯波的电路,对电路进行分段测试和调节,直至输出合适的阶梯波。
改变电路元器件参数,观察输出波形的变化,确定影响阶梯波电压范围和周期的元器件。
关键词:EDA设计及仿真multisim 放大电路反馈电路阶梯波发生器实验一:单级放大电路的仿真及设计一、实验要求1、设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz(峰值10mV) ,负载电阻5.1kΩ,电压增益大于50。
2、调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。
3、调节电路静态工作点(调节电位计),使电路输出信号不失真,并且幅度最大。
在此状态下测试:(1)电路静态工作点值;(2)三极管的输入、输出特性曲线和 、r be 、r ce值;(3)电路的输入电阻、输出电阻和电压增益;(4)电路的频率响应曲线和f L、f H值。
二、实验步骤1、设计分压偏置的单级放大电路如图1-1所示:图1-1、单级放大电路原理图2、电路饱和失真输出电压波形图调节电位器的阻值,改变静态工作点,当电阻器的阻值为0%Rw,交流电压源为10mV时,显示饱和失真的波形图如图1-2所示:图1-2、电路饱和失真输出电压波形图饱和失真时的静态工作点:Ubeq=636。
电工电子综合实验1--裂相电路仿真实验报告格-2
电工电子综合实验1--裂相电路仿真实验报告格-2电子电工综合实验论文专题:裂相(分相)电路院系:自动化学院专业:电气工程及其自动化姓名:小格子学号:指导老师:徐行健裂相(分相)电路摘要:本实验通过仿真软件Mulitinism7 ,研究如何将一个单相的交流分裂成多相交流电源的问题。
用如下理论依据:电容、电感元件两端的电压和电流相位差是90 度,将这种元件和与之串联的电阻当作电源,这样就可以把单相交流源分裂成两相交流电源、三相电源。
同时本实验还研究了裂相后的电源接不同的负载时电压、功率的变化。
得到如下结论:1.裂相后的电源接相等负载时两端的电压和负载值成正相关关系;2.接适当的负载,裂相后的电路负载消耗的功率将远大于电源消耗的功率;3.负载为感性时,两实验得到的曲线差别较小,反之,则较大。
关键词:分相两相三相负载功率阻性容性感性引言根据电路理论可知,电容元件和电感元件最容易改变交流电的相位,又因它们不消耗能量,可用裂相(分相)电路研究设计作裂相电路的裂相元件。
所谓裂相,就是将适当的电容、电感与三相对称负载相配接,使三相负载从单相电源获得三相对称电压。
而生活和工作中一般没有三相动力电源,只有单相电源,如何利用单相电源为三相负载供电,就成了值得深入研究的问题了。
正文1.实验材料与设置装备本实验是理想状态下的实验,所有数据都通过在电路专用软件Multisim 7中模拟实验测得的;所有实验器材为(均为理想器材)实验原理:(1).将单相电源分裂成两相电源的电路结构设计把电源U1分裂成U1和U2输出电压,如下图所示为RC桥式分相电压原理,可以把输入电压分成两个有效值相等,相位相差90度的两个电压源。
上图中输出电压U1和U2与US之比为对输入电压Us 而言,输出电压U1和U2 与其的相位为:①仁-tg (wR1C1) ① 2=tg (WR2C2)或 ctg $ 2=wR2C2=-tg( $ 2+90° ) 若 R1C 仁R2C2=RC 必有 $ 1-$ 2=90° —般而言,$ 1和$ 2与角频率w 无关, 但为使U1与U2数值相等,可令wR1C 仁 wR2C2=1则在确定R,C 数值时,可先确定C=10^F ,则根据上式可确定 R=318.31Q 。
电工电子实验报告-南邮课程设计
目录第一章技术指标 (2)1.1 系统功能要求 (2)1.2 系统结构要求 (2)1.3 电气指标 (2)1.4 设计条件 (2)第二章整体方案设计 (3)2.1 整体方案 (3)2.2 整体原理及方框图 (3)第三章单元电路设计 (4)3.1 频率控制电路设计 (4)3.2 计数器设计(256) (5)3.3 存储器及正弦函数表 (6)3.4 D/A(II)正弦波产生电路 (7)3.5幅度控制 (8)3.6阻抗控制 (9)3.7整体电路图 (9)3.7 整体元件清单(理论值) (9)第四章测设与调整(数据) (11)4.1 频率控制电路调测 (11)4.2 地址计数器电路调测如下: (11)4.3 存贮器电路调测(R=1千欧) (11)4.4数字幅度电路调测 (11)4.5 波形扩展 (11)4.6 整体指标测试 (12)第五章设计小结 (13)5.1电子电路课程设计的意义 (13)5.2 设计任务完成情况 (13)5.3 问题及改进 (13)5.4 心得体会 (14)附录 (16)参考文献 (16)主要芯片介绍: (16)第一章技术指标1.1 系统功能要求人们在向计算机输送数据时,计算机首先要把十进制数转换成二-十进制码,即BCD码,运算器将接受到的二-十进制码转换成二进制数后才能进行运算。
这种把十进制数转换成二进制数的过程称为“十翻二”运算。
1.2 系统结构要求十翻二运算电路的结构要求如图(1)所示,其中十进制数输入采用并行BCD 码输入,由七段译码器转换成十进制数显示,同时经由四位超前进位并行加法器组成的电路转换成二进制数,用发光二极管显示。
系统复位转换启动十进制数输入图(1)1.3 电气指标1 具有十翻二功能。
2 实现三位十进制数到二进制数的转换。
3 能自动显示十进制数及对应的二进制数。
4 具有手动清零和手动转换功能。
5 十进制数输入采用并行输入。
(选做)十进制数输入采用串行输入。
1.4 设计条件电源条件:+5V,-5V•可供选择器件如下:•型号名称及功能数量•74283 四位超前进位并行加法器 3•4511 七段译码器3••7432 2四输入端或门 1•共阴极数码管 3•74174 复位六D触发器 2•拨码开关 2•100Ω电阻13•LED 发光二极管10• 1k 排阻 2导线若干第二章 整体方案设计2.1 整体方案事先对十进制数进行BCD 码置数,把置好的数存入锁存器中,触发启动后,经由锁存器分两路转发,一路转发给由七段译码器组成的静态显示电路,显示输入的十进制数;另一路转发给由四位超前进位加法器组成的十进制转换二进制数的电路,进行二进制显示。
南理工电子电工实验2
电子电工综合实验(II)实验报告——数字计时器设计班级:11042101学号: 1104210121姓名:蒋华熔目录一、实验目的 (3)二、实验要求 (3)三、实验内容 (3)四、实验器件 (3)五、元器件引脚图及功能表 (4)六、实验原理 (10)1.秒脉冲发生电路 (11)2.计时器电路 (11)3.译码显示电路 (12)4.报时电路 (13)5.校分电路 (14)6.清零电路 (15)七、逻辑图 (16)八、引脚接线图 (16)九、实验总结 (16)参考文献 (17)一、实验目的1.掌握常见集成电路的工作原理和使用方法。
2.学会单元电路的设计方法和单元间设计组合。
二、实验要求实现从00′00″到59′59″的多功能数字计时器,并且满足规定的清零,快速校分以及报时功能的要求。
三、实验内容1.设计、安装、调试脉冲发生电路。
2.设计、安装、调试59′59″计时器电路。
3.设计、安装、调试译码显示电路。
4.设计、安装、调试任意状态清零电路。
5.设计、安装、调试快速校分电路。
6.设计、安装、调试整点报时电路(59′53″、59′55″、59′57″时发出频率为500Hz的低声;59′59″时发出频率为1KHz的高声)。
7.设计1-5项联接构成数字计时器电路四、实验器件1、集成电路:NE555 1片(多谐振荡)CD4040 1片(分频)CD4518 2片(8421BCD码十进制计数器)CD4511 4片(译码器)74LS00 3片(与非门)74LS20 1片(4输入与非门)74LS21 2片(4输入与门)74LS74 1片(D触发器)2、电阻:1KΩ1只3KΩ1只330Ω(300Ω)28只3、电容:0.047uf 1只4、共阴极双字屏显示器两块。
五.元器件引脚图及功能表1.NE555 1片(多谐振荡):(1)引脚布局图:图1 NE555引脚布局图(2)逻辑功能表:(引脚4 )2.CD4040 1片(分频):(1)引脚布局图:图2 CD4040引脚布局图(2)逻辑功能说明:CD4040是一种常用的12分频集成电路。
南理工电类综合实验报告FM调制解调的数字实现
《电类综合实验》仿真报告实验课题:FM调制解调的数字实现指导教师:刘光祖学生姓名:院系:电光学院专业:通信与信息系统实验时间:2016.05.09至2016.05.13一、实验背景1.FPGA简介FPGA(Field-Programmable Gate Array,现场可编程逻辑门阵列)是在PAL、GAL、CPLD等可编程逻辑器件的基础上进一步发展的产物,是专用集成电路领域一种半定制的集成数字芯片,其最大特点是现场可编程,既解决了全定制电路的不足,又克服了原有可编程逻辑器件门电路数有限的缺点。
FPGA的内部结构由CLB、RAM、DCM、IOB、Interconnect 等构成。
如下给出了FPGA的最典型的结构:FPGA开发的一般流程:1(a) 1(b)2.DE2-115开发板简介本实验中所用开发板为Altera公司的DE2-115。
如下为开发板的配置列表:•Altera Cyclone® IV 4CE115 FPGA 器件•Altera 串行配置芯片:EPCS64•USB Blaster 在线编程;也支持JTAG和AS可编程方式•2MB SRAM•两片64MB SDRAM•8MB Flash memory•SD卡插槽•4个按钮•18个滑动开关•18个红色LED•9个绿色LED•50M时钟源•24位音频编解码器,麦克风插孔•电视解码•RJ45 2G以太网接口•VGA连接器•含有USB_A和USB_B连接器的主从控制器•RS232收发器和9针连接器•PS/2鼠标和键盘连接器•红外接收器ControlPanel是开发板自带的一个工具软件,可以通过该软件提供的图形界面直接对FPGA上的各个外设进行操作。
通过该操作可以确认PC机与开发板的连接是否正确,开发板的硬件工作是否正常。
ControlPanel的安装过程如下:确保QUARTUS II 10.0 或以上版本能被成功安装;将开关RUN/PROG切换到RUN位置;将USB接线连接至USB驱动端口,供12V电源并打开开关;打开主机上的可执行文件DE2_115_ControlPanel.exe,controlPanel的用户界面如下:DE2_115_ControlPanel.exe一旦被启动,DE2_115_ControlPanel.sof程序流文件将会被自动加载;如果未连接,点击CONNECT,点sof文件将会重新加载到板子上;注意,控制面板将会占用一直到你关闭那个端口,除非你关闭USB端口,否则你不能使用QUARTUS II 来下载文件;控制面板现在可以使用了,通过设置一些LED灯ON/OFF的状态来观察DE2-115上的状态。
南理工电光院培养计划
目录电子工程与光电技术学院 (1)电子科学与技术 (2)真空电子技术 (7)电子信息工程 (10)光电信息工程 (13)探测制导与控制技术 (17)信息对抗技术 (21)通信工程 (25)电子工程与光电技术学院电子工程与光电技术学院(简称电光学院)是依托于现代信息技术领域两大主干学科---电子和光学,于1992年10月组建而成。
学院设有通信工程系、电子工程系、光学工程系、光电技术系、探测与控制工程系和电子技术教学实验中心、国防重点学科实验室、电子工程研究所、光电技术研究所和江苏天冠科技有限公司等教学、科研单位。
随着全球信息化和信息时代的到来,学院得到了前所未有的快速发展。
学院目前拥有光学工程(一级学科)和电磁场与微波技术(二级学科) 2个国家重点学科、通信与信息系统和机械电子工程2个省部级重点学科。
学院现有光学工程、信息与通信工程、电子科学与技术和机械工程4个博士后流动站,通信与信息系统、信号与信息处理、物理电子学、微电子学与固体电子学、电磁场与微波技术、电路与系统、光学工程和机械电子工程8个博士点以及生物医学工程一级学科硕士点。
学院设有电子信息工程、通信工程、电子科学与技术、光电信息工程、真空电子技术、信息对抗技术和探测制导与控制技术7个本科专业,其中电子信息工程、光电信息工程、通信工程和电子科学与技术等通用专业均为省部级重点建设的品牌、特色专业。
学院共有各类在籍学生3500人左右,其中研究生近1000人、本科生2000余人、外国留学生10余人以及工程硕士近500人。
学院现有教职工177人,其中博士生导师22人、正高级职称者37人、副高级职称者48人,“长江学者奖励计划”特聘教授2人,国家杰出青年科学基金获得者1人,国家级新世纪百千万人才1人,江苏省教学名师1人,国防科技有突出贡献中青年专家1人,国防科技工业“511人才工程”3人,江苏省333跨世纪学术科技带头人13人,江苏省“青蓝工程”中青年学术带头人6名,江苏省“六大人才高峰”高层次人才3人,享受国务院政府特殊津贴4人。
南京理工大学数字计时器实验报告
电子电工综合实验报告——数字计时器一.实验内容。
1. 应用CD4511BCD码译码器﹑LED双字共阴显示器﹑300Ω限流电阻设计﹑安装调试四位BCD译码显示电路实现译码显示功能。
2. 应用NE555时基电路、3KΩ、1KΩ电阻、0·047UF电容和CD4040计数分频器设计,安装,调试秒脉冲发生器电路(输出四种矩形波频率f1=1HZ f2=2HZ f3≈500Hz f4≈1000Hz)。
3. 应用CD4518BCD码计数器、门电路,设计、安装、实现00′00″---59′59″时钟加法计数器电路。
4. 应用门电路,触发器电路设计,安装,调试校分电路且实现校分时停秒功能(校分时F2=2Hz)。
设计安装任意时刻清零电路。
5. 应用门电路设计、安装、调试报时电路59′53″,59′55″,59′57″低声报时(频率f3≈500Hz),59′59″高声报时(频率f4≈1000Hz)。
整点报时电路。
H=59′53″·f3+59′55″·f3+59′57″·f3+59′59″·f46.联接试验内容1.—5.各项功能电路,实现电子计时器整点计时﹑报时、校分、清零电路功能。
二.实验要求。
设计正确、布局合理、排线整齐、功能齐全。
三.器件引脚图及功能表。
1、NE555: 功能表引脚图2、CD4040:引脚图3、CD4518:功能表引脚图4、CD4511:功能表引脚图5、74LS00:功能表引脚图6、74LS20:功能表引脚图7、74LS21:功能表引脚图8、74LS74:功能表引脚图9.LED双字共阴显示器四.电子计时电路器逻辑图;五.电子计时器电路引脚接线图.六. 各单元原理图及设计过程:1、脉冲产生电路设计方法:由NE555连接成为自激多谐振荡电路,输出为周期矩形波,后经CD4040分频得到所需频率脉冲。
逻辑图:2、计时电路设计方法:计时电路的计数器,采用二-十进制加法计数器CD4518来实现。
南理工高频电子实验-非线性丙类功率放大器实验报告
高频电子实验非线性丙类功率放大器实验学号班级专业姓名非线性丙类功率放大器实验一、实验目的(1)了解丙类功率放大器的基本工作原理,掌握丙类功率放大器的调谐特性以及负载变化时的动态特性。
(2)了解激励信号变化对功率放大器工作状态的影响。
二、实验原理晶体管高频功率放大器的原理线路(1)采用负偏置:减小无用功耗,提高效率;(2)采用变压器耦合:阻抗匹配,减小负载电阻R对谐振回路的影响;(3)采用电感部分接入:减小晶体管输出电阻对谐振回路的影响。
在晶体管负偏置,输入信号为大信号的条件下:晶体管在输入信号的正半周的部分时间内导通,在输入信号的其他时间内截止;基级电流和集电极电流为高频脉冲信号;集电极电流流过具有选频作用的并联谐振回路后,产生了与输入信号同频的集电极电压信号。
电流、电压波形(流)通角θ: 有电流出现时所对应相角的一半。
集电极电流式中tω012cos cos 2cos C c c c cn i I I t I t I n t ωωω=+++++()()()()()()()()()()0maxmax 01maxmax 1max 2max 1sin cos ()21cos 1sin cos ()cos 1cos 12sin cos 2sin cos ()cos 11cos 1c C C cC C cn C C n I i t d t I I I i t t d t I I n n n I i t n t d t I n n I n θθθθθθθθθωππθαθθθθωωππθαθθθθθωωππθαθ----==-=-==-=-==--=>⎰⎰⎰()n n αθ称为余弦脉冲的次谐波分解系数。
高频功放的电流、电压波形tCCU BBU 1cos o c c L u u I R tω==cos CE CC o CC c u U u U U tω=-=-输出功率:直流输入功率:集电极损耗功率: 集电极效率:负载特性实验电路图如下图22111111222c c c c L LU P I U I R R ===200012c CCc CCP i Ud t I U πωπ==⎰01c P P P =-11001122c c c CC I U P P I U ηγξ===()()1100c c I I αθγαθ==称为波形系数cCCU U ξ=称为集电极电压利用系数min1(1)L c CE CC c CES R U U U U U =->较小,使得较小,使得,称为欠压状态;min 2(2)L c CE CC c CES R U U U U U =-=增大,使得增大,使得,称为临界状态;min3(3)L c CE CC c CES R U U U U U =-<继续增大,使得继续增大,使得,称为过压状态。
电子电工实验报告——数字计时器
南京理工大学电子电工综合实验(Ⅱ)--数字计时器实验报告专业:通信工程班级:9141042202姓名:许雪婷学号:9141133702082016年09月目录一、实验目的、要求及内容;二、器件引脚图及功能表;三、各单元电路的原理、设计方法及逻辑图;四、数字计时器电路引脚接线图;一、 实验目的、要求及内容1.实验目的① 掌握常见集成电路实现单元电路的设计过程。
② 了解各单元再次组合新单元的方法。
2.实验要求实现00’00”—59’59”的可整点报时的数字计时器。
3.实验内容① 设计实现信号源的单元电路。
(KHz F Hz F Hz F Hz F 14,5003,22,11≈≈≈≈) ② 设计实现00’00”—59’59”计时器单元电路。
③ 设计实现快速校分单元电路。
含防抖动电路(开关k1,频率F2,校分时秒计时器停止)。
④ 加入任意时刻复位单元电路(开关K2)。
⑤ 设计实现整点报时单元电路(产生59’53”,59’55”,59’57”,三低音频率F3,59’59”一高音频率F4)。
二、器件引脚图及功能表元件清单:集成电路:NE555 一片,CD4040 一片,CD4518 二片,CD4511 四片,74LS00 三片,74LS20 一片,74LS21 三片,74LS74 一片。
电阻:1KΩ一只,3KΩ一只,150Ω四只。
电容:0.047uF 一只。
LED共阴双字屏二块。
1、NE555图1-1 NE555引脚图图1-2 NE555逻辑功能表2、CD4040图2-1 CD4040引脚图图2-2 CD4040功能表3、CD4518图3-1 CD4518引脚图图3-2 CD4518功能表4、CD4511图2-1 CD4511引脚图图2-2 CD4511逻辑功能表5、74LS0074LS00是一种集成了4个与非门的集成电路。
图5-1 74LS00引脚图图5-2 与非门逻辑表6、74LS2074LS20同样是一种与非门集成电路,与74LS00不同的是它的每个与非门有4个输入端。
南京理工大学-电子电工综合实验(I)论文-裂相(DOC)
南京理工大学电子电工综合实验论文电子工程与光电技术学院班级:学号:姓名:裂相(分相)电路的研究一、摘要:裂相(分相)电路可以把单相交流电源分裂成具有相位差的多相电源,多相电路性能稳定,较之单相电路更加优越,且运用场合广泛。
将单相电转换为多相电可以满足在只有单相电源,而仪器设备必须使用多相电源时的问题。
本文从裂相电路出发,介绍了用Multisim10对裂相电路进行仿真,深入研究将单相交流电源(220V/50HZ)分裂成相位差对称的两相电源,并保证两相输出空载时电压有效值相等,具体实现电压为150V±2%,相位差为90°±2%。
进而在原电路基础上改变负载(电阻性)做出电压与负载特性曲线。
并讨论在负载为电容或电感时负载两端电压值与负载大小关系的特性曲线。
最后分析并证明此电路在空载时功耗最小。
二、关键词:裂相电路两相电源三相电源负载空载功率三、引言如今,随着科技的迅猛发展,电工技术在许多领域中都发挥着重要的作用。
裂相技术作为一项原理较为简单的电路处理技术,在实际应用中还有很大的潜力有待开发。
裂相电路由电阻和电容构成,它同时吸取了单相电源供电方便,以及多相整流输出平稳,谐波少,功率高等优点。
本文主要研究将一个单相的交流电源分别分裂成两相交流电源。
利用电容,电感元件两端的电压和通过它们的电流的相位差恒定为π/2,将电容和与之串联的电阻分别作为电源,同时还研究了裂相后的电源接不同性质负载时的电压、功率的变化。
实验中,通过运用Multisim10对电路进行仿真,同时测量多组数据,绘制相应曲线,并进行简单的分析,从而达到研究的目的。
四、正文1、实验要求(1)将单相交流电源(220V/50Hz)分裂成相位差为90°对称的两相电源。
①两相输出空载时电压有效值相等,为150×(1±4%)V;相位差为90°×(1±2%)。
②测量并作电压——负载(两负载相等,且为电阻性)特性曲线,到输出电压150×(1-10%)V;相位差为90°×(1-5%)为止。
电工电子学实验(优秀范文5篇)
电工电子学实验(优秀范文5篇)第一篇:电工电子学实验《电工电子学》实验一、实验要求学员必须做完下面实验内容中所包括的所有基础实验,且至少选做一个综合实验,每一个实验做完后都应按照实验报告的格式要求写出相应的实验报告。
二、实验内容(共30分)第一部分:基础实验部分(占25分)万用表的使用练习(1.5学时,4分)三相交流电路(1.5学时,4分)常用电子仪器的使用练习(1.5学时,4分)单管交流放大电路(1.5学时,4分)小规模组合逻辑电路的设计(1.5学时,7分)第二部分:综合实验部分(至少选做一个,占7分)含源二端网络输出特性及等效参数的测定(1.5学时)集成运算放大器的参数测定(1.5学时)运算电路实验(1.5学时)三、实验指导请参考附后的《电工电子学实验指导》四、实验报告格式要求请参考附后的《中国石油大学现代远程教育实验报告格式要求》五、参考资料单亦先,郝宁眉主编.电工电子测量与实验.山东东营:石油大学出版社,2000第二篇:《电工电子学》教学大纲《电工电子学》教学大纲一、课程的性质、任务与要求: 本课程是高职高专电子信息及计算机应用类专业的一门专业基础课,为学习专业后续课程和从事计算机及信息技术奠定基础。
本课程的主要任务是使学生掌握直流电路、交流电路、模拟电子电路、数字电子电路的基本分析方法,了解常用电子元件的使用,学会设计简单的电子电路。
学习本书的基础是高中物理和必要的高等数学,在教学和学习的过程中应注意有关知识的复习。
本课程实用性较强,在教学及学生的学习过程中,不仅要掌握基本理论,还要注重提高解决实际问题的能力,因此,一定要重视实验技能的培养,尽量让同学多动手。
二、教学内容:第一部分电路部分第一章电路理论基础:1.1 电路模型及基本物理量 1.2 功率 1.3 电路元件 1.4 基尔霍夫定律 1.5 基尔霍夫定律的应用 1.6 电压源与电流源的等效变换 1.7 叠加定理 1.8 戴维南定理第二章正弦交流电路2.1 正弦量的三要素 2.2 正弦量的向量表示法2.3 电阻、电感、电容元件的特性 2.4 正弦交流电路中元件的串并连 2.5 正弦交流电路中元件的串并连谐振 2.6 正弦交流电路的功率第三章安全用电常识3.1 电流对人体的作用 3.2 触电形式及触电急救 3.3 保护接地及保护接零 3.4 电气防火、防雷及防爆 3.5 静电的防护第二部分电子电路第四章常用晶体管4.1 半导体基本知识 4.2 PN结及晶体二极管 4.3 晶体三极管 4.4 场效应管第五章基本放大电路5.1 共射放大电路的组成及基本原理 5.2 放大电路的静态分析 5.3 放大电路的动态分析 5.4 射极输出器 5.5 多级放大电路第六章集成运算放大器6.1 集成运算放大器的基本组成 6.2 放大器的负反馈 6.3 集成运算放大器的应用第七章直流稳压电源7.1 单相半波整流电路 7.2 单相桥式整流电路7.3 滤波电路 7.4 稳压电路第八章门电路及组合逻辑电路 8.1 基本逻辑门电路 8.2 TTL集成门电路和CMOS集成门电路第九章双稳态触发器和逻辑电路9.1 双稳态触发器9.2 触发器逻辑功能的转换9.3 寄存器 9.4 计数器第十章脉冲波形的整形与产生 10.1 脉冲整形电路 10.2 脉冲产生电路 10.3 555定时器及应用第三部分实验部分实验一戴维南定理的验证实验二万用表的使用实验三常用晶体管的使用试验四三极管的放大电路三、课时分配第一部分 36学时第二部分 40学时第三部分 20学时第三篇:《电工电子学》实验报告20XX 报告汇编 Compilation of reports报告文档·借鉴学习word 可编辑·实用文档中国石油大学(华东)现代远程教育实验报告课程名称:电工电子学实验名称:三相交流电路实验形式:在线模拟+ 现场实践提交形式:在线提交实验报告学生姓名:王武明学号:16457730003 年级专业层次:络网络 16 秋机电一体化专业高起专学习中心:安徽宣城教学服务站提交时间:2017年月日报告文档·借鉴学习word 可编辑·实用文档一、实验目的 1.练习三相交流电路中负载的星形接法。
南理工EDA1实验报告-模电仿真
EDA设计(Ⅰ)实验报告院系:电子工程与光电技术学院专业:电子信息工程学号:914104姓名:指导老师:宗志园目录实验一单级放大电路的设计与仿真 (2)一、实验目的 (2)二、实验要求 (2)三、实验原理图 (3)四、三极管参数测试 (3)五、电路静态工作点测试 (6)六、电路动态参数测试 (8)七、频率响应测试 (10)八、数据表格 (10)九、理论分析 (11)十、实验分析 (11)实验二差动放大电路的设计与仿真 (12)一、实验目的 (12)二、实验要求 (12)三、实验原理图 (12)四、三极管参数测试 (13)五、电路工作测试 (18)六、电路增益测试 (18)七、数据表格 (21)八、理论分析 (22)九、实验分析 (22)实验三负反馈放大电路的设计与仿真 (23)一、实验目的 (23)二、实验要求 (23)三、实验原理图 (24)四、电路指标分析 (25)五、电路幅频特性和相频特性 (30)六、电路的最大不失真电压 (31)七、数据表格 (32)八、误差分析 (33)九、实验分析 (33)实验四阶梯波发生器电路的设计 (34)一、实验目的 (34)二、实验要求 (34)三、实验原理图 (35)四、实验原理简介 (35)五、电路分级调试步骤 (36)六、误差分析 (40)七、电路调整方法 (40)八、实验分析 (40)实验一单级放大电路的设计与仿真一、实验目的(1)设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz,峰值5mV ,负载电阻5.1kΩ,电压增益大于70.(2)调节电路静态工作点,观察电路出现饱和失真、截止失真和正常放大的输出信号波形,并测试对应的静态工作点值.(3)在正常放大状态下测试:1.三极管的输入、输出特性曲线和β、r be、r ce值;2.电路的输入电阻、输出电阻和电压增益;3.电路的频率响应曲线和f L、f H值.二、实验要求(1)给出单级放大电路原理图.(2)实验过程中各个参数的电路仿真结果:1.给出测试三极管输入、输出特性曲线和β、r be、r ce值的仿真图;2.给出电路饱和失真、截止失真和不失真的输出信号波形图;3.给出测量输入电阻、输出电阻和电压增益的仿真图;4.给出电路的幅频和相频特性曲线(所有测试图中要有相关仪表或标尺数据).(3)给出相关仿真测试结果.(4)理论计算电路的输入电阻、输出电阻和电压增益,并和测试值做比较,分析误差来源.三、实验原理图图1-1 实验原理图四、三极管参数测试图1-2 电路静态工作点(1)输入特性图1-3 测量输入特性曲线电路图图1-4 输入特性曲线(2)输出特性图1-5 测量输出特性曲线电路图图1-6输出特性曲线(3)根据图1-4及公式i V rb be be ∆∆= , 可计算出r be = . (4)根据图1-6及公式V r c CE ce ∆∆= ,可计算出r ce = . (5)根据图1-2.五、电路静态工作点测试(1)饱和失真图1-7饱和失真波形图1-8饱和失真数据(2)截止失真图1-9截止失真波形及其数据(3)正常放大黄色曲线为输入波形,蓝色曲线为输出波形.图1-10正常放大波形六、电路动态参数测试(1)Av图1-11 Av测量电路计算,得到.(2)Ri图1-12 Ri测量电路计算,得到.(3)Ro图1-13 Ro测量电路计算,得到. 七、频率响应测试图1-14 频率响应测试八、数据表格表1-1 静态工作点调试数据表1-2 电路正常工作数据九、理论分析(1)Ri理论值:.误差:.(2)Ro理论值:.误差:.(2)Av理论值:.误差:.十、实验分析本实验是EDA的第一项实验,在老师的指导下我初步了解了电路仿真的基础知识和Multisim软件的使用方法,并完成了第一个电路:单机放大电路的设计与参数测量。
电子电工综合实验混沌电路
电子电工综合实验--混沌电路电工电子综合实验论文课题名称:非线性电阻电路的应用—混沌电路姓名:张枫霞学号: 1104210412【摘要】本实验研究非线性电阻的应用—混沌电路。
以非线性负电阻电路为基础,简单介绍了非线性负电阻混沌电路实验的原理。
通过设计非线性负电阻电路和混沌电路,了解非线性电阻电路的应用和混沌电路基本原理。
同时利用Multisim仿真软件模拟测定非线性负电阻的伏安特性曲线,观察不同参数条件下混沌现象。
【关键词】混沌电路 Multisim 非线性电阻电路【引言】混沌是20世纪最重要的科学发现之一,被誉为是继相对论和量子力学后的第三次物理革命,它打破了确定性与随机性之间不可逾越的分界线,将经典力学研究推进到一个崭新的时代。
混沌学中的混沌是指貌似无序的序,紊乱中的规律。
现在混沌研究涉及的领域包括数学、物理学、生物学、化学、天文学、经济学及工程技术的众多学科,并对这些学科的发展产生了深远影响。
混沌包含的物理内容非常广泛,研究这些内容更需要比较深入的数学理论,如微分动力学理论、拓扑学、分形几何学等等。
目前混沌的研究重点已转向多维动力学系统中的混沌、量子及时空混沌、混沌的同步及控制等方面。
本实验将借助非线性电阻电路,从实验上对这一现象进行一番探索。
【正文】一、实验器材示波器 数字电流表 运算放大器 二、 实验过程1、 实验原理参考线路:蔡氏电路(参考马鑫金主编《电工仪表与电路实验技术》第九章课题三专题2<混沌电路>的蔡氏电路) 电路的非线性动力学方程为:1121)(1C C C C U g U U G dtdU C ⋅--⋅=LC C C i U U G dtdU C+-⋅=)(21122(1)2C LU dtdi L-=式中,导纳V R G /1=,1C U 和2C U 分别为表示加在电容器C 1和C 2上的电压,L i 表示流过电感器L 的电流,G 表示非线性电阻的导纳。
2、 利用Multisim7仿真软件设计的实验电路<1>设计一个满足要求的非线性电阻电路,并研究它的伏安特性 (1)非线性电阻电路图1 非线性电阻电路(2)测量非线性负电阻的伏安特性曲线改变外加电源V3的值,分别测量流经非线性负电阻的电流值和非线性负电阻两端的电压值,并根据测量结果画出伏安特性曲线。
南京理工大学自动化专业培养计划
本专业学生主要学习电工技术、电子技术、控制理论、信息处理、自动检测、计算机技术与应用和网络 技术等方面的基本理论和基本知识,受到良好的工程实践基本训练,具有系统分析、设计、开发与研究的基 本能力。
2
自动化专业
一、专业特色
本专业高度重视学科建设向专业建设的渗透和高水平科研成果向本科教学的转化,构建了一套培育系统 设计师的实践教学体系,对学生科研素养和创新能力的培养起到了很大的促进作用。本专业以运动控制系统、 过程控制系统、综合自动化系统以及嵌入式控制系统等专业方向为特色,强化培养学生的系统观念和实践能 力。毕业生适应面宽,具有良好的就业前景。2005 年被批准为江苏省品牌专业,2007 年被批准为国家级特色 专业建设点。
自动化学院拥有“控制科学与工程”一级学科博士学位授予权(下含“控制理论与控制工程”、“系统工 程”、“导航、制导与控制”、“检测技术与自动化装置”等五个二级学科博士点)和一级学科博士后流动站以 及相应的硕士学位授予权,具有“电路与系统”,“电气工程”硕士学位授予权。“控制科学与工程”一级学科 中有一个国家级重点学科,四个江苏省重点学科。“控制科学与工程”学科被列为“211 工程”重点建设学科。 学院设有自动化、电子信息工程、电气工程及其自动化三个本Байду номын сангаас专业,其中自动化、电子信息工程专业为国 家级特色专业建设点、江苏省品牌专业,电气工程及其自动化专业为江苏省特色专业。自动化学院现有在校 本科生 1400 余人,硕士研究生(含工程硕士)500 余人,博士研究生 100 余人。
自动化学院致力于创造一流的学科专业,一流的师资队伍,一流的创新人才,不断提升在国内外同行中 的地位。
自动化学院现有专兼职教师 100 余人,其中专职教授 21 人、副教授 23 人、兼职教授 10 余人。设有自动 控制系、信息工程系、电气工程系、电工教研部、C3I 系统研究所等 6 个研究所、校电力电气实验中心和院实 验中心。
南京理工大学数字电路课内实验数字电路4
数字逻辑电路实验实验报告学院:电子工程与光电技术学院班号:9171040G06姓名:徐延宾学号:9171040G0633实验编号:0259指导教师:花汉兵2019年5月14日目录1实验目的3 2实验要求3 3实验内容3 4实验原理45实验步骤55.174LS194四位双向移位寄存器逻辑功能测试 (5)5.274LS194设计实现左,右循环计数 (5)5.374LS194设计实现扭环计数 (8)5.4模15计数器设计 (8)5.574LS194设计实现五分频电路 (9)6实验思考与总结11参考文献11实验4移位寄存器及应用1实验目的掌握移位寄存器的逻辑功能及应用。
2实验要求用移位寄存器实现循环工作和分频器工作。
并绘制分频器工作波形。
3实验内容1.按表测试74LS194四位双向移位寄存器逻辑功能。
2.用74LS194设计实现(自启动)左,右循环计数,状态如图1。
图1:左,右循环计数状态转换图3.用74LS194设计实现(无自启动)扭环计数,状态如图2。
图2:扭环计数状态转换图4.用74LS194实现M=2n−1最大长度计数,反馈表达式为D SR=Q3⊕Q2观察并记录计数器循环状态(无自启动)。
5.用74LS194设计实现五分频电路,状态如图3。
通过示波器绘制工作波形。
图3:五分频电路状态图4实验原理74LS194四位双向移位寄存器•74LS194四位双向移位寄存器逻辑图图4:74LS194四位双向移位寄存器逻辑图•74LS194四位双向移位寄存器引脚部局图图5:74LS194四位双向移位寄存器引脚部局图•74LS194四位双向移位寄存器结构为四个主从RS触发器(已经转换成D触发器)与一些门电路组成。
1.C r:为异步清零端,低电平有效。
2.CP:为时钟脉冲输入端,上升沿有效。
3.D SR:为右移串行数据输入端。
4.D SL:为左移串行数据输入端。
5.M A,M B:为移位寄存器工作状态控制端,有四种状态可使用。
工程电磁场实验报告用超松弛迭代法求解接地金属槽内的电位分布
南京理工大学工程电磁场实验报告班级:1m 班姓名:mmmm学号:mmm2013.06.16实验一 用超松弛迭代法求解接地金属槽内的电位分布 一、实验目的1、掌握如何使用超松弛法来近似求解金属槽内的电位值。
2、掌握利用C++来实现超松弛迭代法。
二、实验原理有限差分法是基于差分原理的一种计算方法。
对于下面的的一个二维泊松方程的差分格式,利用差分就可以得到每一个点的电位。
图1 有限法网格分割其电位值是: 2012341()4Fh ϕϕϕϕϕ=+++-其中F ρε=-, h 为网格间距。
若令F=0,则电位情况则变成了拉普拉斯的差分格式:012341()4ϕϕϕϕϕ=+++图2 迭代法求电位值1、高斯-赛德尔计算法:(1)112,1,,11,,11[]4k k k k k i j i j i j i j i j Fh ϕϕϕϕϕ+++--++=+++-直到(1)(),,k k i j i j ϕϕε+-<为止。
2、对于超松弛法,我们引入一个加速收敛因子α并且得到下面的计算公式:(1)()112(),,1,,11,,1,[4]4k k k k k k k i j i j i j i j i j i j i j Fh αϕϕϕϕϕϕϕ+++--++=++++--直到(1)(),,k k i j i j ϕϕε+-<为止。
借助计算机来求解的时候,其流程图如下:图3 迭代法求电位值的流程图三、实验内容(1)、题目要求利用超松弛迭代法求解接地金属槽内的电位分布,给定图如下。
已知a=4cm,h=a/4=10mm 。
给定初值(0),j 0i ϕ=,误差范围为510ε-=。
求迭代次数N=?以及电位分布,i j ϕ。
图4 超松弛法求接地金属槽内的电位值(2)、利用C++来编写计算机的求解程序,其程序如下:程序(3)、求解结果运行程序后,就能得到求解的结果。
图5 运行程序后的初始界面图6 求解结果(4)结果分析1、从实验结果可以看到,当加速收敛因子的大小不同的时候,两者的迭代次数是有差异,所以选取合适的最佳的收敛因子可以大大加速求解的速度,节省存储空间,提高效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子电工综合实验(Ⅱ)实验报告—多功能数字计时器设计姓名: 学号:学院(系):电子工程与光电技术学院专业: 通信工程指导:电子技术中心实验日期: 2012年9月目录1.电路目的 (3)2.设计内容简介及要求 (3)3.实验原理 (3)3.1 整体设计原理 (3)3.2秒信号发生器 (4)3.3 计数器 (5)3.4 清零电路 (6)3.5 校分电路 (7)3.6 报时电路 (7)4.遇到的问题及解决方法 (8)4.1 调试过程 (8)4.2问题与解决 (9)4.3感想与体会 (9)5.附录 (10)5.1参考文献 (10)5.2电路总图 (11)5.3元件清单 (11)5.4芯片引脚图 (12)一.实验目的1.巩固所学集成电路的工作原理和使用方法,学会在单元电路的基础上进行小型数字系统设计;2.培养大家的动手能力,独立完成实验电路的连接;3.增强分析问题与解决问题的能力,通过发现问题和解决问题对集成电路形成更全面的认识,提高调试电路的实验技能。
二.设计内容简介与要求设计制作一个0分00秒~9分59秒的多功能计时器,要求如下:1)设计一个脉冲发生电路,为计时器提供秒脉冲(1HZ),为报时电路提供驱动蜂鸣器的高低脉冲信号(1KHZ、2KHZ);2)设计计时电路:完成0分00秒~9分59秒的计时、译码、显示功能;3)设计清零电路:具有开机自动清零功能,并且在任何时候,按动清零开关,可以对计时器进行手动清零。
4)设计校分电路:在任何时候,拨动校分开关,可进行快速校分。
(校分隔秒)5)设计报时电路:使数字计时器从9分53秒开始报时,每隔一秒发一声,共发三声低音,一声高音;即9分53秒、9分55秒、9分57秒发低音(频率1kHz),9分59秒发高音(频率2kHz);6)系统级联。
将以上电路进行级联完成计时器的所有功能。
三.实验原理3.1 整体设计原理数字计时器是一个对标准频率(1Hz)进行计数的计数电路。
由于计数的起始时间与所需要的起点可能会不相同,所以需要在电路上加一个校分电路,以便将分时刻跳到想要的时刻,这也是为了让蜂鸣器尽快的响起。
为了使标准的1Hz 时间信号准确并且稳定,实验中我们使用了石英晶体振荡器构成脉冲发生电路。
为了使电路更加简单,实验中我们使用了一片CD4518的集成块对计时器的秒个位和分位进行计数,用74LS161构成模六(六进制)计数器实现对秒十位进行计数,当低位计数器计满10时向高位产生一个脉冲信号,触发高位计数器计数。
由于所使用的计数器都有异步清零端,故可通过简单的电路就可以使电路具有开机清零功能和随时清零功能。
用分频器对脉冲进行分频,2Hz用于较分,1KHz、2KHz用于蜂鸣器的低鸣与高鸣。
图 1整体设计原理图各部分电路原理及分析:3.2 秒信号发生器秒信号发生器提供计时电路的时钟并为报时电路提供驱动信号。
为提供较为精确的秒脉冲信号,采用32768Hz的石英晶体多谐振荡器作为脉冲信号源。
分频器CD4060最高可实现214分频,即最低频率端Q14的脉冲信号频率为2Hz,因此增加一个D触发器实现的倍频器来产生1Hz的秒脉冲信号。
将D触发器的Q端与D端扭接在一起实现倍频器,则Q端的输出信号即为1Hz的秒脉冲信号。
报时电路所需要的1KHz,2 KHz的脉冲信号由4060的管脚Q4和管脚Q5提供。
所用器件:32768Hz晶体管、22MΩ电阻、20PF电容、10 PF电容、4060、74LS74。
:图 2秒信号发生器原理图3.3 计数器该电路是本实验基础电路中的关键电路,由分计数器、秒十位计数器、秒个位计数器构成。
分计数器和秒个位计数器直接用CD4518BCD码计数器实现十进制计数功能;秒十位计数器为六进制计数器,将74LS161做成一个从0000~0101的模六计数器实现。
连接时,秒脉冲电路产生的秒脉冲信号送入秒个位计数器(CD4518A)的CP端,秒个位单元中的输出1Q4通过一非门接入74LS161的时钟端作为时钟信号完成个位与十位的级联,进行进位。
做秒十位记数时,用反馈置位法,2Q1和2Q3通过一与非门接入置数端同时数据输入端均接地,实现模六功能。
将计数位2Q3作为驱动信号送入分计数器(CD4518B)的EN端,则数字计数器整体的计数功能即可实现。
显示电路采用三片CD4511显示译码器和三个七段共阴显示字,电路从0分00秒计到9分59秒,译码显示电路用三片四线七线译码器CD4511进行译码,而采用共阴极七段LED数码管进行循环显示。
CD4511的输入接到相应计数器的输出,而它的输出端与数码管的相应端相连,数码管通过300的电阻接地。
所用器件:4518、74LS161、74LS00、CC4511、CC4069、300Ω电阻、LED数码显示管。
图 3计时电路原理图3.4 清零电路该电路具有开机清零和控制清零功能。
其中秒个位和分位的清零端即CC4518的管脚7和15(高电平有效)接在第一个非门之后,秒十位74LS161的清零端即管脚1(低电平有效)接在第二个非门之后。
刚开机时,由于电容上的电压不能突变,电容两端为低电平,经过第一个非门输出高电平,接到CC4518的管脚7和15,实现秒个位和分位的清零。
在经过第二个非门输出低电平,接到74LS161的管脚1,实现秒十位的清零。
按下开关后,电容被短路,第一个非门的输入端为低电平,两个非门的输出端分别为高电平和低电平,原理同上,实现控制清零功能(异步清零)。
所用器件:CC4069、10KΩ电阻、22μF电容。
图 4清零电路原理图3.5 校分电路当校分电路开关断开时时,计数器正常计数;当开关闭合时,秒个位和秒十位正常计数,分位进行快速校分,即分计数器可以不受秒计数器的进位信号的控制。
由用下图电路控制分位计数器的EN端对分位进行控制。
接分位CD4518的EN端接74LS161的Qc图 5校分电路原理图3.6 报时电路用需要报时的时刻所对应的计数器的输出作为触发信号来驱动蜂鸣器报时,因为需要在9分53秒、9分55秒、9分57秒各报出一个低音,在9分59秒报出一个高音。
具体设计过程如下:将各时刻各位对应的二进制码作如下图的比较:1).将秒个位的3(0011)、5(0101)、7(0111)取或,通过卡诺图的化简可得应该从秒个位取1Q1(1Q2+1Q3)2).将1中所得结果和分位的9(1001)与再和秒十位的5(0101)与,所得的结果和1KHz的信号与就可得到在9分53秒、9分553秒、9分57秒报出低音的驱动信号。
3).将分位的9(1001)和秒十位的5(0101)与再和秒个位的9(1001)与再和2KHz的信号与就得到在9分59秒报出高音的驱动信号。
4).将2和3中得到的信号取或,就可以得到最终的报时驱动信号。
所用器件:74LS21、74LS32、蜂鸣器。
图 6报时电路原理图四、遇到的问题与解决方法4.1 调试过程1.电路安装前应该先把面包板的各个横通孔用短导线连好,并且统一用红线代表电源线,用黑线代表地线,连接完成后应该接上电源用万用表测试各插孔以确保整块板子上无漏掉的插孔以免影响后面的安装工作。
2.连接秒信号发生器时,将脉冲发生电路产生的脉冲接入CD4518的CP端。
此时可通过万用表观察秒信号是否正常输出,接将万用表打在电压10V档,红表笔接CD4518的CP端,黑表笔接地,若正常输出则可以看到万用表指针左右摆动,频率为1次/秒。
3.在记数器模块的连接中,先把秒个位的记数、译码、显示器连接好,把1Hz信号输入CC4518的CP端,打开开关,确保秒个位从0—9正常记数,才能开始秒十位的连接,秒个位的Qd从非门输出接入74LS161的CP端,输出的Qa、Qc 与非输入置数端,置0,接完打开开关,检验显示器从00—59正常记数,再连接分位的电路,接完仍要检验是否正常记数。
其中若数字显示缺省,检查显示器有没有问题。
4.连接清零电路,用导线代替开关,当导线断开时,实现开机清零;当导线联通时,实现不掉电清零。
5. 连接校分电路,用导线代替开关,当导线断开时,电路正常计时,到59秒后进一位;当导线连接时,分位接入2Hz信号,电路实现快速校分。
6. 连接报时电路前,给蜂鸣器输入1-2V电压,如有声音,则蜂鸣器没有问题。
连接好电路,若电路正常工作蜂鸣器会从9分53秒开始每隔一秒报一声低音(1KHz),9分59秒时报一声高音(2KHz)。
同时要注意蜂鸣器的管脚不要接反。
4.2问题与解决1.在连接完秒个位之后,发现显示器上从1走到7然后就跳回0了,既然可以从1走到7,那译码器和显示器应该正常,明显是记数器出了问题,在计数器管脚上一个一个检查,发现Cr端口没有接地,接上之后恢复了正常。
2.连接秒十位时,这一位的示数一直是5,不发生任何变化,检查了一下进位和置数信号没有问题,继续检查译码器,之前认为把Cr非悬空等同于接高频信号,就没有连接,检查后把Cr非和Qcc都连接上了+5V,可正常记数,但是发现芯片在记数过程中一直在发烫,便去询问老师,了解了Qcc接上没有意义,不应连接,去掉连接的导线之后,芯片正常了许多。
4.3 感想与体会在本次试验中,用到的集成芯片很多,线路也很复杂,连接过程中很容易出现各种各样的问题,所以试验之前要做好充分的预习,充分理解电路连接的原理,在出现问题时才知道是哪出了问题,怎么去解决。
在连接电路之前,一定先把面包板的各个横通孔用短导线连好,并且统一用红线代表电源线,用黑线代表地线,连接完成后应该接上电源用万用表测试各插孔以确保整块板子上无漏掉的插孔以免影响后面的连接。
在连接电路中,要分块一步一连接,一步步检验,确保过程当中无差错,有了错误能及时发现时出现在哪步,便于解决。
最好不同的模块选用不同颜色的线,避免到后面连线错乱。
连线不要急躁,越是开始越要慢慢的连,对好管脚,把线插牢。
剪线时每端7—8mm,过短会接触不好,造成断路;过长会有一部分裸露在外,与其他的线打上会造成短路。
我在实验中能够较快的完成电路,因为耐心的把每一条连好,出了出现两次不知道该不该连的问题,连线没有出现其他错误,完成的很顺利,不求快反而更快的成功连接。
通过这个实验,我们把之前所学的数电知识运用到了实践当中,自己设计,自己连接,遇到了问题分析解决方法,大大的提高了动手能力和解决问题的能力,同时对于集成电路的运用有了更深的理解。
五、附录5.1 参考文献1)蒋立平,等. 数字电路[M]. 南京理工大学, 2001.2)王建新,姜萍,等. 电子线路实践教程[M]. 科学出版社, 2003.3)李振声,等. 实验电子技术[M]. 国防工出版社, 2001.5.2 电路总图2Q4 Q5 Q145.3 元件清单工具:剪刀、镊子、剥线钳元器件清单:5.4 芯片引脚图引脚图:功能表:CC4511逻辑功能表CC4518逻辑功能表74LS74逻辑功能表74LS161逻辑功能表。