4.1 成比例线段(1) 教案(公开课)
《成比例线段》教案
(1)在比或a∶b中,a是,b是。
求⑴AB4.1成比例线段4.1.1线段的比,成比例的线段学习目的:1、知道线段的比的概念。
理解成比例线段的概念2、会计算两条线段的比。
3、掌握成比例线段的判定方法。
重点:线段的比与成比例线段的概念。
教学过程:一、自主预习(一)阅读课本,思考并回答下列问题:1、一般地,如果选用量得两条线段AB,CD的长度分别为m,n,那么这两条线段的比就是他们长度的比,即AB∶CD=m:n,或写成ABmCDn,其中,线段AB,CD分别叫做这个线m AB段比的前项和后项.如果把表示成比值k,那么n CDk,或AB k CD。
ab⑵两条线段的要统一。
⑶在同一单位下线段长度的比与选用的无关。
⑷线段的比是一个没有的数。
(二)比例尺1、在地图上或工程图纸上,图上长度与实际长度的比通常称为比例尺。
2、比例尺为1:50000,意思为:。
(三)成比例线段的概念1、一般地,在四条线段中,如果等于的比,那么这四条线段叫做成比例线段。
(举例说明)如:2、四条线段成比例,记作:其中a,d叫比例外项,b,c叫比例内项。
3、四条线段a,b,c,d成比例,有顺序关系。
即a,b,c,d成比例线段,则比例式为:a:b=c:d;a,b,d,c成比例线段,则比例式为:a:b=d:c4、思考:a=12,b=8,c=6,d=4成比例吗?a=12,b=8,c=15,d=10呢?三、例题解析:例1、A、B两地的实际距离AB=250m,画在一张地图上的距离A'B'=5cm,求该地图的比例尺。
例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜边AB=2。
AC,⑵BC AB四、巩固练习1、已知某一时刻物体高度与其影长的比值为2:7,某天同一时刻测得一栋楼的影长为30米,则这栋楼的高度为多少?2、某地图上的比例尺为1:1000,甲,乙两地的实际距离为300米,则在地图上甲、乙两地的距离为多少?3、已知线段a,d,b,c是成比例线段,其中a=4,b=5,c=10,求线段d的长。
4.1比例线段(1)教学设计13
课题摘要
学科
数学
学段
初中
年级
九年级
单元
第四章
教材版本
浙教版
课程名称
4.1比例线段(1)
一、学习内容分析
1.教材分析
本节介绍比例的基本性质,利用比例的基本性质进行一些简单的变形.这里主要要求学生理解并初步掌握两种基本方法(或技能):一是利用比例的基本性质进行变形或求值;二是用“设比值”的方法进行变形或求值.课本安排两个例题的目的是让学生理解这两种方法(或技能).
二、新课
1、利用P116的做一做得出比例式的内项积等于外项积,得出比例性质: = <=>ad=bc(a、b、c、d都不为零)。
2、通过练习让学生体会用性质来列比例式。
3、已知ab=cd,请写出有关a,b,c,d成立的
比例式. (至少写4个)
4、讲解例1,例2。总结出比例式变形的常用方法:(1)利用等式性质(2)设比值K。
2.学情分析
本节内容主要是在学生小学已学过比例的有关内容的基础上,给出四个数成比Байду номын сангаас及内项,外项的概念,归纳比例的基本性质,利用比例性质进行比例式变形。
3.教学目标(含重难点)
教学目标:
1、理解比例的基本性质。
2、能根据比例的基本性质求比值。
3、能根据条件写出比例式或进行比例式的简单变形。
教学重点、难点:
教学重点:比例的基本性质
教学难点:例2根据条件判断一个比例式是否成立,不仅要运用比例的基本性质,还要运用等式的性质等方法是本节教学的难点。
二、教学环境选择
□简易多媒体教室
三、教学过程设计
教学环节
活动设计
浙教版数学九年级上册4.1《比例线段》教案1
浙教版数学九年级上册4.1《比例线段》教案1一. 教材分析《比例线段》是浙教版数学九年级上册第四章的第一节内容。
本节主要让学生了解比例线段的定义、性质和应用,培养学生运用比例线段解决实际问题的能力。
教材通过引入实际问题,引导学生探索比例线段的性质,进而得出比例线段的定义,并通过例题和练习题使学生掌握比例线段的应用。
二. 学情分析九年级的学生已经具备了一定的几何知识,对线段、射线、直线等概念有了一定的了解。
但是,对于比例线段这一概念,学生可能较为陌生。
因此,在教学过程中,教师需要引导学生通过实际问题探索比例线段的性质,从而理解比例线段的定义。
三. 教学目标1.理解比例线段的定义及其性质。
2.学会运用比例线段解决实际问题。
3.培养学生的几何思维能力和解决实际问题的能力。
四. 教学重难点1.重点:比例线段的定义及其性质。
2.难点:运用比例线段解决实际问题。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生探索比例线段的性质。
2.启发式教学法:在教学过程中,教师引导学生思考、讨论,从而培养学生的问题解决能力。
3.实践性教学法:通过例题和练习题,使学生掌握比例线段的运用。
六. 教学准备1.教具:黑板、粉笔、投影仪、PPT等。
2.学具:学生每人一份比例线段的相关练习题。
七. 教学过程1.导入(5分钟)教师通过引入实际问题,如“在一条直线上,两点间的距离是否相等?”引发学生的思考,进而引导学生探索比例线段的性质。
2.呈现(10分钟)教师通过PPT展示比例线段的定义及其性质,让学生初步了解比例线段的概念。
3.操练(10分钟)教师提出一些有关比例线段的问题,让学生分组讨论、解答。
例如:“已知线段AB和线段BC的长度比为2:3,求线段AC的长度。
”通过解答这些问题,学生能够更好地理解比例线段的性质。
4.巩固(10分钟)教师给出一些练习题,让学生独立完成。
练习题包括判断题、选择题和解答题,题型多样,难度适中。
2022年华师大版《成比例线段》公开课教案
23.1 成比例线段1.知道线段的比的概念,会计算两条线段的比;〔重点〕例线段的概念;〔重点〕3.掌握成比例线段的判定方法.〔难点〕一、情景导入请观察以下几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?这些例子都是形状相同、大小不同的图形.它们之所以大小不同,是因为它们图上对应的线段的长度不同.二、合作探究探究点一:线段的比【类型一】求线段的比线段AB=2.5m,线段CD=400cm,求线段AB与CD的比.解析:要求AB和CD的比,只需要根据线段的比的定义计算即可,但注意要将AB和CD的单位统一.解:∵AB=2.5m=250cm,∴AB CD =250400=58. 方法总结:求线段的比时,首先要检查单位是否一致,不一致的应先统一单位,再求比.【类型二】 比例尺在比例尺为1:50 000的地图上,量得甲、乙两地的距离是3cm ,那么甲、乙两地的实际距离是 m.解析:根据“比例尺=图上距离实际距离〞可求解.设甲、乙两地的实际距离为x cm ,那么有1:50 000=3:x ,解得x =150 000. 150 000cm =1500m.故答案为1500.方法总结:理解比例尺的意义,注意实际尺寸的单位要进行恰当的转化.探究点二:成比例线段 【类型一】 判断线段成比例以下四组线段中,是成比例线段的是〔 〕 A.3cm ,4cm ,5cm ,6cm B.4cm ,8cm ,3cm ,5cm C.5cm ,15cm ,2cm ,6cm D.8cm ,4cm ,1cm ,3cm解析:将每组数据按从小到大的顺序排列,前两条线段的比和后两条线段的比相等的四条线段成比例.四个选项中,只有C 项排列后有25=615.应选C.方法总结:判断四条线段是否成比例的方法:〔1〕把四条线段按从小到大顺序排好,计算前两条线段的比和后两条线段的比,看是否相等做出判断;〔2〕把四条线段按从小到大顺序排好,计算前后两个数的积与中间两个数的积,看是否相等作出判断.【类型二】 由线段成比例求线段的长:四条线段a 、b 、c 、d ,其中a =3cm ,b =8cm ,c =6cm. 〔1〕假设a 、b 、c 、d 是成比例线段,求线段d 的长度; 〔2〕假设b 、a 、c 、d 是成比例线段,求线段d 的长度. 解析:紧扣成比例线段的概念,利用比例式构造方程并求解. 解:〔1〕由a 、b 、c 、d 是成比例线段,得 a b =c d ,即38=6d ,解得d =16. 故线段d 的长度为16cm ;〔2〕由b 、a 、c 、d 是成比例线段,得 b a =c d ,即83=6d ,解得d =94. 故线段d 的长度为94cm.方法总结:利用比例线段关系求线段长度的方法:根据线段的关系写出比例式,并把它作为相等关系构造关于要求线段的方程,解方程即可求出线段的长.三条线段长分别为1cm ,2cm ,2cm ,请你再给出一条线段,使得它的长与前面三条线段的长能够组成一个比例式.解析:因为此题中没有明确告知是求1,2,2的第四比例项,因此所添加的线段长可能是前三个数的第四比例项,也可能不是前三个数的第四比例项,因此应进行分类讨论.解:假设x :1=2:2,那么x =22;假设1:x =2:2,那么x =2;假设1:2=x :2,那么x =2;假设1:2=2:x ,那么x =2 2.所以所添加的线段的长有三种可能,可以是22cm ,2cm ,或22cm. 方法总结:假设使四个数成比例,那么应满足其中两个数的比等于另外两个数的比,也可转化为其中两个数的乘积恰好等于另外两个数的乘积.三、板书设计成比例线段⎩⎪⎪⎨⎪⎪⎧线段的比:如果选用同一长度单位量得两条线段AB ,CD 的长度分别是m ,n ,那么 这两条线段的比就是它们长度的比, 即AB :CD =m :n ,或写成AB CD =mn成比例线段:四条线段a ,b ,c ,d ,如果a 与b 的比 等于c 与d 的比,即a b =c d,那么这 四条线段a ,b ,c ,d 叫做成比例线段, 简称比例线段从丰富的实例入手,引导学生进行观察、发现和概括.在自主探究和合作交流过程中,适时引入新知识,并通过引导学生建立新的数学模型,开拓思维,提升学生认知能力.第2课时比例线段1.知道线段的比的概念,会计算两条线段的比;(重点)2.理解成比例线段的概念;(重点)3.掌握成比例线段的判定方法.(难点)一、情境导入请观察以下几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?这些例子都是形状相同、大小不同的图形.它们之所以大小不同,是因为它们图上对应的线段的长度不同.二、合作探究探究点一:线段的比【类型一】根据线段的比求长度如下列图,M为线段AB上一点,AM∶MB=3∶5,且AB=16cm,求线段AM、BM的长度.解:线段AM与MB的比反映了这两条线段在全线段AB中所占的份数,由AM∶MB=3∶5可知AM =38AB ,MB =58AB .∵AB =16cm ,∴AM =38×16=6(cm),MB =58×16=10(cm).方法总结:此题也可设AM =3k ,MB =5k ,利用3k +5k =16求解更简便,这也是解这类题常用的方法.【类型二】比例尺在比例尺为1∶50 000的地图上,量得甲、乙两地的距离是3cm ,那么甲、乙两地的实际距离是________m.解析:根据“比例尺=图上距离实际距离〞可求解.设甲、乙两地的实际距离为x cm ,那么有1∶50 000=3∶x ,解得x =150 000cm =1500m.方法总结:理解比例尺的意义,注意实际尺寸的单位要进行恰当的转化.探究点二:成比例线段 【类型一】判断线段成比例以下四组线段中,是成比例线段的是( ) A .3cm ,4cm ,5cm ,6cm B .4cm ,8cm ,3cm ,5cm C .5cm ,15cm ,2cm ,6cm D .8cm ,4cm ,1cm ,3cm解析:将每组数据按从小到大的顺序排列,前两条线段的比和后两条线段的比相等的四条线段成比例.四个选项中,只有C 项排列后有25=615.应选C.方法总结:判断四条线段是否成比例的方法:(1)把四条线段按从小到大顺序排好,计算前两条线段的比和后两条线段的比,看是否相等作出判断;(2)把四条线段按从小到大顺序排好,计算前后两个数的积与中间两个数的积,看是否相等作出判断.【类型二】由线段成比例求线段的长三条线段的长分别为1cm ,2cm ,2cm ,请你再给出一条线段,使得它的长与前面三条线段的长能够组成一个比例式.解:因为此题中没有明确告知是求1,2,2的第四比例项,因此所添加的线段长可能是前三个数的第四比例项,也可能不是前三个数的第四比例项,因此应进行分类讨论.设要求的线段长为x ,假设x ∶1=2∶2,那么x =22;假设1∶x =2∶2,那么x =2;假设1∶2=x ∶2,那么x =2;假设1∶2=2∶x ,那么x =2 2.所以所添加的数有三种可能,可以是22,2,或2 2. 方法总结:假设使四个数成比例,那么应满足其中两个数的比等于另外两个数的比,也可转化为其中两个数的乘积恰好等于另外两个数的乘积.三、板书设计比例线段⎩⎪⎪⎨⎪⎪⎧线段的比:如果选用同一长度单位量得两条线段AB ,CD 的长度分别是m ,n ,那么这两 条线段的比就是它们长度的比, 即AB ∶CD =m ∶n 或写成AB CD =m n 成比例线段:四条线段a ,b ,c ,d ,如果a 与b 的比等于c 与d 的比,即a b =c d,那么这 四条线段a ,b ,c ,d 叫做成比例线段, 简称比例线段从丰富的实例入手,引导学生进行观察、发现和概括.在自主探究和合作交流过程中,适时引入新知识.并通过引导学生建立新的数学模型,开拓思维,提升学生认知能力.。
4.1 成比例线段(一)
3 5
,
3.已知a、b、c、d是成比例线段,a=4cm, b=6cm,d=9cm,则c=____
x 4、如果2 x 5 y, 那么 y
5.如图所示,在Rt△ABC中,∠C=90°,CD是 斜边AB上的高,且AB=13,BC=12.求CD: AB的值。
6、已知线段x,y
x 5y 1 x (1)当 时, 求 的值。 x y 2 y
CD n
m 表示成比值 n k,那么
AB m .其中,线段 AB,CD分别叫做这个线段比的前项、
,或
AB k 两条线段的比实际上就是两个数的 AB=k×CD. CD
例: 五边形 ABCDE与五边形A’B’C’D’E’形
状相同,AB=5cm,A’B’=3cm。AB:A’B’=5 : 3,
5 3
注意:成比例的四条线段是有顺序的
练习二
• 若b,c, • A , b d
b d • C , c a
B D
a b , c d b c , a d
练习三
判断下列四条线段是否成比例
1.a 2, b 5, c 15, d 2 3; 2.a 2, b 3, c 2, d 3; 3.a 4, b 6, c 5, d 10; 4.a 12, b 8, c 15, d 10. 答: 1.a,b,c,d不成比例,但a,d,b,c成比例. 2.不成比例. 3.不成比例. 4. a,b,c,d成比例.
就是线段AB与线段A‘B’的比。
这个比值刻画了这两个五边形的大小关系。
练习一
(1) : 叫比例尺; (2)若实际距离是图上距离的600 000倍,这 幅图的比例尺是 . (3)若实际距离是120公里,比例尺是 1:2000000,则图上距离为 ( )
成比例线段教案 公开课教学设计
§4.1.1成比例线段(1课时)一、教学目标(一)知识与技能知道线段比的概念,会计算两条线段的比;知道成比例线段的定义;熟记比例的性质并会应用。
(二)过程与方法通过课堂活动,培养学生的观察、归纳、探索和主动获取知识的能力。
(三)情感、态度与价值观在学生解决问题的过程中,激发学生的创新意识,培养学生坚忍不拔、勇于探索的学习品质;在合作学习及相互交流中,培养学生团队精神。
二、教学重、难点教学重点:线段的比、成比例线段的概念,比例的基本性质。
教学难点:能运用比例的基本性质推导出比例的其余性质。
三、教学方法:启发式、直观性教学四、教学手段:多媒体五、教学过程Ⅰ.创设问题情境,引入新课同学们,大家见到过形状相同的图形吗?请举出例子来说明.(课本P76中图片;同一底片洗印出来的大小不同的照片;两个大小不同的五边形,等) 本章我们就要研究相似图形以及与之有关的问题.从两个大小不同的五边形来看,它们之所以大小不同,是因为它们的边长的长度不同,因此相似图形与对应线段的长度有关,所以我们首先从线段的比开始学习.Ⅱ.新课讲解概念a :两条线段的比大家先回忆什么叫两个数的比?度量线段的长度要注意什么?怎样比较两线段的大小? 两个数相除又叫两个数的比,如a ÷b 记作ba ; 如果选用同一个长度单位量得两条线段AB 、CD 的长度分别是m 、n ,那么就说这两条线段的比(ratio )AB ∶CD =m ∶n ,或写成CD AB =nm ,其中,线段AB 、CD 分别叫做这两个线段比的前项和后项. 如果把n m 表示成比值k ,则CD AB =k 或AB =k ·CD .练习1:量出数学书的长和宽(精确到 cm ),并求出长和宽的比.答:数学书的长为 cm ,宽为 cm ,长和宽的比为∶=211∶148。
练习2:如果把单位改成mm 或m ,比值还相同吗?答:改为mm 作单位,则长为211 mm ,宽为148 mm ,比值为211∶148;改用m 作单位,则长为 m ,宽为 m,长与宽的比为∶=211∶148从刚才的单位变换到计算比值,大家能得到什么吗?(只要是选用同一单位测量线段,不管采用什么单位,它们的比值不变.)练习3:线段a =3厘米,线段b =6米,所以2163==b a ,对吗? 答:因为a 、b 的长度单位不一致,所以不对.小结:(1)被比较的线段要采用同一个长度单位,如果单位长度不同,应先化成同一单位,再求它们的比;(2)两条线段的比,没有长度单位,它与所采用的长度单位无关;(3)两条线段的长度都是正数,所以两条线段的比值总是正数.概念b :四条线段成比例对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比等于另外两条线段的比, 如d c b a = 或写成a ∶b =c ∶d ,那么,这四条线段叫做成比例线段,简称比例线段. 其中,a 、d 叫比例的外项,b 、c 叫比例的内项。
《4.1比例线段》说课稿
《4.1比例线段》说课稿尊敬的各位评委、老师:大家好!今天我要和大家说说浙教版(2012)九年级上册第4章相似三角形中的4.1比例线段这一课。
下面我就从说教材、说学情、说教法、说学法、说教学过程以及板书设计这几个方面来详细说说。
一、说教材1. 教材的地位和作用比例线段这一内容在整个相似三角形的章节中那可是相当重要的基础部分。
就好比盖房子,比例线段就是那稳固的地基。
相似三角形在生活中的应用可不少,像是工程绘图、测量物体高度啥的,而要学好相似三角形,比例线段这关必须得先过。
它能让学生对线段之间的数量关系有更深刻的认识,为后续学习相似三角形的判定和性质等知识做好铺垫。
2. 教材内容分析这部分内容主要是讲比例线段的概念、比例的基本性质等。
概念方面,它通过一些实际的例子,比如不同长度的线段之间的比例关系,让学生直观地感受比例线段是怎么回事。
而比例的基本性质,那可就像一把万能钥匙,能帮助学生在解决很多关于比例线段的问题时打开思路。
教材里的例题和习题也是由浅入深,循序渐进地引导学生掌握这些知识。
我曾经有一次帮朋友做一个手工小制作,是一个缩小版的房屋模型。
在制作过程中,我就发现,要想让模型各个部分看起来和真房子相似,就得精确地计算每个部分的长度比例。
这就和咱们要学的比例线段一个道理,不同的线段就像房屋模型的各个部件,只有比例合适了,整体才和谐美观。
这也让我深刻地认识到比例线段在实际生活中的重要性,学生学了这个知识,也能在生活中找到类似的例子,更好地理解和应用。
二、说学情1. 知识基础九年级的学生已经学过了一些代数知识,像一元一次方程、二元一次方程组等,对于数与数之间的运算关系有了一定的基础。
而且在之前的几何学习中,也对线段的长度、图形的形状和大小等概念有了初步的认识。
但是,比例线段这个概念相对来说比较抽象,对于他们来说,要从数的比例关系过渡到线段的比例关系,还需要一个适应的过程。
2. 学习能力和特点这个阶段的学生已经具备了一定的逻辑思维能力和自主学习能力。
《成比例线段》word教案 (公开课获奖)2022北师版 (4)
4.2 平行线分线段成比例一、学生知识状况分析学生在本章前两课时的学习中,通过对相似图形的直观感知,体会到可以用对应线段长度的比来描述两个形状相同的平面图形的大小关系。
从而认识了线段的比,成比例线段。
通过对方格纸中成比例线段的探究,了解了合比性质与等比性质,并在探究活动中积累了一定的合作交流的经验,培养了提出问题与解决问题的能力。
同时学生通过对合比性质与等比性质的演绎证明,也进一步发展了逻辑推理能力。
二、教学任务分析本节课依旧采用前两节在方格纸中探究的方式,引导学生得出平行线分线段成比例及其推论。
平行线分线段成比例定理是研究相似形的最重要和最基本的理论,是《课程标准》图形的性质及其证明中列出的九个基本事实之一。
在知识技能方面,要求学生理解并掌握平行线分线段成比例定理及其推论,并会灵活应用。
学生经历运用平行线分线段成比例及其推论解决问题的过程,在观察、计算、讨论、推理等活动获取知识。
让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。
进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系。
教学目标:(一)知识目标理解并掌握平行线分线段成比例的基本事实及其推论,并会灵活应用。
(二)能力目标通过应用,培养识图能力和推理论证能力。
(三)情感与价值观目标(1)、培养学生积极的思考、动手、观察的能力,使学生感悟几何知识在生活中的价值。
(2)、在进行探索的活动过程中发展学生的探索发现归纳意识并养成合作交流的习惯。
教学重点:平行线分线段成比例定理和推论及其应用。
教学难点:平行线分线段成比例定理及推论的灵活应用,平行线分线段成比例定理的变式。
三、教学过程分析本节课设计了五个教学环节:第一环节:复习设疑,引入新课;第二环节:探索发现平行线分线段成比例定理及其推论;第三环节:平行线分线段成比例定理及其推论的简单应用;第四环节:课堂小结;第五环节:布置作业. 第一环节:复习设疑,引入新课内容:教师提问: (1)什么是成比例线段?(2)你能不通过测量快速将一根绳子分成两部分,使得这两部分的比是2:3? 目的:(1)复习成比例线段的内容,回顾上节课通过方格纸探究成比例线段性质的过程。
北师大版九年级数学上册《成比例线段》第1课时示范公开课教学设计
第四章图形的相似4.1 成比例线段第1课时一、教学目标1.结合现实情境感受学习线段的比的必要性,借助几何直观了解线段的比和成比例线段.2.学会求两条线段的比,体会用比值表示两条线段之间的关系;掌握比例的基本性质及其简单应用.3.能利用比例的基本性质解决有关问题.4.通过现实情境,进一步发展学生从数学角度提出问题、分析和解决问题的能力,培养学生的数学应用意识.二、教学重难点重点:理解线段比的概念及其求解,掌握比例的基本性质及简单应用.难点:利用比例的基本性质解决有关问题.三、教学用具电脑、多媒体、课件、教学用具等.四、教学过程设计【观察思考】教师活动:教师展示两组图片,引导学生分别观察他们的特征,教师引导学生观察并回答下面问题.问题:第一组图中两个亭子比较,你发现了什【合作探究】教师活动:那我们现在观察一组的几何图形,你能在下面图形中找出形状相同的图形吗?预设答案:教师引导,就上面一组图进一步观察思考下面问题:1.图中形状相同的图形有什么不同?2.形状相同的图形其中的一个如何由另一个得到?3.形状相同的图形对应线段如何变化?4.形状相同而大小不同的两个图形,你认为如何描述它们的大小关系?预设答案:1.形状相同,大小不同2.图形之间的“放大、缩小”3.图形上相应的线段也被“放大、缩小”4.对于形状相同而大小不同的两个图形,可以用相应“线段长度的比”来描述图形的大小关系.【归纳】教师活动:展示ppt中讲解线段的比的定义并讲解:如果选用同一个长度单位量的两条线段AB ,CD 的长度分别是m ,n ,那么这两条线段的比就是它们长度的比.记住:AB ∶CD =m ∶n ,或写成,其中,线段AB ,CD 分别叫做这个线段比的前项和后项.若我们把m ∶n 表示成比值k ,则或AB =k ﹒CD. 总结:两条线段的比实际上就是两个数的比. 【思考】 提出问题:(1)在求两条线段的比时应注意哪些问题? (2)两条线段的比结果有单位吗?(3)两条线段长度的比与所采用的长度单位有没有关系? 预设答案并总结:①两条线段的比就是长度的比,它没有单位; ②两条线段的比是有顺序的;③两条线段比与所选的长度单位无关; ④求两条线段比时.如果单位不同,那么必须先化成同一单位,再求它们的比. 【想一想】如图,五边形 ABCDE 与五边A′B′C′D′E′形状相同,AB =5cm ,A′B′=3cm.线段AB 与线段A′B′的比是________.答案:5∶3nmCD AB =k CDAB=注意:这个比值刻画了这两个五边形的大小关系. 【做一做】如图,设小方格的边长为1,四边形 ABCD 与四边形 EFGH 的顶点都在格点上,那么①AB ,AD ,EF ,EH 的长度分别是多少?提示:根据方格纸的方格数及勾股定理求出对应四条线段的长度2226210AD =+= 2226210AD =+=继续提出问题:①分别计算下面几个比的值∶AB AD AB EFEF EH AD EH、、、 预设解答:824AB EF == 210210AD EH == 82105210AB AD ==4210510EF EH ==教师进一步提出问题:你发现了什么? 预设:AB AD EF EH=、AB EF AD EH =【归纳】【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例如图,一块矩形绸布的长AB=a m,AD=1m,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的长与宽的比与原绸布的长与宽的比相同,即AEAD=ADAB,那么a的值应当是多少?分析∶依题意知,AB=a m,AE=13a m,AD=1m.又有AE ADAD AB,根据比例的基本性质即可求出a的值.教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.C为线段AB上一点,AC∶CB=5∶3.则AC∶AB= ,AB∶CB= .2.甲、乙两地相距35km,图上距离为7cm,则这张图的比例尺为( )A.5∶1B.1∶5C.1∶500000D.500000∶13.已知线段AB=2.5米,CD=400厘米,则线段AB和CD的比是.4.如图,将一张矩形纸片沿它的长边对折(EF为折痕),得到两个全等的小矩形。
成比例线段教案
教学目的:1.结合现实情境,感受学习线段的比的必要性,理解线段的比和成比例线段.2.借助几何直观,掌握比例的性质及其简朴应用.3.通过现实情境,进一步发展学生从数学的角度提出问题、分析问题和解决问题的能力,培养学生的数学应用意识,体会数学与自然、社会的亲密联系.教学重、难点:重点:理解线段的比和成比例线段的概念,理解比例的基本性质及其应用.难点:理解线段的比和成比例线段的概念.课前准备:制作多媒体课件.教学过程:一、美图观赏,情境导入导语:同窗们,色彩斑谰的世界中有许多美丽的图形,它们有的形状、大小都相似,这就是我们前面学过和全等形(多媒体出示图1);有的只有形状相似,这就是相似图形(多媒体出示图 2).你知如何刻画图形的相似吗?你懂得如何鉴定两个三角形相似吗?你懂得如何将一种图形放大或缩小吗?从今天开始,我们学习第四章,本章将研究图形的相似,探索三角形相似的条件,理解相似三角形的性质,并运用图形的相似解决某些简朴的实际问题.本节课就让我们一起从“成比例线段”开始学习本章.【板书课题:4.1 成比例线段(1)】图1 图2 解决方式:学生观看生活中的存在的全等形及相似形,体会数学来源于生活,在全等形的基础上感知相似图形.设计意图:通过用幻灯片展示生活的的图片,引入本章的学习内容—相似图形.初步感知相似图形,引发学生思考相似图形的特性,激发学生的求知欲及学习爱好.为新课的学习做好情感铺垫.二、探究学习,获取新知活动 1:两条线段的比1.考考你的眼力(多媒体出示)你能在下面的这些图形中找出形状相似的图形吗?这些形状相似的图形有什么不同?解决方式:学生先自主观察这些图形的特点,然后在小组内交流自已的见解,交流后借助多媒体展示自己的成果.教师在学生交流展示时可作下列引导:(1)图中形状相似的图形,大小有什么不同?(2)形状相似的图形其中的一种如何由另一种得到?(多媒体动画演示图形的放大与缩小)(3)形状相似的图形对应的线段如何变化的?(4)形状相似而大小不同的两个图形,你认为如何来描述它们的大小关系?设计意图:通过以上引导性问题引导学生共同总结出:对于形状相似而大小不同的两个图形,能够用对应线段长度的比来描述它们的大小关系.适时引出两条线段的比的概念.2.引入线段的比(多媒体出示)如果选用同一种长度单位量得两条线段AB,CD 的长度分别是m,n,那么这两条线段的比(ratio )就是它们的长度比,即 AB ∶CD =m ∶n ,或写成 AB = m.其中,线段 AB ,CD 分CD n别叫做这个线段比的前项和后项.如果把 m 表达成比值 k ,那么 AB= k ,或 AB =k ·CD .两n CD 条线段的比事实上就是两个数的比.解决方式:教师运用多媒体出示两条线段的比的定义.强调有关要点,明确两条线段的比事实上就是两个数的比.接着出示下面实例进一步加深学生对两条线段的比的认识.(多媒体出示)五边形 ABCDE 与五边形 A ′B ′C ′D ′E ′形状相似, AB =5cm , A ′B ′=3cm. AB ∶A ′B ′=5 : 3,就是线段 AB 与线段 A ′B ′的比.这个比值刻画了这两个五边形的大小关系.设计意图:通过两个五边形对应边的比,具体阐明线段的比的意义,进一步巩固对概念的理解.3. 想一想(1) 在计算两条线段的比时我们要注意什么?(2) 两条线段长度的比与所采用的长度单位有无关系?(3) 两条线段的比成果有单位吗?解决方式:学生思考并在小组内交流以上问题,举例阐明自己的理由.教师适时点拨引导,共同归纳出:在计算两条线段的比时我们要统一长度单位;两条线段长度的比与所采用的长度单位无关;两条线段的比成果没有单位,是一种数.设计意图:通过想一想使学生进一步加深对两条线段的比的认识.体会:两条线段长度的比与所采用的长度单位无关.但要采用同一种长度单位.活动 2:成比例线段(多媒体出示)如图,设小方格的边长为 1,四边形 ABCD 与四边形 EFGH 的顶点都在格点上,那么 AB , CD ,EF ,EH 的长度分别是多少?分别计算 AB , AD , AB , EF的值,你发现了什么?EF EH AD EH解决方式:引导学生结合图形分析题意,明确图中两四边形的四条边的长度能够通过观察或勾股定理得出.给学生充足的时间计算AB,AD,AB,EF的值,在计算的过程中体会EF EH AD EHAB=AD,AB=EF.教师借助多媒体展示解题思路及解题过程,规范学生的解题环节EF EH AD EH的书写.完毕后追问:你发现了什么?从而引出成比例线段的概念.强调:上图中AB,EF,AD,EH 是成比例线段,AB,AD,EF,EH 也是成比例线段.四条线段a,b,c,d 中,如果a 与b 的比等于c 与d 的比,即a/b=c/d,那么这四条线段a,b,c,d 叫做成比例线段,简称比例线段.(多媒体出示)设计意图:通过方格纸上两个四边形对应边的比值的计算,引导学生发现这四组对应线段的比相等,进而引出比例线段的概念.跟踪练习:判断下列四条线段与否成比例.(1)a = 2, b= 5, c = 15, d = 23;(2)a =2, b= 3, c = 2, d =3;(3)a = 4, b= 6, c = 5, d =10;(4)a =12, b= 8, c =15, d =10.解决方式:学生先自主判断,然后再在全班展示交流.共同总结出:四条线段成比例与这四条线段的次序有关.设计意图:通过练习巩固学生对概念的理解.活动 3:比例的基本性质议一议如果a,b,c,d 四个数成比例,即a/b=c/d,那么ad=bc 吗?反过来如果ad=bc,那么a,b,c,d 四个数成比例吗?与同伴交流.3 3 解决方式:第一种问题可引导学生从两方面加以阐明,首先根据等式的基本性质,在 a=bc 两边同时乘 bd ,得到 ad =bc ;另首先能够介绍引入比值 k 的办法:设 a = c=k ,那么 d b da =bk ,c = d k ,因此 ad = bk·d =b·kd =bc .第二个问题,要注意条件.通过学生的展示,共同总结出比例的基本性质:如果 a = c,那么 ad =bc .如果 ad =bc (a ,b ,c ,d 都不等于零),b d那么 a = c .b d设计意图:通过对两个问题的讨论引出比例的基本性质. 三、例题解析,应用新知例 1 如图,一块矩形绸布的长 AB =a m ,AD =1m ,按照图中所示的方式将它裁成相似的三面矩形彩旗,且使裁出的每面彩旗的长与宽的比 与原绸布的长与宽的比相似,即 AE = AD ,那么 a 的值应当是多ADAB少?解决方式:引导学生阅读、理解题意,自己尝试解答,教师运用实物投影展示学生的做题状况,借助多媒体展示解题过程,规范学生的书写,强调知识的应用.解:根据题意可知,AB =a m ,AE = 1a m ,AD =1m .3 1 a由 AE = AD ,得 3 = 1 ,即 1 a 2 = 1. AD AB ∴a 2=3.1 a 3 开平方,得 a = ( a =- 舍去).设计意图:通过例题提供应用比例基本性质的一种具体情境,加深学生对比例基本性质的理解.让学生运用所学的知识来解决实际生活中的问题.想一想:生活中尚有哪些运用线段比的事例?你能举例吗?学生举例:房屋装修平面图,手机模型,汽车模型,深圳世界之窗,建筑物的效果图等等.设计意图:进一步让学生体会线段的比在生活中的应用. 四、回想反思,提炼升华通过这节课的学习,你有哪些收获?有何感想?学会了哪些办法?先想一想,再分享给大家.解决方式:学生畅谈自己的收获!教师强调:1)线段的比的概念、表达办法;前项、后项及比值 k;2)两条线段的比是有序的;与采用的单位无关,但要选用同一长度单位;3)两条线段的比在实际生活中的应用.4)比例的基本性质:如果a=c,那么ad=bc.如果ad=bc (a,b,c,d 都不等于零),b d那么a=c.b d设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.五、达标检测,反馈提高活动内容:通过本节课的学习,同窗们的收获真多!收获的质量如何呢?请完毕导学案中的达标检测题.(同时多媒体出示)1.一条线段的长度是另一条线段长度的5 倍,则这两条线段之比是_.32.一条线段的长度是另一条线段长度的,则这两条线段之比是.53.已知a、b、c、d 是成比线段,a=4cm,b=6cm,d=9cm,则c=__ .x4.如果2x=5y,那么y =.5.把mn=pq 写成比例式,写错的是()A.m=p; B.p=n; C.q=n; D. m =p .q n m q m p n q6.已知a∶b∶c=2∶3∶4,且a+b+c=15,则a=,b=,c= .解决方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题状况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握状况,并最大程度地调动全体学生学习数学的主动性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达成全方面提高的目的.六、布置作业,课堂延伸必做题:课本79 页习题4.1 第1 题、第2 题.选做题:课本79 页习题4.1 第3 题.板书设计:。
4.1成比例线段(第一课时)学历案北师大版九年级数学上册
2023学年第一学期九年级数学学历案25班级:_____年级_____班 姓名:__________ 学号:______【课时名称】4.1 成比例线段(第1课时)【课标要求】了解线段的比和成比例线段【学习目标】1.了解线段的比和成比例线段.2.掌握比例的性质及其简单应用 .【评价任务】1.完成任务一(检测目标1)2.完成任务二3.完成任务三(检测目标2)【学习过程】任务一:比例线段1、阅读课本76,说说这些照片的相同之处与不同之处。
2、下面是两个形状相同的五边形,你可以描述它们的大小关系吗?任务二:成比例线段阅读并理解课本77页成比例线段的概念,请找出一组不同于课本的成比例线段。
任务三:比例的性质dc b a =,那如果a,b,c,d 四个数成比例,即么bc ad =吗?你是如何验证的? 1. 反过来,如果bc ad =,那么a,b,c,d 四个数成比例吗?【检测与作业】一、(检测目标1)1.如图,在Rt △ABC 中,∠C =90°,∠A =30°,斜边AB =2cm .求:(1)BCAB (2)AB AC 二、(检测目标2)2.已知线段a 、b 、c 、d 满足bc ad =,把它改写成比例式,正确的是( )A d :a =b :cB a :d =c :bC a :b =c :dD a :c =d :bE D C B A D 'E 'C 'B 'A '3.已知2m =3n ,则mn = . 4.已知线段a,b,c,d 是成比例线段,其中a =4,b =5,c =10,线段d 的长是___________.5.如图,一块矩形绸布的长AB a =m ,宽2AD =m ,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁处的每面彩旗的宽与长的比与原绸布的宽与长的比相同,即AE AD AD AB =,那么a 的值应当是多少?6.已知1x y=,则x y y -的值为 . 7.如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点A ,B ,C 都在横线上.若线段3AB =,则线段BC 的长是( )A .23B .1C .32D .2【学后反思】。
4.1成比例线段(1)
第30 课时课题:成比例线段(1)学习目标:了解线段的比和比例线段的概念,会求两条线段比;理解并掌握比例的基本性质,能用比例的基本性质解决一些实际问题2能力目标:通过自主,合作探究新知的过程能感受观察,分析,归纳等获取知识的方法3情感目标:借助生活中感性图片营造的亲切,和谐的课堂气氛,激励同学们参与课堂活动重点:成比例线段的理解和应用。
难点:应用比例的基本性质解决实际问题。
导学过程活动1 独学教材77页前三段内容完成知识点一和知识点二知识点一:形状相同的图形形状相同的图形是指两个图形形状完全(),但()并不一定相同。
知识点二:两条线段的比如果选用同一个长度单位量得两条线段AB、CD的长度分别是m、n,那么这两条线段的比就是它们()的比,即AB:CD=m:n或写成nmCDAB=,其中,线段AB,CD分别叫做这个线段比的()项和()项,如果把nm表示成比值K,那么kCDAB=,或∙=kAB()思考:(1)求两条线段的比时,两条线段的长度单位有什么要求?(2针对演练1(考察)某地图册上靖边县到户县的直线距离AB=8cm,而靖边县到户县的实际直线距离CD=400km,求CDAB。
解:活动2:二人对学教材77页做一做完成知识点三如下图所示,设小方格的边长为1,四边形ABCD与四边形EFGH的顶点都在格点上,(1)通过数格子或利用勾股定理可求得AB=______,AD=______,EF=_____,EH=_____;(2)由(1)中结果,可计算出______;______,______,______,====EHEFADABEHADEFAB所以:;知识点三:成比例线段四条线段a,b,c,d中,如果a与b的比等于c与d的比,即____________,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段;注意:(1)成比例的线段是指()条线段的关系,而不是两条线段的关系。
(2)在比例式a:b=c:d中,b,c叫作两()项,a,d叫作两()项,其中d叫作a,b,c的()项。
4.1成比例线段(一)教学设计
第四章图形的相像1.成比率线段 (一)一、学生知识情况剖析相像图形是现实生活中宽泛存在的现象,在小学时学生就接触过比率的知识,在七年级下册时学生已学习了全等图形(其实全等图形就是相像图形的一个特例)。
因此学生已经具备一些知识基础、活动经验基础等,学生在学习线段的比时不会感觉很困难。
二、教课任务剖析(一)教课知识点1、认识相像形、线段的比观点;2、会求两条线段的比 , 应用线段的比解决实质问题。
(二)能力训练要求经过现真相境,进一步发展学生从数学的角度提出问题、剖析问题和解决问题的能力,培养学生的数学应意图识,领会数学与自然、社会的亲密联系。
(三)感情与价值观要求1、相关比率的计算,让学生懂得数学在现实生活中的作用,进而加强学生学好数学的信心;2、经过解答实质问题,激发学生学数学的兴趣,增加社会见解;3、在与别人的共同探究、议论问题的过程中,加强合作沟通的意识。
教课要点:理解线段比的观点及其求解。
教课难点:求线段的比,注意线段长度单位要一致。
教课方法:探究、发现法教课准备:多媒体课件三、教课过程剖析本节课设计了六个教课环节:第一环节:设置情境,引入新课;第二环节:新课解说;第三环节:随堂练习;第四环节:想想;第五环节:回首与思虑;第六环节:部署作业。
第一环节设置情境,引入新课活动内容:经过用幻灯片展现生活的的图片,引入本章的学习内容—相像图形。
活动目的:引起学生思虑相像图形的特点,激发学生的学习兴趣。
实质成效:学生们都很喜悦,对学习充满了好奇心。
第二环节:新课解说 AB AD AB EHEH ,,,活动内容:EF AD EF1.请在下边图形中找出形状同样的图形?你发现这些形状同样的图形有什么不一样?2. 引入线段的比 :假如采纳同一个长度单位量得两条线段 AB,CD 的长度分别是 m ,n,那么就说这两条线段的比 (ratio )AB:CD=m:n,或写成AB m此中 ,AB,CD 分别叫做这个线段比的前项CDn和后项 .假如把m表示成比值 k,那么ABk ,或 AB=k ·CD.两条线段的比实质上就是两个数的nCD比。
北师大版-数学-九年级上册-教案4.1 成比例线段
4.1 成比例线段第1课时 线段的比和比例的基本性质1.了解线段的比和比例线段的概念.2.掌握比例的基本性质,会求两条线段的比,并应用线段的比解决实际问题.(重点)阅读教材P76~79,完成下列内容:(一)知识探究1.线段的比:如果选用同一个长度单位量得两条线段AB ,CD 的长度分别是m ,n ,那么这两条线段的比(ratio)就是它们________的比,即AB ∶CD =m ∶n ,或写成AB CD =m n.其中,线段AB ,CD 分别叫做这个线段比的________和________.如果把m n 表示成比值k ,那么AB CD=k 或AB =k ·CD.两条线段的比实际上就是两个数的比.2.四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即________,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称________.3.比例的基本性质如果a b =c d,那么ad =________. 如果ad =bc(a ,b ,c ,d 都不等于0),那么a b=________. (二)自学反馈1.下列各组线段(单位:cm)中,成比例线段是( )A .1,2,3,4B .1,2,2,4C .3,5,9,13D .1,2,2,32.把mn =pq 写成比例式,错误的是( )A.m p =q nB.p m =n qC.q m =n pD.m n =p q活动1 小组讨论例 如图,一块矩形绸布的长AB =a m ,宽AD =1 m ,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的宽与长的比与原绸布的宽与长的比相同,即AE AD =AD AB,那么a 的值应当是多少?解:根据题意可知,AB =a m ,AE =13a m ,AD =1 m. 由AE AD =AD AB,得 13a 1=1a, 即13a 2=1. ∴a 2=3.开平方,得a =3(a =-3舍去).本例提供了应用比例基本性质的一个具体情境,应注意阅读和理解题意,然后由比例式得到等积式,再通过计算求得结果.易错提示:开平方后求得的结果,需要检验是否符合题意.活动2 跟踪训练1.等边三角形的一边与这边上的高的比是( )A.3∶2B.3∶1C .2∶ 3D .1∶ 32.若四条线段a 、b 、c 、d 成比例,且a =3,b =4,c =6,则d =( )A .2B .4C .4.5D .83.在比例尺为1∶900 000的安徽黄山交通图中,黄山风景区与市政府所在地之间的距离是4 cm ,这两地的实际距离是( )A .2 250厘米B .3.6千米C .2.25千米D .36千米4.A 、B 两地之间的高速公路为120 km ,在A 、B 间有C 、D 两个收费站,已知AD ∶DB =11∶1,AC ∶CD =2∶9,则C 、D 间的距离是________km.5.如图,已知AD DB =AE EC,AD =6.4 cm ,DB =4.8 cm ,EC =4.2 cm ,求AC 的长. 活动3 课堂小结1.线段的比的概念、表示方法;前项、后项及比值k.2.两条线段的比是有序的;与采用的单位无关,但要选用同一长度单位.3.两条线段的比在实际生活中的应用.【预习导学】(一)知识探究1.长度 前项 后项 2.a b =c d 比例线段 3.bc c d(二)自学反馈1.B 2.D【合作探究】活动2 跟踪训练1.C 2.D 3.D 4.905.∵AD DB =AE EC ,∴6.44.8=AE 4.2.解得AE =5.6.∴AC =AE +EC =5.6+4.2=9.8(cm).第2课时 等比性质1.理解并掌握等比性质.(重点)2.运用等比性质解决有关问题.(难点)阅读教材P79~80,自学“例2”,完成下列内容:(一)知识探究等比性质:如果a b =c d =…=m n (b +d +…n ≠0),那么a +c +…+m b +d +…+n=________. 注意在运用等比性质时,前提条件是:分母b +d +…+n ≠0.(二)自学反馈如果a b =c d =52(b +d ≠0),那么a +c b +d=________.活动1 小组讨论例 在△ABC 与△DEF 中,若AB DE =BC EF =CA FD =34,且△ABC 的周长为18 cm ,求△DEF 的周长. 解:∵AB DE =BC EF =CA FD =34, ∴AB +BC +CA DE +EF +FD =AB DE =34. ∴4(AB +BC +CA)=3(DE +EF +FD),即DE +EF +FD =43(AB +BC +CA). 又∵△ABC 的周长为18 cm ,即AB +BC +CA =18 cm ,∴DE +EF +FD =43(AB +BC +CA)=43×18=24(cm), 即△DEF 的周长为24 cm.在应用等比性质时,要抓住题目已知条件:三角形ABC 的周长,即三边之和为18 cm.活动2 跟踪训练1.已知a b =c d =e f=4,且a +c +e =8,则b +d +f 等于( ) A .4 B .8C .32D .22.若a +b c =b +c a =c +a b=k ,且a +b +c ≠0,则k 的值为( ) A .2 B .-1C .2或-1D .不存在3.已知a b =c d =e f =23,则a +e b +f=________. 4.如果a b =c d =e f=k(b +d +f ≠0),且a +c +e =3(b +d +f),那么k =________.5.已知a b =c d =e f =23,b +2d -3f ≠0,求a +2c -3e b +2d -3f的值. 活动3 课堂小结等比性质:如果a b =c d =…=m n (b +d +…n ≠0),那么a +c +…+m b +d +…+n =a b.【预习导学】(一)知识探究 a b(二)自学反馈52【合作探究】活动2 跟踪训练1.D 2.A 3.234.3 5.∵a b =c d =e f =23,b +2d -3f ≠0,∴a b =2c 2d =-3e -3f =23.∵b +2d -3f ≠0,∴a +2c -3e b +2d -3f =23.。
《成比例线段(1)》教案 2022年北师大版九年级数学上
4.1.1成比例线段(1)【教学目标】知识与技能:知道线段比的概念.会计算两条线段的比. 过程与方法通过计算作图掌握概念:线段的比、成比例线段。
情感、态度与价值观在获得知识的过程中培养学习的自信心. 【教学重难点】教学重点:成比例线段、比例的性质教学难点:会求两条线段的比,注意线段长度的单位要统一. 【导学过程】【创设情景,引入新课】、小学里已经学过了比例的有关知识,下面请同学们口答下列问题: (1)若a 与b 的比值和c 与d 的比值相等,应记为: 。
(2)已知2:3=4:x ,则:x= 。
【自主探究】(1) 自主学习完成课本60--62页试一试与概括:填写下列空格: (1)、“比例线段”的概念: 。
已知四条线段a 、b 、c 、d,如果dcb a =(或a:b=c:d ),那么a 、b 、c 、d 叫做组成比例的 , (2)“比例线段”和“线段的比”的区别“比例线段”和“线段的比”这两个概念有什么区别?结论: (3)注意:概念的有序性线段的比有顺序性,a:b 和b:a 通常是不相等的。
比例线段也有顺序性,如dcb a =叫做线段a 、b 、c 、d 成比例,而不能说成是b 、a 、c 、d 成比例。
【课堂探究】例1如图一块矩形的绸布长AB=am ,宽AD=1m ,按照图中所示的方式将它剪裁成相同的三面矩形彩旗,且使裁出的每面彩旗的宽与长的比与原绸布的宽与长的比相同。
即 那么a 的值应当是多少?判断下列线段a 、b 、c 、d 是否是成比例线段: (1)a =4,b =6,c =5,d =10;(2)a =2,b =5,c =152,d =35. 解:AB ADAD AE =把(1)题中a、b、c、d调换位置可以得到几种情况?哪些情形是成比例线段。
成比例线段在大小排序上有何规律?给你四个数据怎样最快的获取成比例线段排序的最大可能性?总结:如何判断成比例线段,说出你的方法并交流。
【当堂训练】1、已知m、n、p、q是成比例线段,其中m=2cm,n=6cm,q=27cm,则p=_______cm.2、(★★)已知三个数1,2、3,请你再添一个数,使它们构成的四个数成比例关系。
导学 案(25)4.1成比例线段(1)
课题:4.1成比例线段(1)【教学目标】理解相似形、线段的比、成比例线段概念及其性质;【课前预习】1.解方程:743)1(=x 743)2(=x2.两个口袋中分别装有两张卡片:a,d 和 b,c ;分别从中取出一张,共有______种结果:_______________.3. 线段的比:如果选用同一个长度单位量得两条线段AB,CD 的长度分别是m ,n ,那么就说这两条线段的比AB :CD =___:____,或写成___________其中,AB,CD 分别叫做这个线段比的____项和______项.如果把nm表示成比值k,那么k CDAB =,或AB=_______.两条线段的比实际上就是______________的比。
4. 成比例线段:四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即_________,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称_______________.5.如果dc b a =,那么_______=ad 。
6.如果)都不等于0,,,(d c b a bc ad =,那么_____=b a 【探究新知一】阅读课本P77。
1. 线段AB=5cm ,A ’B ’=3cm 。
AB : A ’B ’=___ :______,线段AB=0.5dm ,A ’B ’=0.3dm 。
AB : A ’B ’=___ :______,2.设小方格的边长为1,四边形ABCD 与四边形EFGH 的顶点都在格点上,那么AB=___,AD=____,EH=____,EF=____;__________________是成比例线段,___________________也是成比例线段, 练习:1、线段a=8 cm, b=4 dm,_____=ba 2、线段a 的长度是线段b 长度的5倍,则这两条线段之比是____________,____,___,====EFEH AD AB EF AD EH AB3. 线段a 的长度是线段b 长度的53,则这两条线段之比是______. 4.在比例为1:5000的地图上,一段路的图上距离为16厘米,这段路的实际距离为____米5.下列是4条线段的长度,判断它们是否成比例。
4.1.1成比例线段(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“4.1.1成比例线段”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断物体大小比例的情况?”比如,在绘画时,如何按照一定比例缩小或放大物体。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索成比例线段的奥秘。
在教学内容方面,我觉得还可以拓展一些相关知识点,如相似三角形的判定和应用,让学生在学习成比例线段的基础上,进一步拓展知识体系。同时,结合学生的兴趣和实际需求,设计更多有趣、富有挑战性的练习题,提高他们的学习兴趣。
最后,针对学生在课堂上提出的问题,我会在课后进行总结,以后主动提问,及时解决他们的疑惑。
举例解释:例如,在教学过程中,教师可以通过实际例题,如“一个三角形的三边长分别为6cm、8cm、10cm,判断是否为成比例线段”,来强调成比例线段定义的重要性。
2.教学难点
-难点1:成比例线段的判定
-学生可能难以理解如何判断两条线段是否成比例,特别是在涉及多条线段时。
-教师应举例说明,如“线段a=4cm,线段b=6cm,线段c=8cm,线段d=12cm,判断哪些线段成比例”,并引导学生运用交叉相乘法进行判定。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的几何直观能力:通过观察、分析成比例线段的性质,使学生能够形象地理解比例关系,提高几何直观素养。
2.发展学生的逻辑思维能力:在学习成比例线段的过程中,引导学生运用逻辑推理,分析问题,解决问题,提升逻辑思维素养。
3.培养学生的数学应用意识:将成比例线段知识应用于解决实际问题,让学生体会数学与现实生活的联系,增强数学应用素养。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章图形的相似
1.成比例线段(第1课时)
制作人
班级:姓名:2015年月日
教学目标:1、了解线段的比概念。
2、会求两条线段的比,应用线段的比解决实际问题。
教学重点:理解线段的比的概念及其求解。
教学难点:求线段的比,要注意线段的长度单位一致。
教学过程:
一、认识线段的比:线段的比:如果选用同一个长度单位量得两条线段AB,CD的长度分别
是m,n,那么就说这两条线段的比AB:CD=m:n,或写成AB m
=其中,AB,CD分别叫做这个CD n
线段比的前项和后项.如果把m AB
表示成比值k,那么
n CD
=k,或AB=k·C D.两条线段的比实际
上就是两个数的比。
想一想:两条线段长度的比与采用的长度单位有没有关系?
例如:数学课本长为21cm,宽为15cm,则长与宽的比为______________;如果把单位改为mm,则数学课本长与宽的比为________________;如果把单位改为m,则数学课本长与宽的比为________________.
结论:两条线段长度的比与采用的长度单位_________.
【基础练习一】
1、线段a=5cm,b=50cm,则a:b=_____.
2、线段a=3cm,b=12mm,则a:b=_____.
3、已知点P在线段AB上,且AP:PB=2:5,则AB:PB=_____,AP:AB=___
二、比例线段:
(1)什么是比例线段?四条线段中,如果其中两条线段的比________另外两条线段的比,则这四条线段叫做成比例线段,简称比例线段。
(2)若a、b、c、d是比例线段,则________
【基础练习二】
1、下列四组线段中,成比例线段的是()
A3cm,4cm,5cm,6cm B4cm,8cm,3cm,5cm
C5cm,15cm,2cm,6cm D8cm,4cm,1cm,3cm
2、四条线段a、b、c、d成比例,其中b=3cm,c=2cm,d=6cm,则线段a的长度是多少?如果改成四条线段b、c、d、a成比例,其中b=3cm,c=2cm,d=6cm,则此时线段a的长度是多少?
(1)如果
a
(1)、如果
a
(3)、如果2c=15b,则
b
)
三面矩形彩旗,且使裁出的每面彩旗的长与宽的比与原绸布的长与宽的比相同,即,=AD
A.m
q n B.
p
m p
D.
三、比例的基本性质:
c
=,那么ad=bc
b d
(2)如果ad=bc(a,b,c,d都不等于0),那么
a c
=
b d
【基础练习三】
5a
=,则ab=____________.(2)、如果3a=7b,则=____________.
24b b
a
=____________.(4、如果a2=bc,则
c c
=___________.
例题1:如图,一块矩形绸布的长AB=am,AD=1m,按照图中所示的方式将它裁成相同的
AE
AD AB 那么a的值应当是多少?
随堂测试:
1、在比例尺是1:6000000的地图上,量得南京到北京的距离是15厘米,南京到北京的
实际距离是千米。
2、一条线段的长度是另一条线段长度的5倍,则这两条线段之比是______
3、已知a、b、c、d是成比线段,a=4cm,b=6cm,d=9cm,则c=____
4、如果2x=5y,那么
x
y
=____
5、把mn=pq写成比例式,写错的是()
==
p n
m q
q n
C.=
m p
=
n q
6、已知a:b:c=2:3:4,且a+b+c=15,则a=___,b=___,c=__。