初二数学因式分解练习题

合集下载

初二数学因式分解100题

初二数学因式分解100题

提升课堂托辅中心初二数学因式分解精选100题2013年1月25日一、选择题1.下列各式中从左到右的变形,是因式分解的是( )A (a +3)(a -3)=a 2-9B x 2+x -5=(x -2)(x +3)+1C a 2b +ab 2=ab (a +b ) (D)x 2+1=x (x +x1) 2.下列各式的因式分解中正确的是( )A -a 2+ab -ac = -a (a +b -c )B 9xyz -6x 2y 2=3xyz (3-2xy )C 3a 2x -6bx +3x =3x (a 2-2b ) D21xy 2+21x 2y =21xy (x +y ) 3.把多项式m 2(a -2)+m (2-a )分解因式等于( )(A)(a -2)(m 2+m ) (B)(a -2)(m 2-m ) (C)m (a -2)(m -1) (D)m (a -2)(m+1) 4.下列多项式能分解因式的是( )(A)x 2-y (B)x 2+1 (C)x 2+y +y 2 (D)x 2-4x +45.下列多项式中,不能用完全平方公式分解因式的是( )(A)412m m ++ (B)222y xy x -+- (C)224914b ab a ++- (D)13292+-n n 6.多项式4x 2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是( )(A)4x (B)-4x (C)4x 4 (D)-4x 4 7.下列分解因式错误的是( )(A)15a 2+5a =5a (3a +1) (B)-x 2-y 2= -(x 2-y 2)= -(x +y )(x -y )(C)k (x +y )+x +y =(k +1)(x+y ) (D)a 3-2a 2+a =a (a -1)2 8.下列多项式中不能用平方差公式分解的是( )(A)-a 2+b 2 (B)-x 2-y 2 (C)49x 2y 2-z 2 (D)16m 4-25n 2p 29.下列多项式:①16x 5-x ;②(x -1)2-4(x -1)+4;③(x +1)4-4x (x +1)+4x 2;④-4x 2-1+4x ,分解因式后,结果含有相同因式的是( )(A)①② (B)②④ (C)③④ (D)②③ 10.两个连续的奇数的平方差总可以被 k 整除,则k 等于( ) (A)4 (B)8 (C)4或-4 (D)8的倍数11下列各式中从左到右的变形属于分解因式的是( )A a(a +b -1)=a 2+ab -aB a 2 –a -2=a(a -1)-2C -4 a 2+9b 2=(-2a +3b)(2a +3b)D . 2x +1=x(2+1/x) 12下列各式分解因是正确的是( )A .x 2y +7xy +y=y(x 2+7x)B . 3 a 2b +3ab +6b=3b(a 2+a +2)C . 6xyz -8xy 2=2xyz(3-4y)D . -4x +2y -6z=2(2x +y -3z) 13下列多项式中,能用提公因式法分解因式的是( )A . x 2-yB . x 2+2xC . x 2+y 2D .x 2-xy +y 2 14 2(a -b)3-(b - a)2分解因式的正确结果是( )A . (a -b)2(2a -2b +1)B . 2(a -b)(a -b -1)C . (b -a)2(2a -2b -1)D . (a -b)2(2a -b -1) 15下列多项式分解因式正确的是( )A . 1+4a -4a 2=(1-2a)2B . 4-4a +a 2=(a -2)2C . 1+4x 2=(1+2x)2D .x 2+xy +y 2=(x +y)2 16 运用公式法计算992,应该是( )A .(100-1)2B .(100+1)(100-1)C .(99+1)(99-1)D . (99+1)217 多项式:①16x 2-8x ;②(x -1)2 -4(x -1)2;③(x +1)4-4(x +1)2+4x 2 ④-4x 2-1+4x 分解因式 结果中含有相同因式的是( )A.①和②B.③和④C.①和④D.②和③18无论x、y取何值,x2+y2-2x+12y+40的值都是()A.正数B.负数C.零D.非负数19下列正确的是()A.x2+y2=(x+y)(x-y) B.x2-y2=(x+y)(x-y)C.-x2+y2=(-x+y)(-x-y) D.-x2-y2=-(x+y)(x-y)二、填空题20.分解因式:m3-4m= .21.已知x+y=6,xy=4,则x2y+xy2的值为.22.将x n-y n分解因式的结果为(x2+y2)(x+y)(x-y),则n的值为.23.若ax2+24x+b=(mx-3)2,则a= ,b= ,m= .24.根据图形面积关系,不连其他线,便可以得到一个分解因式的公式是.25多项式-9x2y+36xy2-3xy提公因式后的另一个因式是___________;26把多项式-x4+16分解因式的结果是_____________;27已知xy=5,a-b=3,a+b=4,则xya2-yxb2的值为_______________;28若x2+2mx+16是完全平方式,则m=______;(第24题图) 29分解因式:-x2+4x-4= ;30 +3mn+9n2=( +3n)2;31若x+y=1则1/2x2+xy+1/2y2= ;三、因式分解32. -24x3-12x2+28x 33. 6(m-n)3-12(n-m)2 34.3(a-b)2+6(b-a)35. 18(a+b)3-12b(b-a)236. (2a+b)(2a-3b)-3a(2a+b) 37.(x2+6x)2-(2x-4)238. 9(m+n)2-(m-n)239. (2x+3y)2-1 40. 9(a-b)2-16(a+b)2 41. (x+y)2-16(x-y)2 42. -16x4+81y4 43.3ax2-3ay244.2x3-8x 45. 7x2-63 46. (a2+b2)2-4a2b247. (m +n)2-6(m +n)+9 48. (3)(a -b)2-2(a -b)+1; 49. 4xy 2-4x 2y -y 350. -x 2-4y 2+4xy 51. 25)(10)(2++++y x y x ; 52. 4224817216b b a a +-;53. (a 2+4)2-16a 2 54. -4x 3+16x 2-26x 56. 21a 2(x -2a )2-41a (2a -x )357. 56x 3yz+14x 2y 2z -21xy 2z 2 58. mn(m -n)-m(n -m) 59. -41(2a -b )2+4(a -21b )260. 4xy –(x 2-4y 2) 61. -3ma 3+6ma 2-12ma 62. a 2(x -y )+b 2(y -x )63. 23)(10)(5x y y x -+- 64. 32)(12)(18b a b a b --- 65. –2x 2n -4x n66. )(6)(4)(2a x c x a b a x a ---+- 67. 4416n m - 68.22)(16)(9n m n m --+;69. 21ax 2y 2+2axy +2a 70. (x 2-6x )2+18(x 2-6x )+81 71. 24)4)(3)(2)(1(-++++x x x x72.9x 2-y 2-4y -4 73.22414y xy x +-- 74.811824+-x x75. 2ax a b ax bx bx -++--2 76.1235-+-x x x 77. )()()(23m n n m n m +--+78. 3)2(2)2(222-+-+a a a a 79. 2222224)(b a b a c ---四.特殊的因式分解 80.),(3127123且均为自然数n m b a a nn m n m >--- 81.13112121132-+-+-+++n n n n n n y x y x y x五.用简便方法计算:82. 57.6×1.6+28.8×36.8-14.4×80 83. 13.731175.231178.193117⨯-⨯+⨯84. 39×37-13×34 85)1011)(911()311)(211(2232----六.解答题86若n m y x -=))()((4222y x y x y x +-+,求m ,n 的值87已知,01200520042=+++++x x x x 求2006x 的值88若6,422=+=+y x y x 求xy 的值89已知312=-y x ,2=xy ,求 43342y x y x -的值。

初二数学《因式分解》练习题

初二数学《因式分解》练习题

初二数学《因式分解》练习题因式分解是初中数学中的一个重要概念,它在方程、函数以及多项式的运算中扮演着重要的角色。

掌握因式分解的方法和技巧,能够帮助我们简化计算过程,解决实际问题。

下面是一些关于因式分解的练习题,通过练习这些题目,我们可以巩固对因式分解的理解和应用。

【练习题一】将下列各式进行因式分解:1. $x^2-4$2. $a^2-b^2$3. $8x^3-27y^3$4. $2x^2+5x-3$5. $2x^3-x^2-6x$6. $4x^2-4xy+y^2$【解析】1. $x^2-4$可以写成$(x-2)(x+2)$,因此进行因式分解后为$(x-2)(x+2)$。

2. $a^2-b^2$是一个差的平方,可以因式分解为$(a+b)(a-b)$。

3. 由于$8x^3=2^3\cdot x^3$,$27y^3=3^3\cdot y^3$,因此可以使用立方差公式进行因式分解,即$(2x-3y)(4x^2+6xy+9y^2)$。

4. 对于$2x^2+5x-3$,我们可以因式分解为$(2x-1)(x+3)$。

5. $2x^3-x^2-6x$可以因式分解为$x(2x+3)(x-2)$。

6. 通过观察可以发现,$4x^2-4xy+y^2$等于$(2x-y)^2$,因此进行因式分解后为$(2x-y)^2$。

【练习题二】解下列各方程:1. $x^2-9=0$2. $x^2-5x+6=0$3. $2x^2-7x+3=0$4. $3(x+2)^2=27$5. $4(x-1)(x+2)-5(x-1)^2=7x+29$【解析】1. $x^2-9=0$是一个差的平方,可以写成$(x-3)(x+3)=0$,所以解为$x=3$或$x=-3$。

2. 对于$x^2-5x+6=0$,我们可以因式分解为$(x-2)(x-3)=0$,所以解为$x=2$或$x=3$。

3. $2x^2-7x+3=0$不易因式分解,我们可以使用求根公式进行解答,即$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$。

初二数学因式分解精选100题

初二数学因式分解精选100题

提升课堂托辅中心初二数学因式分解精选100题2013年1月25日一、选择题1.下列各式中从左到右的变形,是因式分解的是( )A (a +3)(a -3)=a 2-9B x 2+x -5=(x -2)(x +3)+1C a 2b +ab 2=ab (a +b ) (D)x 2+1=x (x +x1) 2.下列各式的因式分解中正确的是( )A -a 2+ab -ac = -a (a +b -c )B 9xyz -6x 2y 2=3xyz (3-2xy )C 3a 2x -6bx +3x =3x (a 2-2b ) D21xy 2+21x 2y =21xy (x +y ) 3.把多项式m 2(a -2)+m (2-a )分解因式等于( )(A)(a -2)(m 2+m ) (B)(a -2)(m 2-m ) (C)m (a -2)(m -1) (D)m (a -2)(m+1) 4.下列多项式能分解因式的是( )(A)x 2-y (B)x 2+1 (C)x 2+y +y 2 (D)x 2-4x +45.下列多项式中,不能用完全平方公式分解因式的是( )(A)412m m ++ (B)222y xy x -+- (C)224914b ab a ++- (D)13292+-n n 6.多项式4x 2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是( )(A)4x (B)-4x (C)4x 4 (D)-4x 4 7.下列分解因式错误的是( )(A)15a 2+5a =5a (3a +1) (B)-x 2-y 2= -(x 2-y 2)= -(x +y )(x -y )(C)k (x +y )+x +y =(k +1)(x+y ) (D)a 3-2a 2+a =a (a -1)2 8.下列多项式中不能用平方差公式分解的是( )(A)-a 2+b 2 (B)-x 2-y 2 (C)49x 2y 2-z 2 (D)16m 4-25n 2p 29.下列多项式:①16x 5-x ;②(x -1)2-4(x -1)+4;③(x +1)4-4x (x +1)+4x 2;④-4x 2-1+4x ,分解因式后,结果含有相同因式的是( )(A)①② (B)②④ (C)③④ (D)②③ 10.两个连续的奇数的平方差总可以被 k 整除,则k 等于( ) (A)4 (B)8 (C)4或-4 (D)8的倍数11下列各式中从左到右的变形属于分解因式的是( )A a(a +b -1)=a 2+ab -aB a 2 –a -2=a(a -1)-2C -4 a 2+9b 2=(-2a +3b)(2a +3b)D . 2x +1=x(2+1/x) 12下列各式分解因是正确的是( )A .x 2y +7xy +y=y(x 2+7x)B . 3 a 2b +3ab +6b=3b(a 2+a +2)C . 6xyz -8xy 2=2xyz(3-4y)D . -4x +2y -6z=2(2x +y -3z) 13下列多项式中,能用提公因式法分解因式的是( )A . x 2-yB . x 2+2xC . x 2+y 2D .x 2-xy +y 2 14 2(a -b)3-(b - a)2分解因式的正确结果是( )A . (a -b)2(2a -2b +1)B . 2(a -b)(a -b -1)C . (b -a)2(2a -2b -1)D . (a -b)2(2a -b -1) 15下列多项式分解因式正确的是( )A . 1+4a -4a 2=(1-2a)2B . 4-4a +a 2=(a -2)2C . 1+4x 2=(1+2x)2D .x 2+xy +y 2=(x +y)2 16 运用公式法计算992,应该是( )A .(100-1)2B .(100+1)(100-1)C .(99+1)(99-1)D . (99+1)217 多项式:①16x 2-8x ;②(x -1)2 -4(x -1)2;③(x +1)4-4(x +1)2+4x 2 ④-4x 2-1+4x 分解因式 结果中含有相同因式的是( )A.①和②B.③和④C.①和④D.②和③18无论x、y取何值,x2+y2-2x+12y+40的值都是()A.正数B.负数C.零D.非负数19下列正确的是()A.x2+y2=(x+y)(x-y) B.x2-y2=(x+y)(x-y)C.-x2+y2=(-x+y)(-x-y) D.-x2-y2=-(x+y)(x-y)二、填空题20.分解因式:m3-4m= .21.已知x+y=6,xy=4,则x2y+xy2的值为.22.将x n-y n分解因式的结果为(x2+y2)(x+y)(x-y),则n的值为.23.若ax2+24x+b=(mx-3)2,则a= ,b= ,m= .24.根据图形面积关系,不连其他线,便可以得到一个分解因式的公式是.25多项式-9x2y+36xy2-3xy提公因式后的另一个因式是___________;26把多项式-x4+16分解因式的结果是_____________;27已知xy=5,a-b=3,a+b=4,则xya2-yxb2的值为_______________;28若x2+2mx+16是完全平方式,则m=______;(第24题图) 29分解因式:-x2+4x-4= ;30 +3mn+9n2=( +3n)2;31若x+y=1则1/2x2+xy+1/2y2= ;三、因式分解32. -24x3-12x2+28x 33. 6(m-n)3-12(n-m)2 34.3(a-b)2+6(b-a)35. 18(a+b)3-12b(b-a)236. (2a+b)(2a-3b)-3a(2a+b) 37.(x2+6x)2-(2x-4)238. 9(m+n)2-(m-n)239. (2x+3y)2-1 40. 9(a-b)2-16(a+b)2 41. (x+y)2-16(x-y)2 42. -16x4+81y4 43.3ax2-3ay244.2x3-8x 45. 7x2-63 46. (a2+b2)2-4a2b247. (m +n)2-6(m +n)+9 48. (3)(a -b)2-2(a -b)+1; 49. 4xy 2-4x 2y -y 350. -x 2-4y 2+4xy 51. 25)(10)(2++++y x y x ; 52. 4224817216b b a a +-;53. (a 2+4)2-16a 2 54. -4x 3+16x 2-26x 56. 21a 2(x -2a )2-41a (2a -x )357. 56x 3yz+14x 2y 2z -21xy 2z 2 58. mn(m -n)-m(n -m) 59. -41(2a -b )2+4(a -21b )260. 4xy –(x 2-4y 2) 61. -3ma 3+6ma 2-12ma 62. a 2(x -y )+b 2(y -x )63. 23)(10)(5x y y x -+- 64. 32)(12)(18b a b a b --- 65. –2x 2n -4x n66. )(6)(4)(2a x c x a b a x a ---+- 67. 4416n m - 68.22)(16)(9n m n m --+;69. 21ax 2y 2+2axy +2a 70. (x 2-6x )2+18(x 2-6x )+81 71. 24)4)(3)(2)(1(-++++x x x x72.9x 2-y 2-4y -4 73.22414y xy x +-- 74.811824+-x x75. 2ax a b ax bx bx -++--2 76.1235-+-x x x 77. )()()(23m n n m n m +--+78. 3)2(2)2(222-+-+a a a a 79. 2222224)(b a b a c ---四.特殊的因式分解 80.),(3127123且均为自然数n m b a a nn m n m >--- 81.13112121132-+-+-+++n n n n n n y x y x y x五.用简便方法计算:82. 57.6×1.6+28.8×36.8-14.4×80 83. 13.731175.231178.193117⨯-⨯+⨯84. 39×37-13×34 85)1011)(911()311)(211(2232----六.解答题86若n m y x -=))()((4222y x y x y x +-+,求m ,n 的值87已知,01200520042=+++++x x x x 求2006x 的值88若6,422=+=+y x y x 求xy 的值89已知312=-y x ,2=xy ,求 43342y x y x -的值。

人教版八年级数学因式分解计算题

人教版八年级数学因式分解计算题

人教版八年级数学因式分解计算题一、因式分解计算题20题及解析。

1. 题目:分解因式x^2 - 9- 解析:这是一个平方差的形式,x^2-9 = x^2-3^2=(x + 3)(x-3)。

2. 题目:分解因式4x^2-16- 解析:先提取公因式4,得到4(x^2-4),而x^2-4又是平方差形式,x^2-4=(x + 2)(x-2),所以4x^2-16 = 4(x + 2)(x-2)。

3. 题目:分解因式x^3-2x^2+x- 解析:先提取公因式x,得到x(x^2-2x + 1),而x^2-2x + 1=(x - 1)^2,所以x^3-2x^2+x=x(x - 1)^2。

4. 题目:分解因式9x^2-y^2- 解析:这是平方差形式,9x^2-y^2=(3x + y)(3x-y)。

5. 题目:分解因式x^2y - 4y- 解析:先提取公因式y,得到y(x^2-4),x^2-4=(x + 2)(x-2),所以x^2y-4y=y(x + 2)(x-2)。

6. 题目:分解因式2x^2-8- 解析:先提取公因式2,得到2(x^2-4),x^2-4=(x + 2)(x-2),所以2x^2-8 = 2(x + 2)(x-2)。

7. 题目:分解因式x^4-1- 解析:这是平方差形式,x^4-1=(x^2+1)(x^2-1),而x^2-1=(x + 1)(x-1),所以x^4-1=(x^2+1)(x + 1)(x-1)。

8. 题目:分解因式a^3-a- 解析:先提取公因式a,得到a(a^2-1),a^2-1=(a + 1)(a-1),所以a^3-a=a(a + 1)(a-1)。

9. 题目:分解因式16x^2-25y^2- 解析:这是平方差形式,16x^2-25y^2=(4x+5y)(4x - 5y)。

10. 题目:分解因式x^3+2x^2+x- 解析:先提取公因式x,得到x(x^2+2x + 1),x^2+2x + 1=(x + 1)^2,所以x^3+2x^2+x=x(x + 1)^2。

初二数学因式分解50道题及答案

初二数学因式分解50道题及答案

初中因式分解50题及答案学校:___________姓名:___________班级:___________考号:___________一、解答题1.因式分解(1)22363ax axy ay +﹣(2)()44m m -+.2.(1)计算:()3222x x x ⋅⋅- (2)计算:()()3223x x +-(3)因式分解:32x xy -(4)因式分解:244a b ab b -+3.(1)计算:2(3)(2)(4)(4)a a a a -+-+-;(2)分解因式:229()4()a x y b y x -+-;4.因式分解:244x y xy y -+.5.因式分解(1)22312x y -;(2)29124m m -+.6.分解因式:(1)22x xy xy -+(2)()222224a b a b +- (3)()()269x y x y ---+7.因式分解:(1)39x x -(2)244m m -+-8.分解因式(1)21236x x -+;(2)32312a ab -.9.因式分解(1)224a a -(2)22169mn m n -+10.因式分解(1)()222224x y x y +- (2)22369xy x y y --11.分解因式(1)3228a ab -.(2)()()269b a a b ---+.12.分解因式:(1)2269m n n -+-(2)()226(2)714x y x x y x x y +++--. 13.分解因式:22944a ab b -+-.14.因式分解:(1)3223242x y x y xy -+-;(2)()()222211a b b b -+-.15.因式分解:(1)282abc bc -;(2)()()26x x y x y +-+;16.在实数范围内分解下列因式:(1) 4265y y -+;(2) 211x -;(3) 23-+a ;(4)252x -.17.分解因式∶(1)26mx my -;(2)222510m mn n -+(3)()()229a x y b y x -+-.18.把下列多项式分解因式.(1)329a ab -;19.分解因式:(1)22364m n -(2)22(()())x x y x y x y x ----+.20.分解因式(1)216x -(2)3a a -(3)24(2)4(2)1a b a b +-++;(4)2221y y x ++-21.将下列各式因式分解:(1)24xy xy -.(2)4224816x x y y -+.(3)()()222x x y y x -+-.22.因式分解:(1)()()2222x a y a -+-(2)()()22211216x x x x -+-+ 23.因式分解:()()22254a x y b y x -+-.24.分解因式(1)32x xy -(2)(2)(4)1x x +++25.分解因式:(1)323812a b ab c +(2)22344ab a b b --.26.分解因式.(1)2()4()a x y y x -+-;(2)()222221664x y x y +-. 27.分解因式(2)22()()x a x b +--(3)22(32)(27)x x --+28.分解因式:(1)2344x x x --;(2)2(2)(3)(2)x y x y x y -+--;(3)22222()4x y x y +-.29.分解因式:(1)22338124a b ab a b -+-(2)()()24a x y y x -+-30.分解因式2812x x -+:.31.分解因式:()()229x y z x y z -++--.32.因式分解(直接写出结果)(1)2()()y x y x y ---=_________;(2)41x -=_____________;(3)2(1)4x x +-=____________.33.把下列各式分解因式:(1)()()26a x y b y x ---;(2)()()2221619y y ---+ 34.分解因式:(1)2961x x ++(2)322321218x y x y xy -+35.分解因式:()()()111xy x y xy ++++36.因式分解(1)3x y xy -;(2)()()21449x y x y -+++-.37.分解因式:(1)22363a ab b -+-;(2)()()2294a x y b y x -+-.38.因式分解:(1)24ab a -;(2)()()22258516x x +--+. 39.分解因式:(1)29x -(2)222050x x -+40.分解因式:2(()9)x m n n m -+-41.把下列各式因式分解:(1)323812a b ab c +;(2)2231212x xy y -+;(3)()()229+4a x y b y x --;(4)44x y -+;(5)292)(2a x y x y +--.42.因式分解(1)22862ab a b ab -+-; (2)214x x -+;(3)()22214x x +-. 43.把下列各式因式分解:(1)()222416a a +-. (2)()()229m n m n +--.(3)222232448a x a x a -+-.44.分解因式(1)2221a b a --+;(2)3-a b ab .45.分解因式:(1)2ax a -;(2)2363x y xy y -+.46.把下列多项式分解因式:(1)34x x -(2)2292a b ab +-+47.因式分解(1)32m mn(2)22288x xy y -+48.因式分解:(1)29x -;(2)232a a a -+;(3)()()22258516x x +--+. 49.分解因式:223242x y xy y ++.50.分解因式:(1)321510x x +;(2)269x y xy y -+;(3)22()4()a x y b y x -+-.参考答案:1.(1)()23-a x y(2)()22m -【分析】(1)先提公因式,再运用完全平方公式即可作答;(2)先去括号,再运用完全平方公式即可作答.【详解】(1)223-63ax axy ay +()2232a x xy y =-+()23a x y =-; (2)()44m m -+244m m =-+()22m =-.【点睛】本题考查因式分解,用到了提公因式法与公式法,解题的关键是注意如果多项式的各项含有公因式,必须先提公因式.2.(1)98x -(2)2656x x --(3)()()x x y x y +-(4)()22b a -【分析】(1)根据积的乘方,同底数幂的乘法运算法则计算即可;(2)根据多项式乘多项式的法则计算即可;(3)先提取公因式,再利用平方差公式分解因式;(4)先提取公因式,再利用完全平方公式分解因式;【详解】(1)解:原式()268x x x =⋅⋅- 98x =-;(2)解:原式26946x x x =-+-2656x x =--;(3)解:原式()22x x y =-()()x x y x y =+-;(4)解:原式()244b a a =-+ ()22b a =-. 【点睛】本题考查了积的乘方,同底数幂的乘法,多项式乘多项式,综合提公因式和公式法分解因式,熟练掌握运算法则是解题的关键.3.(1)23228a a --(2)()()()3232x y a b a b -+-【分析】(1)先去括号,再合并同类项即可;(2)先提取公因式,然后利用平方差公式分解即可.【详解】解:(1)原式()22221216a a a =----22221216a a a =---+23228a a =--;(2)原式()()2294a x y b x y =---()()2294x y a b =--()()()3232x y a b a b =-+-.【点睛】本题主要考查整式的乘法以及乘法公式,因式分解,掌握因式分解的方法,整式运算的法则是解题的关键.4.2(21)y x -【分析】先提取y ,再根据公式法分解因式即可.【详解】原式2(441)y x x =-+2(21)y x =-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 5.(1)()()322x y x y +-(2)()232m -【分析】(1)先提取公因式,再用平方差公式;(2)用完全平方公式.【详解】(1)解:22312x y -()2234x y =- ()()322x y x y =+-(2)29124m m -+()2232322m m =-⨯⨯+ ()232m =-【点睛】本题主要考查了公式法与提公因式法因式分解;熟练掌握平方差公式与完全平方公式的特征是解题的关键.6.(1)()21x y -(2)()()22a b a b +-(3)()23x y --【分析】(1)先提取公因式x ,再利用完全平方公式进行因式分解即可;(2)先利用平方差公式分解为()()222222a b ab a b ab +++-,再利用完全平方公式分解因式即可;(3)把()x y -看作整体利用完全平方公式进行因式分解即可.【详解】(1)22x xy xy -+()212x y y =-+()21x y =-.(2)()222224a b a b +-()()222222a b ab a b ab =+++-()()22a b a b =+-. (3)()()269x y x y ---+ ()23x y =--.【点睛】此题考查了因式分解,注意因式分解要彻底,熟练掌握因式分解并灵活选择方法是解题的关键.7.(1)()()33x x x +-;(2)()22m --.【分析】(1)先提取公因式x ,再用平方差公式继续分解;(2)先提取公因式1-,再用完全平方公式继续分解.【详解】(1)解:()3299x x x x -=- ()()33x x x =+-;(2)解:244m m -+-()244m m =--+()22m =--.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 8.(1)()26x -(2)()()322a a b a b -+【分析】(1)式利用完全平方公式分解即可;(2)先提取公因式,再利用平方差公式分解即可.【详解】(1)解:21236x x -+22266x x =-⨯⋅+()26x =-(2)解:32312a ab - ()2234a a b =-()2232a a b ⎡⎤=-⎣⎦()()322a a b a b =-+【点睛】本题考查了提公因式法与公式法的综合运用,灵活选择合适的因式分解方法是解本题的关键.9.(1)()22a a -(2)()231mn -【分析】(1)直接提取公因式2a 即可得到答案;(2)利用完全平方公式分解因式即可.【详解】(1)解:224a a -()22a a =-;(2)解:22169mn m n -+()231mn =-.【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.10.(1)()()22x y x y +-(2)()23y x y --【分析】(1)先利用平方差公式因式分解,再利用完全平方公式进行因式分解,即可求解;(2)先提公因式,再利用完全平方公式进行因式分解,即可求解.【详解】(1)解:()222224x y x y +- ()()222222x y xy x y xy =+++-()()22x y x y =+-(2)解:22369xy x y y --()2296y x xy y =--+()23y x y =--【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.11.(1)()()222a a b a b +-(2)()23a b --【分析】(1)先提出公因式2a ,再用平方差公式进行求解即可,(2)先将()()269b a a b ---+转化为()()269a b a b ---+,再利用完全平方公式进行求解即可.【详解】(1)3228a ab - ()2224a a b =-()()222a a b a b =+-(2)()()269b a a b ---+()()269a b a b =---+()23a b =-- 【点睛】本题主要考查因式分解,解题的关键是掌握因式分解的方法——提公因式法和公式法,要注意分解要彻底.12.(1)()()33m n m n +--+(2)()()()271x y x x ++-【分析】(1)通过添括号,将2269m n n -+-转化为()2269m n n --+,再利用平方差公式进行分解因式即可求解.(2)将()226(2)714x y x x y x x y +++--转化为()()226(2)72x y x x y x x y +++-+,先提出公因式,再利用十字相乘法进行分解因式即可求解.【详解】(1)2269m n n -+-()2269m n n =--+()223m n =-- ()()33m n m n =+--+(2)()226(2)714x y x x y x x y +++--()()226(2)72x y x x y x x y =+++-+()()2267x y x x =++-()()()271x y x x =++-【点睛】本题考查分解因式的方法,解题的关键是掌握提公因式法,公式法和十字相乘法. 13.()()3232a b a b +--+【分析】先将多项式分组为()22944a ab b --+,再分别利用完全平方公式和平方差公式分解即可.【详解】解:22944a ab b -+-()22944b a a b =--+()292a b =--()()3232a b a b =+---⎡⎤⎡⎤⎣⎦⎣⎦()()3232a b a b =+--+.【点睛】本题考查了因式分解-分组分解,熟练掌握完全平方公式和平方差公式,能根据多项式特点进行适当分组是解题关键.14.(1)()22xy x y --(2)()()()()11a b a b b b ++--【分析】(1)先提取公因式2xy -,再利用完全平方公式继续分解即可;(2)先对原式变形,再利用平方差公式进行分解即可.【详解】(1)解:原式()2222xy x xy y =--+()22xy x y =--;(2)解:原式()()222211a b b b =--- ()()2221b a b =--()()()()11a b b b b a =++--.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:∶提公因式法;∶公式法;∶十字相乘法;∶分组分解法.因式分解必须分解到每个因式都不能再分解为止.15.(1)()24bc a c -(2)()()23x y x +-【分析】(1)用提公因式法解答;(2)用提公因式法解答.【详解】(1)解:原式()24bc a c =-(2)解:原式()()23x y x =+-【点睛】此题考查了因式分解——提公因式法,熟练掌握提取公因式的方法是解本题的关键.16.(1)()()(11y y y y +-(2)(x x(3)(2a(4)【分析】(1)原式先利用十字相乘法分解后,再利用平方差公式“()()22a b a b a b -=+-”分解即可;(2)原式利用平方差公式分解即可;(3)原式利用完全平方公式“()2222a ab b a b ±+=±”分解即可;(4)原式利用平方差公式分解即可.【详解】(1)解:原式()()2215y y --= ()()(11y y y y =+-;(2)解:原式22x =- (x x =;(3)解:原式(2a =;(4)解:原式=. 【点睛】本题考查了在实数范围内因式分解,掌握因式分解的方法是解决本题的关键. 17.(1)()23-m x y(2)()25m n -(3)()()()33x y a b a b +--【分析】(1)直接提公因式2m 即可分解;(2)利用完全平方公式分解即可;(3)先提公因式x y -,再利用平方差公式分解.【详解】(1)解:26mx my - ()23m x y =-;(2)222510m mn n -+()25m n =-;(3)()()229a x y b y x -+- ()()229a b x y =--()()()33y a b a b x +-=-【点睛】本题考查的是因式分解,在解答此类题目时要注意乘法公式的运用.18.(1)()()33a a b a b -+(2)23(2)x y -【分析】(1)先提公因式,再用公式法分解因式即可;(2)先提公因式,再用公式法分解因式即可.【详解】(1)解:329a ab -()229a a b =- ()()33a a b a b =-+;(2)解:2231212x xy y -+()22344x xy y =-+23(2)x y =-. 【点睛】本题主要考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.19.(1)()()433m n m n +-(2)()()21x y x --【分析】(1)直接根据平方差公式因式分解即可得到答案;(2)先提取公因式,再利用完全平方公式分解即可得到答案.【详解】(1)解:原式22(6)(2)m n =- ()()6262m n m n =+-()()433m n m n =+-;(2)解:原式22(())()x x y x y x x y =--+-+()()221x y x x =--+()()21x y x =--.【点睛】本题考查因式分解,解题的关键是熟练掌握有公因式先提取公因式,再看符不符合公式,利用公式法分解.20.(1)()()44x x +-(2)()()11a a a +-(3)()2421a b +-(4)()()11y x y x -+--【分析】(1)根据平方差公式进行因式分解即可求解;(2)先提公因式a ,然后根据平方差公式进行因式分解即可求解;(3)根据完全平方公式进行因式分解即可求解;(4)先分组,然后根据完全平方公式与平方差公式因式分解即可求解.【详解】(1)解:216x - ()()44x x =+-;(2)解:3a a -()21a a =-()()11a a a =+-;(3)解:24(2)4(2)1a b a b +-++()2221a b =+-⎡⎤⎣⎦()2421a b =+-; (4)2221y y x ++-()2221y y x ++-=()221y x =-- ()()11y x y x =-+--.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.21.(1)(4)xy y -(2)22(2)(2)x y x y -+(3)2()(1)(1)x y x x --+【分析】(1)提取公因式即可.(2)先利用完全平方公式进行因式分解,再利用平方差公式进行因式分解.(3)先提取公因式,再把剩下的部分提取2后,按照平方差公式展开.【详解】(1)解:原式(4)xy y =-(2)解:原式()22222224(4)x x y y =-⋅⋅+ 222(4)x y =-22(2)(2)x y x y =-+(3)解:原式2()(22)x y x =--2()2(1)x y x =-⋅⋅-2()(1)(1)x y x x =--+【点睛】本题考查的是因式分解,解题的关键是要识别出可以使用平方差公式和完全平方公式之处,分解彻底.22.(1)()()()2a x y x y -+- (2)412x ⎛⎫- ⎪⎝⎭【分析】(1)先变形,然后提取公因式,再利用平方差公式因式分解即可;(2)利用完全平方公式进行因式分解即可.【详解】(1)解∶原式()()2222x a y a =---()()222a x y =--()()()2a x y x y =-+-;(2)解:原式2214x x ⎛⎫=-+ ⎪⎝⎭2212x ⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 412x ⎛⎫=- ⎪⎝⎭. 【点睛】本题主要考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23.()(52)(52)x y a b a b --+【分析】将()y x -变形为()x y --,提取公因式,运用平方差公式即可求解.【详解】解:()()22254a x y b y x -+-()()22254a x y b x y =---()22(254)x y a b =--()(52)(52)x y a b a b =--+.【点睛】本题主要考查因式分解,掌握提取公因式,乘法公式进行因式分解是解题的关键. 24.(1)()()x x y x y +-(2)2(3)x +【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式整理后,利用完全平方公式分解即可.【详解】(1)解:原式22()()()x x y x x y x y =-=+-;(2)解:原式269x x =++2(3)x =+.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.25.(1)()22423ab a bc +;(2)()22--b a b .【分析】(1)提取公因式24ab ,即可求解;(2)先提取公因式b -,再利用完全平方公式继续分解即可.【详解】(1)解:323812a b ab c +()22423ab a bc =+;(2)解:22344ab a b b --()2244b ab a b =--++ ()22b a b =--.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 26.(1)()()()22a a x y +--(2)()()2244x y x y +-【分析】(1)原式提取公因式,再利用平方差公式分解;(2)原式利用平方差公式变形,再利用完全平方公式分解.【详解】(1)解:2()4()a x y y x -+- ()()24a x y =--()()()22a a x y =+--;(2)解:()222221664x y x y +- ()()2222168168x y xy x y xy =+++-()()2244x y x y =+-【点睛】此题考查了因式分解—提公因式法,以及公式法,熟练掌握因式分解的方法是解本题的关键.27.(1)()2xy x y -(2)()()2x a b a b +-+(3)()()519x x +-【分析】(1)先提取公因式,再用完全平方公式分解;(2)用平方差公式分解即可;(3)先用平方差公式分解,再提取公因式.【详解】(1)32232x y x y xy -+()222xy x xy y =-+()2xy x y =- (2)22()()x a x b +--[][]()()()()x a x b x a x b =++-+--()()x a x b x a x b =++-+-+()()2x a b a b =+-+(3)22(32)(27)x x --+[][](32)(27)(32)(27)x x x x =-++--+()()32273227x x x x =-++---()()559x x =+-()()519x x =+-【点睛】本题考查了因式分解的应用,熟练掌握因式分解的方法是解答本题的关键.因式分解常用的方法有:∶提公因式法;∶公式法;∶十字相乘法;∶分组分解法.28.(1)2(2)x x --(2)5(2)y x y -(3)22()()x y x y +-【分析】(1)先提公因式x -,再利用完全平方公式即可;(2)先提公因式(2)x y -,再合并同类项即可;(3)先利用平方差公式,再利用完全平方公式进行计算即可.【详解】(1)解:(1)原式2(44)x x x =--+2(2)x x =--;(2)解:原式(2)[(3)(2)]x y x y x y =-+--(2)(32)x y x y x y =-+-+5(2)y x y =-;(3)解:原式22222()4x y x y =+-2222(2)(2)x y x y xy y x ++=+-22()()x y x y =+-.【点睛】本题考查因式分解,掌握提公因式法和公式法是解题的关键.29.(1)()22423ab a b a b --+(2)()()()22x y a a -+-【分析】(1)提取4ab -,即可求解;(2)提取()x y -,再根据平方差公式继续分解即可求解.【详解】(1)解:22338124a b ab a b -+-()22423ab a b a b --+=;(2)解:()()24a x y y x -+-()()24x y a =-- ()()()22x y a a =-+-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 30.()()26x x --【分析】根据十字相乘法,进行因式分解即可.【详解】解:()()281226x x x x -+=--.【点睛】本题考查因式分解.熟练掌握十字相乘法因式分解,是解题的关键.31.()()4222x y z x y z ++++【分析】利用平方差公式先将原式进行分解因式得到()()422244x y z x y z ++++,再提取公因式2即可得到答案.【详解】解:()()229x y z x y z -++-- ()()()()33x y z x y z x y z x y z =+++--++---⎡⎤⎡⎤⎣⎦⎣⎦()()333333x y z x y z x y z x y z =+++--++-++()()422244x y z x y z =++++()()4222x y z x y z =++++.【点睛】本题主要考查了分解因式,正确利用平方差公式将原式分解成()()422244x y z x y z ++++是解题的关键.32.(1)()(2)x y y x --(2)()21(1)(1)x x x ++-(3)2(1)x -【分析】(1)提取公因式()x y -;(2)利用平方差公式分解;(3)先展开多项式,再利用完全平方公式.【详解】(1)解:原式()[1()]x y x y =---()(1)x y x y =--+;故答案为:()(1)x y x y --+;(2)解:原式22(1)(1)x x =+-2(1)(1)(1)x x x =++-;故答案为:2(1)(1)(1)x x x ++-;(3)解:原式2214x x x =++-221x x =-+2(1)x =-.故答案为:2(1)x -.【点睛】本题考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.33.(1)()()23a b x y +-(2)()()2222+-y y【分析】(1)利用提取公因式法分解因式;(2)利用完全平方公式和平方差公式分解因式.【详解】(1)解:()()26a x y b y x --- ()()26a x y b x y =-+-()()26a b x y =+-()()23a b x y =+-;(2)解:()()2221619y y ---+ ()2213y =-- ()2222y =- ()()2222y y =+-.【点睛】本题考查因式分解,属于基础题,掌握提取公因式法和公式法是解题的关键. 34.(1)()231+x(2)()223xy x y -【分析】(1)利用完全平方公式进行因式分解,即可求解;(2)先提出公因式,再利用完全平方公式进行因式分解,即可求解.【详解】(1)解:2296131x x x ; (2)解:322321218x y x y xy -+22269xy x xy y()223xy x y =-.【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.35.(1)(1)xy x xy y ++++【分析】先展开原式,得()()11xy xy x y xy +++++,令1xy a +=,式子变形为:()2xy a x y a xy a ax ay +++=+++,再根据十字相乘法,即可.【详解】()()()()()11111xy x y xy xy xy x y xy ++++=+++++,令1xy a +=,∶()()()111xy x y xy ++++()xy a x y a =+++2xy a ax ay =+++()2a a x y xy =+++()()a x a y =++,把1xy a +=代入()()a x a y ++,∶()()()()11a x a y xy x xy y ++=++++,∶()()()()()11111xy x y xy xy x xy y ++++=++++.【点睛】本题考查因式分解的知识,解题的关键是把1xy +看成一个整体,熟练掌握因式分解-十字相乘法的运用.36.(1)()()11xy x x -+(2)()27x y -+-【分析】(1)先提取公因式,再用平方差公式展开即可(2)直接用完全平方公式即可【详解】(1)解:3x y xy -()21xy x =-()()11xy x x =-+(2)解:()()21449x y x y -+++-()()21449x y x y ⎡⎤=-+-++⎣⎦ ()27x y =-+-【点睛】本题考查了用平方差公式和完全平方公式因式分解,熟练掌握公式是解决问题的关键37.(1)()23a b --;(2)()()()3232x y a b a b -+-.【分析】(1)先提公因式,再利用完全平方公式分解因式,即可;(2)先提公因式,再利用平方差公式分解因式,即可.【详解】(1)解:原式()2232a ab b =--+ ()23a b =--;(2)解:原式()()2294a x y b x y =--- ()()2294x y a b =--()()()3232x y a b a b =-+-.【点睛】本题考查了因式分解,掌握提公因式与公式法分解因式是解题的关键. 38.(1)()()22a b b +-(2)()()2233+-x x【分析】(1)先提取公因式a ,再利用平方差公式分解因式即可;(2)利用完全平方公式和平方差公式分解因式即可.【详解】(1)解:24ab a -()24a b =-()()22a b b =+-;(2)解:()()22258516x x +--+ ()2254x ⎡⎤=--⎣⎦ ()229x =- ()()2233x x =+-. 【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.39.(1)()()33x x +-;(2)225x -().【分析】(1)根据平方差公式直接分解因式;(2)先题公因式,在用完全平方差公式分解.【详解】(1)解:29x -()()33x x =+-;(2)222050x x -+()221025x x =-+225x =-(). 【点睛】本题考查因式分解,熟练运用提公因式法和公式法进行因式分解是解题的关键. 40.()()()33m n x x -+-【分析】先提公因式()m n -,然后根据平方差公式因式分解即可求解.【详解】解:2(()9)x m n n m -+-()()29x m n m n =---()()29m n x =--()()()33m n x x =-+-.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.41.(1)224(23)ab a bc +(2)23(2)x y -(3)()(32)(32)x y a b a b -+-(4)()()()22x y x y y x ++-(5)(2)(31)(31)x y a a ++-【分析】(1)原式提取公因式即可;(2)原式提取公因式,再利用完全平方公式分解即可;(3)原式变形后,提取公因式,再利用平方差公式分解即可;(4)原式利用平方差公式分解即可;(5)原式变形后,提取公因式,再利用平方差公式分解即可.【详解】(1)解:原式224(23)ab a bc =+;(2)解:原式223(44)x xy y =-+23(2)x y =-;(3)解:原式229()4()a x y b x y =---22()(94)x y a b =--()(32)(32)x y a b a b =-+-;(4)解:原式()()2222x y y x =+-()()()22x y x y y x =++-;(5)解:原式292)(2)(a x y x y =+-+22)(91)(x y a =+-(2)(31)(31)x y a a =++-.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解决本题的关键.42.(1)()2431ab b a --+(2)212x ⎛⎫- ⎪⎝⎭ (3)()()2211x x +-【分析】(1)提取公因式2ab -进行分解因式即可;(2)利用完全平方公式分解因式即可;(3)利用平方差公式和完全平方公式分解因式即可.【详解】(1)解:22862ab a b ab -+-()2431ab b a =--+ (2)解:214x x -+212x ⎛⎫=- ⎪⎝⎭; (3)解:()22214x x +- ()()221212x x x x =+++-()()2211x x =+-. 【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.43.(1)()()2222a a +-(2)()()422m n m n ++(3)()2234a x --【分析】(1)首先利用平方差公式分解因式,然后利用完全平方公式分解因式;(2)首先利用平方差公式分解因式,然后利用提公因式法分解因式;(3)首先利用提公因式法分解因式,然后利用完全平方公式分解因式.【详解】(1)()222416a a +- ()()224444a a a a =+++-()()2222a a =+-;(2)()()229m n m n +-- ()()3333m n m n m n m n =++-+-+()()4224m n m n =++()()422m n m n =++;(3)222232448a x a x a -+-()223816a x x =--+()2234a x =--. 【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.44.(1)())11(a b a b -+--(2)()()11ab a a +-【分析】(1)根据平方差公式和完全平方公式,分解因式即可;(2)先提公因式,然后用平方差公式分解因式即可.【详解】(1)解:2221a b a --+2221a a b =-+-()221a b =-- ()()11a b a b -+--=;(2)解:3-a b ab()21ab a =-()()11ab a a =+-.【点睛】本题主要考查了因式分解,解题的关键是熟练掌握平方差公式和完全平方公式. 45.(1)()()11a x x +-(2)()231y x -【分析】(1)首先提取公因式,再利用平方差公式,即可分解因式;(2)首先提取公因式,再利用完全平方公式,即可分解因式.【详解】(1)解:2ax a -()21a x =- ()()11a x x =+-(2)解:2363x y xy y -+()2321y x x =-+()231y x =-【点睛】本题考查了因式分解的方法,熟练掌握和运用因式分解的方法是解决本题的关键. 46.(1)()()22-+x x x ;(2)()()33a b a b +++-.【分析】(1)先提取公因式,再利用平方差公式即可得到结果;(2)原式利用完全平方公式与平方差公式分解即可得到结果.【详解】(1)解:34x x - ()24x x =-()()22x x x =-+;(2)解:2292a b ab +-+()2229a b ab =++-()29a b =+- ()()33a b a b =+++-.【点睛】此题考查了因式分解,提公因式法和运用公式法,熟练掌握完全平方公式是解本题的关键.47.(1)()()m m n m n -+(2)22(2)x y -【分析】(1)提取公因式m ,运用平方差公式即可得;(2)提取公因数2,运用完全平方公式即可得.【详解】(1)解:原式=22()m m n -=()()m m n m n -+;(2)解:原式=222(44)x xy y -+=22(2)x y -.【点晴】本题考查了因式分解,解题的关键是掌握因式分解,平方差公式,完全平方公式. 48.(1)()()33x x +-(2)21a a -()(3)()()2233x x +-【分析】(1)直接运用平方差公式因式分解即可;(2)先提取有公因式,然后运用完全平方公式进行因式分解即可;(3)先提取有公因式,然后运用完全平方公式,再运用完全平方公式进行因式分解即可.【详解】(1)解:29x - ()()33x x =+-,(2)解:232a a a -+=212a a a -+()=21a a -()(3)解:()()22258516x x +--+ =()()22258516x x ---+=()2254x -- ()()2233x x =+- 【点睛】本题考查因式分解,熟练掌握因式分解的方法是解题的关键.49.()22y x y +【分析】先提出公因式,再利用完全平方公式进行因式分解,即可求解.【详解】解:223242x y xy y ++()2222y x xy y =++()22y x y =+ 【点睛】本题考查了提取公因式与公式法分解因式,熟练掌握因式分解的方法是解题的关键.50.(1)()2532x x +(2)()23y x -(3)()()()22x y a b a b -+-【分析】(1)直接提取公因式即可求解;(2)先提取公因式y ,然后利用完全平方公式分解因式即可;(3)先提取公因式x y -,然后利用平方差公式分解因式即可.【详解】(1)321510x x + ()2532x x =+(2)269x y xy y -+()269y x x =-+()23y x =-(3)22()4()a x y b y x -+-22()4()a x y b x y =--- ()22()4x y a b =--()()()22x y a b a b =-+-【点睛】本题主要考查了因式分解,解题的关键是熟知因式分解的方法.。

【八年级上册】因式分解专项训练(30道)(含答案)

【八年级上册】因式分解专项训练(30道)(含答案)

因式分解专项训练(30道)1.(拱墅区校级期中)因式分解(1)﹣a2+1;(2)2x3y+4x2y2+2xy3;(3)4(x+2y)2﹣25(x﹣y)2;(4)(a2+a)2﹣8(a2+a)+12.2.(拜泉县期中)因式分解(1)6x2﹣3x;(2)16m3﹣mn2;(3)25m2﹣10mn+n2;(4)9a2(x﹣y)+4b2(y﹣x).3.(浠水县月考)分解因式:(1)3pq3+15p3q;(2)ab2﹣a;(3)4xy2﹣4x2y﹣y3;(4)(a2+1)2﹣4a2.4.(绿园区校级月考)把下列多项式分解因式.(1)3x2﹣3y2.(2)a2b+2ab2+b3.(3)(m﹣1)(m﹣3)+1.(4)2a2+4ab+2b2.5.(2021春•东昌府区期末)把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣15;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.6.(2021春•南山区校级期中)分解因式:(1)12ab2﹣6ab;(2)a2﹣6ab+9b2;(3)x4﹣1;(4)n2(m﹣2)+(2﹣m).7.(2021春•邗江区期中)分解因式:(1)2x2﹣12x+18;(2)a3﹣a;(3)4ab2﹣4a2b﹣b3;(4)m3(a﹣2)+m(2﹣a).8.(2020秋•丛台区期末)因式分解(1)(a﹣b)2+4ab;(2)x2﹣2x﹣8;(3)x4﹣6x3+9x2﹣16;(4)(x2+3x+5)(x2+3x+1)+3.9.(2021春•江北区校级期中)因式分解:(1)﹣8ab2+6a2b﹣2ab;(2)4a2﹣(a2+1)2;(3)x4﹣8x2﹣9;(4)(2﹣x2)2+2x(x2﹣2)+x2.10.(2021春•福田区校级期中)因式分解:(1)ab2﹣a;(2)2xy2﹣12x2y+18x3;(3)a4﹣8a2+16;(4)(x﹣4)(x+1)+3x.11.(2021秋•姜堰区月考)因式分解:(1)a4﹣1;(2)x3﹣2x2y+xy2.12.(2021春•平山区校级期中)分解因式:(1)x2(m﹣n)+y2(n﹣m);(2)3x2﹣18xy+27y2.13.(2021春•鄄城县期末)因式分解:(1)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(2)(x2+1)2﹣4x2.14.(2021春•福田区校级期中)分解因式:(1)4x2﹣(x2+1)2;(2)3(x﹣1)2﹣18(x﹣1)+27.15.(2021春•凤翔县期末)分解因式:(1)9a2(x﹣y)+y﹣x;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1.16.(2021春•沈北新区期末)因式分解:(1)﹣10a2bc+15bc2﹣20ab2c;(2)(x2+1)2﹣4x2.17.(2021春•平顶山期末)把下列各式因式分解:(1)x2+2xy+y2﹣c2;(2)b2(a﹣2)+b(2﹣a).18.(2021春•覃塘区期末)因式分解:(1)3x3﹣12x;(2)1﹣2x+2y+(x﹣y)2.19.(2021春•江宁区月考)分解因式:(1)4x2(x﹣y)+(y﹣x);(2)(x2﹣5)2+8(x2﹣5)+16.20.(2021春•汉寿县期中)分解因式:3x2﹣xy﹣2y2﹣x+y.21.(2020秋•浦东新区期末)因式分解(1)5x2+6y﹣15x﹣2xy;(2)(1+ab)2﹣(a+b)2.22.(2020春•市南区校级期中)因式分解:4(x+y)2﹣16(x﹣y)2.23.(2020秋•宝山区期末)分解因式:2x3﹣2x2y+8y﹣8x.24.(2020秋•上海期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.25.(2020秋•松江区期末)因式分解:x3+3x2y﹣4x﹣12y.26.(2020秋•浦东新区期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.27.(2020秋•浦东新区期末)因式分解:(x2+2x)2﹣7(x2+2x)﹣8.28.(2021秋•浦东新区校级期中)分解因式:(x2+x+1)(x2+x+2)﹣12.29.(2020秋•海淀区校级期中)因式分解:64a6﹣48a4b2+12a2b4﹣b6.30.(2020秋•海淀区校级期中)请用两种方法对多项式x3﹣4x2+6x﹣4进行因式分解.(拆添项算一种方法)因式分解专项训练(30道)【答案版】1.(2021春•拱墅区校级期中)因式分解(1)﹣a2+1;(2)2x3y+4x2y2+2xy3;(3)4(x+2y)2﹣25(x﹣y)2;(4)(a2+a)2﹣8(a2+a)+12.【解题思路】(1)逆用平方差公式进行因式分解.(2)先逆用平方差公式,再提公因式.(3)先逆用平方差公式,再提公因式.(4)运用十字相乘法进行因式分解,注意分解彻底.【解答过程】解:(1)﹣a2+1=(1+a)(1﹣a).(2)2x3y+4x2y2+2xy3=2xy(x2+2xy+y2)=2xy(x+y)2.(3)4(x+2y)2﹣25(x﹣y)2=[2(x+2y)+5(x﹣y)][2(x+2y)﹣5(x﹣y)]=(2x+4y+5x﹣5y)(2x+4y﹣5x+5y)=(7x﹣y)(﹣3x+9y)=﹣3(7x﹣y)(x﹣3y).(4)(a2+a)2﹣8(a2+a)+12=(a2+a﹣2)(a2+a﹣6)=(a+2)(a﹣1)(a+3)(a﹣2).2.(2021秋•拜泉县期中)因式分解(1)6x2﹣3x;(2)16m3﹣mn2;(3)25m2﹣10mn+n2;(4)9a2(x﹣y)+4b2(y﹣x).【解题思路】(1)原式提取公因式3x,分解即可;(2)原式提取公因式m,再利用平方差公式分解即可;(3)原式利用完全平方公式分解即可;(4)原式变形后,提取公因式(x﹣y),再利用平方差公式分解即可.【解答过程】解:(1)6x2﹣3x=3x(2x﹣1);(2)16m3﹣mn2=m(16m2﹣n2)=m(4m+n)(4m﹣n);(3)25m2﹣10mn+n2=(5m﹣n)2;(4)9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).3.(2021秋•浠水县月考)分解因式:(1)3pq3+15p3q;(2)ab2﹣a;(3)4xy2﹣4x2y﹣y3;(4)(a2+1)2﹣4a2.【解题思路】(1)原式提取公因式3pq即可;(2)原式提取公因式a,再利用平方差公式分解即可;(3)原式提取公因式﹣y,再利用完全平方公式分解即可;(4)原式利用平方差公式,以及完全平方公式分解即可.【解答过程】解:(1)3pq3+15p3q=3pq(q2+5p2);(2)ab2﹣a=a(b2﹣1)=a(b+1)(b﹣1);(3)4xy2﹣4x2y﹣y3=﹣y(y2+4x2﹣4xy)=﹣y(2x﹣y)2;(4)(a2+1)2﹣4a2=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.4.(2021秋•绿园区校级月考)把下列多项式分解因式.(1)3x2﹣3y2.(2)a2b+2ab2+b3.(3)(m﹣1)(m﹣3)+1.(4)2a2+4ab+2b2.【解题思路】(1)先提公因式,再利用平方差公式即可;(2)先提公因式,再利用完全平方公式即可;(3)先计算多项式乘多项式,整理后,再利用完全平方公式即可;(4)先提公因式,再利用完全平方公式即可;【解答过程】解:(1)原式=3(x2﹣y2)=3(x+y)(x﹣y);(2)原式=b(a2+2ab+b2)=b(a+b)2;(3)原式=m2﹣4m+4=(m﹣2)2;(4)原式=2(a2+2ab+b2)=2(a+b)2.5.(2021春•东昌府区期末)把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣15;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.【解题思路】(1)直接提取公因式;(2)先加上负括号,再利用十字相乘法;(3)先提取公因式2mn,再利用完全平方公式;(4)利用平方差公式因式分解.【解答过程】解:(1)2(x﹣y)﹣(x﹣y)2=(x﹣y)[2﹣(x﹣y)]=(x﹣y)(2﹣x+y);(2)﹣x2+8x﹣15=﹣(x2﹣8x+15)=﹣(x﹣5)(x﹣3);(3)8m3n+40m2n2+50mn3=2mn(4m2+20mn+25n2)=2mn(2m+5n)2;(4)a4﹣b4=(a2+b2)(a2﹣b2)=(a2+b2)(a+b)(a﹣b).6.(2021春•南山区校级期中)分解因式:(1)12ab2﹣6ab;(2)a2﹣6ab+9b2;(3)x4﹣1;(4)n2(m﹣2)+(2﹣m).【解题思路】(1)直接提取公因式6ab,进而分解因式即可;(2)直接利用完全平方公式分解因式得出答案;(3)直接利用平方差公式分解因式得出答案;(4)直接提取公因式(m﹣2),再利用平方差公式分解因式即可.【解答过程】解:(1)12ab2﹣6ab=6ab(2b﹣1);(2)a2﹣6ab+9b2=(a﹣3b)2;(3)x4﹣1=(x2+1)(x2﹣1)=(x2+1)(x﹣1)(x+1);(4)n2(m﹣2)+(2﹣m)=n2(m﹣2)﹣(m﹣2)=(m﹣2)(n2﹣1)=(m﹣2)(n+1)(n﹣1).7.(2021春•邗江区期中)分解因式:(1)2x2﹣12x+18;(2)a3﹣a;(3)4ab2﹣4a2b﹣b3;(4)m3(a﹣2)+m(2﹣a).【解题思路】(1)首先提公因式2,再利用完全平方公式进行分解即可;(2)首先提公因式a,再利用平方差公式进行分解即可;(3)首先提公因式﹣b,再利用完全平方公式进行分解即可;(4)首先提公因式m(a﹣2),再利用平方差公式进行分解即可.【解答过程】解:(1)原式=2(x2﹣6x+9)=2(x﹣3)2;(2)原式=a(a2﹣1)=a(a+1)(a﹣1);(3)原式=﹣b(b2﹣4ab+4a2)=﹣b(b﹣2a)2;(4)原式=m(a﹣2)(m2﹣1)=m(a﹣2)(m﹣1)(m+1).8.(2020秋•丛台区期末)因式分解(1)(a﹣b)2+4ab;(2)x2﹣2x﹣8;(3)x4﹣6x3+9x2﹣16;(4)(x2+3x+5)(x2+3x+1)+3.【解题思路】(1)先根据完全平方公式展开,再根据完全平方公式分解因式即可;(2)根据十字相乘法分解因式即可;(3)先分组,根据完全平方公式进行计算,再根据平方差公式分解因式,最后根据“十字相乘法”分解因式即可;(4)把x2+3x当作一个整体展开,再根据“十字相乘法”分解因式即可.【解答过程】解:(1)(a﹣b)2+4ab=a2﹣2ab+b2+4ab=a2+2ab+b2=(a+b)2;(2)x2﹣2x﹣8=(x﹣4)(x+2);(3)x4﹣6x3+9x2﹣16=(x4﹣6x3+9x2)﹣16=x2(x﹣3)2﹣42=[x(x﹣3)+4][x(x﹣3)﹣4]=(x2﹣3x+4)(x2﹣3x﹣4)=(x2﹣3x+4)(x﹣4)(x+1);(4)(x2+3x+5)(x2+3x+1)+3=(x2+3x)2+6(x2+3x)+5+3=(x2+3x)2+6(x2+3x)+8=(x2+3x+2)(x2+3x+4)=(x+1)(x+2)(x2+3x+4).9.(2021春•江北区校级期中)因式分解:(1)﹣8ab2+6a2b﹣2ab;(2)4a2﹣(a2+1)2;(3)x4﹣8x2﹣9;(4)(2﹣x2)2+2x(x2﹣2)+x2.【解题思路】(1)原式提取﹣2ab,利用提公因式法因式分解即可;(2)原式利用平方差公式化简,再利用完全平方公式分解即可;(3)原式利用十字相乘法分解,再利用平方差公式分解即可;(4)利用完全平方公式变形,再利用提公因式分解即可.【解答过程】解:(1)原式=﹣2ab(4b﹣3a+1);(2)原式(2a)2﹣(a2+1)2=(2a+a2+1)(2a﹣a2﹣1)=﹣(a+1)2(a﹣1)2;(3)原式=(x2+1)(x2﹣9)=(x2+1)(x+3)(x﹣3);(4)原式=(x2﹣2)2+2x(x2﹣2)+x2=(x2+x﹣2)2=(x+2)2(x﹣1)2.10.(2021春•福田区校级期中)因式分解:(1)ab2﹣a;(2)2xy2﹣12x2y+18x3;(3)a4﹣8a2+16;(4)(x﹣4)(x+1)+3x.【解题思路】(1)提公因式后再利用平方差公式即可;(2)提公因式后再利用完全平方公式即可;(3)利用完全平方公式后再利用平方差公式;(4)根据多项式乘法计算,再利用平方差公式.【解答过程】解:(1)ab2﹣a=a(b2﹣1)=a(b+1)(b﹣1);(2)原式=2x(y2﹣6xy+9x2)=2x(y﹣3x)2;(3)原式=(a2﹣4)2=(a﹣2)2(a+2)2;(4)原式=x2﹣3x﹣4+3x=x2﹣4=(x+2)(x﹣2).11.(2021秋•姜堰区月考)因式分解:(1)a4﹣1;(2)x3﹣2x2y+xy2.【解题思路】(1)原式利用平方差公式分解即可;(2)原式提取公因式x,再利用完全平方公式分解即可.【解答过程】解:(1)原式=(a2+1)(a2﹣1)=(a2+1)(a+1)(a﹣1);(2)原式=x(x2﹣2xy+y2)=x(x﹣y)2.12.(2021春•平山区校级期中)分解因式:(1)x2(m﹣n)+y2(n﹣m);(2)3x2﹣18xy+27y2.【解题思路】(1)首先提取公因式(m﹣n),然后利用平方差公式继续进行因式分解;(2)先提取公因式,再利用完全平方公式把原式进行因式分解即可.【解答过程】解:(1)x2(m﹣n)+y2(n﹣m)=(m﹣n)(x2﹣y2)=(m﹣n)(x+y)(x﹣y);(2)3x2﹣18xy+27y2=3(x2﹣6xy+9y2)=3(x﹣3y)2.13.(2021春•鄄城县期末)因式分解:(1)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(2)(x2+1)2﹣4x2.【解题思路】(1)用提取公因式法分解因式;(2)用平方差公式、完全平方公式分解因式.【解答过程】解:(1)原式=(a﹣b)(x﹣y)+(a﹣b)(x+y)=(a﹣b)[(x﹣y)+(x+y)]=2x(a﹣b),(2)原式=(x2+1)2﹣(2x)2=(x2+1+2x)(x2+1﹣2x)=(x+1)2(x﹣1)2.14.(2021春•福田区校级期中)分解因式:(1)4x2﹣(x2+1)2;(2)3(x﹣1)2﹣18(x﹣1)+27.【解题思路】(1)先选择平方差公式分解因式,再运用完全平方公式进行因式分解;(2)先运用提取公因式法分解因式,再运用完全平方公式分解因式.【解答过程】解:(1)原式=(2x)2﹣(x2+1)2=(2x+x2+1)(2x﹣x2﹣1)=﹣(x+1)2(x﹣1)2;(2)原式=3[(x﹣1)2﹣6(x﹣1)+9]=3[(x﹣1)﹣3]2=3(x﹣4)2.15.(2021春•凤翔县期末)分解因式:(1)9a2(x﹣y)+y﹣x;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1.【解题思路】(1)原式变形后,提取公因式,再利用平方差公式分解即可;(2)原式整理后,利用完全平方公式分解即可.【解答过程】解:(1)原式=9a2(x﹣y)﹣(x﹣y)=(x﹣y)(9a2﹣1)=(x﹣y)(3a+1)(3a﹣1);(2)原式=(x﹣y)2﹣2(x﹣y)+1=(x﹣y﹣1)2.16.(2021春•沈北新区期末)因式分解:(1)﹣10a2bc+15bc2﹣20ab2c;(2)(x2+1)2﹣4x2.【解题思路】(1)直接提公因式﹣5bc即可;(2)先利用平方差公式,将原式化为(x2+1+2x)(x2+1﹣2x),再利用完全平方公式得出答案.【解答过程】解:(1)原式=﹣5bc(2a2﹣3c+4ab);(2)原式=(x2+1+2x)(x2+1﹣2x)=(x+1)2(x﹣1)2.17.(2021春•平顶山期末)把下列各式因式分解:(1)x2+2xy+y2﹣c2;(2)b2(a﹣2)+b(2﹣a).【解题思路】(1)先分组,再分解.(2)先将b2(a﹣2)+b(2﹣a)变形为b2(a﹣2)﹣b(a﹣2),再运用提公因式法.【解答过程】解:(1)x2+2xy+y2﹣c2=(x+y)2﹣c2=(x+y+c)(x+y﹣c).(2)b2(a﹣2)+b(2﹣a)=b2(a﹣2)﹣b(a﹣2)=b(a﹣2)(b﹣1).18.(2021春•覃塘区期末)因式分解:(1)3x3﹣12x;(2)1﹣2x+2y+(x﹣y)2.【解题思路】(1)先提公因式,再用公式法进行因式分解.(2)先将1﹣2x+2y+(x﹣y)2变形为=1﹣(2x﹣2y)+(x﹣y)2,再用公式法进行因式分解.【解答过程】解:(1)3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2).(2)1﹣2x+2y+(x﹣y)2=1﹣(2x﹣2y)+(x﹣y)2=1﹣2(x﹣y)+(x﹣y)2=[1﹣(x﹣y)]2=(1﹣x+y)2.19.(2021春•江宁区月考)分解因式:(1)4x2(x﹣y)+(y﹣x);(2)(x2﹣5)2+8(x2﹣5)+16.【解题思路】(1)可先将(y﹣x)变形为﹣(x﹣y),再根据因式分解的步骤进行分解即可;(2)将(x2﹣5)看作一个整体,利用完全平方公式进行因式分解,最后再利用平方差公式因式分解即可.【解答过程】解:(1)4x2(x﹣y)+(y﹣x)=4x2(x﹣y)﹣(x﹣y)=(x﹣y)(4x2﹣1)=(x﹣y)(2x+1)(2x﹣1);(2)(x2﹣5)2+8(x2﹣5)+16=(x2﹣5+4)2=(x2﹣1)2=(x+1)2(x﹣1)2.20.(2021春•汉寿县期中)分解因式:3x2﹣xy﹣2y2﹣x+y.【解题思路】先将3x2﹣xy﹣2y2﹣x+y分组整理,然后利用公式即可解答.【解答过程】解:原式=(3x2﹣xy﹣2y2)﹣(x﹣y)=(3x+2y)(x﹣y)﹣(x﹣y)=(x﹣y)(3x+2y﹣1).21.(2020秋•浦东新区期末)因式分解(1)5x2+6y﹣15x﹣2xy;(2)(1+ab)2﹣(a+b)2.【解题思路】(1)将原式分为两组:(5x2﹣15x)、﹣(2xy﹣6y),然后利用提取公因式法进行因式分解;(2)利用平方差公式进行因式分解.【解答过程】解:(1)原式=(5x2﹣15x)﹣(2xy﹣6y)=5x(x﹣3)﹣2y(x﹣3)=(x﹣3)(5x﹣2y);(2)原式=(1+ab﹣a﹣b)(1+ab+a+b)=[(1﹣a)﹣b(1﹣a)][(1+a)+b(1+a)]=(1﹣a)(1﹣b)(1+a)(1+b).22.(2020春•市南区校级期中)因式分解:4(x+y)2﹣16(x﹣y)2.【解题思路】首先提公因式4,再利用平方差公式进行分解即可.【解答过程】解:4(x+y)2﹣16(x﹣y)2=4[(x+y)2﹣4(x﹣y)2]=4(x+y+2x﹣2y)(x+y﹣2x+2y)=4(3x﹣y)(3y﹣x).23.(2020秋•宝山区期末)分解因式:2x3﹣2x2y+8y﹣8x.【解题思路】两两分组:先分别提取公因式2x2,8;再提取公因式2(y﹣x)进行二次分解;最后利用平方差公式再次进行因式分解即可求得答案.【解答过程】解:原式=2x2(x﹣y)﹣8(x﹣y)=2(x﹣y)(x2﹣4)=2(x﹣y)(x+2)(x﹣2).24.(2020秋•上海期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.【解题思路】先利用分组分解法进行恰当的分组,再利用提公因式法和公式法进行因式分解即可.【解答过程】解:原式=(a4﹣a2b2)﹣(4a2c2﹣4b2c2)=a2(a2﹣b2)﹣4c2(a2﹣b2)=(a2﹣b2)(a2﹣4c2)=(a+b)(a﹣b)(a+2c)(a﹣2c).25.(2020秋•松江区期末)因式分解:x3+3x2y﹣4x﹣12y.【解题思路】分为两组:(x3+3x2y)和(﹣4x﹣12y),然后运用完全平方公式和平方差公式进行因式分解.【解答过程】解:x3+3x2y﹣4x﹣12y=(x3+3x2y)﹣(4x+12y)=x2(x+3y)﹣4(x+3y)=(x+3y)(x2﹣4)=(x+3y)(x+2)(x﹣2).26.(2020秋•浦东新区期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.【解题思路】利用加法的结合律和交换律,把整式的第一项和第三项,第四项和第二项分组,提取公因式后再利用公式.【解答过程】解:原式=(a4﹣a2b2)﹣(4a2c2﹣4b2c2)=a2(a2﹣b2)+4c2(a2﹣b2)=(a2﹣b2)(a2﹣4c2)=(a+b)(a﹣b)(a+2c)(a﹣2c).27.(2020秋•浦东新区期末)因式分解:(x2+2x)2﹣7(x2+2x)﹣8.【解题思路】原式利用十字相乘法分解后,再利用完全平方公式分解即可.【解答过程】解:原式=(x2+2x﹣8)(x2+2x+1)=(x﹣2)(x+4)(x+1)2.28.(2021秋•浦东新区校级期中)分解因式:(x2+x+1)(x2+x+2)﹣12.【解题思路】将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.【解答过程】解:设x2+x=y,则原式=(y+1)(y+2)﹣12=y2+3y﹣10=(y﹣2)(y+5)=(x2+x﹣2)(x2+x+5)=(x﹣1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如令x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.故答案为(x﹣1)(x+2)(x2+x+5)29.(2020秋•海淀区校级期中)因式分解:64a6﹣48a4b2+12a2b4﹣b6.【解题思路】先利用分组分解法分解,再分别利用公式法和提取公因式法分解即可得出答案.【解答过程】解:64a6﹣48a4b2+12a2b4﹣b6=(64a6﹣b6)﹣(48a4b2﹣12a2b4)=(8a3+b3)(8a3﹣b3)﹣12a2b2(4a2﹣b2)=(2a+b)(4a2﹣2ab+b2)(2a﹣b)(4a2+2ab+b2)﹣12a2b2(2a+b)(2a﹣b)=(2a+b)(2a﹣b)[(4a2﹣2ab+b2)(4a2+2ab+b2)﹣12a2b2]=(2a+b)(2a﹣b)[(4a2+b2)2﹣4a2b2﹣12a2b2]=(2a+b)(2a﹣b)[(4a2+b2)2﹣16a2b2]=(2a+b)(2a﹣b)(4a2﹣b2)2=(2a+b)3(2a﹣b)3.30.(2020秋•海淀区校级期中)请用两种方法对多项式x3﹣4x2+6x﹣4进行因式分解.(拆添项算一种方法)【解题思路】分别利用拆添项及配方法和提取公因式法进行分解即可.【解答过程】解:方法一:x3﹣4x2+6x﹣4=(x3﹣2x2)﹣(2x2﹣4x)+(2x﹣4)=x2(x﹣2)﹣2x(x﹣2)+2(x﹣2)=(x﹣2)(x2﹣2x+2);方法二:x3﹣4x2+6x﹣4=x(x2﹣4x2+4+2)﹣4=x(x﹣2)2+2x﹣4=(x﹣2)(x2﹣2x+2).。

初二因式分解经典题35题

初二因式分解经典题35题

初二因式分解经典题35题一、提取公因式法相关(10题)1. 分解因式:6ab + 3ac- 你看这里面每一项都有个3a呢。

就像大家都有个共同的小秘密一样。

那我们就把3a提出来呀,提出来之后就变成3a(2b + c)啦。

2. 分解因式:15x^2y−5xy^2- 哟,这里面5xy是公共的部分哦。

把5xy提出来,就剩下5xy(3x - y)啦,是不是很简单呢?3. 分解因式:4m^3n - 16m^2n^2+8mn^3- 仔细瞧瞧,8mn是都能提出来的。

提出来后就变成8mn(m^2 - 2mn + n^2)啦。

4. 分解因式:−3x^2y+6xy^2−9xy- 这里面−3xy是公因式哦。

把它提出来,就得到−3xy(x - 2y+3)啦。

5. 分解因式:2a(x - y)-3b(x - y)- 看呀,(x - y)是公共的部分呢。

提出来就变成(x - y)(2a - 3b)啦。

6. 分解因式:a(x - y)^2 - b(y - x)^2- 注意哦,(y - x)^2=(x - y)^2。

那这里面(x - y)^2是公因式,提出来就得到(x - y)^2(a - b)啦。

7. 分解因式:x(x - y)+y(y - x)- 先把y(y - x)变成-y(x - y),这样公因式就是(x - y)啦,提出来就是(x - y)(x - y)=(x - y)^2。

8. 分解因式:3a(a - b)+b(b - a)- 把b(b - a)变成-b(a - b),公因式(a - b)提出来,就得到(a - b)(3a - b)啦。

9. 分解因式:2x(x + y)-3(x + y)^2- 公因式是(x + y),提出来就变成(x + y)[2x-3(x + y)]=(x + y)(2x - 3x - 3y)=(x + y)(-x - 3y)=-(x + y)(x + 3y)。

10. 分解因式:5(x - y)^3+10(y - x)^2- 把(y - x)^2变成(x - y)^2,公因式5(x - y)^2提出来,得到5(x - y)^2[(x -y)+2]=5(x - y)^2(x - y + 2)。

八年级上册数学 因式分解100题(十字相乘法)

八年级上册数学 因式分解100题(十字相乘法)

因式分解100题一、单选题1.将下列多项式分解因式,结果中不含有因式(x +2)的是( ) A .x 2+2xB .x 2﹣4C .(x ﹣2)2+8(x ﹣2)+16D .x 3+3x 2﹣4x2.将多项式x 2-2x -8分解因式,正确的是( ) A .(x +2)(x -4) B .(x -2)(x -4) C .(x +2)(x +4)D .(x -2)(x +4)3.下列因式分解正确的是( ) A .2(1)x x x x -=+ B .()23434a a a a --=--C .2222()a b ab a b +-=+D .22()()x y x y x y -=+-4.下列因式分解正确的是( ) A .()2422a ab a b -=- B .29(3)(3)x x x -=+-C .2244(2)a a a +-=+D .()()2212x x x x --+=-+-5.下列因式分解最后结果正确的是( ) A .223(1)(3)x x x x --=-+ B .2()()()x x y y y x x y -+-=- C .32(1)x x x x -=-D .2269(3)x x x --=-6.下列因式分解结果正确的是( ) A .23(3)x x x x -+=-- B .229(9)(9)x y x y x y -=+- C .2221(1)x x x ---=--D .256(2)(3)x x x x --=--7.将多项式()211a a --+因式分解,结果正确的是( ) A .1a - B .()()12a a -- C .()21a -D .()()11a a +-8.下列因式分解正确的是( ) A .x 2-xy +y 2=(x -y )2B .x 2-5x -6=(x -2)(x -3)C .x 3-4x =x (x 2-4)D .9m 2-4n 2=(3m +2n )(3m -2n ) 9.下列因式分解错误的是( ) A .3x -3y =3(x -y ) B .x 2-4=(x +2)(x -2) C .x 2+6x -9=(x +9)2D .-x 2-x +2=-(x -1)(x +2)10.把多项式2354x x +-分解因式,其结果是( )A .69x x +-()()B .69x x -+()()C .69x x ++()()D .69x x --()()11.下列多项式中有因式x ﹣1的是( ) ①x 2+x ﹣2;①x 2+3x +2;①x 2﹣x ﹣2;①x 2﹣3x +2 A .①①B .①①C .①①D .①①12.把多项式256x x -+分解因式,下列结果正确的是( ) A .(1)(6)x x -+ B .(6)(1)x x -+ C .(2)(3)x x ++D .(2)(3)x x --13.若218x ax ++能分解成两个因式的积,则整数a 的取值可能有( ) A .4个B .6个C .8个D .无数个二、填空题14.因式分解22212x x --=_________15.分解因式:2730x x --=______________. 16.分解因式:3223x x x --=______. 17.分解因式:2246a a --=______. 18.因式分解:289x x --=______________. 19.分解因式:2-2-8a a =______. 20.分解因式:289x x --=__. 21.分解因式268x x -+=________. 22.因式分解a 2-a -6=_____. 23.分解因式:x 2﹣5x ﹣6=_____.24.分解因式:321024a a a +-=____. 25.因式分解:(1)22x y -=______; (2)222x xy y ++=______; (3)25a a -=______; (4)276m m -+=______. 26.因式分解:2412x x --=_______. 27.因式分解:2a 2-4a -6=________. 28.26x x +-=(________)(________);26x x --=(________)(________);256x x +-=(________)(________); 256x x ++=(_______)(_______); 256x x --=(______)(______); 256x x -+=(______)(______). 29.分解因式:x 2﹣7xy ﹣18y 2=___. 30.将下列各式因式分解:(1)21024-+=x x ________;(2)21024--=x x ________; (3)21024++=x x ________;(4)21024+-=x x ________; (5)228x x --=________;(6)221432+-=x xy y ________.三、解答题 31.分解因式: (1)249x y y - (2)245x y xy y -- 32.分解因式 (1)25105x x ++;(2)()()()4434a a a +-++. 33.因式分解:21124x y xy y -+ 34.因式分解:(1)416m -; (2)32242x x x -+; (3)276xy xy x -+; (4)()22214a a +-.35.分解因式: (1)x 2﹣9;(2)2232ax axy ay ++. 36.将下列各式分解因式: (1)2215x x +-(2)()()22924x y x y +-- 37.分解因式:32224.x x x -- 38.分解因式 (1)236x xy -; (2)269ax ax a ++; (3)223m m --. 39.分解因式: (1)2m mn m -+ (2)3212a a a -- (3)()()22413x x +-- (4)421881y y -+ 40.分解因式: (1)2233ax ay -. (2)22416x x --. 41.因式分解 (1)3256x x x ++ (2)22ax ay -(3)26()3()m n n m -+-(4)(1)1a a a --+ 42.分解因式: (1)29x y y -; (2)2412x x +-. 43.因式分解: (1)24x y y -; (2)22288x xy y -+-; (3)()()236x x x -+-. 44.将下列各式分解因式: (1)24ab a -; (2)32224x x x --. 45.因式分解: (1)2231212x xy y -+; (2)22310x xy y --46.分解因式:()()126x x --- 47.分解因式 (1)3222m m n mn -+-;(2)()()2242x x x -+-;(3)2310a a +-.48.因式分解:(x 2+4x )2﹣(x 2+4x )﹣20. 49.分解因式: (1)ax 2-10ax +25a ; (2)x 2-2x -3. 50.因式分解:(1)()()()()222222261516121x x x x x x ++++++++(2)()()()333222x y z y z x z x y -+-+-51.(1)分解因式:39x x -; (2)3221210a a a -+- 52.因式分解: (1)22218x y - (2)2816ax ax a -+ (3)26x x --(4)2m (a -b )-3n (b -a ) 53.把下列多项式分解因式 (1)2x (a -2)-y (2-a ) (2)4a 2-12ab +9b 2 (3) x 2-2x -15 (4)-3x 3+12x54.把下列各式分解因式: (1)x 2+3x ﹣4; (2)a 3b ﹣ab ; (3)3ax 2﹣6axy +3ay 2.55.在因式分解的学习中我们知道对二次三项式()2x a b x ab +++可用十字相乘法方法得出()()()2x a b x ab x a x b +++=++,用上述方法将下列各式因式分解:(1)2256x xy y +-=__________.(2)()224236x a x a a -+++=__________. (3)()2256x b x a b a ----=__________.(4)()22018201720191x x -⨯-=__________. 56.因式分解:(1)()()22248448x x x x -+--(2)2225()49()a b a b --+57.因式分解:(y 2﹣y )2﹣14(y 2﹣y )+24. 58.因式分解:(x 2+2x )2﹣7(x 2+2x )﹣8.59.分解因式:32286x x x -+ 60.因式分解: (1)3244a a a -+ (2)(1)(3)8x x ---61.分解因式:(3)(4)6x x +-+. 62.分解因式:242221348a m a m a --. 63.因式分解(1)12a 2b (x -y )-4ab (y -x ) (2)(3m +2n )2-(m -n )2 (3)(x +y )4-18(x +y )2+8164.分解因式:(a 2﹣a )2+2(a 2﹣a )﹣8 65.分解因式: (1)18x 3-2xy 2; (2)(x -1)(x -3)+1;(3)226x x +- (用十字相乘法) 66.因式分解(1)221236xy x y -++ (2)()()mn m n m n m --- (3)3242024x x x -+- 67.将下列各式分解因式:(1)261915y y ++;(2)214327x x +- 68.分解因式:(1)2314x x +-;(2)2344x x --+;(3)2631105x x +-; 69.将下列各式分解因式:(1)256x x --; (2)21016x x -+; (3)2103x x -- 70.分解因式: (1)26mx my -; (2)232x x -+;(3)229()()a x y b y x -+-.(1)()()39a x y y x -+- (2)2(23)23m n m n --+ (3)22(2)(2)a b a b +-- (4)222m mn n -- (5)43244ab ab ab -+ (6)()(4)a b a b ab --+ (7)422436x x y -+ (8)222430x xy y -- (9)224(23)(9)x x --- (10)1(4)(5)4x x +++72.因式分解:(1)-2x 3+ 2x ; (2)2x 2y 2-2xy -24. 73.因式分解: (1)x 2+5x ﹣6. (2)x 3﹣4xy 2. 74.分解因式: (1)29x y y -; (2)322288x x y xy -+; (3)(1)34x x x --+;(4)2221x y y ---;(5)34x x -; (6)3222x x x +--; (7)22114--+m n m ;(8)257(1)6(1)++-+a a ; (9)2203918-+x x .(1)27812+-a a ; (2)4298-+a a ; (3)3222444-+a a b ab ; (4)()22229x x +-;(5)()()2223238----x x x x ;(6)()22---abx ac b x bc .76.将下列各式因式分解: (1)224925-x y ; (2)2169-+x ;(3)24121-a b ; (4)2(2)(4)4x x x +++-;(5)2249(3)-+a a ; (6)224(2)9(3)+-+a a . 77.把下列各式因式分解: (1)4m 2﹣n 2 (2)2a 3b ﹣18ab 3 (3)﹣2x 2y +x 3+xy 2 (4)x 2﹣2x ﹣8 78.因式分解 (1)212m m +; (2)244x x -+; (3)4234a a +-. 79.分解因式. (1)3269m m m -+; (2)245x x --.80.(1)因式分解:﹣6x 2+5x ﹣1;(2)因式分解:4x (x ﹣a )+2y (a ﹣x )+6(x ﹣a ). 81.分解因式: (1)3ax 2+6axy +3ay 2; (2)(4m 2+9)2﹣144m 2; (3)x 2﹣xy +4x ﹣4y ;(4)(x 2﹣3)2+(x 2﹣3)﹣2. 82.因式分解: (1)21a -+ (2)3223242x y x y xy ++ (3)224(2)25()x y x y +-- (4)222()8()12a a a a +-++ 83.因式分解: (1)x 3﹣16x ; (2)3x 2﹣12xy +12y 2; (3)﹣2x 3﹣6x 2y +20xy 2.84.我们知道部分二次三项式可以用十字相乘法进行因式分解,如:262730x x -+2x 5361215--⨯--xx x①原式(25)(36)x x =--部分二次四项式也可以用十字相乘法进行因式分解,如:1025820ay y a +--2554258+-⨯+-a y y a①原式(25)(54)=+-a y 用十字相乘法分解下列各式: (1)22512x x +- (2)6923xy x y -+- (3)2(61)(23)1xy x y -++ 85.分解因式.(1)()()x x y y y x ---; (2)22363x xy y -+; (3)2412a a --; (4)3244a a a -+.(1)22862ab a b ab -+-(2)()22241a a -+ (3)4289x x --(4)()()2222222x x x x -+-+ 87.分解因式(1)2()6()9m n m n +-++ (2)2(3)4(3)m a a -+-(3)221012x x --88.分解因式:(1)2327ab a -+(2)()()222812x x x x +-++ (3)229(2)(2)m n m n --+89.因式分解(1)29x - (2)2(1)22x x --+90.将下列各式因式分解: (1)24()()x x y y x -+- (2)2215x x +-91.因式分解:(1)224m m -(2)2()9()a x y y x -+- (3)4268x x -+(4)22()(8)16x x x x ++-+92.因式分解(1)26x x --;(2)231212ma ma m -+-;(1)229(3)4(32)a b a b +--(2)()()22252732x x x x +++-+94.分解因式:(1)22914x xy y ++(2)2212x xy y --(3)22295x xy y +-(4)22376x xy y --(5)22328x xy y --(6)225314x xy y -++95.分解因式:(1)2914x x ++(2)212x x --(3)2295x x +-(4)2376x x --(5)28103x x ---(6)210275x x ---96.分解因式:(1)()()()433x y x x y y y x -+-+- (2)()()2222728+-+-m m m m 97.分解因式:(1)12x ²−3;(2)2()12()36a b a b +-++; (3)232(2)6(2)a a b b a ---;(4)x ²−7x −3098.因式分解(注意分解彻底):(1)ab 2﹣2ab+a(2)(a+b )x 2-(a+b )(3)(x 2+2x )2-(2x+4)2.(4)(m 2-m -1)(m 2-m -3)-1599.分解因式:(1)24x y y -;(2)()24a b ab -+;(3)228x x --.100.分解因式:(1)﹣3x 3﹣6x 2y ﹣3xy 2;(2)(a 2+9)2﹣36a 2;(3)(a ﹣b )2+4ab ;(4)(x 2﹣2x )2﹣2(x 2﹣2x )﹣3.。

因式分解初二练习题和答案

因式分解初二练习题和答案

因式分解初二练习题和答案1. 将下列各式进行因式分解:(1) 3x + 6y解:先提取公因式3,得到 3(x + 2y)。

(2) 4a - 8ab解:先提取公因式4a,得到 4a(1 - 2b)。

(3) xy - x^2解:先提取公因式x,得到 x(y - x)。

(4) 16x^2 - 4xy + 8xy^2解:先提取公因式4,得到 4(4x^2 - xy + 2xy^2)。

2. 分解下列各式:(1) x^2 - 4解:这是一个差的平方,因此可以分解为 (x + 2)(x - 2)。

(2) y^2 - 9解:这是一个差的平方,因此可以分解为 (y + 3)(y - 3)。

(3) 9x^2 - 4y^2解:这是一个差的平方,可以使用公式 a^2 - b^2 = (a + b)(a - b) 分解为 (3x + 2y)(3x - 2y)。

(4) 4x^2 - 12xy + 9y^2解:这是一个完全平方,可以分解为 (2x - 3y)^2。

3. 计算下列各式的积:(1) (2x - 5)(3x + 4)解:使用分配率,计算得到 6x^2 + 8x - 15x - 20 = 6x^2 - 7x - 20。

(2) (x + 2)(x - 3)解:使用分配率,计算得到 x^2 - 3x + 2x - 6 = x^2 - x - 6。

(3) (2a + 3)(2a - 3)解:使用分配率,计算得到 4a^2 - 6a + 6a - 9 = 4a^2 - 9。

4. 解方程:(1) 2x + 8 = 12解:首先移动常数项,得到 2x = 4。

然后除以系数2,解得 x = 2。

(2) 3(x - 4) = 21解:先使用分配率,得到 3x - 12 = 21。

然后移动常数项,解得 3x = 33。

最后除以系数3,解得 x = 11。

(3) 4(2x - 1) = 20 - 2x解:先使用分配率,得到 8x - 4 = 20 - 2x。

八年级上册数学因式分解题80道

八年级上册数学因式分解题80道

八年级上册数学因式分解题80道一、因式分解练习题(80道)(一)不带解析的题目(60道)1. x^2 - 92. 4x^2 - 163. x^2 - 25y^24. 9x^2 - 15. 16x^2 - 9y^26. x^3 - x7. x^3 - 2x^2+x8. 2x^2 - 89. 3x^2 - 2710. 5x^2 - 12511. x^4 - 112. x^4 - 1613. x^2+6x + 914. x^2+8x+1615. x^2 - 10x + 2516. 4x^2+12x + 917. 9x^2 - 6x+118. 16x^2+24x+919. x^2 - 4x - 520. x^2+2x - 1521. x^2 - 6x - 722. x^2+7x+1023. x^2 - 8x+1224. 2x^2+5x - 325. 3x^2 - 7x+226. 4x^2 - 4x - 327. 5x^2+8x - 428. 6x^2 - 11x+329. x^3+2x^2 - 3x30. x^3 - 3x^2 - 4x31. x^2y - 9y32. x^3y - 4xy33. 2x^2y - 8y34. 3x^3y - 27xy35. x^2(x - y)+y^2(y - x)36. x^3 - x^2 - x+137. x^3+x^2 - x - 138. 2x^3 - 2x^2 - 3x+339. 3x^3+3x^2 - 6x - 640. x^2 - 1 + 2y - y^241. x^2 - y^2 - 2y - 142. x^2+2xy+y^2 - 143. x^2 - 2xy+y^2 - 944. x^4 - 2x^2+145. x^4+2x^2+146. x^4 - 8x^2+1647. x^5 - x^348. x^6 - x^449. x^3y - x^2y^2 - xy^350. 2x^4 - 3251. 3x^4 - 4852. x^3+3x^2+3x + 153. x^3 - 3x^2+3x - 154. x^2(x + 1)-y^2(y + 1)55. x^3+2x^2y+xy^256. x^3 - 2x^2y+xy^257. x^2 - 4xy+4y^2 - 958. x^2+6xy+9y^2 - 1659. x^2 - 5xy+6y^260. x^2+3xy - 10y^2(二)带解析的题目(20道)1. 题目:分解因式x^2 - 9- 解析:这是一个平方差的形式,x^2-9 = x^2 - 3^2=(x + 3)(x - 3)。

八下数学:4.1《因式分解》同步练习(含答案)

八下数学:4.1《因式分解》同步练习(含答案)

《因式分解》习题一、选择题1、把代数式xy2-9x,分解因式,结果正确的是( )A、x(y2-9)B、x(y+3)2C、x(y+3)(y-3)D、x(y+9)(y-9)2、下列各式从左到右的变形中,是分解因式的是( )A、x2-9+6x=(x+3)(x-3)+6xB、(x+5)(x-2)=x2+3x-10C、x2-8x+16=(x-4)2D、(x-2)(x+3)=(x+3)(x-2)3、观察下面算962×95+962×5的解题过程,其中最简单的方法是( )A、962×95+962×5=962×(95+5)=962×100=96200B、962×95+962×5=962×5×(19+1)=962×(5×20)=96200C、962×95+962×5=5×(962×19+962)=5×(18278+962)=96200D、962×95+962×5=91390+4810=962004、下列各式从左到右的变形中,是因式分解的为()A、x(a-b)=ax-bxB、x2-1+y2=(x-1)(x+1)+y2C、x2-1=(x+1)(x-1)D、ax+bx+c=x(a+b)+c5、下列各式从左到右的变形(1)15x2y=3x·5xy;(2)(x+y)(x-y)=x2-y2;(3)x2-6x+9=(x-3)2;(4)x2+4x+1=x(x+4+错误!未找到引用源。

),其中是因式分解的个数是()A、1个B、2个C、3个 D.4个6、下列各式的因式分解中正确的是()A、-m2+mn-m=-m(m+n-1)B、9abc-6a2b2=3abc(3-2ab)C、3a2x-6bx+3x=3x(a2-2b)D、错误!未找到引用源。

初二因式分解练习题加答案

初二因式分解练习题加答案

初二因式分解练习题加答案一、选择题1. 下列函数中,不能因式分解的是:A) f(x) = 2x^2 + 3x + 1B) f(x) = x^3 - xC) f(x) = 4x^2 - 9D) f(x) = x^4 + 4x^2 + 4答案:D2. 已知二次函数 f(x) 的因式分解式为 f(x) = (x - 2)(x - 5),则 f(x) 的图像在坐标系中的顶点坐标为:A) (2, 5)B) (-2, 5)C) (-2, -5)D) (5, 2)答案:A3. 已知函数 f(x) = x^3 - 6x^2 + 11x - 6,其因式分解式为:A) f(x) = (x - 2)(x - 3)(x + 1)B) f(x) = (x - 2)(x + 3)(x - 1)C) f(x) = (x + 2)(x + 3)(x - 1)D) f(x) = (x + 2)(x - 3)(x + 1)答案:A二、填空题1. 将 4x^2 - 9y^2 进行因式分解,得到 (2x - 3y)(2x + 3y)。

2. 将 6x^3 + 27x^2 - 12xy 进行因式分解,得到 3x(2x + 3)(x + 2y)。

3. 将 x^4 + 6x^3 + 12x^2 进行因式分解,得到 x^2(x + 2)^2。

三、应用题1. 小明的房间长方形,长为 x + 2,宽为 x - 3。

若小明想将房间的面积进行扩大,他应该将长和宽各加上多少?答案:若将长和宽分别加上 a,b,则新的房间面积为 (x + 2 + a)(x - 3 + b)。

扩大的面积为 (x + 2 + a)(x - 3 + b) - (x + 2)(x - 3) = ax + ab - 3a + bx + ab - 2b + ab。

为了使扩大的面积最大化,可以令 a = 3,b = 2。

因此,小明应该将长和宽各加上 3 和 2。

2. 将 3x^3 - 15x^2y + 18xy^2 进行因式分解。

初二的因式分解练习题

初二的因式分解练习题

初二的因式分解练习题题目一:因式分解1. 将下列各式进行因式分解:a) 3x + 9yb) 6x² - 12xc) 5a - 20d) 2m² + 5m + 32. 将下列各式进行因式分解,并求出因式:a) 4x² - 12xy + 9y²b) 2a² - 18ab + 40b²c) 9m² - 36d) 16x² - 25y²题目二:应用问题1. 某活动中,每个学生要穿n条腰带和4件上衣,规定每条腰带价格为x元,每件上衣价格为y元。

写出每个学生需付的金额的表达式,并进行因式分解。

2. 一块长方形草坪的长为x+3,宽为x,若要绕草坪围上一圈宽度为3米的路,求围路的总长度,并进行因式分解。

3. 小明花费了60元购买苹果和橙子,苹果每斤x元,橙子每斤y 元。

已知小明购买了a斤苹果和b斤橙子,写出小明花费的总金额表达式,并进行因式分解。

解答:1. 因式分解:a) 3x + 9y = 3(x + 3y)b) 6x² - 12x = 6x(x - 2)c) 5a - 20 = 5(a - 4)d) 2m² + 5m + 3 = (2m + 3)(m + 1)2. 因式分解:a) 4x² - 12xy + 9y² = (2x - 3y)²b) 2a² - 18ab + 40b² = 2(a - 4b)(a - 5b)c) 9m² - 36 = 9(m - 2)(m + 2)d) 16x² - 25y² = (4x - 5y)(4x + 5y)3. 应用问题:a) 每个学生需付的金额表达式为:nxy + 4xy = xy(n + 4)b) 围路的总长度为:2(x+3) + 2x + 6 = 4x + 12,并进行因式分解为4(x + 3)c) 小明花费的总金额表达式为:ax + by = (a + b)xy,并进行因式分解为xy(a + b)通过上述练习题,初二学生可以巩固和提升因式分解的能力。

初二因式分解题20道

初二因式分解题20道

初二因式分解题20道一、提取公因式法1. 分解因式:3x + 6- 解析:先找出各项的公因式,在3x+6中,公因式为3。

所以3x + 6=3(x + 2)。

2. 分解因式:5x^2-10x- 解析:公因式为5x,则5x^2 - 10x = 5x(x - 2)。

3. 分解因式:8x^3y - 12x^2y^2- 解析:公因式为4x^2y,8x^3y-12x^2y^2 = 4x^2y(2x - 3y)。

二、公式法(平方差公式:a^2 - b^2=(a + b)(a - b))4. 分解因式:x^2-9- 解析:x^2-9=x^2 - 3^2,根据平方差公式可得(x + 3)(x - 3)。

5. 分解因式:16y^2 - 25- 解析:16y^2-25=(4y)^2 - 5^2=(4y + 5)(4y - 5)。

6. 分解因式:49x^4 - 16y^4- 解析:49x^4-16y^4=(7x^2)^2-(4y^2)^2=(7x^2 + 4y^2)(7x^2-4y^2),其中7x^2 - 4y^2还可以继续分解为(√(7)x+2y)(√(7)x - 2y),所以49x^4 - 16y^4=(7x^2 +4y^2)(√(7)x + 2y)(√(7)x - 2y)。

三、公式法(完全平方公式:a^2±2ab + b^2=(a± b)^2)7. 分解因式:x^2+6x + 9- 解析:x^2+6x + 9=x^2+2×3x+3^2=(x + 3)^2。

8. 分解因式:4y^2-20y + 25- 解析:4y^2-20y + 25=(2y)^2-2×5×2y + 5^2=(2y - 5)^2。

9. 分解因式:x^2 - 4xy+4y^2- 解析:x^2-4xy + 4y^2=x^2-2×2xy+(2y)^2=(x - 2y)^2。

四、综合运用(先提公因式,再用公式法)10. 分解因式:2x^3 - 8x- 解析:先提公因式2x,得到2x(x^2 - 4),然后x^2 - 4可以用平方差公式继续分解为(x + 2)(x - 2),所以2x^3-8x = 2x(x + 2)(x - 2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学因式分解练习题 姓名
填空题:
1、利用分解因式计算: (1)
7716.87.63216⨯
+⨯=___________。

(2)221.229 1.334⨯-⨯=__________。

(3)5×998+10=____________。

2、若26x x k -+是x 的完全平方式,则k =__________。

3、若()()2310x x x a x b --=++,则a =________,b =________。

4、若5,6x y xy -==则22x y xy -=_________,2222x y +=__________。

5、已知2221440x y x xy y --+++=,则x y +=___________。

6、观察下列各式:
22222431,3541,4651,,1012111⨯=-⨯=-⨯=-⋅⋅⋅⋅⋅⋅⨯=-,…将你猜想到的规律用只含一个字母的式子表示出来:____________________。

选择题:
1、下列变形,是因式分解的是( )
A .16)4)(4(2-=-+x x x B.6)5)(2(1632-+-=-+x x x x
C.)4)(4(162-+=-x x x
D.)2)(8(1662-+=-+x x x x
2、下列各式中,不含因式1+a 的是( )
A.3522++a a
B.322--a a
C.342+-a a
D.
21232++a a 3、下列各式中,能用平方差分解因式的式子是( )
A.162+a
B.a b a 422-
C.
27)(32-+b a D.33b a - 4、已知)0(,03222≠=+-xy y xy x ,则
x y y x +的值是( )
A.2,212
B.2
C.212
D.2-,212- 5、如果2592
++kx x 是一个完全平方式,那么k 的值是( )
A .15 B.15± C.30 D.30± 6、当n 是整数时,()()22
2121n n +--是( )
A.2的倍数
B.4的倍数
C.6的倍数
D.8的倍数
把下列各式因式分解:
(1)222m mn n -+- (2)416x -
(3)3222x x y xy ++ (4)22x x -- (p 、q 系列方法分解因式)
(5)2222()4x y x +- (6)2
230y xy x --(加241y ,再减241y )
四、已知m 、n 互为相反数,且满足()()224416m n +-+=,求22m m n n +-
的值。

相关文档
最新文档