(整理)力法求解超静定结构的步骤:.
高等工程力学1 超静定结构内力计算
M i 、Qi、N i ——任取的基本体系在单位力作用下的内力图,而单位力是加在 要求位移的截面上的;
—RK—基本体系支座k在单位力作用下的反力;
cK——k支座的实际位移。 公式(1-7)的前三项表示基本体系在荷载和多余未知力的作用下的位移,后
三项表示基本体系在温度变化和支座移动情况下引起的位移。
1 超静定结构内力计算
⑵ 有结点线位移的情况 计算这类结构时;原利用公式(1-11)考虑各结点的弯矩平衡外,还需考虑 相应杆端剪力的平衡。取适当的截面截出结构的一部分,通常是截断各柱的柱顶 端。取出横梁。考虑剪力平衡,建立剪力平衡方程,即
Qx 0
(1-12)
补充了剪力平衡方程后,方程式的数目仍然与未知数的数目相等,方程式总是 可以求解的。
1 超静定结构内力计算
§1.1.1力法的基本原理(续4)
由力法方程解出未知力X1、X2、…Xn后,超静定结构的内力可根据叠加原理 用下式计算:
M M1X1 M2X2 MnXn MP Q Q1 X 1 Q2 X 2 Qn X n QP N N1X1 N2 X 2 Nn X n NP
§1.2.4利用典型方程求解结构的位移和内力(续1)
同理附加链杆处的反力也为零,即
R2 R21 R22 R2P 0
或写成
r11Z1 r12Z2 R1P 0 r21Z1 r22Z2 R2P 0
对于有n个基本未知数的结构,位移法典型方程式为:
r11Z1 r12 Z2 r1n Zn R1P 0 r21Z1 r22 Z2 r2n Zn R2P 0
§1.2.1等截面直杆的转角位移方程式(续1)
AB杆产生位移后,杆端的总弯矩为
M AB
M
/ AB
M
常见一次超静定梁力法基本体系的选取
图 3 Mˉ1 图
图 4 MP图
系数项等于单位荷载弯矩图自身图乘。此时单位荷载弯矩
图在 l/2 处出现折点,用图乘法计算系数项时,需要分段进行图
乘,弯矩图左右两跨对称,算出一侧乘 2 即可,最终图乘结果如下:
δ11 =
1 EI
(
1 2
×
l 2
× 1×
2 3
)× 2 =
l 3EI
自由项等于单位荷载弯矩图和荷载弯矩图进行图乘。此时
力法基本体系的选取原则如下:
a. 只能解除原结构中的多余约束,不能解除必要约束。用
力法计算超静定结构的基本思路就是将超静定结构求解转化为
静定结构求解,如果解除了必要约束,此时体系就变为几何可
变,不再能使用力法求解。
b. 只能从原结构中解除约束,不能增加约束。新增约束的
出现会使基本体系与原结构的位移不能保持一致,满足不了基
Copyright©博看网 . All Rights Reserved.
工程设计
一个集中力 P 为例分别来计算这两种基本体系的系数项和自 由项。
第一种基本体系的单位荷载弯矩图(Mˉ1 图)是只考虑中部铰 结点处一组单位力偶所产生的弯矩(如图 3 所示),荷载弯矩图 (MP图)是只考虑基本结构上右跨跨中作用集中力 P 所产生的弯 矩(如图 4 所示)。
MP图只有右跨出现弯矩,用图乘法计算系数项时,只需将右跨的 单位荷载弯矩图和荷载弯矩图进行图乘。图乘时 MP图取 A,Mˉ1
图取 yc,图乘结果如下:
Δ1P =
1 EI
(
1 2
×
l 2
×
1 8
Pl
×
1 2
)× 2 =
Pl2 64EI
(整理)力法求解超静定结构的步骤:.
第八章力法本章主要内容1)超静定结构的超静定次数2)力法的解题思路和力法典型方程(显然力法方程中所有的系数和自由项都是指静定基本结构的位移,可以由上一章的求位移方法求出(图乘或积分))3)力法的解题步骤以及用于求解超静定梁刚架桁架组合结构(排架)4)力法的对称性利用问题,对称结构的有关概念四点结论5)超静定结构的位移计算和最后内力图的校核6)§8-1超静定结构概述一、静力解答特征:静定结构:由平衡条件求出支反力及内力;超静定结构的静力特征是具有多余力,仅由静力平衡条件无法求出它的全部(有时部分可求)反力及内力,须借助位移条件(补充方程,解答的唯一性定理)。
二、几何组成特征:(结合例题说明)静定结构:无多余联系的几何不变体超静定结构:去掉其某一个或某几个联系(内或外),仍然可以是一个几何不变体系,如桁架。
即:超静定结构的组成特征是其具有多余联系,多余联系可以是外部的,也可能是内部的,去掉后不改变几何不变性。
多余联系(约束):并不是没有用的,在结构作用或调整结构的内力、位移时需要的,减小弯矩及位移,便于应力分布均匀。
多余求知力:多余联系中产生的力称为三、超静定结构的类型(五种)超静定梁、超静定刚刚架、超静定桁架、超静定拱、超静定组合结构四、超静定结构的解法综合考虑三个方面的条件:1、平衡条件:即结构的整体及任何一部分的受力状态都应满足平衡方程;2、几何条件:也称变形条件、位移条件、协调条件、相容条件等。
即结构的变形必须符合支承约束条件(边界条件)和各部分之间的变形连续条件。
3、物理条件:即变形或位移与内力之间的物理关系。
精确方法:力法(柔度法):以多余未知力为基本未知量位移法(刚度法):以位移为基本未知量。
力法与位移法的联合应用:力法与位移法的混合使用:混合法近似方法:力矩分配法、矩阵位移法、分层总和法、D值法、反弯点法等本章主要讲力法。
五、力法的解题思路(结合例子)把不会算的超静定结构通过会算的基本结构来计算。
第五章力法超静定结构概述(PDF)
第五章 力 法§5—1 超静定结构概述超静定结构是工程实际中常用的一类结构,前已述及,超静定结构的反力和内力只凭静力平衡条件是无法确定的,或者是不能全部确定的。
例如图5—1a所示的连续梁,它的水平反虽可由静力平衡条件求出,但其竖向反力只凭静力平衡条件就无法确定,因此也就不能进一步求出其全部内力。
又如图5—1b所示的加劲梁,虽然它的反力可由静力平衡条件求得,但却不能确定杆件的内力。
因此,这两个结构都是超静定结构。
分析以上两个结构的几何组成,可知它们都具有多余约束。
多余约束上所发生的内力称为多余未知力。
如图5—1a所示的连续梁中,可认为B支座链杆是多余约束,其多余未知力(图5—1c)。
又如图5—1b所示的加劲梁,可认为其中的BD杆是多余约束,其多余为FBy未知力为该杆的轴力F(图5—d)。
超静定结构在去掉多余约束后,就变成为静定结构。
N常见的超静定结构类型有:超静定梁(图5—2),超静定刚架(图5—3),超静定桁架(图5—4),超静定拱(图5—5),超静定组合结构(图5—6)和铰接排架(图5—7)等。
超静定结构最基本的计算方法有两种,即力法和位移法,此外还有各种派生出来的方法,如力矩分配法就是由位移法派生出来的一种方法。
这些计算方法将在本章和以下两章中分别介绍。
§5—2 力法的基本概念在掌握静定结构内力和位移计算的基础上,下面来寻求分析超静定结构的方法。
先举一个简单的例子加以阐明。
设有图5—8a 所示一端固定另一端铰支的梁,它是具有一个多余约束的超静定结构。
如果以右支座链杆作为多余约束,则去掉该约束后,得到一个静定结构,该静定结构称为力法的基本结构。
在基本结构上,若以多余未知力代替所去约束的作用,并将原有荷载q 作用上去,则得到如图5—8b 所示的同时受荷载和多余未知力作用的体系。
该体系称为力法的基本体系。
在基本体系上的原有荷载是已知的,而多余力是未知的。
因此,只要能设法先求出多余未知力,则原结构的计算问题即可在静定的基本体系上来解决。
结构力学——力法
超静定梁
超静定刚架
超静定桁架
超静定拱 超静定组合结构 超静定铰接排架
对超静定结构的内力进行分析的方法主要有两 种,即力法和位移法。本章主要介绍如何用力法求 解超静定结构的内力。
超静定结构具有多余约束,用力法计算超静定 结构的内力时,首先应该确定超静定结构中多余约 束的个数。这个数目表示:除去静力平衡方程外, 尚需补充多少个反应位移条件的方程才能求解全部 的反力和内力。
超静定结构用力法计算绘出最后内力图后,也可用这种方法 计算超静定结构任一已知位移,以进行位移条件的校核。我们可 以计算超静定结构解除约束处的位移,若所求位移与原结构相同 即为正确的,否则是错的。例如,原结构中支座A是固定支座,其 角位移应该为零,利用这一条件即可校核所求得的最后内力图。 图(a)所示刚架支座A的角位移等于图(b)所示基本系中截面A 的角位移,计算该位移时,只需将虚拟力FPk=1作用于基本系的截 面A处,得到下图所示虚拟状态。再将该虚力状态的弯矩图与原超 静定结构的弯矩图图乘,如果原超静定结构弯矩图正确,则必有
12PP 3P
0 0 0
ΔxxX ΔP 0
--- 力法的典型方程
ΔxxX ΔP 0
Δxx :柔度矩阵,即力法方程中的系数矩阵。 X :基本未知量列阵。 ΔP:自由项列阵。
ii 主系数,恒为正。 ik 副系数,可正、负、零。互等关系ik ki(i k)
3 31 32 33 3P 31X1 32 X 2 33 X3 3P 0
矩阵形式:
11 21 31
12 22 32
13 23 33
X X X
1 2 3
第十章 超静定结构
第十章超静定结构一、内容提要1、理解超静定结构中的一些基本概念,即:静定与超静定、超静定次数、多余约束、超静定系统(结构)、基本静定系以及相当系统等。
2、熟练掌握用力法求解超静定结构。
3、掌握对称与反对称性质并能熟练应用这些性质求解超静定结构。
4、了解连续梁的概念以及三弯矩方程。
二、基本内容1、超静定系统中的一些基本概念超静定结构或系统:用静力学平衡方程无法确定全部约束力和内力的结构或结构系统。
静定结构或系统:无多余联系的几何不变的承载结构系统,其全部约束反力与内力都可由静力平衡方程求出的机构或结构系统。
多余约束:在无多余联系的几何不变的静定系统上增加约束或联系。
外超静定:超静定结构的外部约束反力不能全由静力平衡方程求出的情况。
内超静定:超静定结构内部约束(或联系)形成的内力不能单由静力平衡方程求出的情况。
混合超静定结构:对于内、外超静定兼而有之的结构。
基本静定系:解除超静定结构的某些约束后得到静定结构,称为原超静定结构的基本静定系(简称为静定基)。
静定基的选择可根据方便来选取,同一问题可以有不同选择。
相当系统:在静定基上加上外载荷以及多余约束力的系统称为静不定问题的相当系统。
超静定次数:超静定结构的所有未知约束反力和内力的总数与结构所能提供的独立的静力平衡方程数之差。
2、力法与正则方程力法:以多余约束力为基本未知量,将变形或位移表示为未知力的函数,通过变形协调条件作为补充方程求来解未知约束力,这种方法称为力法,又叫柔度法。
应用力法求解超静定问题的步骤:1)根据问题,确定其是静定还是超静定问题,如为后者,则确定超静定次数。
2)确定哪些约束是多余约束,分析可供选择的基本静定系,并注意利用对称性,反对称性,选定合适的静定系统,在静定系上加上外力和多余约束力,形成相当系统。
3)比较相当系统与原系统,在多余约束处,确定变形协调条件,并列写正则方程(对有n个多余约束的结构)011212111=∆++⋅⋅⋅++F Rn n R R F F F δδδ 022222121=∆++⋅⋅⋅++F Rn n R R F F F δδδ.02211=∆++⋅⋅⋅++nF Rn nn R n R n F F F δδδ其中F Ri 表示n 个多余约束力,δij 表示F Rj =1引起i 处沿F Ri 方向的位移,∆iF 表示结构所有已知载荷产生的在i 处沿F Ri 方向的位移。
力法
力法例题:
1、用力法求解,画 M 图。其中 I1 kI 2 k 10
解:一、分析:该体系几何不变,有一次超静定。
二、选取基本结构
三、列力法方程: 11 X 1 1P 0
M P 图,求 11、1P 四、画 M 1、
11
y
i
i
EI
1 1 2 2 1 1 l l l l l l EI 1 2 3 3 EI 2 2
步骤中的难点,重点。) 第五步:求解未知力 X n 。 第六步:求杆端弯矩: M M 1 X 1 M P (一次超静定)
M M1 X1 M 2 X 2 M i X i M n X n M P ( n 次 超 静
定) 第七步:求跨中弯矩(针对于集中力作用在跨中处以及均布荷载 作用情况),作 M 图, Q 图(注意:弯矩,剪力的正负号规定)
y
i
i
EI
2 1 1 l l l l l l 3 2 EI l3 l3 6 EI EI 7l 3 6 EI 1 2 EI
1P
EI
i
yi
1 3 ql 2 l l 2 2 1 3 ql 4 ql 4 EI 4 12 1 EI
M中 AB 0 ql 2 2 2 88 ql 21ql 2 8 176
2、用力法求解,画 M 图。
解:一、分析:该体系几何不变,有一次超静定。 二、选取基本结构
三、列力法方程: 11 X 1 1P 0
M P 图,求 11、1P 四、画 M 1、
11
y
讨论:针对图乘法中需要注意的问题。 (1)必须是等截面直杆段
结构力学笔记
第一章绪论1、不论设计任何结构都要经过正确的计算,才能达到安全、经济和合乎使用要求的目的。
2、活动铰支座、铰支座、固定支座和定向支座3、杆件结构的结点,通长可分为铰结点、刚结点、组合结点三种。
4、铰结点上的铰结端可以自由相对转动,因此,受荷载作用时:铰结点上个杆间夹角可以改变,与受荷前的夹角不同;各杆的铰结端不产生弯矩。
铰结点:被连接的杆件在连接处不能相对移动,但可以相对转动,可以传递力,但不能传递力矩。
木屋架的结点比较接近与铰结点。
5、刚结点上各杆的刚结端不能相对转动,即认为刚结点是一个刚体,各杆均刚结与此刚体上,因此,受荷后:刚结点上各杆间的夹角不变,各杆的刚结端旋转同一个角度;各杆的刚结端一般产生弯矩。
刚结点:被链接的杆件在连接处既不能相对移动,又不能相对转动,既可以传递力也可以传递力矩。
现浇混凝土结点通常属于这类情形。
6、若在同一个结点上,某些杆间相互刚结,而另一些杆间相互铰结,则称为组合结点或半铰结点。
7、铰结点上的铰称为完全铰或全铰。
组合结点上的铰则称为非完全铰或半铰。
8、实际结构情况复杂,往往不能考虑所有因素去做严格计算,而需去掉次要因素,以简化图式来代替,这种用以计算的简化图式,叫做结构的计算简图或计算模型。
9、确定计算简图的原则是:保证设计上需要的足够精度;使计算尽可能简单。
10、常见杆件结构类型梁(多跨静定梁、连续梁)、拱、桁架、钢架。
第二章平面体系的几何组成分析1、在不考虑材料应变的条件下,几何形状和位置都不能改变的体系称为几何不变体系。
在原来位置上可以运动,而发生微量位移后不能继续运动的体系,叫做瞬变体系。
可以发生非微量位移的体系称为常变体系。
常变体系和瞬变体系统称为可变体系,均不能作为建筑结构,只有几何不变体系才能用作建筑结构。
由于瞬变体系能产生很大的内力,所以不能用作建筑结构。
2、自由度:是体系运动时可以独立改变的几何参数的数目。
即确定体系位置所需的独立坐标的数目。
3、点的自由度:在平面内点的自由度等于2.4、刚片:几何不变的平面物体叫刚片。
超静定结构两类解法
第六章位移法超静定结构两类解法:力法:思路及步骤,适用于所有静定结构计算。
结合位移法例题中需要用到的例子。
有时太繁,例。
别的角度:内力和位移之间的关系随外因的确定而确定。
→位移法,E,超静定梁和刚架。
于是,开始有人讨论:有没有别的方法来求解或换一个角度来分析…,what?我们知道,当结构所受外因(外荷载、支座位移、温度变化等)一定⇒内力一定⇒变形一定⇒位移一定,也就是结构的内力和位移之间有确定的关系(这也可以从位移的公式反映出来)。
力法:内力⇒位移,以多余力为基本未知量…,能否反过来,也就是先求位移⇒内力,即以结构的某些位移为基本未知量,先想办法求出这些位移,再求出内力。
这就出现了位移法。
目前通用的位移法有两种:英国的、俄罗斯的,两者的实质是相同的。
以结构的某些结点位移作为基本未知量,由静力平衡条件先求出他们,再据以求出结构的内力和其它位移。
这种方法可以用于求解一些超静定梁和刚架,十分方便。
例:上面的例子,用位移法求解,只有结点转角一个未知量。
下面,我们通过一个简单的例子来说明位移法的解题思路和步骤:一个两跨连续梁,一次超静定,等截面EI=常数,右跨作用有均布荷载q,(当然可以用力法求解),在荷载q作用下,结构会发生变形,无N,无轴向变形,B点无竖向位移,只有转角ϕB。
且B点是一个刚结点传递M;变形时各杆端不能发生相对转动和移动,刚结点所连接的杆件之间角度受力以后不变。
也就是AB、BC杆在结点B处的转角是相同的。
原结构的受力和变形情况和b是等价的。
B当作固定端又产生转角ϕB。
a(原结构)AB:BC:b如果把转角ϕB 当作支座位移这一外因看,则原结构的计算就可以变成两个单跨超静定梁来计算。
显然,只要知道ϕB ,两个单跨静定梁的计算可以用力法求解出全部反力和内力,现在的未知量是ϕB (位移法的基本未知量)。
关键:如何求ϕB ?求出ϕB 后又如何求梁的内力?又如何把a ⇒b 来计算? 我们采用了这样的方法:假定在刚结点B 附加一刚臂(▼),限制B 点转角,B ⇒固定端(无线位移,无转动)(略轴向变形)原结构就变成了AB 、BC 两个单跨超静定梁的组合体:AB : ,BC :但现在和原结构的变形不符,ϕB ,所以为保持和原结构等效,人为使B 结点发生与实际情况相同的转角ϕB (以Z 1表示,统一)。
结构力学 力法计算超静定结构
子项目一 力法计算超静定结构
情景一 超静定结构的基本特征
学习能力目标
1. 能够解释力法的基本概念。 2. 能够确定超静定的次数,得到静定的基本结构。 3. 了解超静定结构的特点。
项目表述
试分析如图 3 – 1 所示超静定结构,确定它的超静定次数。
情景一 超静定结构的基本特征 学习进程
情景一 超静定结构的基本特征 知识链接
② 去掉一个固定铰支座(图 3 – 6a)或拆去一个单铰相当于去掉两个约束(图 3 – 6b),可用两个多余未知力代替。
情景一 超静定结构的基本特征 知识链接
③ 去掉一个固定支座(图 3 – 7b)或切断一刚性杆(图 3 – 7c),相当于去掉 三链接
③ 超静定结构的内力和各杆的刚度比有关,而静定结构则不然。在计算超静定 结构时,除了用静力平衡条件外,还要用到结构的变形条件建立补充方程。而 结构的变形条件与各杆的刚度有关,在各杆的刚度比值发生变化时,结构各部 分的变形也相应变化,从而影响各杆的内力重新分布。利用在超静定结构中, 刚度大的部分将产生较大的内力,刚度较小的部分内力也较小的特点,可以通 过改变杆件刚度的方法来达到调整内力数值的目的。 ④ 在局部荷载作用下,超静定结构与静定结构相比,具有内力分布范围大,内 力分布较均匀,峰值小,且变形小、刚度大的特点。如图 3 – 9a 所示是三跨连 续梁在荷载 F 作用下的弯矩图和变形曲线,由于梁的连续性,两边跨也产生内 力和变形,最大弯矩在跨中为 0.175Fl。图 3 – 9b 所示是多跨静定梁在荷载 F 作用下的弯矩图和变形曲线,由于铰的作用,两边跨不产生内力和变形,最大 弯矩在跨中为 0.25Fl,约为前者的 1.4 倍。
情景一 超静定结构的基本特征 知识链接
建筑力学13超静定结构内力计算
12
有一个多余联系
将横梁某处改为铰接,即相当于去 掉一个联得到图(b)所示静定结构
当去掉 B支座的水链杆则的竖向链杆,即成瞬 变体系[图 (d)]所示,显然 是不允许的,当然也就不能 作为基本结构。
13
13.1.3 超静定结构的计算方法分类 *超静定结构的基本(精确)方法有力法和位移 法两种。 手算时,凡是多余约束多、节点位移少的结 构用位移法,反之用力法。 *超静定结构的计算机解法是矩阵位移法。 *超静定结构的近似解法有:渐近法、分层法、 反弯点法、D值法等。 *渐近法主要有力矩分配法(适于连续梁与无侧 移刚架)、无剪力分配法和迭代法。
34
利用图乘法求得各系数和自由项
1 a 2 2a a 3 11 EI 2 3 3EI
1 a 2 2a 1 2 7a 3 22 a a 2 EI 2 3 EI 6 EI
1 a2 a3 12 21 a EI 2 2 EI
14
13.2 超静定结构的力法计算 13.2.1 力法的基本思路 1.去掉多余约束,并用相应的多余未知力来等 效替换约束条件,得到一静定结构叫基本体 系(结构)。 2.根据原结构的变形条件,即,按基本结构的 变形必须和原结构相同,来建立变形协调方 程,求解多余约束所对应的多余未知力。 3.按照静定结构的分析方法计算结构的内力,并 绘制M、FQ、FN图。
1 2
X1=1
F
qL2/8
qL2/8 (h)M图
20
13.2.3 力法典型方程
图 (a)所示为一个三次超静定结构,在荷载作 用下结构的变形如图中虚线所示。用力法求解时, 去掉支座C的三个多余联系,并以相应的多余力X1 、 X2 和X3代替所去掉的联系的作用,则得到图 (b)所 示的基本结构上,它必须与原结构变形相符,在C点 处沿多余力X1 、X2 和 X3 方向的相应位移 Δ 1 、 Δ2和 Δ 3都应等于零。 Δ1=0 Δ2=0 Δ3=0
力法求解超静定结构的步骤
第八章力法本章主要内容1)超静定结构的超静定次数2)力法的解题思路和力法典型方程(显然力法方程中所有的系数和自由项都是指静定基本结构的位移,可以由上一章的求位移方法求出(图乘或积分))3)力法的解题步骤以及用于求解超静定梁刚架桁架组合结构(排架)4)力法的对称性利用问题,对称结构的有关概念四点结论5)超静定结构的位移计算和最后内力图的校核6)§8-1超静定结构概述一、静力解答特征:静定结构:由平衡条件求出支反力及内力;超静定结构的静力特征是具有多余力,仅由静力平衡条件无法求出它的全部(有时部分可求)反力及内力,须借助位移条件(补充方程,解答的唯一性定理)。
二、几何组成特征:(结合例题说明)静定结构:无多余联系的几何不变体超静定结构:去掉其某一个或某几个联系(内或外),仍然可以是一个几何不变体系,如桁架。
即:超静定结构的组成特征是其具有多余联系,多余联系可以是外部的,也可能是内部的,去掉后不改变几何不变性。
多余联系(约束):并不是没有用的,在结构作用或调整结构的内力、位移时需要的,减小弯矩及位移,便于应力分布均匀。
多余求知力:多余联系中产生的力称为三、超静定结构的类型(五种)超静定梁、超静定刚刚架、超静定桁架、超静定拱、超静定组合结构四、超静定结构的解法综合考虑三个方面的条件:1、平衡条件:即结构的整体及任何一部分的受力状态都应满足平衡方程;2、几何条件:也称变形条件、位移条件、协调条件、相容条件等。
即结构的变形必须符合支承约束条件(边界条件)和各部分之间的变形连续条件。
3、物理条件:即变形或位移与内力之间的物理关系。
精确方法:力法(柔度法):以多余未知力为基本未知量位移法(刚度法):以位移为基本未知量。
力法与位移法的联合应用:力法与位移法的混合使用:混合法近似方法:力矩分配法、矩阵位移法、分层总和法、D值法、反弯点法等本章主要讲力法。
五、力法的解题思路(结合例子)把不会算的超静定结构通过会算的基本结构来计算。
超静定结构的解法
力法的基本思路
超静定计算简图 解除约束转 化成静定的 基本结构承受荷 载和多余未知力
基本体系受力、变形解法已知
力法的基本思路
用已掌握的方法,分析单个基本未 知力作用下的受力和变形
位移包含基本未知力Xi
同样方法分析 “荷载”下的 受力、变形
为消除基本结构与原结构差别,建立位移协调条件
11 12 1P 1 21 22 2 P 2
11 X 1 1n X n 1 P 1 X X nn n nP n n1 1
或写作矩阵方程
δ X P
(3) 作基本结构在单位未知力和荷载(如果 有)作用下的弯矩(内力)图 M i , M P (4) 求基本结构的位移系数
小结:力法的解题步骤
(1) 确定结构的超静定次数和基本结构(体系)
超静定次数 = 基本未知力的个数
= 多余约束数
= 变成基本结构所需解除的约束数
(3 次)
或
(14 次)
或
(1 次)
(6 次)
(4 次)
确定超静定次数时应注意: (a) 切断弯曲杆次数3、链杆1,刚结变单铰1, 拆开单铰2。总次数也可由计算自由度得到。 (b) 一个超静定结构可能有多种形式的基本 结构,不同基本结构带来不同的计算工作量。 因此,要选取工作量较少的基本结构。 (c) 可变体系不能作为基本结构 (2) 建立力法典型方程
将未知问题转化为 已知问题,通过消除已 知问题和原问题的差别, 使未知问题得以解决。 这是科学研究的 基本方法之一。
由于从超静定转化为静定,将什么 约束看成多余约束不是唯一的,因此 力法求解的基本结构也不是唯一的。
05-讲义:7.2 力法的基本原理及典型方程
第二节 力法的基本原理及典型方程力法是计算超静定结构的最基本方法。
采用力法求解超静定结构问题时,不能孤立地研究超静定问题,而是应该把超静定问题与静定问题联系起来,即利用已经熟悉的静定结构计算方法来达到计算超静定结构的目的。
一、力法的基本原理这里先用一个简单的一次超静定结构为例来说明力法的基本概念,即讨论如何在静定结构的基础上,进一步寻求计算超静定结构的方法。
1、力法的基本未知量、基本结构和基本体系图7-7(a)所示为一次超静定梁结构,若将B 处支座链杆作为多余约束去掉,则能得到静定的悬臂梁结构(图7-7(b))。
将原超静定结构中去掉多余约束后所得到的静定结构,称为力法的基本结构。
所去掉的多余约束处,以相应的多余未知力1X 来表示其作用,如图7-7(b)所示,这样原结构就相当于基本结构同时受到已知外荷载q 和多余未知力1X 的共同作用。
基本结构在原荷载和多余未知力共同作用下的体系称为力法的基本体系。
在基本体系中,仍然保留原结构的多余约束反力1X ,,只是把它由被动的支座反力改为主动力。
因此基本体系的受力状态与原结构是完全相同的,基本体系完全可以代表原超静定结构。
在基本体系中,只要能够设法求出1X ,则剩下的问题就是静定结构的问题了。
由此可知,力法的主要特点就是把多余未知力的计算问题当作超静定问题的关键问题,把多余未知力当作处于关键地位的未知力,因此多余未知力称为力法的基本未知量,力法这个名称就是由此而来的。
图7-7 力法的基本结构和基本体系(a)原超静定结构 (b)基本结构 (c)基本体系2、力法方程的建立怎样才能求出图7-7(c)中基本未知量1X 呢?在基本体系中,未知力1X 相当于外荷载,因此无论1X 为多大,只要梁不破坏,都能够满足平衡条件,显然不能利用平衡条件求解1X ,必须补充新的条件。
为此,将图7-7(c)中的基本体系与图7-7(a)中的原超静定结构加以比较。
在图7-7(a)所示的原超静定结构中,1X 表示支座B 处的约束反力,它是被动的,是固定值,与1X 相应的位移1 (即B 点的竖向位移)等于零。
力法求解含刚度无穷大杆件超静定结构
力法求解含刚度无穷大杆件超静定结构摘要本文采用力法求解含刚度无穷大杆件超静定结构内力,通过不同解除多余约束的方式确定该结构为2次超静定结构,相应得到两种不同形式的基本结构,并建立了对应的力法方程。
并选取其中一个基本结构,完成了力法的具体求解过程,最后绘出了结构的弯矩图。
求解过程表明:用力法求解含刚度无穷大杆件超静定结构过程与求解杆件刚度全部有限大的超静定结构过程完全相同,刚度无穷大杆件仅影响结构内力大小的分布。
关键词力法,刚度无穷大杆件,多余未知力超静定结构超静定结构由于多余约束的存在,结构未知支座反力的个数多余平衡方程的个数,需要考虑位移协调条件建立补充方程求解。
同跨度相同荷载作用下超静定结构相对静定结构变形小、受力均匀,抗震性好,因此实际工程中的结构基本上都是超静定结构,求解超静定结构是《结构力学》课程的重点内容。
求解超静定结构的方法很多,有力法、位移法、渐近法、矩阵位移法等,其中力法最为基础,适用范围最广,求解荷载、温度、支座位移等因素影响的超静定结构都较为方便。
力法的理论建立数学及静力学的基础之上,对学生前期学习基础要求很高,成为学生学好《结构力学》的障碍;但力法由于可能选择不同基本结构进行求解,灵活性高,非常有益于训练学生的力学思维能力以及计算能力。
《结构力学》也是大多数高校土木工程类专业考研初试的指定的专业课程,含刚度无穷大杆件的超静定结构问题学生在复习备考的时候经常遇到,各类教辅资料通常采用位移法来求解此类问题,但用位移法求解时含刚度无穷力杆件的超静定结构独立位移未知量的分析就是一个极大的挑战,远不如力法超静定次数的确定容易。
如果采用位移法求解含刚度无穷大杆超静定结构,不能正确分析独立位移未知量,那后续求解过程就失去了意义。
因此本文拟采用实际教学中大多数学生掌握度相对较好的力法来求解图1所示的含刚度无限大杆件(DE杆刚度∞)的超静定结构B支座发生竖直向下位移Δ时的内力。
图1含刚度无穷大杆超静定结构1超静定次数及力法方程超静定结构的超静定次数的确定可以通过计算结构的计算自由度确定,也可以通过解除多余约束得到无多余联系的几何不变体系(即静定结构)的方法确定。
结构力学重难点完美复习资料
第二章结构的几何构成分析
]
1、首先必须深刻理解几个基本概念,这几个概念层层递进。
●几何不变体系:不计材料应变情况下,体系的位置和形状不变。
在几何构成分析中与荷载无关,各个杆件都是刚体。
●刚片:形状不变的物体,也就是刚体。
在几何构成分析中,刚片的选取非常重要,也非常灵活,可大可小,小至一根杆,大至地基基础,皆可视为刚片。
第6章力法
1、关于算超静定结构的前提。教材上提到用公式确定结构的超静定次数,建议大家不用此方法,还是利用几何构成分析来确定超静定次数和多余约束,因为那两个公式并不太好应用,容易出错,即使算出了超静定次数,还是要利用几何构成分析来确定多余约束。
●判断超静定次数的基本原则:
4、多跨静定梁
基本部分:结构中不依赖于其它部分而独立与地基形成几何不变的部分
附属部分:结构中依赖基本部分的支承才能保持几何不变的部分
分析顺序:应先附属部分,后基本部分。
&
荷载在基本部分上,只基本部分受力,附属部分不受力;
荷载在附属部分上,除附属部分受力外,基本部分也受力。
Eg:
eg.
-
剪力大小:由弯矩图斜率或杆段平衡条件;
●对称结构受非对称荷载作用,可将荷载分成对称和反对称两组(除非荷载分解很复杂),再利用对称性计算。
4、力法计算超静定结构的标准步骤
大家在深刻理解力法的基本原理和典型方程后,一定会觉得力法是非常标准化、模式化、程序化的一种方法,不论用力法计算何种型式的超静定结构(在荷载作用下),都可分为以下标准的五大步(以弯曲变形体系为例):
,
5、对称性的利用
对称结构在是指几何尺寸、支座、杆件刚度都关于某根轴线对称的结构,结构力学中对称结构是较常见的,在前面静定结构的分析中已处理过对称静定结构的内力和变形,细心的同学可能已总结过它们的特点,现在对荷载作用下的对称超静定结构,最好利用对称性简化力法的计算。
力法求解超静定结构的步骤
力法求解超静定结构的步骤:
1、先判定其超静定次数,(含多余联系数),去掉原结构的所有多余联系,用相应的多余力代替,得一静定的基本结构(形式可能很多,尽量简单);
2、根据基本结构在原荷载及所有多余力共同作用下,在每一个去掉的多余联系处位移和原结构相应位置的已知位移相同,建立力法典型方程;
3、求方程所有系数和自由项,(静定结构的位移计算)积分法或图乘法,写出基本结构X i∑=在单位力及原荷载分别单独作用下的内力表达式或作出内力图;
4、解方程,求出所有多余力;
5、作最后内力图(静定结构的计算问题)梁、刚架:M N P 组合结构:
6、校核,两方面:平衡条件(截取结构中+ X i N i ∑=M P →Q→N 桁架:N +M i M=0 )∑Y=0 ∑ X=0 ∑刚结点、杆件或某一部分,应满足;变形协调条件(多余约束处位移是否与已知位移相等)
注:选取基本结构的原则:
(1)基本结构为静定结构;
(2)选取的基本结构应使力法方程中系数和自由项的计算尽可能方便,并尽量使较多的副系数和自由项为0
(3)较易绘M 图及MP 图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章力法本章主要内容1)超静定结构的超静定次数2)力法的解题思路和力法典型方程(显然力法方程中所有的系数和自由项都是指静定基本结构的位移,可以由上一章的求位移方法求出(图乘或积分))3)力法的解题步骤以及用于求解超静定梁刚架桁架组合结构(排架)4)力法的对称性利用问题,对称结构的有关概念四点结论5)超静定结构的位移计算和最后内力图的校核6)§8-1超静定结构概述一、静力解答特征:静定结构:由平衡条件求出支反力及内力;超静定结构的静力特征是具有多余力,仅由静力平衡条件无法求出它的全部(有时部分可求)反力及内力,须借助位移条件(补充方程,解答的唯一性定理)。
二、几何组成特征:(结合例题说明)静定结构:无多余联系的几何不变体超静定结构:去掉其某一个或某几个联系(内或外),仍然可以是一个几何不变体系,如桁架。
即:超静定结构的组成特征是其具有多余联系,多余联系可以是外部的,也可能是内部的,去掉后不改变几何不变性。
多余联系(约束):并不是没有用的,在结构作用或调整结构的内力、位移时需要的,减小弯矩及位移,便于应力分布均匀。
多余求知力:多余联系中产生的力称为三、超静定结构的类型(五种)超静定梁、超静定刚刚架、超静定桁架、超静定拱、超静定组合结构四、超静定结构的解法综合考虑三个方面的条件:1、平衡条件:即结构的整体及任何一部分的受力状态都应满足平衡方程;2、几何条件:也称变形条件、位移条件、协调条件、相容条件等。
即结构的变形必须符合支承约束条件(边界条件)和各部分之间的变形连续条件。
3、物理条件:即变形或位移与内力之间的物理关系。
精确方法:力法(柔度法):以多余未知力为基本未知量位移法(刚度法):以位移为基本未知量。
力法与位移法的联合应用:力法与位移法的混合使用:混合法近似方法:力矩分配法、矩阵位移法、分层总和法、D值法、反弯点法等本章主要讲力法。
五、力法的解题思路(结合例子)把不会算的超静定结构通过会算的基本结构来计算。
(1)选基本结构;(2)消除基本结构与原结构之间的差别力法:撤除原结构的所有的多余联系,用相应的多余力代替(两者等效),得到一个静定的结构(基本结构),基本结构在外力和多余力共同作用下保持受力和变形与原结构协调,也就是在解除约束处的位移和原结构保持一致,列出相应的位移方程(由叠加方法),由此解出相应的多余力,以后的计算和内力图的作法(叠加出M图)同静定结构。
§8-2超静定次数n的确定一、超静定次数:=多余联系(约束)的数目=多余未知力的数目二、确定方法:解除多余约束,使超静定结构成为几何不变的静定结构,去掉约束的数目=n去掉约束的方法:(结合例子说明)1、去掉可动铰: 1固定端-固定铰:刚结点-单铰:固定铰-可动铰:切断一链杆:2、去掉一固定铰: 2固定端-可动铰:去掉一单铰:3、去掉一固定端: 3切断一梁式杆:注:1、多余约束力可以多在结构内部,也可以多在结构的外部2、同一结构中去掉约束的方式很多,但n是一定的;基本结构不是唯一的3、把所有多余联系均拆除(内部和外部的所有的多余联系)4、超静定结构→静定结构(多种方法,多种形式)。
但不能拆成可变或瞬变,也就是结构中有些联系不能去除(必要联系)。
§8-3力法的基本原理原结构基本结构:将原超静定结构中去掉多余约束后所得到的静定结构称为原结构基本结构。
基本未知量:X 1将原结构与基本结构进行对比:01=∆ 0111=+P ∆∆ 变形协调条件或位移条件第一下标:产生位移的地点和方向;第二下标:产生位移的原因。
叠加原理11111.X δ=∆ 0.1111=∆+P X δ一次力法方程 (1)11δ:柔度系数。
X 1=1作用下基本结构沿X1方向产生的位移∑⎰=EIl EI dx M 332111=δ 1P ∆:自由项。
∑⎰-=∆EIql EI dx M M P P 8411=(2))(831↑=ql X(3)多余未知力求出后,其反力、内力可由静定平衡条件求解;也可由叠加原理求出:P M X M M +=11 (4)可选取另外的基本结构:(5)力法综述:以超静定结构的多余求知力为基本未知量,再根据基本结构在多余约束处与原结构位移相同的条件,建立变形协调的力法方程,求出未知力,从而将超静定结构的求解问题转化成静定结构的内力求解问题。
§8-4力法典型方程一、一次超静定:均布荷载作用下的两跨连续梁(思路和步骤)⇔=+1)原结构,一次超静定↔等效x 1和支杆;2)基本结构(去掉多余联系后的静定结构),显然只要求出x 1→所有的反力及内力(静力平衡)未知量;3)等效⇒位移条件Δ1=0(求x 1的条件)(内力、变形相同)也就是基本结构在原荷载及多余力共同作用下,沿解除约束处的位移和原结构相应位移相同。
4)Δ1用叠加法求出:方向同)同向为同号,和,(各项含义及正负,111110X X P =∆+δ 5)δ11、Δ1P (上章位移的求解)6)ql X 451=7)11M X M M P ∙+=,将多余力也当成作外力,不同的基本结构,中间过程不同,但最后结果一样。
二、二次超静定:⇔位移条件: 用叠加法:Δ1P 、Δ2P Δ11、Δ21Δ12、Δ22{0022221211212111=∆++=∆++P P X X X X δδδδ(用到了位移互等定理:2112δδ=)2211M X M X M M P ++=,注意符号含义,正负问题。
叠加出最后弯矩 三、三次超静定(内力多余力是成对出现的,相应的位移条件:相对位移) 位移条件:同截面→两(左、右)截面 有绝对位移,无绝对位移。
位移互等条件:从上面这几个例子,可以看出力法求超静定结构的思路:先确定超静定次数→含有的多余约束数目→去掉所有的多余约束,用相应的多余力代替,也就是得一静定的基本结构(内力及位移和原结构等效)→基本结构(形式可能很多)在原荷载及所有多余力共同作用下在解除约束处的位移和原结构相应的位移相同,得位移条件→建立补充方程→求系数及自由项(基本结构的位移计算),求出所有多余力→由静力平衡条件和叠加法解方程求出原结构的其他反力和内力,作出最后内力图,求位移(静定结构的计算问题),求内力。
1) 先解除超静定结构的多余约束,用多余力代替,使原结构→静定的基本结构. 2) 基本结构在原结构和多余力共同作用下在解除约束处的位移和原结构相应位置的位移相同。
3) 由位移条件列补充方程,求出多余力。
4) 多余力已知后,原结构的其他约束反力和内力及位移的计算问题变成静定结构的计算问题。
最后的弯矩图可由叠加法作出。
从上可见:由位移条件求出多余力,求出多余力以后,超静定结构的计算问题就变成静定结构的计算问题,而求多余力,除了解方程组以外,系数和自由项的计算还是静定结构的位移计算问题。
超静定结构的→静定结构的位移和内力计算问题。
四、力法典型方程:推广到n 次超静定结构:对于一个n 次超静定结构,有n 个多余约束,解除全部多余约束,用n 个多余力代替,得一个静定的基本结构⇒在原结构及n 个多余力共同作用下,在n 个解除约束处的位移和原结构位移相同,也就是有n 个位移条件得n 个一般方程。
011212111=+++P n n X X X ∆+δδδ02211=+++nP n nn n n X X X ∆+δδδ上面的方程组是力法方程的一般形式,它们在组成上具有一定的规律,而不论超静定结构的次数、类型及所选取的基本结构如何,得的方程都具有上面的形式,各项表示的意义也相同。
称为力法典型方程。
式中:1、ii δ:主系数。
基本结构在多余未知力Xi=1下在自身方向上产生的位移大小。
恒为正∑⎰∑⎰∑⎰++=GAdsQ u EA ds N EI ds M i i i ii 222δ2、ij δ:副系数。
基本结构在多余未知力Xi=1下在Xj 方向上产生的位移大小。
可正、负、零∑⎰∑⎰∑⎰++==GAdsQ Q uEA dsN N EI dsM M j i j i j i ji ij δδ3、iP ∆:自由项。
基本结构在荷载作用下在第I 个多余未知力方向上产生的位移大小。
可正、负、零∑⎰∑⎰∑⎰++=∆GAdsQ Q u EA ds N N EI ds M M P i P i P i iP五、力法求解超静定结构的步骤:1、先判定其超静定次数,(含多余联系数),去掉原结构的所有多余联系,用相应的多余力代替,得一静定的基本结构(形式可能很多,尽量简单);2、根据基本结构在原荷载及所有多余力共同作用下,在每一个去掉的多余联系处位移和原结构相应位置的已知位移相同,建立力法典型方程;3、求方程所有系数和自由项,(静定结构的位移计算)积分法或图乘法,写出基本结构在单位力及原荷载分别单独作用下的内力表达式或作出内力图;4、解方程,求出所有多余力;5、作最后内力图(静定结构的计算问题) 梁、刚架:P i i M M X M +∑=→Q →N 桁架:P i i N N X N +∑= 组合结构:6、校核,两方面:平衡条件(截取结构中刚结点、杆件或某一部分,应满足∑0=X ∑0=Y ∑0=M );变形协调条件(多余约束处位移是否与已知位移相等) 注:选取基本结构的原则:(1)基本结构为静定结构;(2)选取的基本结构应使力法方程中系数和自由项的计算尽可能方便,并尽量使较多的副系数和自由项为0 (3)较易绘M 图及M P 图。
§8-5力法计算例题对任何超静定结构均适用,有所区别之处在系数和自由项的计算公式上。
均是静定结构的位移计算问题。
对于各种具体的超静定结构,常只需计算其中的一项或两项:1、对梁、刚架:∑⎰=EI ds M i ii 2δ ∑⎰==EIds M M j i ji ij δδ ∑⎰=∆EI dsM M P i iP2、对桁架结构:∑∑⎰=EA lN EA ds N i i ii .22=δ ∑∑⎰===EAl N N EA ds N N j i j i ji ij .δδ ∑⎰∑==∆EAlN N EA ds N N P i P i iP . 3、对超静定组合结构:∑∑⎰⎰=梁式杆轴力杆+EA dsN EI ds M i i ii 22δ ∑⎰∑⎰==轴力杆梁式杆+EA dsN N EI ds M M j i j i jiij δδ ∑⎰∑⎰=∆轴力杆梁式杆+EA dsN N EI ds M M P i P i iP例1: P139例题。
超静定梁结构例2:P137例题。
超静定刚架例3:P140例题。
超静定桁架。
例4:P142例题。
超静定组合结构。
§8-6对称性的利用在建筑工程中,我们可以见到许多的对称结构,我觉得中国人喜欢对称这两个字:历代帝王所建皇(寝)宫是对称的,死后所建坟墓也是对称的。