高中物理部分电路欧姆定律技巧(很有用)及练习题及解析

合集下载

(物理)高考必备物理闭合电路的欧姆定律技巧全解及练习题(含答案)及解析

(物理)高考必备物理闭合电路的欧姆定律技巧全解及练习题(含答案)及解析

(物理)高考必备物理闭合电路的欧姆定律技巧全解及练习题(含答案)及解析一、高考物理精讲专题闭合电路的欧姆定律1.如图所示的电路中,电源电动势E =10V ,内阻r =0.5Ω,电阻R 1=1.5Ω,电动机的线圈电阻R 0=1.0Ω。

电动机正常工作时,电压表的示数U 1=3.0V ,求: (1)电源的路端电压; (2)电动机输出的机械功率。

【答案】(1)9V ;(2)8W 【解析】 【分析】 【详解】(1)流过电源的电流为I ,则11IR U =路端电压为U ,由闭合电路欧姆定律U E Ir =-解得9V U =(2)电动机两端的电压为M 1()U E I R r =-+电动机消耗的机械功率为2M 0P U I I R =-解得8W P =2.如图所示的电路中,当开关S 接a 点时,标有“5V ,2.5W”的小灯泡正常发光,当开关S 接b 点时,标有“4V ,4W”的电动机正常工作.求电源的电动势和内阻.【答案】6V ,2Ω 【解析】 【详解】当开关接a 时,电路中的电流为I 1=11PU =2.55A=0.5A. 由闭合电路欧姆定律得E =U 1+I 1r当开关接b 时,电路中的电流为I 2=22P U =44A=1A. 由闭合电路欧姆定律得E =U 2+I 2r联立解得E =6V r =2Ω.3.如图所示,电解槽A 和电炉B 并联后接到电源上,电源内阻r =1Ω,电炉电阻R =19Ω,电解槽电阻r ′=0.5Ω.当S 1闭合、S 2断开时,电炉消耗功率为684W ;S 1、S 2都闭合时,电炉消耗功率为475W(电炉电阻可看作不变).试求:(1)电源的电动势;(2)S 1、S 2闭合时,流过电解槽的电流大小;(3)S 1、S 2闭合时,电解槽中电能转化成化学能的功率. 【答案】(1)120V (2)20A (3)1700W 【解析】(1)S 1闭合,S 2断开时电炉中电流106P I A R== 电源电动势0()120E I R r V =+=; (2)S 1、S 2都闭合时电炉中电流为25B P I A R== 电源路端电压为95R U I R V == 流过电源的电流为25E UI A r-== 流过电槽的电流为20A B I I I A =-=; (3)电解槽消耗的电功率1900A A P I U W ==电解槽内热损耗功率2'200A P I r W ==热电解槽转化成化学能的功率为1700A P P P W 化热=-=.点睛:电解槽电路在正常工作时是非纯电阻电路,不能用欧姆定律求解其电流,只能根据电路中电流关系求电流.4.如图所示电路中,r 是电源的内阻,R 1和R 2是外电路中的电阻,如果用P r ,P 1和P 2分别表示电阻r ,R 1,R 2上所消耗的功率,当R 1=R 2= r 时,求: (1)I r ∶I 1∶I 2等于多少 (2)P r ∶P 1∶P 2等于多少【答案】(1)2:1:1;(2)4:1:1。

高中物理部分电路欧姆定律技巧和方法完整版及练习题含解析

高中物理部分电路欧姆定律技巧和方法完整版及练习题含解析

高中物理部分电路欧姆定律技巧和方法完整版及练习题含解析一、高考物理精讲专题部分电路欧姆定律1.恒定电流电路内各处电荷的分布是稳定的,任何位置的电荷都不可能越来越多或越来越少,此时导内的电场的分布和静电场的性质是一样的,电路内的电荷、电场的分布都不随时间改变,电流恒定.(1)a. 写出图中经△t 时间通过0、1、2,3的电量0q ∆、1q ∆、2q ∆、3q ∆满足的关系,并推导并联电路中干路电流0I 和各支路电流1I 、2I 、3I 之间的关系;b. 研究将一定量电荷△q 通过如图不同支路时电场力做功1W ∆、2W ∆、3W ∆的关系并说明理由;由此进一步推导并联电路中各支路两端电压U 1、U 2、U 3之间的关系;c. 推导图中并联电路等效电阻R 和各支路电阻R 1、R 2、R 3的关系.(2)定义电流密度j 的大小为通过导体横截面电流强度I 与导体横截面S 的比值,设导体的电阻率为ρ,导体内的电场强度为E ,请推导电流密度j 的大小和电场强度E 的大小之间满足的关系式.【答案】(1)a.0123q q q q ∆=∆+∆+∆,0123 I I I I =++ b.123W W W ∆=∆=∆,123U U U == c. 1231111R R R R =++ (2)j E l ρ= 【解析】 【详解】(l )a. 0123q q q q ∆=∆+∆+∆03120123q q q qI I I I t t t t∆∆∆∆====∆∆∆∆ ∴0123 I I I I =++即并联电路总电流等于各支路电流之和。

b. 123W W W ∆=∆=∆理由:在静电场和恒定电场中,电场力做功和路径无关,只和初末位置有关. 可以引进电势能、电势、电势差(电压)的概念.11W U q ∆=∆,22W U q ∆=∆,33W U q∆=∆ ∴123U U U ==即并联电路各支路两端电压相等。

c. 由欧姆定律以及a 、b 可知:1231111R R R R =++ (2)I j S =,U I R=,U EL =,L R S ρ= ∴j E lρ=2.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B 、R 0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B ,需先测量磁敏电阻处于磁场中的电阻值R B .请按要求完成下列实验.(1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T ,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下: A .磁敏电阻,无磁场时阻值R 0=150 Ω B .滑动变阻器R ,总电阻约为20 Ω C .电流表A ,量程2.5 mA ,内阻约30 Ω D .电压表V ,量程3 V ,内阻约3 kΩ E .直流电源E ,电动势3 V ,内阻不计 F .开关S ,导线若干(2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表:1 2 3 4 5 6 U (V) 0.00 0.45 0.91 1.50 1.79 2.71 I (mA)0.000.300.601.001.201.80根据上表可求出磁敏电阻的测量值R B =______Ω. 结合题图可知待测磁场的磁感应强度B =______T.(3)试结合题图简要回答,磁感应强度B 在0~0.2 T 和0.4~1.0 T 范围内磁敏电阻阻值的变化规律有何不同?________________________________________________________________________.(4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论?___________________________________________________________________________.【答案】(1)见解析图(2)1500;0.90(3)在0~0.2T范围内,磁敏电阻的阻值随磁感应强度非线性变化(或不均匀变化);在3.(11分)如图示电路中,电阻R1=R2=6Ω,R3=4Ω,R4=3Ω。

高考物理高考物理闭合电路的欧姆定律的基本方法技巧及练习题及练习题(含答案)

高考物理高考物理闭合电路的欧姆定律的基本方法技巧及练习题及练习题(含答案)

高考物理高考物理闭合电路的欧姆定律的基本方法技巧及练习题及练习题(含答案)一、高考物理精讲专题闭合电路的欧姆定律1.如图所示,R 1=R 3=2R 2=2R 4,电键S 闭合时,间距为d 的平行板电容器C 的正中间有一质量为m ,带电量为q 的小球恰好处于静止状态;现将电键S 断开,小球将向电容器某一个极板运动。

若不计电源内阻,求: (1)电源的电动势大小;(2)小球第一次与极板碰撞前瞬间的速度大小。

【答案】(1)2mgdE q=(2)03gd v =【解析】 【详解】(1)电键S 闭合时,R 1、R 3并联与R 4串联,(R 2中没有电流通过)U C =U 4=12E 对带电小球有:2C qU qEmg d d== 得:2mgdE q=(2)电键S 断开后,R 1、R 4串联,则233CE mgd U q==' 小球向下运动与下极板相碰前瞬间,由动能定理得21222C U d mg q mv ⋅-⋅=' 解得:03gdv =2.如图所示电路中,r 是电源的内阻,R 1和R 2是外电路中的电阻,如果用P r ,P 1和P 2分别表示电阻r ,R 1,R 2上所消耗的功率,当R 1=R 2= r 时,求: (1)I r ∶I 1∶I 2等于多少 (2)P r ∶P 1∶P 2等于多少【答案】(1)2:1:1;(2)4:1:1。

【解析】 【详解】(1)设干路电流为I ,流过R 1和R 2的电流分别为I 1和I 2。

由题,R 1和R 2并联,电压相等,电阻也相等,则电流相等,故I 1=I 2=12I 即I r ∶I 1∶I 2=2:1:1(2)根据公式P =I 2R ,三个电阻相等,功率之比等于电流平方之比,即P r :P 1:P 2=4:1:13.如图所示,电路中电源内阻不计,水平放置的平行金属板A 、B 间的距离为d ,金属板长为L ,在两金属板左端正中间位置M ,有一个小液滴以初速度v 0水平向右射入两板间,已知小液滴的质量为m ,带负电,电荷量为q .要使液滴从B 板右侧边缘射出电场,电动势E 是多大?(重力加速度用g 表示)【答案】220222md v mgdE qL q=+ 【解析】 【详解】由闭合电路欧姆定律得2E EI R R R ==+ 两金属板间电压为U BA =IR =2E 由牛顿第二定律得qBAU d-mg =ma 液滴在电场中做类平抛运动,有L =v 0t 21 22d at =联立解得220222md v mgdEqL q=+ 【点睛】题是电路与电场两部分知识的综合,关键是确定电容器的电压与电动势的关系,掌握处理类平抛运动的分析方法与处理规律.4.如图所示,R 为电阻箱,V 为理想电压表.当电阻箱读数为R 1=2Ω时,电压表读数为U 1=4V ;当电阻箱读数为R 2=5Ω时,电压表读数为U 2=5V .求:(1)电源的电动势E 和内阻r .(2)当电阻箱R 读数为多少时,电源的输出功率最大?最大值P m 为多少? 【答案】(1)E =6 V r =1 Ω (2)当R=r =1 Ω时,P m =9 W 【解析】 【详解】(1)由闭合电路欧姆定律E U Ir =+得:111U E U r R =+,代入得44422E r =+=+①, 222U E U r R =+,代入得:5555E r r =+=+②, 联立上式并代入数据解得:E=6V ,r=1Ω(2)当电阻箱的阻值等于电源的内电阻时电源的输出功率最大,即有R=r=1Ω电源的输出功率最大为:22226()92441m E E P I R r W W r r =====⨯;5.如图所示电路中,电源电动势E =16V ,内电阻r =1.0Ω,电阻R 1=9.0Ω,R 2=15Ω。

(物理)高中必备物理闭合电路的欧姆定律技巧全解及练习题(含答案)及解析

(物理)高中必备物理闭合电路的欧姆定律技巧全解及练习题(含答案)及解析

(物理)高中必备物理闭合电路的欧姆定律技巧全解及练习题(含答案)及解析一、高考物理精讲专题闭合电路的欧姆定律1.如图所示,R 1=R 3=2R 2=2R 4,电键S 闭合时,间距为d 的平行板电容器C 的正中间有一质量为m ,带电量为q 的小球恰好处于静止状态;现将电键S 断开,小球将向电容器某一个极板运动。

若不计电源内阻,求: (1)电源的电动势大小;(2)小球第一次与极板碰撞前瞬间的速度大小。

【答案】(1)2mgdE q=(2)03gd v =【解析】 【详解】(1)电键S 闭合时,R 1、R 3并联与R 4串联,(R 2中没有电流通过)U C =U 4=12E 对带电小球有:2C qU qEmg d d== 得:2mgdE q=(2)电键S 断开后,R 1、R 4串联,则233CE mgd U q==' 小球向下运动与下极板相碰前瞬间,由动能定理得21222C U d mg q mv ⋅-⋅=' 解得:03gdv =2.某实验小组设计了如图所示的欧姆表电路,通过调控电键S 和调节电阻箱2R ,可使欧姆表具有“1⨯”和“10⨯”两种倍率。

已知:电源电动势 1.5V E =,内阻0.5Ωr =;毫安表满偏电流g 5mA I =,内阻g 20ΩR =,回答以下问题:①图的电路中:A 插孔应该接_______表笔(选填红、黑);1R 应该选用阻值为_________Ω的电阻(小数点后保留一位小数);②经检查,各器材均连接无误,则:当电键S 断开时,欧姆表对应的倍率为___________(选填“1⨯”、“10⨯”);③为了测量电阻时便于读出待测电阻的阻值,需将毫安表不同刻度标出欧姆表的刻度值,其中,中央刻度g 2I 处应标的数值是________________;④该小组选择S 闭合的档位,欧姆调零操作无误,测量电阻x R 时,毫安表指针处于图位置,由此可知被测电阻x R =_______Ω。

高考物理部分电路欧姆定律技巧和方法完整版及练习题及解析

高考物理部分电路欧姆定律技巧和方法完整版及练习题及解析

高考物理部分电路欧姆定律技巧和方法完整版及练习题及解析一、高考物理精讲专题部分电路欧姆定律1.有一灯泡标有“6V 3W ”的字样,源电压为9V ,内阻不计.现用一个28Ω 的滑动变阻器来控制电路,试分别就连成如图所示的限流电路和分压电路,求:(1)它们的电流、电压的调节范围;(2)两种电路要求滑动变阻器的最大允许电流;(3)当灯泡正常发光时,两种电路的效率.【答案】(1)0.225~0.75A a :,2.7~9V 00.75A b ::,0~9V (2)0.5A a :0.75A b : (3)66.6%a : 44.4%b : 【解析】【详解】 灯泡的电阻212L U R P==Ω (1)a.当滑动端在最左端时电阻最大,则最小电流:min 9A 0.225A 1228I ==+ 当滑动端在最右端时电阻最小为0,则最大电流: max 9A 0.75A 12I == 则电流的调节范围是:0.225A~0.75A灯泡两端电压的范围:0.22512V 0.7512V ⨯⨯: ,即2.7~9V ;b.当滑动端在最左端时,灯泡两端电压为零,电流为零;当滑到最右端时,两端电压为9V ,灯泡电流为9A 0.75A 12= 则电流的调节范围是:0~0.75A 灯泡两端电压的范围: 0~9V ;(2)a.电路中滑动变阻器允许的最大电流等于灯泡的额定电流,即为0.5A ; b.电路中滑动变阻器允许的最大电流为0.75A ;(3)a.当灯泡正常发光时电路的电流为0.5A ,则电路的效率:000013=10066.60.59P IE η=⨯=⨯ b.可以计算当灯泡正常发光时与灯泡并联部分的电阻为x 满足: 6960.528x x -+=-解得x =24Ω此时电路总电流 60.50.75A 24I =+= 电路的效率 000023=10044.40.759P IE η=⨯=⨯ 2. 4~1.0T 范围内,磁敏电阻的阻值随磁感应强度线性变化(或均匀变化)(4)磁场反向,磁敏电阻的阻值不变.【解析】(1)当B =0.6T 时,磁敏电阻阻值约为6×150Ω=900Ω,当B =1.0T 时,磁敏电阻阻值约为11×150Ω=1650Ω.由于滑动变阻器全电阻20Ω比磁敏电阻的阻值小得多,故滑动变阻器选择分压式接法;由于x V A xR R R R >,所以电流表应内接.电路图如图所示.(2)方法一:根据表中数据可以求得磁敏电阻的阻值分别为:130.4515000.3010R -=Ω=Ω⨯,230.911516.70.6010R -=Ω=Ω⨯,331.5015001.0010R -=Ω=Ω⨯, 431.791491.71.2010R -=Ω=Ω⨯,532.7115051.8010R -=Ω=Ω⨯, 故电阻的测量值为1234515035R R R R R R ++++=Ω=Ω(1500-1503Ω都算正确.) 由于0150010150R R ==,从图1中可以读出B =0.9T 方法二:作出表中的数据作出U -I 图象,图象的斜率即为电阻(略).(3)在0~0.2T 范围,图线为曲线,故磁敏电阻的阻值随磁感应强度非线性变化(或非均匀变化);在0.4~1.0T 范围内,图线为直线,故磁敏电阻的阻值随磁感应强度线性变化(或均匀变化);(4)从图3中可以看出,当加磁感应强度大小相等、方向相反的磁场时,磁敏电阻的阻值相等,故磁敏电阻的阻值与磁场方向无关.本题以最新的科技成果为背景,考查了电学实验的设计能力和实验数据的处理能力.从新材料、新情景中舍弃无关因素,会看到这是一个考查伏安法测电阻的电路设计问题,及如何根据测得的U、I值求电阻.第(3)、(4)问则考查考生思维的灵敏度和创新能力.总之本题是一道以能力立意为主,充分体现新课程标准的三维目标,考查学生的创新能力、获取新知识的能力、建模能力的一道好题.3.如图所示,AB和A′B′是长度均为L=2 km的两根输电线(1 km电阻值为1 Ω),若发现在距离A和A′等远的两点C和C′间发生漏电,相当于在两点间连接了一个电阻.接入电压为U=90 V的电源:当电源接在A、A′间时,测得B、B′间电压为U B=72 V;当电源接在B、B′间时,测得A、A′间电压为U A=45 V.由此可知A与C相距多远?【答案】L AC=0.4 km【解析】【分析】【详解】根据题意,将电路变成图甲所示电路,其中R1=R1′,R2=R2′,当AA′接90V,BB′电压为72V,如图乙所示(电压表内阻太大,R2和R′2的作用忽略,丙图同理)此时R1、R1′、R串联,∵在串联电路中电阻和电压成正比,∴R1:R:R1′=9V:72V:9V=1:8:1---------------①同理,当BB′接90V,AA′电压为45V,如图丙所示,此时R2、R2′、R串联,∵在串联电路中电阻和电压成正比,∴R2:R:R2′=22.5V:45V:22.5V=1:2:1=4:8:4---②联立①②可得:R1:R2=1:4由题意,R AB=2km×11km=2Ω=R1+R2∴R 1=0.4Ω,R 2=1.6ΩAC 相距 s=1 1/R km=0.4km . 【点睛】本题考查了串联电路的电阻、电流特点和欧姆定律的应用;解决本题的关键:一是明白电压表测得是漏电电阻两端的电压,二是知道电路相当于三个串联.4.图示为汽车蓄电池与车灯、小型启动电动机组成的电路,蓄电池内阻为0.05Ω,电表可视为理想电表。

(物理)物理部分电路欧姆定律专项习题及答案解析及解析

(物理)物理部分电路欧姆定律专项习题及答案解析及解析

(物理)物理部分电路欧姆定律专项习题及答案解析及解析一、高考物理精讲专题部分电路欧姆定律1.如图所示的电路中,两平行金属板A、B水平放置,极板长L=60 cm,两板间的距离d=30 cm,电源电动势E=36 V,内阻r=1 Ω,电阻R0=9 Ω,闭合开关S,待电路稳定后,将一带负电的小球(可视为质点)从B板左端且非常靠近B板的位置以初速度v0=6 m/s 水平向右射入两板间,小球恰好从A板右边缘射出.已知小球带电荷量q=2×10-2 C,质量m=2×10-2 kg,重力加速度g取10 m/s2,求:(1)带电小球在平行金属板间运动的加速度大小;(2)滑动变阻器接入电路的阻值.【答案】(1)60m/s2;(2)14Ω.【解析】【详解】(1)小球进入电场中做类平抛运动,水平方向做匀速直线运动,竖直方向做匀加速运动,则有:水平方向:L=v0t竖直方向:d=at2由上两式得:(2)根据牛顿第二定律,有:qE-mg=ma电压:U=Ed解得:U=21V设滑动变阻器接入电路的电阻值为R,根据串并联电路的特点有:解得:R=14Ω.【点睛】本题是带电粒子在电场中类平抛运动和电路问题的综合,容易出错的是受习惯思维的影响,求加速度时将重力遗忘,要注意分析受力情况,根据合力求加速度.2.在如图甲所示电路中,已知电源的电动势E=6 V、内阻r=1 Ω,A、B两个定值电阻的阻值分别为R A=2 Ω和R B=1 Ω,小灯泡的U-I图线如图乙所示,求小灯泡的实际电功率和电源的总功率分别为多少?【答案】0.75 W(0.70 W~0.80 W均算正确);10.5 W(10.1 W~10.9 W均算正确)【解析】【详解】设小灯泡两端电压为U,电流为I,由闭合电路欧姆定律有E=U+(I+) (R A+r)代入数据有U=1.5-0.75I作电压与电流的关系图线,如图所示:交点所对应的电压U=0.75 V(0.73 V~0.77 V均算正确)电流I=1 A(0.96 A~1.04 A均算正确)则灯泡的实际功率P=UI=0.75 W(0.70 W~0.80 W均算正确)电源的总功率P总=E(I+)=10.5 W(10.1 W~10.9 W均算正确)3.如图是有两个量程的电压表,当使用a、b两个端点时,量程为0-10V,当使用a、c两个端点时,量程为0-100V。

高考物理闭合电路的欧姆定律技巧和方法完整版及练习题及解析

高考物理闭合电路的欧姆定律技巧和方法完整版及练习题及解析

高考物理闭合电路的欧姆定律技巧和方法完整版及练习题及解析一、高考物理精讲专题闭合电路的欧姆定律1.如图所示的电路中,当开关S 接a 点时,标有“5V ,2.5W”的小灯泡正常发光,当开关S 接b 点时,标有“4V ,4W”的电动机正常工作.求电源的电动势和内阻.【答案】6V ,2Ω【解析】【详解】当开关接a 时,电路中的电流为I 1=11PU =2.55A=0.5A. 由闭合电路欧姆定律得E =U 1+I 1r当开关接b 时,电路中的电流为I 2=22P U =44A=1A. 由闭合电路欧姆定律得E =U 2+I 2r联立解得E =6Vr =2Ω.2.如图所示的电路中,两平行金属板A 、B 水平放置,两板间的距离d =40 cm 。

电源电动势E =24 V ,内电阻r =1 Ω,电阻R =15 Ω。

闭合开关S ,待电路稳定后,将一带正电的小球从B 板小孔以初速度v 0=4 m/s 竖直向上射入两板间,小球恰能到达A 板。

若小球带电荷量为q =1×10-2 C ,质量为m =2×10-2 kg ,不考虑空气阻力,取g =10 m/s 2。

求:(1)A 、B 两板间的电压U ;(2)滑动变阻器接入电路的阻值R P ;(3)电源的输出功率P 。

【答案】(1)8V ;(2)8 ;(3)23W【解析】【详解】(1)对小球从B 到A 的过程,由动能定理:2102qU mgd mv --=- 解得:U =8V (2)由欧姆定律有:E U I R r-=+ P U I R 电流为:= 解得:8P R =Ω(3)根据电功率公式有:()2pP I R R =+ 解得:P 23W =3.如图所示,电源的电动势110V E =,电阻121R =Ω,电动机绕组的电阻0.5R =Ω,开关1S 始终闭合.当开关2S 断开时,电阻1R 的电功率是525W ;当开关2S 闭合时,电阻1R 的电功率是336W ,求:(1)电源的内电阻r ;(2)开关2S 闭合时电动机的效率。

高中物理闭合电路的欧姆定律解题技巧及练习题(含答案)

高中物理闭合电路的欧姆定律解题技巧及练习题(含答案)

高中物理闭合电路的欧姆定律解题技巧及练习题(含答案)一、高考物理精讲专题闭合电路的欧姆定律1.如图所示的电路中,当开关S 接a 点时,标有“5V ,2.5W”的小灯泡正常发光,当开关S 接b 点时,标有“4V ,4W”的电动机正常工作.求电源的电动势和内阻.【答案】6V ,2Ω 【解析】 【详解】当开关接a 时,电路中的电流为I 1=11PU =2.55A=0.5A. 由闭合电路欧姆定律得E =U 1+I 1r当开关接b 时,电路中的电流为I 2=22P U =44A=1A. 由闭合电路欧姆定律得E =U 2+I 2r联立解得E =6V r =2Ω.2.如图所示,水平U 形光滑框架,宽度1L m =,电阻忽略不计,导体棒ab 的质量0.2m kg =,电阻0.5R =Ω,匀强磁场的磁感应强度0.2B T =,方向垂直框架向上.现用1F N =的拉力由静止开始向右拉ab 棒,当ab 棒的速度达到2/m s 时,求此时:()1ab 棒产生的感应电动势的大小; ()2ab 棒产生的感应电流的大小和方向; ()3ab 棒所受安培力的大小和方向; ()4ab 棒的加速度的大小.【答案】(1)0.4V (2)0.8A 从a 流向b (3)0.16N 水平向左 (4)24.2/m s 【解析】 【分析】 【详解】试题分析:(1)根据切割产生的感应电动势公式E=BLv ,求出电动势的大小.(2)由闭合电路欧姆定律求出回路中电流的大小,由右手定则判断电流的方向.(3)由安培力公式求出安培力的大小,由左手定则判断出安培力的方向.(4)根据牛顿第二定律求出ab 棒的加速度.(1)根据导体棒切割磁感线的电动势0.2120.4E BLv V V ==⨯⨯= (2)由闭合电路欧姆定律得回路电流0.40.80.5E I A A R ===,由右手定则可知电流方向为:从a 流向b(3)ab 受安培力0.20.810.16F BIL N N ==⨯⨯=,由左手定则可知安培力方向为:水平向左(4)根据牛顿第二定律有:F F ma -=安,得ab 杆的加速度2210.16/ 4.2/0.2F F a m s m s m安--===3.小明坐在汽车的副驾驶位上看到一个现象:当汽车的电动机启动时,汽车的车灯会瞬时变暗。

高考物理部分电路欧姆定律解题技巧(超强)及练习题(含答案)含解析

高考物理部分电路欧姆定律解题技巧(超强)及练习题(含答案)含解析

高考物理部分电路欧姆定律解题技巧(超强)及练习题(含答案)含解析一、高考物理精讲专题部分电路欧姆定律1.如图中所示B 为电源,电动势E=27V ,内阻不计。

固定电阻R 1=500Ω,R 2为光敏电阻。

C 为平行板电容器,虚线到两极板距离相等,极板长l 1=8.0×10-2m ,两极板的间距d =1.0×10-2m 。

S 为屏,与极板垂直,到极板的距离l 2=0.16m 。

P 为一圆盘,由形状相同、透光率不同的三个扇形a 、b 和c 构成,它可绕AA /轴转动。

当细光束通过扇形a 、b 、c 照射光敏电阻R 2时,R 2的阻值分别为1000Ω、2000Ω、4500Ω。

有一细电子束沿图中虚线以速度v 0=8.0×106m/s 连续不断地射入C 。

已知电子电量e =1.6×10-19C ,电子质量m =9×10-31kg 。

忽略细光束的宽度、电容器的充电放电时间及电子所受的重力。

假设照在R 2上的光强发生变化时R 2阻值立即有相应的改变。

(1)设圆盘不转动,细光束通过b 照射到R 2上,求平行板电容器两端电压U 1(计算结果保留二位有效数字)。

(2)设圆盘不转动,细光束通过b 照射到R 2上,求电子到达屏S 上时,它离O 点的距离y 。

(计算结果保留二位有效数字)。

(3)转盘按图中箭头方向匀速转动,每3秒转一圈。

取光束照在a 、b 分界处时t =0,试在图中给出的坐标纸上,画出电子到达屏S 上时,它离O 点的距离y 随时间t 的变化图线(0~6s 间)。

要求在y 轴上标出图线最高点与最低点的值。

(不要求写出计算过程,只按画出的图线就给分)【答案】(1) 5.4V (2) 22410m .-⨯ (3)【解析】 【分析】由题意可知综合考查闭合电路欧姆定律、牛顿第二定律和类平抛运动,根据欧姆定律、类平抛运动及运动学公式计算可得。

【详解】解:(1) 设电容器C 两极板间的电压为U 1,U 1=112R R R +E =27500V=5.4V 500+2000⨯ (2) 设电场强度大小为E ′E ′=1U d, 电子在极板间穿行时加速度大小为a ,穿过C 的时间为t ,偏转的距离为y o . 根据牛顿第二定律得:a==eE eU m md'电子做类平抛运动,则有:l 1=v 0t , y o =12at 2, 联立得:y o =202eE mv (112R R R +) 21l d, 当光束穿过b 时,R 2=2000Ω,代入数据解得:y o =4.8×10-3m由此可见,y 1<12d , 电子通过电容器C ,做匀速直线运动,打在荧光屏上O 上方y 处.根据三角形相似关系可得1o12y 22l l yl =+ 代入数值可得:y =22410m .-⨯(3) 当光束穿过a 时,R 2=1000Ω,代入数据解得y =8×10-3m由此可见,y >d ,电子不能通过电容器C 。

高考物理部分电路欧姆定律解题技巧讲解及练习题(含答案)及解析

高考物理部分电路欧姆定律解题技巧讲解及练习题(含答案)及解析

高考物理部分电路欧姆定律解题技巧讲解及练习题(含答案)及解析一、高考物理精讲专题部分电路欧姆定律1.如图25甲为科技小组的同学们设计的一种静电除尘装置示意图,其主要结构有一长为L 、宽为b 、高为d 的矩形通道,其前、后板使用绝缘材料,上、下板使用金属材料.图25乙是该主要结构的截面图,上、下两板与输出电压可调的高压直流电源(内电阻可忽略不计)相连.质量为m 、电荷量大小为q 的分布均匀的带负电的尘埃无初速度地进入A 、B 两极板间的加速电场.已知A 、B 两极板间加速电压为U0,尘埃加速后全都获得相同的水平速度,此时单位体积内的尘埃数为n .尘埃被加速后进入矩形通道,当尘埃碰到下极板后其所带电荷被中和,同时尘埃被收集.通过调整高压直流电源的输出电压U 可以改变收集效率η(被收集尘埃的数量与进入矩形通道尘埃的数量的比值).尘埃所受的重力、空气阻力及尘埃之间的相互作用均可忽略不计.在该装置处于稳定工作状态时:(1)求在较短的一段时间Δt 内,A 、B 两极板间加速电场对尘埃所做的功; (2)若所有进入通道的尘埃都被收集,求通过高压直流电源的电流; (3)请推导出收集效率η随电压直流电源输出电压U 变化的函数关系式. 【答案】(1)nbd ΔtqU 02qU m (2)02qU m (3)若y <d ,即204L U dU <d ,则收集效率η=y d =2204L U d U (U < 2024d U L) ;若y ≥d 则所有的尘埃都到达下极板,收集效率η=100% (U ≥2024d U L )【解析】试题分析:(1)设电荷经过极板B 的速度大小为0v ,对于一个尘埃通过加速电场过程中,加速电场做功为00W qU =在t ∆时间内从加速电场出来的尘埃总体积是0V bdv t =∆ 其中的尘埃的总个数()0N nV n bdv t ==∆总故A 、B 两极板间的加速电场对尘埃所做的功()000W N qU n bdv t qU ==∆总 对于一个尘埃通过加速电场过程,根据动能定理可得20012qU mv = 故解得02qU W nbd tqU m=∆(2)若所有进入矩形通道的尘埃都被收集,则t ∆时间内碰到下极板的尘埃的总电荷量()0Q N q nq bdv t ∆==∆总通过高压直流电源的电流002qU QI nQbdv nQbdt m∆===∆ (3)对某一尘埃,其在高压直流电源形成的电场中运动时,在垂直电场方向做速度为0v 的匀速直线运动,在沿电场力方向做初速度为0的匀加速直线运动 根据运动学公式有:垂直电场方向位移0x v t =,沿电场方向位移212y at = 根据牛顿第二定律有F qE qU a m m md=== 距下板y 处的尘埃恰好到达下板的右端边缘,则x=L解得204L Uy dU =若y d <,即204L U d dU <,则收集效率2202204()4d U y L UU d d U Lη==< 若y d ≥,则所有的尘埃都到达下极板,效率为100%2024()d U U L≥ 考点:考查了带电粒子在电场中的运动【名师点睛】带电粒子在电场中的运动,综合了静电场和力学的知识,分析方法和力学的分析方法基本相同.先分析受力情况再分析运动状态和运动过程(平衡、加速、减速,直 线或曲线),然后选用恰当的规律解题.解决这类问题的基本方法有两种,第一种利用力和运动的观点,选用牛顿第二定律和运动学公式求解;第二种利用能量转化 的观点,选用动能定理和功能关系求解2.在如图所示的电路中,电源的电动势E=6.0V ,内电阻r=1.0Ω,外电路的电阻R=11.0Ω.闭合开关S .求:(1)通过电阻R 的电流Ⅰ; (2)在内电阻r 上损耗的电功率P ; (3)电源的总功率P 总.【答案】(1)通过电阻R 的电流为0.5A ;(2)在内电阻r 上损耗的电功率P 为0.25W ;(3)电源的总功率P 总为3W . 【解析】试题分析:(1)根据闭合电路欧姆定律,通过电阻R 的电流为:,(2)r 上损耗的电功率为:P=I 2r=0.5×0.5×1=0.25W ,(3)电源的总功率为:P 总=IE =6×0.5=3 W . 考点:闭合电路的欧姆定律;电功、电功率.3.如图所示,灵敏电流计的内阻Rg 为500Ω,满偏电流为Ig 为1mA 。

高考物理部分电路欧姆定律答题技巧及练习题(含答案)及解析

高考物理部分电路欧姆定律答题技巧及练习题(含答案)及解析

高考物理部分电路欧姆定律答题技巧及练习题(含答案)及解析一、高考物理精讲专题部分电路欧姆定律1.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻的理解其物理本质。

一段长为l 、电阻率为ρ、横截面积为S 的细金属直导线,单位体积内有n 个自由电子,电子电荷量为e 、质量为m 。

(1)当该导线通有恒定的电流I 时:①请根据电流的定义,推导出导线中自由电子定向移动的速率v ;②经典物理学认为,金属的电阻源于定向运动的自由电子与金属离子(即金属原子失去电子后的剩余部分)的碰撞,该碰撞过程将对电子的定向移动形成一定的阻碍作用,该作用可等效为施加在电子上的一个沿导线的平均阻力。

若电子受到的平均阻力大小与电子定向移动的速率成正比,比例系数为k 。

请根据以上的描述构建物理模型,推导出比例系数k 的表达式。

(2)将上述导线弯成一个闭合圆线圈,若该不带电的圆线圈绕通过圆心且垂直于线圈平面的轴匀速率转动,线圈中不会有电流通过,若线圈转动的线速度大小发生变化,线圈中会有电流通过,这个现象首先由斯泰瓦和托尔曼在1917年发现,被称为斯泰瓦—托尔曼效应。

这一现象可解释为:当线圈转动的线速度大小均匀变化时,由于惯性,自由电子与线圈中的金属离子间产生定向的相对运动。

取线圈为参照物,金属离子相对静止,由于惯性影响,可认为线圈中的自由电子受到一个大小不变、方向始终沿线圈切线方向的力,该力的作用相当于非静电力的作用。

已知某次此线圈匀加速转动过程中,该切线方向的力的大小恒为F 。

根据上述模型回答下列问题:① 求一个电子沿线圈运动一圈,该切线方向的力F 做功的大小;② 推导该圆线圈中的电流 'I 的表达式。

【答案】(1)①I v neS=;② ne 2ρ;(2)① Fl ;② 'FS I e ρ=。

【解析】【分析】【详解】(1)①一小段时间t ∆内,流过导线横截面的电子个数为: N n Sv t ∆=⋅∆对应的电荷量为:Q Ne n Sv t e ∆=∆=⋅∆⋅根据电流的定义有:Q I neSv t ∆==∆ 解得:I v neS= ②从能量角度考虑,假设金属中的自由电子定向移动的速率不变,则电场力对电子做的正功与阻力对电子做的负功大小相等,即:0Ue kvl -=又因为: neSv l U IR nev l S ρρ⋅=== 联立以上两式得:2k ne ρ=(2)①电子运动一圈,非静电力做功为:2W F r Fl π=⋅=非②对于圆线圈这个闭合回路,电动势为:W Fl E e e==非 根据闭合电路欧姆定律,圆线圈这个闭合回路的电流为: E I R '= 联立以上两式,并根据电阻定律:l R S ρ= 解得:FS I e ρ'=2.如图甲所示,发光竹蜻蜓是一种常见的儿童玩具,它在飞起时能够发光.某同学对竹蜻蜓的电路作如下简化:如图乙所示,半径为L 的金属圆环绕垂直于圆环平面、通过圆心O 的金属轴O 1O 2以角速度ω匀速转动,圆环上接有电阻均为r 的三根导电辐条OP 、OQ 、OR ,辐条互成120°角.在圆环内,圆心角为120°的扇形区域内存在垂直圆环平面向下磁感应强度为B 的匀强磁场,在转轴O 1O 2与圆环的边缘之间通过电刷M 、N 与一个LED 灯(可看成二极管,发光时电阻为r ).圆环及其它电阻不计,从辐条OP 进入磁场开始计时.(1)顺磁感线方向看,圆盘绕O 1O 2轴沿什么方向旋转,才能使LED 灯发光?在不改变玩具结构的情况下,如何使LED 灯发光时更亮?(2)在辐条OP 转过60°的过程中,求通过LED 灯的电流;(3)求圆环每旋转一周,LED 灯消耗的电能.【答案】(1)逆时针;增大角速度(2)28BL r ω(3)2432B L rωπ【解析】试题分析:(1)圆环转动过程,始终有一条导电辐条在切割磁感线,产生感应电动势,并通过M.N 和二极管构成闭合回路.由于二极管的单向导电性,只有转轴为正极,即产生指向圆心的感应电流时二极管才发光,根据右手定则判断,圆盘逆时针旋转.要使得LED 灯发光时更亮,就要使感应电动势变大,即增大转速增大角速度ω. (2)导电辐条切割磁感线产生感应电动势212E BL ω= 此时O 点相当于电源正极,P 点为电源负极,电源内阻为r电源外部为二个导体辐条和二极管并联,即外阻为3r . 通过闭合回路的电流343EE I r r r ==+带入即得22133248BL BL I r rωω⨯== 流过二极管电流为238I BL rω= (3)转动过程始终有一个导电辐条在切割磁感线,所以经过二极管的电流不变 转过一周所用时间2T πω=所以二极管消耗的电能2422'()332I B L Q I rT rT rωπ=== 考点:电磁感应 串并联电路3.如图所示,电源两端电压U 保持不变.当开关S 1闭合、S 2断开,滑动变阻器接入电路中的电阻为R A 时,电压表的示数为U 1,电流表的示数为I 1,电阻R 1的电功率为P 1,电阻R A 的电功率为P A ;当开关S 1、S 2都闭合,滑动变阻器接入电路中的电阻为R B 时,电压表的示数U 2为2V ,电流表的示数为I 2,电阻R B 的电功率为P B ;当开关S 1闭合、S 2断开,滑动变阻器滑片P 位于最右端时,电阻R 2的电功率为8W .已知:R 1:R 2=2:1,P 1:P B =1:10,U 1:U 2=3:2.求:(1)电源两端的电压U ;(2)电阻R 2的阻值;(3)电阻R A 的电功率P A .【答案】(1)U=12V (2)R 2=2Ω (3)4.5W【解析】(1)已知: U 1∶U 2=3∶2R 1∶R 2=2∶1由图甲、乙得:U 1=I 1(R 1 + R 2 )U 2=I 2 R 2 解得:12I I =12已知:P 1∶P B =1∶10由图甲、乙得:P 1 = I 12R 1P B = I 22R B解得:R 1 =25R B 由电源两端电压U 不变 I 1(R 1+R 2+R A ) = I 2(R 2+R B )解得:R A =9R 2 由图乙得:2U U =22BR R R + U 2=2V 解得:U =12V(2)由图丙得:2U U '=212R R R + 解得:U 2' = 4VP 2=8WR 2 =222U P '=2(4V)8W= 2Ω (3)由U 1∶U 2=3∶2解得:U 1=3VU A =U -U 1=9VR A =9R 2=18ΩP A =2A AU R =4.5W 【点睛】本题是有关欧姆定律、电功率的综合计算题目.在解题过程中,注意电路的分析,根据已知条件分析出各种情况下的等效电路图,同时要注意在串联电路中各物理量之间的关系,结合题目中给出的已知条件进行解决.4.如图,竖直平面内放着两根间距L = 1m 、电阻不计的足够长平行金属板M 、N ,两板间接一阻值R= 2Ω的电阻,N 板上有一小孔Q ,在金属板M 、N 及CD 上方有垂直纸面向里的磁感应强度B 0= 1T 的有界匀强磁场,N 板右侧区域KL 上、下部分分别充满方向垂直纸面向外和向里的匀强磁场,磁感应强度大小分别为B 1=3T 和B 2=2T .有一质量M = 0.2kg 、电阻r =1Ω的金属棒搭在MN 之间并与MN 良好接触,用输出功率恒定的电动机拉着金属棒竖直向上运动,当金属棒达最大速度时,在与Q 等高并靠近M 板的P 点静止释放一个比荷的正离子,经电场加速后,以v =200m/s 的速度从Q 点垂直于N 板边界射入右侧区域.不计离子重力,忽略电流产生的磁场,取g=.求:(1)金属棒达最大速度时,电阻R 两端电压U ;(2)电动机的输出功率P ;(3)离子从Q 点进入右侧磁场后恰好不会回到N 板,Q 点距分界线高h 等于多少.【答案】(1)2V (2)9W (3)21.210m -⨯【解析】试题分析:(1)离子从P 运动到Q ,由动能定理:① 解得R 两端电压② (2)电路的电流③ 安培力④ 受力平衡⑤ 由闭合电路欧姆定律⑥ 感应电动势⑦ 功率⑧联立②-⑧式解得:电动机功率⑨ (3)如图所示,设离子恰好不会回到N 板时,对应的离子在上、下区域的运动半径分别为和,圆心的连线与N 板的夹角为φ.在磁场中,由⑩ 解得运动半径为11 在磁场中,由12 解得运动半径为13 由几何关系得14 15解 ⑩--15得:16考点:带电粒子在匀强磁场中的运动.5. 4~1.0T 范围内,磁敏电阻的阻值随磁感应强度线性变化(或均匀变化)(4)磁场反向,磁敏电阻的阻值不变.【解析】(1)当B =0.6T 时,磁敏电阻阻值约为6×150Ω=900Ω,当B =1.0T 时,磁敏电阻阻值约为11×150Ω=1650Ω.由于滑动变阻器全电阻20Ω比磁敏电阻的阻值小得多,故滑动变阻器选择分压式接法;由于xV A xR R R R >,所以电流表应内接.电路图如图所示.(2)方法一:根据表中数据可以求得磁敏电阻的阻值分别为:130.4515000.3010R -=Ω=Ω⨯,230.911516.70.6010R -=Ω=Ω⨯,331.5015001.0010R-=Ω=Ω⨯, 431.791491.71.2010R -=Ω=Ω⨯,532.7115051.8010R -=Ω=Ω⨯, 故电阻的测量值为1234515035R R R R R R ++++=Ω=Ω(1500-1503Ω都算正确.) 由于0150010150R R ==,从图1中可以读出B =0.9T 方法二:作出表中的数据作出U -I 图象,图象的斜率即为电阻(略).(3)在0~0.2T 范围,图线为曲线,故磁敏电阻的阻值随磁感应强度非线性变化(或非均匀变化);在0.4~1.0T 范围内,图线为直线,故磁敏电阻的阻值随磁感应强度线性变化(或均匀变化);(4)从图3中可以看出,当加磁感应强度大小相等、方向相反的磁场时,磁敏电阻的阻值相等,故磁敏电阻的阻值与磁场方向无关.本题以最新的科技成果为背景,考查了电学实验的设计能力和实验数据的处理能力.从新材料、新情景中舍弃无关因素,会看到这是一个考查伏安法测电阻的电路设计问题,及如何根据测得的U 、I 值求电阻.第(3)、(4)问则考查考生思维的灵敏度和创新能力.总之本题是一道以能力立意为主,充分体现新课程标准的三维目标,考查学生的创新能力、获取新知识的能力、建模能力的一道好题.6.如图1所示,水平面内的直角坐标系的第一象限有磁场分布,方向垂直于水平面向下,磁感应强度沿y 轴方向没有变化,与横坐标x 的关系如图2所示,图线是双曲线(坐标轴是渐进线);顶角θ=45°的光滑金属长导轨 MON 固定在水平面内,ON 与x 轴重合,一根与ON 垂直的长导体棒在水平向右的外力作用下沿导轨MON 向右滑动,导体棒在滑动过程中始终保持与导轨良好接触.已知t=0时,导体棒位于顶角O 处;导体棒的质量为m=2kg ;OM 、ON 接触处O 点的接触电阻为R=0.5Ω,其余电阻不计;回路电动势E 与时间t 的关系如图3所示,图线是过原点的直线.求:(1)t=2s 时流过导体棒的电流强度I 2的大小;(2)1~2s 时间内回路中流过的电量q 的大小;(3)导体棒滑动过程中水平外力F (单位:N )与横坐标x (单位:m )的关系式.【答案】(1)t=2s 时流过导体棒的电流强度I 2的大小为8A ;(2)1~2s 时间内回路中流过的电量q 的大小为6C ;(3)导体棒滑动过程中水平外力F 与横坐标x 的关系式为F=(4+4)N . 【解析】试题分析:(1)根据E —t 图像中的图线是过原点的直线特点 有:E I R =得:28I A =(2分) (2)可判断I —t 图像中的图线也是过原点的直线 (1分) 有:t=1s 时14I A =可有:122I I q I t t +=∆=∆(2分) 得:6q C =(1分)(3)因θ=45°,可知任意t 时刻回路中导体棒有效切割长度L=x (2分)再根据B —x 图像中的图线是双曲线特点:Bx=1有:()E BLv Bx v ==且2E t =(2分)可得:2v t =,所以导体棒的运动是匀加速直线运动,加速度22/a m s =(2分) 又有:()F BIL BIx Bx I 安===且I 也与时间成正比 (2分)再有:F F ma -=安(2分)212x at =(2分) 得:44F x =+(2分)考点:本题考查电磁感应、图像、力与运动等知识,意在考查学生读图、试图的能力,利用图像和数学知识解决问题的能力.7.图示为汽车蓄电池与车灯、小型启动电动机组成的电路,蓄电池内阻为0.05Ω,电表可视为理想电表。

高中物理闭合电路的欧姆定律解题技巧及练习题及解析

高中物理闭合电路的欧姆定律解题技巧及练习题及解析

高中物理闭合电路的欧姆定律解题技巧及练习题及解析一、高考物理精讲专题闭合电路的欧姆定律1.小明坐在汽车的副驾驶位上看到一个现象:当汽车的电动机启动时,汽车的车灯会瞬时变暗。

汽车的电源、电流表、车灯、电动机连接的简化电路如图所示,已知汽车电源电动势为12.5V ,电源与电流表的内阻之和为0.05Ω。

车灯接通电动机未起动时,电流表示数为10A ;电动机启动的瞬间,电流表示数达到70A 。

求:(1)电动机未启动时车灯的功率。

(2)电动机启动瞬间车灯的功率并说明其功率减小的原因。

(忽略电动机启动瞬间灯泡的电阻变化)【答案】(1)120W ;(2)67.5W【解析】【分析】【详解】(1) 电动机未启动时12V U E Ir =-=120W P UI ==(2)电动机启动瞬间车灯两端电压'9 V U E I r =-'=车灯的电阻'1.2U R I==Ω 267.5W RU P ''== 电源电动势不变,电动机启动瞬间由于外电路等效总电阻减小,回路电流增大,内电路分得电压增大,外电路电压减小,所以车灯电功率减小。

2.电源的电动势为4.8V 、外电阻为4.0Ω时,路端电压为4.0V 。

如果在外电路并联一个6.0Ω的电阻,路端电压是多大?【答案】3.6V【解析】【详解】由题意可知当外电阻为4.0Ω时,根据欧姆定律可知电流4A 1.0A 4U I R ===外 由闭合电路欧姆定律 ()E I R r =+代入数据解得r =0.8Ω当外电路并联一个6.0Ω的电阻时46 2.446R ⨯==Ω+并 电路中的总电流 4.8A=1.5A 2.40.8E I R r '==++并 所以路端电压 1.5 2.4V 3.6V U I R '==⨯'=并3.如图所示的电路中,两平行金属板A 、B 水平放置,两板间的距离d =40 cm 。

电源电动势E =24 V ,内电阻r =1 Ω,电阻R =15 Ω。

高中物理闭合电路的欧姆定律技巧(很有用)及练习题及解析

高中物理闭合电路的欧姆定律技巧(很有用)及练习题及解析

高中物理闭合电路的欧姆定律技巧(很有用)及练习题及解析一、高考物理精讲专题闭合电路的欧姆定律1.平行导轨P 、Q 相距l =1 m ,导轨左端接有如图所示的电路.其中水平放置的平行板电容器两极板M 、N 相距d =10 mm ,定值电阻R 1=R 2=12 Ω,R 3=2 Ω,金属棒ab 的电阻r =2 Ω,其他电阻不计.磁感应强度B =0.5 T 的匀强磁场竖直穿过导轨平面,当金属棒ab 沿导轨向右匀速运动时,悬浮于电容器两极板之间,质量m =1×10-14kg ,电荷量q =-1×10-14C 的微粒恰好静止不动.取g =10 m /s 2,在整个运动过程中金属棒与导轨接触良好.且速度保持恒定.试求:(1)匀强磁场的方向和MN 两点间的电势差 (2)ab 两端的路端电压; (3)金属棒ab 运动的速度.【答案】(1) 竖直向下;0.1 V (2)0.4 V . (3) 1 m /s . 【解析】 【详解】(1)负电荷受到重力和电场力的作用处于静止状态,因为重力竖直向下,所以电场力竖直向上,故M 板带正电.ab 棒向右做切割磁感线运动产生感应电动势,ab 棒等效于电源,感应电流方向由b →a ,其a 端为电源的正极,由右手定则可判断,磁场方向竖直向下. 微粒受到重力和电场力的作用处于静止状态,根据平衡条件有mg =Eq 又MNU E d=所以U MN =mgdq=0.1 V(2)由欧姆定律得通过R 3的电流为I =3MNU R =0.05 A则ab 棒两端的电压为U ab =U MN +I ×0.5R 1=0.4 V . (3)由法拉第电磁感应定律得感应电动势E =BLv 由闭合电路欧姆定律得E =U ab +Ir =0.5 V 联立解得v =1 m /s .2.爱护环境,人人有责;改善环境,从我做起;文明乘车,低碳出行。

随着冬季气候的变化,12月6号起,阳泉开始实行机动车单双号限行。

高中物理部分电路欧姆定律解题技巧(超强)及练习题(含答案)含解析

高中物理部分电路欧姆定律解题技巧(超强)及练习题(含答案)含解析

高中物理部分电路欧姆定律解题技巧(超强)及练习题(含答案)含解析 —、咼考物理精讲专题部分电路欧姆定律1. 恒定电流电路内各处电荷的分布是稳定的,任何位置的电荷都不可能越来越多或越来越 少,此时导内的电场的分布和静电场的性质是一样的,电路内的电荷、电场的分布都不随 时间改变,电流恒定•并推导并联电路中干路电流I 0和各支路电流1仆丨2、丨3之间的关系; b. 研究将一定量电荷△ q 通过如图不同支路时电场力做功 w 、 W 2、 W 3的关系并说 明理由;由此进一步推导并联电路中各支路两端电压 U 1、U 2、U 3之间的关系; c. 推导图中并联电路等效电阻 R 和各支路电阻R 1、F 2、R 3的关系. (2)定义电流密度j 的大小为通过导体横截面电流强度 的电阻率为 ,导体内的电场强度为 E ,请推导电流密度 间满足的关系式. 【答案】 (1) a. q o q q 2 q 3 , 1 o 11 1 2 I 3 b. 1 1 1 1 W 1 W 2 W 3,U 1 U 2 U 3 c . R R 1 R 2 R 3⑵ 【解析】 【详解】 (1) a. q o q 1 q 2 q 3 ••I o 11 即并联电路总电流等于各支路电流之和。

••• U 1 U 2 U 3即并联电路各支路两端电压相等。

(1)a.写出图中经△ t 时间通过0、1、2,3的电量 q o 、 qi 、 q 2、 q 3满足的关系, I 与导体横截面S 的比值,设导体 j 的大小和电场强度 E 的大小之 I o 晋A ^2 b. W 1 W 2 W 3 理由:在静电场和恒定电场中,电场力做功和路径无关,只和初末位置有关 能、电势、电势差(电压)的概念 • .可以引进电势 Ui ,U 2旦,U 3卫 q q q••• j -E2. 如图所示电路 值均为4Q 电容器的电容为20卩F 开始开关闭合,电流表内阻不计(1) 电流表的读数;(2) 电容器所带电荷量;(3) 开关断开后,通过R 2的电荷量.【答案】(1) 0.8A (2) 6.4 X 1-0C;( 3) 3.2 X l 5c 【解析】1)当电键S 闭合时,电阻 R 1、R 2被短路•根据欧姆定律得,电流表的读数I - R j r(2) 电容器所带的电量 Q=CL 3=CIF 3=20 X 10X 0. 8 X 4C=6.45X ; 10(3)断开电键S 后,电容器相当于电源,外电路是R 1、甩相当并联后与R 3串联.由于各个电阻都相等,则通过 R 2的电量为Q ,扫Q=3.2 X 10C考点:闭合电路的欧姆定律;电容器【名师点睛】此题是对闭合电路的欧姆定律以及电容器的带电量的计算问题;解题的关键是搞清电路的结构,知道电流表把两个电阻短路;电源断开时要能搞清楚电容器放电电流的流动路线,此题是中等题,考查物理规律的灵活运用 3. 以下对直导线内部做一些分析 :设导线单位体积内有 n 个自由电子,电子电荷量为e ,自 由电子定向移动的平均速率为 v.现将导线中电流I 与导线横截面积 S 的比值定义为电流密 度,其大小用j 表示.(1) 请建立微观模型 利用电流的定义I q ,推导:j=nev;(2) 从宏观角度看,导体两端有电压,导体中就形成电流;从微观角度看,若导体内没有电 场,自由电子就不会定向c.由欧姆定律以及 1a 、b 可知:— R R 2 1 R 3(2) j S , 1 UR ,U EL ,4V 、内电阻为1Q 的直流电源,3个电阻的阻 ,求:,A 、B 两点间接上一电动势为 试题分析:(—A 0.8A 4 1移动.设导体的电阻率为p导体内场强为E,试猜想j与E的关系并推导出j、P E三者间满足的关系式.【答案】(1)j=nev (2)j=-【解析】【分析】【详解】(1)在直导线内任选一个横截面S,在4时间内以S为底,v A t为高的柱体内的自由电子都将从此截面通过,由电流及电流密度的定义知:j= - = 丫9,其中厶口二门eSvAt,S VtS代入上式可得:j=n ev(2)(猜想:j与E成正比)设横截面积为S,长为I的导线两端电压为U,则E= U;I电流密度的定义为j=-,S将I = U代入,得i=—;R SR导线的电阻R= -,代入上式,可得j、p、E三者间满足的关系式为:j=-S【点睛】本题一要掌握电路的基本规律:欧姆定律、电阻定律、电流的定义式,另一方面要读懂题意,明确电流密度的含义.4. AB两地间铺有通讯电缆,它是由两条并在一起彼此绝缘的均匀导线组成,通常称为双线电缆。

高考物理闭合电路的欧姆定律答题技巧及练习题(含答案)含解析

高考物理闭合电路的欧姆定律答题技巧及练习题(含答案)含解析

高考物理闭合电路的欧姆定律答题技巧及练习题(含答案)含解析一、高考物理精讲专题闭合电路的欧姆定律1.如图所示的电路中,电源电动势E =10V ,内阻r =0.5Ω,电阻R 1=1.5Ω,电动机的线圈电阻R 0=1.0Ω。

电动机正常工作时,电压表的示数U 1=3.0V ,求:(1)电源的路端电压;(2)电动机输出的机械功率。

【答案】(1)9V ;(2)8W【解析】【分析】【详解】(1)流过电源的电流为I ,则11IR U =路端电压为U ,由闭合电路欧姆定律U E Ir =-解得9V U =(2)电动机两端的电压为M 1()U E I R r =-+电动机消耗的机械功率为2M 0P U I I R =-解得8W P =2.如图所示的电路中,当开关S 接a 点时,标有“5V ,2.5W”的小灯泡正常发光,当开关S 接b 点时,标有“4V ,4W”的电动机正常工作.求电源的电动势和内阻.【答案】6V ,2Ω【解析】【详解】当开关接a 时,电路中的电流为I 1=11PU =2.55A=0.5A. 由闭合电路欧姆定律得E =U 1+I 1r当开关接b 时,电路中的电流为I 2=22P U =44A=1A. 由闭合电路欧姆定律得E =U 2+I 2r联立解得E =6Vr =2Ω.3.如图所示电路中,19ΩR =,230ΩR =,开关S 闭合时电压表示数为11.4V ,电流表示数为0.2A ,开关S 断开时电流表示数为0.3A ,求:(1)电阻3R 的值.(2)电源电动势和内电阻.【答案】(1)15Ω (2)12V 1Ω【解析】【详解】(1)由图可知,当开关S 闭合时,两电阻并联,根据欧姆定律则有:21123()IR U I R IR R =++ 解得: 315ΩR =(2) 由图可知,当开关S 闭合时,两电阻并联,根据闭合电路的欧姆定律则有:213()11.40.6IR E U I r r R =++=+ S 断开时,根据闭合电路的欧姆定律则有:212()0.3(39)E I R R r r =++=⨯+联立解得:12V E =1Ωr =4.电源的电动势为4.8V 、外电阻为4.0Ω时,路端电压为4.0V 。

高中物理闭合电路的欧姆定律技巧(很有用)及练习题含解析

高中物理闭合电路的欧姆定律技巧(很有用)及练习题含解析

高中物理闭合电路的欧姆定律技巧(很有用)及练习题含解析一、高考物理精讲专题闭合电路的欧姆定律1.如图所示的电路中,电源电动势E =10V ,内阻r =0.5Ω,电阻R 1=1.5Ω,电动机的线圈电阻R 0=1.0Ω。

电动机正常工作时,电压表的示数U 1=3.0V ,求: (1)电源的路端电压; (2)电动机输出的机械功率。

【答案】(1)9V ;(2)8W 【解析】 【分析】 【详解】(1)流过电源的电流为I ,则11IR U =路端电压为U ,由闭合电路欧姆定律U E Ir =-解得9V U =(2)电动机两端的电压为M 1()U E I R r =-+电动机消耗的机械功率为2M 0P U I I R =-解得8W P =2.小勇同学设计了一种测定风力大小的装置,其原理如图所示。

E 是内阻不计、电动势为6V 的电源。

0R 是一个阻值为40Ω的定值电阻。

V 是由理想电压表改装成的指针式测风力显示器。

R 是与迎风板A 相连的一个压敏电阻,其阻值可随风的压力大小变化而改变,其关系如下表所示。

迎风板A 的重力忽略不计。

试求:压力F /N 0 50 100 150 200 250 300 … 电阻/R Ω30282624222018…(1)利用表中的数据归纳出电阻R 随风力F 变化的函数式;(2)若电压表的最大量程为5V ,该装置能测得的最大风力为多少牛顿; (3)当风力F 为500N 时,电压表示数是多少;(4)如果电源E 的电动势降低,要使相同风力时电压表测得的示数不变,需要调换0R ,调换后的0R 的阻值大小如何变化?(只写结论)【答案】(1)300.04()R F =-Ω;(2)m 550F N =;(3) 4.8V U =;(4)阻值变大 【解析】 【分析】 【详解】(1)通过表中数据可得:Fc R∆=∆,故R 与F 成线性变化关系设它们的关系式为: R kF b =+代入数据得:300.04(Ω)R F =-①(2)由题意,0R 上的电压05V R U =,通过0R 的电流为00R U I R =②R R E U U R I I-==③ 解①~④式,得,当电压表两端电压R U 为5V 时,测得的风力最大m 550F N =④(3)由①式得10ΩR =004.8V R EU R R ==+⑤(4)阻值变大3.小明坐在汽车的副驾驶位上看到一个现象:当汽车的电动机启动时,汽车的车灯会瞬时变暗。

高中物理部分电路欧姆定律常见题型及答题技巧及练习题(含答案)含解析

高中物理部分电路欧姆定律常见题型及答题技巧及练习题(含答案)含解析

高中物理部分电路欧姆定律常见题型及答题技巧及练习题(含答案)含解析一、高考物理精讲专题部分电路欧姆定律1.以下对直导线内部做一些分析:设导线单位体积内有n个自由电子,电子电荷量为e,自由电子定向移动的平均速率为v.现将导线中电流I与导线横截面积S的比值定义为电流密度,其大小用j表示.(1)请建立微观模型,利用电流的定义qIt=,推导:j=nev;(2)从宏观角度看,导体两端有电压,导体中就形成电流;从微观角度看,若导体内没有电场,自由电子就不会定向移动.设导体的电阻率为ρ,导体内场强为E,试猜想j与E的关系并推导出j、ρ、E三者间满足的关系式.【答案】(1)j=nev(2)E jρ=【解析】【分析】【详解】(1)在直导线内任选一个横截面S,在△t时间内以S为底,v△t为高的柱体内的自由电子都将从此截面通过,由电流及电流密度的定义知:I qjS tSVV==,其中△q=neSv△t,代入上式可得:j=nev(2)(猜想:j与E成正比)设横截面积为S,长为l的导线两端电压为U,则UEl =;电流密度的定义为IjS =,将UIR=代入,得UjSR=;导线的电阻lRSρ=,代入上式,可得j、ρ、E三者间满足的关系式为:Ejρ=【点睛】本题一要掌握电路的基本规律:欧姆定律、电阻定律、电流的定义式,另一方面要读懂题意,明确电流密度的含义.2.在如图甲所示电路中,已知电源的电动势E=6 V、内阻r=1 Ω,A、B两个定值电阻的阻值分别为R A=2 Ω和R B=1 Ω,小灯泡的U-I图线如图乙所示,求小灯泡的实际电功率和电源的总功率分别为多少?【答案】0.75 W(0.70 W~0.80 W均算正确);10.5 W(10.1 W~10.9 W均算正确)【解析】【详解】设小灯泡两端电压为U,电流为I,由闭合电路欧姆定律有E=U+(I+) (R A+r)代入数据有U=1.5-0.75I作电压与电流的关系图线,如图所示:交点所对应的电压U=0.75 V(0.73 V~0.77 V均算正确)电流I=1 A(0.96 A~1.04 A均算正确)则灯泡的实际功率P=UI=0.75 W(0.70 W~0.80 W均算正确)电源的总功率P总=E(I+)=10.5 W(10.1 W~10.9 W均算正确)3.科技小组的同学们设计了如图18甲所示的恒温箱温控电路(用于获得高于室温,控制在一定范围内的“室温”)包括工作电路和控制电路两部分,其中R'为阻值可以调节的可变电阻,R为热敏电阻(置于恒温箱内),其阻值随温度变化的关系如图18乙所示,继电器线圈电阻R0为50欧姆:(1)如图18甲所示状态,加热器是否处于加热状态?(2)已知当控制电路的电流达到0.04 A时继电器的衔铁被吸合;当控制电路的电流减小0.036A时,衔铁被释放。

高考物理部分电路欧姆定律解题技巧及练习题及解析

高考物理部分电路欧姆定律解题技巧及练习题及解析

高考物理部分电路欧姆定律解题技巧及练习题及解析一、高考物理精讲专题部分电路欧姆定律1.如图所示电路,A 、B 两点间接上一电动势为4V 、内电阻为1Ω的直流电源,3个电阻的阻值均为4Ω,电容器的电容为20μF,开始开关闭合,电流表内阻不计,求:(1)电流表的读数;(2)电容器所带电荷量;(3)开关断开后,通过R 2的电荷量.【答案】(1)0.8A (2)6.4×10-5C ;(3)3.2×10-5C【解析】试题分析:(1)当电键S 闭合时,电阻R 1、R 2被短路.根据欧姆定律得,电流表的读数340.841E I A A R r ===++ (2)电容器所带的电量Q=CU 3=CIR 3=20×10-6×0. 8×4C=6.4×10-5C ;(3)断开电键S 后,电容器相当于电源,外电路是R 1、R 2相当并联后与R 3串联.由于各个电阻都相等,则通过R 2的电量为Q′=1/2Q=3.2×10-5C考点:闭合电路的欧姆定律;电容器【名师点睛】此题是对闭合电路的欧姆定律以及电容器的带电量的计算问题;解题的关键是搞清电路的结构,知道电流表把两个电阻短路;电源断开时要能搞清楚电容器放电电流的流动路线,此题是中等题,考查物理规律的灵活运用.2.地球表面附近存在一个竖直向下的电场,其大小约为100V /m 。

在该电场的作用下,大气中正离子向下运动,负离子向上运动,从而形成较为稳定的电流,这叫做晴天地空电流。

地表附近某处地空电流虽然微弱,但全球地空电流的总电流强度很大,约为1800A 。

以下分析问题时假设地空电流在全球各处均匀分布。

(1)请问地表附近从高处到低处电势升高还是降低?(2)如果认为此电场是由地球表面均匀分布的负电荷产生的,且已知电荷均匀分布的带电球面在球面外某处产生的场强相当于电荷全部集中在球心所产生的场强;地表附近电场的大小用E 表示,地球半径用R 表示,静电力常量用k 表示,请写出地表所带电荷量的大小Q 的表达式;(3)取地球表面积S =5.1×1014m 2,试计算地表附近空气的电阻率ρ0的大小; (4)我们知道电流的周围会有磁场,那么全球均匀分布的地空电流是否会在地球表面形成磁场?如果会,说明方向;如果不会,说明理由。

高中物理部分电路欧姆定律解题技巧讲解及练习题(含答案)

高中物理部分电路欧姆定律解题技巧讲解及练习题(含答案)

【答案】(1)① 【解析】(1)①根据 理

(2)①见解析②见解析
,由图像知:
,代入可得
,同
根据 ,由已知 代入可得:
②因为两导线串联,所以电流
,由欧姆定律 ,电阻定律

,长度分别为 和
代入可得:
(2)①在直导线内任选一个横截面 S,在 时间内以 S 为底, 为高的柱体内的自由电
子都将从此截面通过,由电流及电流密度的定义知: 代入可得:
4.两根材料相同的均匀直导线 a 和 b 串联在电路上,a 长为 ,b 长为 。 (1)若沿长度方向的电势随位置的变化规律如图所示,求:
①a、b 两导线内电场强度大小之比 ;
②a、b 两导线横截面积之比 。
(2)以下对直导线内部做进一步分析:设导线单位体积内有 n 个自由电子,电子电荷量为 e,自由电子定向移动的平均速率为 v。现将导线中电流 I 与导线横截面积 S 的比值定义为 电流密度,其大小用 j 表示。
值随着温度变化更显著。
6.AB 两地间铺有通讯电缆,它是由两条并在一起彼此绝缘的均匀导线组成,通常称为双 线电缆。电缆长为 L,每一条电缆的电阻为 R.某次事故中不小心损坏了电缆,电缆的损坏 有两种可能情况:绝缘层轻微受损,导致两导线间漏电,简称漏电故障(相当于在该处的 两导线间接有一个电阻);绝缘层严重破坏,导致两导线直接短路,称之为短路故障。设 导线间只有一处绝缘层破损。为判断破损处是哪种情况,在 AB 两端均处开路的前提下做 了以下工作: (1)在 A 地两端间接一恒压电源 U,在 B 地两端间接理想电压表,测出电压表示数为 UB ,在 B 地两端间接同一电源,在 A 地两端间接理想电压表,测出电压表示数为 UA .若 UA = UB =0,是什么故障类型?若 UA ≠0,UB ≠0,是什么故障类型? (2)在 A 地两端间接欧姆表测出电阻为 RA,在 B 地两端间接欧姆表测出电阻为 RB。

高考物理闭合电路的欧姆定律技巧(很有用)及练习题及解析

高考物理闭合电路的欧姆定律技巧(很有用)及练习题及解析

高考物理闭合电路的欧姆定律技巧(很有用)及练习题及解析一、高考物理精讲专题闭合电路的欧姆定律1.如图所示电路中,14R =Ω,26R =Ω,30C F μ=,电池的内阻2r =Ω,电动势12E V =.(1)闭合开关S ,求稳定后通过1R 的电流. (2)求将开关断开后流过1R 的总电荷量. 【答案】(1)1A ;(2)41.810C -⨯ 【解析】 【详解】(1)闭合开关S 电路稳定后,电容视为断路,则由图可知,1R 与2R 串联,由闭合电路的欧姆定律有:12121A 462E I R R r ===++++所以稳定后通过1R 的电流为1A .(2)闭合开关S 后,电容器两端的电压与2R 的相等,有16V 6V C U =⨯=将开关S 断开后,电容器两端的电压与电源的电动势相等,有'12V C U E ==流过1R 的总电荷量为()'63010126C C C Q CU CU -=-=⨯⨯-41.810C -=⨯2.电源的电动势为4.8V 、外电阻为4.0Ω时,路端电压为4.0V 。

如果在外电路并联一个6.0Ω的电阻,路端电压是多大? 【答案】3.6V 【解析】 【详解】由题意可知当外电阻为4.0Ω时,根据欧姆定律可知电流4A 1.0A 4U I R ===外 由闭合电路欧姆定律()E I R r =+代入数据解得r =0.8Ω当外电路并联一个6.0Ω的电阻时462.446R ⨯==Ω+并 电路中的总电流4.8A=1.5A 2.40.8E I R r '==++并 所以路端电压1.52.4V3.6V U I R '==⨯'=并3.如图所示,R 为电阻箱,V 为理想电压表.当电阻箱读数为R 1=2Ω时,电压表读数为U 1=4V ;当电阻箱读数为R 2=5Ω时,电压表读数为U 2=5V .求:(1)电源的电动势E 和内阻r .(2)当电阻箱R 读数为多少时,电源的输出功率最大?最大值P m 为多少? 【答案】(1)E =6 V r =1 Ω (2)当R=r =1 Ω时,P m =9 W 【解析】 【详解】(1)由闭合电路欧姆定律E U Ir =+得:111U E U r R =+,代入得44422E r =+=+①, 222U E U r R =+,代入得:5555E r r =+=+②, 联立上式并代入数据解得:E=6V ,r=1Ω(2)当电阻箱的阻值等于电源的内电阻时电源的输出功率最大,即有R=r=1Ω电源的输出功率最大为:22226()92441m E E P I R r W W r r =====⨯;4.利用如图所示的电路可以测量电源的电动势和内电阻.当滑动变阻器的滑片滑到某一位置时,电流表和电压表的示数分别为0.20A 和2.90V .改变滑片的位置后,两表的示数分别为0.40A 和2.80V .这个电源的电动势和内电阻各是多大?【答案】E =3.00V ,r =0.50Ω 【解析】 【分析】 【详解】根据全电路欧姆定律可得:;,联立解得:E=3.00V ,r=0.50Ω5.如图所示,电源的电动势为10 V ,内阻为1 Ω,R 1=3 Ω,R 2=6 Ω,C =30 μF 求:(1)闭合电键S ,稳定后通过电阻R 2的电流.(2)再将电键S 断开,再次稳定后通过电阻R 1的电荷量. 【答案】(1)1 A (2)1.2×10﹣4C 【解析】 【详解】(1)闭合开关S ,稳定后电容器相当于开关断开,根据全电路欧姆定律得: 12101361E I A A R R r ===++++(2)闭合开关S 时,电容器两端的电压即R 2两端的电压,为:U 2=IR 2=1×6V=6V 开关S 断开后,电容器两端的电压等于电源的电动势,为E=10V ,则通过R 1的电荷量为: Q=C (E-U 2)=3×10-5×(10-6)C=1.2×10-4C6.如图所示,导体杆ab 的质量为0.02kg ,电阻为2Ω,放置在与水平面成30o 角的光滑倾斜金属导轨上,导轨间距为0.5m 且电阻不计,系统处于垂直于导轨平面向上的匀强磁场中,磁感应强度为0.2T ,电源内阻为1Ω,通电后杆能静止于导轨上,g 取10m/s 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理部分电路欧姆定律技巧(很有用)及练习题及解析一、高考物理精讲专题部分电路欧姆定律1.如图所示,电源电动势、内电阻、1R 、2R 均未知,当a 、b 间接入电阻/1R =10Ω时,电流表示数为11A I =;当接入电阻/218R =Ω时,电流表示数为20.6A I =.当a 、b 间接入电阻/3R =118Ω时,电流表示数为多少?【答案】0.1A 【解析】 【分析】当a 、b 间分别接入电阻R 1′、R 2′、R 3′时,根据闭合电路欧姆定律列式,代入数据,联立方程即可求解. 【详解】当a 、b 间接入电阻R 1′=10Ω时,根据闭合电路欧姆定律得:E =(I 1+112I R R ')(R 1+r )+I 1R 1′ 代入数据得:E=(1+210 R )(R 1+r )+10① 当接入电阻R 2′=18Ω时,根据闭合电路欧姆定律得:E =(I 2+222I R R ')(R 1+r )+I 2R 2′ 代入数据得:E=(0.6+210.8R )(R 1+r )+10.8② 当a 、b 间接入电阻R 3′=118Ω时,根据闭合电路欧姆定律得:E =(I 3+332I R R ')(R 1+r )+I 3R 3′ 代入数据得:E =(I 3+32118 I R )(R 1+r )+118I 3③ 由①②③解得:I 3=0.1A 【点睛】本题主要考查了闭合电路欧姆定律的直接应用,解题的关键是搞清楚电路的结构,解题时不需要解出E 、r 及R 1、R 2的具体值,可以用E 的表达式表示R 2和r+R 1,难度适中.2.如图所示的闭合电路中,电源电动势E=12V ,内阻r=1Ω,灯泡A 标有“6V ,3W”,灯泡B 标有“4V ,4W”.当开关S 闭合时A 、B 两灯均正常发光.求:R 1与R 2的阻值分别为多少?【答案】R1与R2的阻值分别为3Ω和2Ω【解析】试题分析:流过及B灯的电流,所以流过A灯的电流,由闭合电路欧姆定律:解得:.考点:闭合电路的欧姆定律【名师点睛】对于直流电路的计算问题,往往先求出局部的电阻,再求出外电路总电阻,根据欧姆定律求出路端电压和总电流,再计算各部分电路的电压和电流.3.两根材料相同的均匀直导线a和b串联在电路上,a长为,b长为。

(1)若沿长度方向的电势随位置的变化规律如图所示,求:①a、b两导线内电场强度大小之比;②a、b两导线横截面积之比。

(2)以下对直导线内部做进一步分析:设导线单位体积内有n个自由电子,电子电荷量为e,自由电子定向移动的平均速率为v。

现将导线中电流I与导线横截面积S的比值定义为电流密度,其大小用j表示。

①请建立微观模型,利用电流的定义推导:;②从宏观角度看,导体两端有电压,导体中就形成电流;从微观角度看,若导体内没有电场,自由电子就不会定向移动。

设导体的电阻率为ρ,导体内场强为E,试猜想j与E的关系并推导出j、ρ、E三者间满足的关系式。

(解题过程中需要用到的物理量要在解题时作必要的说明)【答案】(1)①②(2)①见解析②见解析【解析】(1)①根据,由图像知:,代入可得,同理根据,由已知代入可得:②因为两导线串联,所以电流,由欧姆定律,电阻定律将,长度分别为和代入可得:(2)①在直导线内任选一个横截面S,在时间内以S为底,为高的柱体内的自由电子都将从此截面通过,由电流及电流密度的定义知:,其中代入可得:②(猜想:j与E成正比)设横截面积为S,长为l的导线两端电压为U,则电流密度的定义为,将代入,得导线的电阻联立可得j、ρ、E三者间满足的关系式为:4.在如图所示的电路中,电源的电动势E=6.0V,内电阻r=1.0Ω,外电路的电阻R=11.0Ω.闭合开关S.求:(1)通过电阻R的电流Ⅰ;(2)在内电阻r上损耗的电功率P;(3)电源的总功率P总.【答案】(1)通过电阻R的电流为0.5A;(2)在内电阻r上损耗的电功率P为0.25W;(3)电源的总功率P总为3W.【解析】试题分析:(1)根据闭合电路欧姆定律,通过电阻R的电流为:,(2)r上损耗的电功率为:P=I2r=0.5×0.5×1=0.25W,(3)电源的总功率为:P总=IE=6×0.5=3 W.考点:闭合电路的欧姆定律;电功、电功率.5. 4~1.0T 范围内,磁敏电阻的阻值随磁感应强度线性变化(或均匀变化) (4)磁场反向,磁敏电阻的阻值不变. 【解析】(1)当B =0.6T 时,磁敏电阻阻值约为6×150Ω=900Ω,当B =1.0T 时,磁敏电阻阻值约为11×150Ω=1650Ω.由于滑动变阻器全电阻20Ω比磁敏电阻的阻值小得多,故滑动变阻器选择分压式接法;由于xVA xR R R R >,所以电流表应内接.电路图如图所示.(2)方法一:根据表中数据可以求得磁敏电阻的阻值分别为:130.4515000.3010R -=Ω=Ω⨯,230.911516.70.6010R -=Ω=Ω⨯,331.5015001.0010R -=Ω=Ω⨯,431.791491.71.2010R -=Ω=Ω⨯,532.7115051.8010R -=Ω=Ω⨯, 故电阻的测量值为1234515035R R R R R R ++++=Ω=Ω(1500-1503Ω都算正确.) 由于0150010150R R ==,从图1中可以读出B =0.9T 方法二:作出表中的数据作出U -I 图象,图象的斜率即为电阻(略).(3)在0~0.2T 范围,图线为曲线,故磁敏电阻的阻值随磁感应强度非线性变化(或非均匀变化);在0.4~1.0T 范围内,图线为直线,故磁敏电阻的阻值随磁感应强度线性变化(或均匀变化);(4)从图3中可以看出,当加磁感应强度大小相等、方向相反的磁场时,磁敏电阻的阻值相等,故磁敏电阻的阻值与磁场方向无关.本题以最新的科技成果为背景,考查了电学实验的设计能力和实验数据的处理能力.从新材料、新情景中舍弃无关因素,会看到这是一个考查伏安法测电阻的电路设计问题,及如何根据测得的U 、I 值求电阻.第(3)、(4)问则考查考生思维的灵敏度和创新能力.总之本题是一道以能力立意为主,充分体现新课程标准的三维目标,考查学生的创新能力、获取新知识的能力、建模能力的一道好题.6.如图1所示,水平面内的直角坐标系的第一象限有磁场分布,方向垂直于水平面向下,磁感应强度沿y 轴方向没有变化,与横坐标x 的关系如图2所示,图线是双曲线(坐标轴是渐进线);顶角θ=45°的光滑金属长导轨 MON 固定在水平面内,ON 与x 轴重合,一根与ON 垂直的长导体棒在水平向右的外力作用下沿导轨MON 向右滑动,导体棒在滑动过程中始终保持与导轨良好接触.已知t=0时,导体棒位于顶角O 处;导体棒的质量为m=2kg ;OM 、ON 接触处O 点的接触电阻为R=0.5Ω,其余电阻不计;回路电动势E 与时间t 的关系如图3所示,图线是过原点的直线.求:(1)t=2s 时流过导体棒的电流强度I 2的大小; (2)1~2s 时间内回路中流过的电量q 的大小;(3)导体棒滑动过程中水平外力F (单位:N )与横坐标x (单位:m )的关系式. 【答案】(1)t=2s 时流过导体棒的电流强度I 2的大小为8A ; (2)1~2s 时间内回路中流过的电量q 的大小为6C ;(3)导体棒滑动过程中水平外力F 与横坐标x 的关系式为F=(4+4)N .【解析】试题分析:(1)根据E —t 图像中的图线是过原点的直线特点 有:EI R=得:28I A =(2分) (2)可判断I —t 图像中的图线也是过原点的直线 (1分) 有:t=1s 时14I A =可有:122I I q I t t +=∆=∆(2分) 得:6q C =(1分)(3)因θ=45°,可知任意t 时刻回路中导体棒有效切割长度L=x (2分) 再根据B —x 图像中的图线是双曲线特点:Bx=1 有:()E BLv Bx v ==且2E t =(2分)可得:2v t =,所以导体棒的运动是匀加速直线运动,加速度22/a m s =(2分) 又有:()F BIL BIx Bx I 安===且I 也与时间成正比 (2分) 再有:F F ma -=安(2分)212x at =(2分) 得:44F x =+(2分)考点:本题考查电磁感应、图像、力与运动等知识,意在考查学生读图、试图的能力,利用图像和数学知识解决问题的能力.7.有三盘电灯L1、L2、L3,规格分别是“110V,100W”,“110V,60W”,“110V,25W”要求接到电压是220V的电源上,使每盏灯都能正常发光.可以使用一直适当规格的电阻,请按最优方案设计一个电路,对电阻的要求如何?【答案】电路如图所示,电阻的要求是阻值为806.7Ω,额定电流为A.【解析】将两个电阻较大的电灯“110V 60W”、“110V 25W”与电阻器并联,再与“110V100W”串连接在220V的电源上,电路连接如图所示,当左右两边的总电阻相等时才能各分压110V,使电灯都正常发光.由公式P=UI得L1、L2、L3的额定电流分别为:I1==A=A,I2==A=A,I3=A=A则通过电阻R的电流为 I=I1﹣I2﹣I3=A=AR==Ω=806.7Ω答:电路如图所示,电阻的要求是阻值为806.7Ω,额定电流为A.【点评】本题考查设计电路的能力,关键要理解串联、并联电路的特点,知道用电器在额定电压下才能正常工作,设计好电路后要进行检验,看是否达到题目的要求.8.如图甲所示,电源由n个电动势E="1.5" V、内阻均为r(具体值未知)的电池串联组成,合上开关,在变阻器的滑片C从A端滑到B端的过程中,电路中的一些物理量的变化如图乙中Ⅰ、Ⅱ、Ⅲ所示,电表对电路的影响不计。

(Ⅰ图为输出功率与路端电压关系曲线;Ⅱ图为路端电压与总电流关系图线;Ⅲ图为电源的输出效率与外电阻的关系图线)甲乙(1)求组成电源的电池的个数以及一个电池的内阻;(2)求滑动变阻器的总阻值;(3)写出图Ⅰ、Ⅱ中a、b、c三点的坐标(不要求计算过程).【答案】(1)n=4,r=0.5Ω;(2)R m=8Ω;(3)a点坐标为(0.6 A,4.8 V);b点的坐标为(3 V,4.5 W);c 点的坐标为(4.8 V,2.88 W)。

【解析】试题分析:(1)设串联的电池个数为n,则电源的电动势为n1.5V,内阻为nr;由图Ⅰ可知,当变阻器的电阻与电池的内阻相等时,变阻器的电功率P=4.5W,即=4.5W;由图Ⅱ可知,当变阻器的电阻为0时,电路中的电流为3A,故3A=,故r=0.5Ω;联立得n=4,一个电池的内阻为r=0.5Ω。

相关文档
最新文档