自动化专业英语翻译 PartⅤ-Ⅵ 部分 第二版 王军 重庆大学出版社
自动化专业英语中英文对照
自动化专业英语中英文对照retarding torque 制动转矩inductive component 感性(无功)分量abscissa axis 横坐标induction generator 感应发电机synchronous generator 同步发电机automatic station 无人值守电站hydropower station 水电站process of self – excitation 自励过程auxiliary motor 辅助电动机technical specifications 技术条件voltage across the terminals 端电压steady – state condition 瞬态暂态reactive in respect to 相对….呈感性active in respect to 相对….呈阻性synchronous condenser 同步进相(调相)机coincide in phase with 与….同相synchronous reactance 同步电抗algebraic 代数的algorithmic 算法的biphase 双相的bilateral circuit 双向电路bimotored 双马达的corridor 通路shunt displacement current 旁路位移电流leakage 泄漏lightning shielding 避雷harmonic 谐波的insulator string 绝缘子串neutral 中性的zero sequence current 零序电流sinusoidal 正弦的square 平方corona 电晕,放电bypass 旁路voltmeter 电压表ammeter 电流表micrometer 千分尺thermometer 温度计watt-hour meter 电度表wattmeter 电力表private line 专用线路diameter 直径restriking 电弧再触发magnitude 振幅oscillation 振荡auxiliary 辅助的protective gap 保护性间隙放电receptacle 插座lightning arrester 避雷装置bushing 套管trigger 起动装置stress 应力deterioration 损坏,磨损spark gap 火花放电隙traveling-wave 行波wye-connected 星形连接enclosure 设备外壳live conductor 带电导体fuse 熔断器structural 结构上的out-of-step 不同步的resynchronize 再同步synchroscops 同步指示器automatic oscillograph 自动示波器nominally 标称sampling 采样potential transformer 电压互感器fraction 分数switchyard 户外配电装置hazard 危险bushing 高压套contact 触点energize 励磁trip coil 跳闸线圈over-current relay 过电流继电器armature 衔铁pickup current 始动电流release current 释放电流solenoid relay 螺管式继电器induction-disc relay 感应圆盘式继电器inverse time relay 反时限继电器hydraulic 液力的dashpot 阻尼器pneumatic 气动的permanent magnet 永磁体electrical stressing 电气应力deviation 偏差third harmonic voltage 三次谐波电压induction machine 感应式电机horseshoe magnet 马蹄形磁铁magnetic field 磁场eddy current 涡流right-hand rule 右手定则left-hand rule 左手定则slip 转差率induction motor 感应电动机rotating magnetic field 旋转磁场winding 绕组stator 定子rotor 转子induced current 感生电流time-phase 时间相位exciting voltage 励磁电压solt 槽lamination 叠片laminated core 叠片铁芯short-circuiting ring 短路环squirrel cage 鼠笼rotor core 转子铁芯cast-aluminum rotor 铸铝转子bronze 青铜horsepower 马力random-wound 散绕insulation 绝缘ac motor 交流环电动机end ring 端环alloy 合金coil winding 线圈绕组form-wound 模绕performance characteristic 工作特性frequency 频率revolutions per minute 转/分motoring 电动机驱动generating 发电per-unit value 标么值breakdown torque 极限转矩breakaway force 起步阻力overhauling 检修wind-driven generator 风动发电机revolutions per second 转/秒speed-torque curve 转速力矩特性曲线plugging 反向制动synchronous speed 同步转速percentage 百分数locked-rotor torque 锁定转子转矩full-load torque 满载转矩prime mover 原动机inrush current 涌流magnetizing reacance 磁化电抗line-to-neutral 线与中性点间的staor winding 定子绕组leakage reactance 漏磁电抗no-load 空载full load 满载Polyphase 多相(的)iron-loss 铁损complex impedance 复数阻抗rotor resistance 转子电阻leakage flux 漏磁通locked-rotor 锁定转子chopper circuit 斩波电路separately excited 他励的compounded 复励dc motor 直流电动机de machine 直流电机speed regulation 速度调节shunt 并励series 串励armature circuit 电枢电路optical fiber 光纤interoffice 局间的waveguide 波导波导管bandwidth 带宽light emitting diode 发光二极管silica 硅石二氧化硅regeneration 再生, 后反馈放大coaxial 共轴的,同轴的high-performance 高性能的carrier 载波mature 成熟的Single Side Band(SSB) 单边带coupling capacitor 结合电容propagate 传导传播modulator 调制器demodulator 解调器Amplitude Modulation(AM 调幅Frequency Shift Keying(FSK) 移频键控tuner 调谐器attenuate 衰减incident 入射的two-way configuration 二线制generator voltage 发电机电压dc generator 直流发电机polyphase rectifier 多相整流器boost 增压time constant 时间常数forward transfer function 正向传递函数error signal 误差信号regulator 调节器stabilizing transformer 稳定变压器time delay 延时direct axis transient time constant 直轴瞬变时间常数transient response 瞬态响应solid state 固体buck 补偿operational calculus 算符演算gain 增益pole 极点feedback signal 反馈信号dynamic response 动态响应voltage control system 电压控制系统mismatch 失配error detector 误差检测器excitation system 励磁系统field current 励磁电流transistor 晶体管high-gain 高增益boost-buck 升压去磁feedback system 反馈系统reactive power 无功功率feedback loop 反馈回路automatic Voltage regulator(AVR)自动电压调整器reference Voltage 基准电压magnetic amplifier 磁放大器amplidyne 微场扩流发电机self-exciting 自励的limiter 限幅器manual control 手动控制potential transformer 电压互感器stabilization network 稳定网络stabilizer 稳定器air-gap flux 气隙磁通saturation effect 饱和效应saturation curve 饱和曲线flux linkage 磁链per unit value 标么值shunt field 并励磁场magnetic circuit 磁路load-saturation curve 负载饱和曲线air-gap line 气隙磁化线polyphase rectifier 多相整流器circuit components 电路元件circuit parameters 电路参数electrical device 电气设备electric energy 电能primary cell 原生电池energy converter 电能转换器conductor 导体heating appliance 电热器direct-current 直流time invariant 时不变的self-inductor 自感mutual-inductor 互感the dielectric 电介质storage battery 蓄电池e.m.f = electromotive fore 电动势unidirectional current 单方向性电流circuit diagram 电路图load characteristic 负载特性terminal voltage 端电压external characteristic 外特性conductance 电导volt-ampere characteristics 伏安特性carbon-filament lamp 碳丝灯泡ideal source 理想电源internal resistance 内阻active (passive) circuit elements 有(无)源电路元件leakage current 漏电流circuit branch 支路P.D. = potential drop 电压降potential distribution 电位分布r.m.s values = root mean square values 均方根值steady direct current 恒稳直流电sinusoidal time function 正弦时间函数complex number 复数Cartesian coordinates 笛卡儿坐标系modulus 模real part 实部imaginary part 虚部displacement current 位移电流trigonometric transformations 瞬时值epoch angle 初相角phase displacement 相位差signal amplifier 小信号放大器mid-frequency band 中频带bipolar junction transistor (BJT) 双极性晶体管field effect transistor (FET) 场效应管electrode 电极电焊条polarity 极性gain 增益isolation 隔离分离绝缘隔振emitter 发射管放射器发射极collector 集电极base 基极self-bias resistor 自偏置电阻triangular symbol 三角符号phase reversal 反相infinite voltage gain 无穷大电压增益feedback component 反馈元件differentiation 微分integration 积分下限impedance 阻抗fidelity 保真度summing circuit 总和线路反馈系统中的比较环节Oscillation 振荡inverse 倒数admittance 导纳transformer 变压器turns ratio 变比匝比ampere-turns 安匝(数)mutual flux 交互(主)磁通vector equation 向(相)量方程power frequency 工频capacitance effect 电容效应induction machine 感应电机shunt excited 并励separately excited 他励self excited 自励field winding 磁场绕组励磁绕组speed-torque characteristic 速度转矩特性dynamic-state operation 动态运行salient poles 凸极excited by 励磁field coils 励磁线圈air-gap flux distribution 气隙磁通分布direct axis 直轴armature coil 电枢线圈rotating commutator 旋转(整流子)换向器commutator-brush combination 换向器-电刷总线mechanical rectifier 机械式整流器armature m.m.f. wave 电枢磁势波Geometrical position 几何位置magnetic torque 电磁转矩spatial waveform 空间波形sinusoidal – density wave 正弦磁密度external armature circuit 电枢外电路instantaneous electric power 瞬时电功率instantaneous mechanical power 瞬时机械功率effects of saturation 饱和效应reluctance 磁阻power amplifier 功率放大器compound generator 复励发电机rheostat 变阻器self – excitation process 自励过程commutation condition 换向状况cumulatively compounded motor 积复励电动机operating condition 运行状态equivalent T – circuit T型等值电路rotor (stator) winding 转子(定子绕组)winding loss 绕组(铜)损耗prime motor 原动机active component 有功分量reactive component 无功分量electromagnetic torque 电磁转矩。
自动化专业英语原文和翻译
自动化专业英语原文和翻译英文原文:Automation in the field of engineering has brought about significant advancements and revolutionized various industries. With the help of cutting-edge technology and innovative solutions, automation has become an integral part of many processes, increasing efficiency and productivity.In the field of automation engineering, professionals are responsible for designing, developing, and implementing automated systems and machinery. These systems are designed to perform tasks with minimal human intervention, reducing the risk of errors and improving overall performance.Automation engineering involves the use of various tools and technologies such as programmable logic controllers (PLCs), robotics, and computer-aided design (CAD) software. These tools enable engineers to design and control complex systems, ensuring smooth operations and optimal performance.One of the key benefits of automation in engineering is the ability to streamline processes and reduce manual labor. By automating repetitive tasks, engineers can focus on more complex and critical aspects of their work, leading to increased productivity and higher quality output.Moreover, automation plays a crucial role in enhancing safety in various industries. By replacing human workers with automated systems, the risk of accidents and injuries can be significantly reduced. Automated systems are designed to follow strict safety protocols and can perform tasks in hazardous environments that may be dangerous for humans.In addition to improving efficiency and safety, automation also offers cost-saving benefits. Although the initial investment in automation technology may be high, the long-term savings in labor costs and increased productivity outweigh the initial expenses.Automation can also lead to reduced material wastage and improved resource management.Automation engineering professionals play a vital role in the design and implementation of automated systems. They are responsible for conducting thorough analysis, developing system requirements, and ensuring seamless integration of automation technology into existing processes. They also provide technical support and troubleshooting expertise to address any issues that may arise.In conclusion, automation in the field of engineering has revolutionized various industries by increasing efficiency, productivity, and safety. Automation engineering professionals play a crucial role in designing and implementing automated systems, utilizing cutting-edge technology and innovative solutions. With the continuous advancements in automation technology, the future of engineering looks promising, with even greater possibilities for improved performance and streamlined processes.中文翻译:自动化在工程领域带来了重大的进步,并对各行各业进行了革命性的改变。
自动化专业英语全文翻译
《自动化专业英语教程》-王宏文主编-全文翻译PART 1Electrical and Electronic Engineering BasicsUNIT 1A Electrical Networks ————————————3B Three-phase CircuitsUNIT 2A The Operational Amplifier ———————————5B TransistorsUNIT 3A Logical Variables and Flip-flop ——————————8B Binary Number SystemUNIT 4A Power Semiconductor Devices ——————————11B Power Electronic ConvertersUNIT 5A Types of DC Motors —————————————15B Closed-loop Control of DC DriversUNIT 6A AC Machines ———————————————19B Induction Motor DriveUNIT 7A Electric Power System ————————————22B Power System AutomationPART 2Control TheoryUNIT 1A The World of Control ————————————27B The Transfer Function and the Laplace Transformation —————29 UNIT 2A Stability and the Time Response —————————30B Steady State—————————————————31 UNIT 3A The Root Locus —————————————32B The Frequency Response Methods: Nyquist Diagrams —————33 UNIT 4A The Frequency Response Methods: Bode Piots —————34B Nonlinear Control System 37UNIT 5 A Introduction to Modern Control Theory 38B State Equations 40UNIT 6 A Controllability, Observability, and StabilityB Optimum Control SystemsUNIT 7 A Conventional and Intelligent ControlB Artificial Neural NetworkPART 3 Computer Control TechnologyUNIT 1 A Computer Structure and Function 42B Fundamentals of Computer and Networks 43UNIT 2 A Interfaces to External Signals and Devices 44B The Applications of Computers 46UNIT 3 A PLC OverviewB PACs for Industrial Control, the Future of ControlUNIT 4 A Fundamentals of Single-chip Microcomputer 49B Understanding DSP and Its UsesUNIT 5 A A First Look at Embedded SystemsB Embedded Systems DesignPART 4 Process ControlUNIT 1 A A Process Control System 50B Fundamentals of Process Control 52UNIT 2 A Sensors and Transmitters 53B Final Control Elements and ControllersUNIT 3 A P Controllers and PI ControllersB PID Controllers and Other ControllersUNIT 4 A Indicating InstrumentsB Control PanelsPART 5 Control Based on Network and InformationUNIT 1 A Automation Networking Application AreasB Evolution of Control System ArchitectureUNIT 2 A Fundamental Issues in Networked Control SystemsB Stability of NCSs with Network-induced DelayUNIT 3 A Fundamentals of the Database SystemB Virtual Manufacturing—A Growing Trend in AutomationUNIT 4 A Concepts of Computer Integrated ManufacturingB Enterprise Resources Planning and BeyondPART 6 Synthetic Applications of Automatic TechnologyUNIT 1 A Recent Advances and Future Trends in Electrical Machine DriversB System Evolution in Intelligent BuildingsUNIT 2 A Industrial RobotB A General Introduction to Pattern RecognitionUNIT 3 A Renewable EnergyB Electric VehiclesUNIT 1A 电路电路或电网络由以某种方式连接的电阻器、电感器和电容器等元件组成。
自动化专业英语》_作者:王军,孙舒_重庆大学出版社_教材部分课文翻译P186
过程控制的定义术语“自动过程控制”被广泛使用,当人们学会了适应自管理程序以便有效处理产品的制造和原料加工。
这样的程序被称为自动因为没有人(手动)干预是他们管理所必须的。
所有过程控制系统由三个主要因素或条件构成:操纵变量,干扰,和控制变量如图5.1所示。
控制变量的那些条件,入温度,液位,压力,流量,和位置,它必须保持在期望值或设置点。
在过程控制里,操纵变量一边是流动量,这种流动量通常是阀门。
干扰进入或影响过程趋势于控制变量远离它们的期望值或设定点条件。
控制系统必须调整操纵变量到控制变量的设置点值尽管受干扰也能保持。
设置点可能会改变。
然而,操纵量需要改变调整控制变量以得到新的期望值。
一个过程控制系统的元素图5.2所示一个控制系统的基本特点。
在系统中显示,一个液位变送器,一个液位控制器,和一个控制阀是用于一个储罐液体液位控制过程。
该控制系统的目的是保持储罐底部到规定的液面高度。
它假定了流入储罐的流量是随机的。
液位变送器是一个测量储罐内的液面高度转换成有用的测量信号发送到液位控制器的装置。
液位控制器评估测量,比较它与预设点,过程管理的一系列校正动作发送到控制阀。
阀门控制排水管的流量保持储罐中的液位。
因此,过程控制由四个元素构成:工艺,测量,评估,和控制器。
图5.3显示这些元素的一个方块图。
图已经显示了过程中的扰动输入或影响。
没有扰乱一个工艺,也就不需要控制系统。
工艺控制一般来说,一个工艺由设备的装配和材料组成涉及到生产操作或序列。
如图5.2中的例子,在液面液位过程控制下的所涉及的部件,如一个储罐,储罐中的液体,液体的流入和流出储罐,和进口和出口管道。
一个给定过程可以有许多动态变量,它可能需要控制这些所有变量。
然而,在大多数情况下,只有一个变量控制在控制过程的可接受范围里。
偶尔会遇到一个许多变量的多变量工艺,一些相关的管理需要。
测量在过程中为了控制一个动态变量,必须有实体本身的信息。
这些信息是从测量变量获得。
自动化专业英语原文和翻译
自动化专业英语原文和翻译引言概述:自动化专业是现代工程技术领域中的重要学科,涵盖了自动控制系统、机器人技术、工业自动化等多个方面。
在学习和实践中,掌握和理解自动化专业的英文术语和翻译是非常重要的。
本文将从五个大点出发,详细阐述自动化专业英语原文和翻译的相关内容。
正文内容:1. 自动控制系统(Automatic Control System)1.1 控制器(Controller)1.2 传感器(Sensor)1.3 执行器(Actuator)1.4 反馈(Feedback)1.5 稳定性(Stability)2. 机器人技术(Robotics)2.1 机器人(Robot)2.2 机械臂(Manipulator)2.3 传感器(Sensor)2.4 视觉系统(Vision System)2.5 自主导航(Autonomous Navigation)3. 工业自动化(Industrial Automation)3.1 自动化生产线(Automated Production Line)3.2 人机界面(Human-Machine Interface)3.3 传感器网络(Sensor Network)3.4 电气控制(Electrical Control)3.5 数据采集(Data Acquisition)4. 自动化软件(Automation Software)4.1 PLC编程(PLC Programming)4.2 HMI设计(HMI Design)4.3 数据分析(Data Analysis)4.4 模拟仿真(Simulation)4.5 系统集成(System Integration)5. 自动化工程(Automation Engineering)5.1 项目管理(Project Management)5.2 自动化设计(Automation Design)5.3 系统调试(System Debugging)5.4 故障诊断(Fault Diagnosis)5.5 性能优化(Performance Optimization)总结:综上所述,自动化专业英语原文和翻译是自动化工程师必备的技能之一。
自动化专业英语原文和翻译
自动化专业英语原文和翻译Automation in the Field of EngineeringIntroduction:Automation plays a crucial role in various industries, including engineering. It involves the use of technology and machines to perform tasks with minimal human intervention. In this article, we will explore the concept of automation in the field of engineering and discuss its significance. Additionally, we will provide an English original text and its translation related to automation in the engineering domain.1. Importance of Automation in Engineering:Automation has revolutionized the engineering sector by enhancing productivity, efficiency, and safety. It eliminates repetitive and mundane tasks, allowing engineers to focus on more complex and critical activities. Automation technology, such as robotics and computer numerical control (CNC) systems, has significantly improved precision and accuracy in manufacturing processes. It also reduces the risk of human errors and enhances overall product quality.2. Applications of Automation in Engineering:Automation finds applications in various engineering disciplines. Some notable examples include:2.1 Industrial Automation:In the manufacturing industry, automation is extensively used to streamline production processes. Automated assembly lines and robotic systems enable faster and more efficient manufacturing. These systems can perform tasks such as material handling, welding, painting, and quality control with high precision and consistency.2.2 Control Systems:Automation is essential in control systems, allowing for the efficient regulation and control of various engineering processes. Programmable Logic Controllers (PLCs) are commonly used to automate industrial processes, ensuring optimal performance and safety. These systems monitor and control parameters such as temperature, pressure, flow rate, and level, thereby maintaining process stability.2.3 Building Automation:In the field of civil engineering, building automation systems are employed to manage and control various building functions. These systems integrate lighting, HVAC (Heating, Ventilation, and Air Conditioning), security, and energy management. By automating these functions, buildings can achieve energy efficiency, occupant comfort, and improved security.2.4 Transportation Automation:Automation has also made significant advancements in the transportation sector. Automated systems, such as traffic control systems and intelligent transportation systems, optimize traffic flow, reduce congestion, and enhance safety. Additionally, automation in vehicles, such as self-driving cars and autonomous drones, holds the potential to revolutionize transportation in the future.3. Challenges and Considerations in Automation:While automation offers numerous benefits, there are challenges that need to be addressed:3.1 Workforce Adaptation:With the increasing adoption of automation, there is a need for the workforce to adapt to new roles and acquire new skills. As certain tasks become automated, engineers must focus on managing and maintaining automated systems, as well as developing new technologies.3.2 Safety and Security:Automation systems must adhere to strict safety standards to prevent accidents and ensure the well-being of workers. Additionally, cybersecurity measures should be implemented to protect automated systems from potential threats and unauthorized access.3.3 Cost and Implementation:The initial cost of implementing automation systems can be significant. However, the long-term benefits, such as increased productivity and reduced operational costs, often outweigh the initial investment. Careful planning and analysis are necessary to ensure a successful and cost-effective implementation.4. English Original Text and Translation:English Original Text:"Automation has revolutionized the engineering industry, enabling faster and more efficient processes. By utilizing advanced technologies and machines, engineers can now focus on complex tasks that require critical thinking and problem-solving skills. Automation not only improves productivity but also enhances product quality and reduces human errors. With the continuous advancements in automation, the engineering field is poised for further growth and innovation."Translation (Chinese):“自动化已经彻底改变了工程行业,实现了更快速、更高效的工艺流程。
自动化英语翻译___重庆大学-王军资料
Transistor [træn´zistə]:[电子]晶体管Bipolar [bai´pəulə]:有两极的, 双极的Polarity [pəu´læriti]:极性Negative [´negətiv]:负的, 阴性的semiconductor[´semikən´dΛktə]:半导体crystal[´kristl]:结晶,晶体,晶粒symbol [´simbəl]:符号, 记号, 象征emitter [i´mitə]:发射极collector[kə´lectə]:集电极formu la [´fƆ:mjulə]:公式, 规则, 客套语reverse[ri´və:s]:相反的, 倒转的, 颠倒的biased[`baiəst ]:结果偏倚的, [数]有偏的Each type of transistor has different characteristics and operational conditions that are used to distinguish it from others.每种晶体管都有区别于其它种类的特征和工作环境。
In the first part of this discussion, we are concerned with the bipolar junction transistor. Structurally, this transistor is described as bipolar because it has two different current-carrier polarities.首先探讨双极型晶体管。
从结构上看,这种晶体管被称为双极是因为它具有两种不同的电流载流子电极。
Holes are positive current carriers, whereas electrons are negative current carriers.空穴是正的载流子,电子是负的电流载流子。
自动化专业英语原文和翻译
自动化专业英语原文和翻译Automatic Control EngineeringIntroduction:Automatic Control Engineering is a branch of engineering that deals with the design, analysis, and implementation of control systems. It combines principles from various fields such as mathematics, physics, and computer science to develop systems that can automatically regulate and control processes.1. Importance of Automatic Control Engineering:Automatic control systems play a crucial role in various industries and applications. They are used in manufacturing processes, robotics, aerospace, automotive, energy systems, and many other fields. The main objective of automatic control engineering is to ensure that systems operate efficiently, reliably, and safely.2. Basic Concepts in Automatic Control Engineering:2.1 Feedback Control:Feedback control is a fundamental concept in automatic control engineering. It involves continuously monitoring the output of a system and comparing it to a desired reference value. Any difference, known as an error, is used to adjust the system's input and bring the output closer to the desired value. This closed-loop control system helps maintain stability and accuracy in various applications.2.2 Control Systems:Control systems are designed to manage and regulate the behavior of dynamic systems. They consist of three main components: a sensor or measurement device, a controller, and an actuator. The sensor measures the system's output, which is then compared to the desired reference value. The controller processes this information and generates a control signal that is sent to the actuator, which adjusts the system's input.2.3 Types of Control Systems:There are different types of control systems used in automatic control engineering:2.3.1 Open-loop Control Systems:Open-loop control systems do not have feedback. The control action is predetermined and does not depend on the system's output. These systems are simple and used in applications where accuracy is not critical.2.3.2 Closed-loop Control Systems:Closed-loop control systems, also known as feedback control systems, continuously monitor the system's output and adjust the input accordingly. They are more complex but provide better accuracy and stability compared to open-loop systems.2.3.3 Digital Control Systems:Digital control systems use digital computers or microprocessors to implement control algorithms. They offer flexibility, ease of implementation, and advanced control techniques compared to analog control systems.2.3.4 Adaptive Control Systems:Adaptive control systems have the ability to adjust their parameters based on changes in the system or its environment. They are used in applications where the system's dynamics may vary over time.3. Applications of Automatic Control Engineering:3.1 Industrial Automation:Automatic control engineering plays a vital role in industrial automation. It is used to control and optimize manufacturing processes, ensuring consistent quality, high productivity, and reduced costs. Examples include control systems for chemical plants, power generation, and assembly lines.3.2 Robotics:Robotic systems heavily rely on automatic control engineering. Control algorithms are used to coordinate the movement and actions of robots in various applications, such as manufacturing, healthcare, and exploration.3.3 Aerospace and Automotive:Automatic control systems are crucial in aerospace and automotive industries. They are used in flight control systems, autopilots, engine control, and vehicle stability control systems. These systems ensure safe and efficient operation of aircraft and vehicles.3.4 Energy Systems:Automatic control engineering is essential in energy systems, including power generation and distribution. Control systems are used to regulate power plants, grid stability, and renewable energy sources.4. Challenges and Future Trends:4.1 Cybersecurity:As control systems become more interconnected and reliant on digital technologies, ensuring cybersecurity is a significant challenge. Protecting control systems from cyber threats and unauthorized access is crucial to maintain the integrity and safety of critical infrastructure.4.2 Intelligent Control:The integration of artificial intelligence and machine learning techniques into control systems is a growing trend. Intelligent control systems can adapt, learn, and optimize their performance based on data and real-time conditions.4.3 Networked Control Systems:Networked control systems enable the integration and coordination of multiple control systems over a network. This allows for distributed control, improved scalability, and remote monitoring and operation.4.4 Sustainable Control Systems:With the increasing focus on sustainability, automatic control engineering is also evolving to develop control systems that optimize energy consumption, reduce waste, and minimize environmental impact.Conclusion:Automatic Control Engineering plays a vital role in various industries and applications. It ensures the efficient, reliable, and safe operation of systems through the design, analysis, and implementation of control systems. As technology advances, the field continues to evolve, incorporating intelligent control, networked systems, and sustainability to meet the challenges of the future.。
自动化专业英语教程第二版全文翻译
《自动化专业英语教程》-王宏文-全文翻译PART 1Electrical and Electronic Engineering BasicsUNIT 1A Electrical Networks ————————————3B Three-phase CircuitsUNIT 2A The Operational Amplifier ———————————5B TransistorsUNIT 3A Logical Variables and Flip-flop ——————————8B Binary Number SystemUNIT 4A Power Semiconductor Devices ——————————11B Power Electronic ConvertersUNIT 5A Types of DC Motors —————————————15B Closed-loop Control of DC DriversUNIT 6A AC Machines ———————————————19B Induction Motor DriveUNIT 7A Electric Power System ————————————22B Power System AutomationPART 2Control TheoryUNIT 1A The World of Control ————————————27B The Transfer Function and the Laplace Transformation —————29 UNIT 2A Stability and the Time Response —————————30B Steady State—————————————————31 UNIT 3A The Root Locus —————————————32B The Frequency Response Methods: Nyquist Diagrams —————33 UNIT 4A The Frequency Response Methods: Bode Piots —————34B Nonlinear Control System 37UNIT 5 A Introduction to Modern Control Theory 38B State Equations 40UNIT 6 A Controllability, Observability, and StabilityB Optimum Control SystemsUNIT 7 A Conventional and Intelligent ControlB Artificial Neural NetworkPART 3 Computer Control TechnologyUNIT 1 A Computer Structure and Function 42B Fundamentals of Computer and Networks 43UNIT 2 A Interfaces to External Signals and Devices 44B The Applications of Computers 46UNIT 3 A PLC OverviewB PACs for Industrial Control, the Future of ControlUNIT 4 A Fundamentals of Single-chip Microcomputer 49B Understanding DSP and Its UsesUNIT 5 A A First Look at Embedded SystemsB Embedded Systems DesignPART 4 Process ControlUNIT 1 A A Process Control System 50B Fundamentals of Process Control 52UNIT 2 A Sensors and Transmitters 53B Final Control Elements and ControllersUNIT 3 A P Controllers and PI ControllersB PID Controllers and Other ControllersUNIT 4 A Indicating InstrumentsB Control PanelsPART 5 Control Based on Network and InformationUNIT 1 A Automation Networking Application AreasB Evolution of Control System ArchitectureUNIT 2 A Fundamental Issues in Networked Control SystemsB Stability of NCSs with Network-induced DelayUNIT 3 A Fundamentals of the Database SystemB Virtual Manufacturing—A Growing Trend in AutomationUNIT 4 A Concepts of Computer Integrated ManufacturingB Enterprise Resources Planning and BeyondPART 6 Synthetic Applications of Automatic TechnologyUNIT 1 A Recent Advances and Future Trends in Electrical Machine DriversB System Evolution in Intelligent BuildingsUNIT 2 A Industrial RobotB A General Introduction to Pattern RecognitionUNIT 3 A Renewable EnergyB Electric VehiclesUNIT 1A 电路电路或电网络由以某种方式连接的电阻器、电感器和电容器等元件组成。
自动化专业英语教程(王宏文)第二版全文翻译
《自动化专业英语教程》-王宏文-全文翻译PART 1Electrical and Electronic Engineering BasicsUNIT 1A Electrical Networks ————————————3B Three-phase CircuitsUNIT 2A The Operational Amplifier ———————————5B TransistorsUNIT 3A Logical Variables and Flip-flop ——————————8B Binary Number SystemUNIT 4A Power Semiconductor Devices ——————————11B Power Electronic ConvertersUNIT 5A Types of DC Motors —————————————15B Closed-loop Control of DC DriversUNIT 6A AC Machines ———————————————19B Induction Motor DriveUNIT 7A Electric Power System ————————————22B Power System AutomationPART 2Control TheoryUNIT 1A The World of Control ————————————27B The Transfer Function and the Laplace Transformation —————29 UNIT 2A Stability and the Time Response —————————30B Steady State—————————————————31 UNIT 3A The Root Locus —————————————32B The Frequency Response Methods: Nyquist Diagrams —————33 UNIT 4A The Frequency Response Methods: Bode Piots —————34B Nonlinear Control System 37UNIT 5 A Introduction to Modern Control Theory 38B State Equations 40UNIT 6 A Controllability, Observability, and StabilityB Optimum Control SystemsUNIT 7 A Conventional and Intelligent ControlB Artificial Neural NetworkPART 3 Computer Control TechnologyUNIT 1 A Computer Structure and Function 42B Fundamentals of Computer and Networks 43UNIT 2 A Interfaces to External Signals and Devices 44B The Applications of Computers 46UNIT 3 A PLC OverviewB PACs for Industrial Control, the Future of ControlUNIT 4 A Fundamentals of Single-chip Microcomputer 49B Understanding DSP and Its UsesUNIT 5 A A First Look at Embedded SystemsB Embedded Systems DesignPART 4 Process ControlUNIT 1 A A Process Control System 50B Fundamentals of Process Control 52UNIT 2 A Sensors and Transmitters 53B Final Control Elements and ControllersUNIT 3 A P Controllers and PI ControllersB PID Controllers and Other ControllersUNIT 4 A Indicating InstrumentsB Control PanelsPART 5 Control Based on Network and InformationUNIT 1 A Automation Networking Application AreasB Evolution of Control System ArchitectureUNIT 2 A Fundamental Issues in Networked Control SystemsB Stability of NCSs with Network-induced DelayUNIT 3 A Fundamentals of the Database SystemB Virtual Manufacturing—A Growing Trend in AutomationUNIT 4 A Concepts of Computer Integrated ManufacturingB Enterprise Resources Planning and BeyondPART 6 Synthetic Applications of Automatic TechnologyUNIT 1 A Recent Advances and Future Trends in Electrical Machine DriversB System Evolution in Intelligent BuildingsUNIT 2 A Industrial RobotB A General Introduction to Pattern RecognitionUNIT 3 A Renewable EnergyB Electric VehiclesUNIT 1A 电路电路或电网络由以某种方式连接的电阻器、电感器和电容器等元件组成。
自动化专业英语原文和翻译
自动化专业英语原文和翻译Automation in the Field of EngineeringIntroduction:Automation plays a crucial role in the field of engineering, revolutionizing the way tasks are performed and increasing efficiency. This article aims to discuss the significance of automation in engineering, its benefits, and its impact on various industries. Furthermore, it provides an English original text and its translation in Chinese related to automation in the engineering profession.Benefits of Automation in Engineering:1. Increased Efficiency: Automation reduces the need for manual labor, thereby enhancing productivity and efficiency. Tasks that previously required significant time and effort can now be completed quickly and accurately through automated processes.2. Improved Safety: Automation eliminates the need for human intervention in hazardous environments, reducing the risk of accidents and injuries. Robots and machines can perform tasks that are dangerous for humans, ensuring a safer working environment.3. Cost Reduction: By automating repetitive tasks, companies can minimize labor costs and allocate resources more effectively. Automation also reduces the chances of errors, resulting in cost savings associated with rework or product recalls.4. Enhanced Accuracy and Precision: Automation ensures consistent and precise results, eliminating human errors that may occur due to fatigue or lack of concentration. This is particularly crucial in industries where precision is vital, such as manufacturing and quality control.5. Increased Productivity: Automation allows engineers to focus on complex tasks that require human expertise, while routine and repetitive tasks are handled by machines.This leads to increased productivity and enables engineers to utilize their skills and knowledge more effectively.Impact of Automation in Various Industries:1. Manufacturing Industry: Automation has revolutionized the manufacturing sector by streamlining production processes and improving efficiency. Robots and automated assembly lines have significantly increased production rates and reduced costs.2. Automotive Industry: Automation has transformed the automotive industry, enabling the production of high-quality vehicles with minimal errors. Automated systems are used in various stages, including assembly, painting, and quality control.3. Aerospace Industry: Automation plays a crucial role in the aerospace industry, where precision and safety are paramount. Automated systems are used in aircraft manufacturing, maintenance, and even space exploration.4. Healthcare Industry: Automation has improved patient care and medical procedures in the healthcare industry. Automated devices are used for diagnostics, surgery, and monitoring, leading to more accurate and efficient treatments.5. Energy Sector: Automation has revolutionized the energy sector, particularly in power generation and distribution. Automated systems are used in power plants, renewable energy facilities, and smart grids, ensuring efficient energy management.English Original Text:Automation has become an integral part of the engineering profession, transforming various industries and revolutionizing the way tasks are performed. The benefits of automation in engineering are manifold. Firstly, it significantly increases efficiency by reducing the need for manual labor. Tasks that were once time-consuming and labor-intensive can now be completed quickly and accurately through automated processes. Secondly, automation improves safety by eliminating the need for human intervention in hazardous environments. Robots and machines can perform tasks that are dangerous for humans, ensuring a safer working environment. Additionally, automation leads to costreduction by minimizing labor costs and reducing the chances of errors, which can be costly to rectify. Moreover, automation enhances accuracy and precision, eliminating human errors that may occur due to fatigue or lack of concentration. This is particularly crucial in industries where precision is vital, such as manufacturing and quality control. Lastly, automation increases productivity by allowing engineers to focus on complex tasks that require human expertise, while routine and repetitive tasks are handled by machines.Translation in Chinese:自动化已成为工程专业的重要组成部分,改变了各行各业的工作方式,实现了任务的革命性变革。
自动化专业英语原文和翻译
自动化专业英语原文和翻译Automation in the Field of EngineeringIntroduction:Automation plays a crucial role in various industries, including engineering. It involves the use of technology and machinery to perform tasks with minimal human intervention. In this document, we will discuss the importance of automation in the field of engineering and its impact on various aspects of the industry. Additionally, we will provide an original English text followed by its translation in Chinese, focusing on the terminology used in the field of automation.Importance of Automation in Engineering:Automation has revolutionized the engineering industry by improving efficiency, accuracy, and productivity. It allows engineers to streamline processes and reduce the risk of errors. With the help of automation, engineers can focus on more complex tasks that require critical thinking and problem-solving skills.Automation in Manufacturing:In the manufacturing sector, automation has significantly transformed the production process. Machines and robots are used to perform repetitive tasks with precision and speed. This not only reduces human error but also increases the overall production capacity. Automation in manufacturing has led to improved quality control, reduced costs, and faster time-to-market for products.Automation in Design and Analysis:Automation has also made a significant impact on the design and analysis phase of engineering projects. Computer-aided design (CAD) software allows engineers to create and modify designs with ease. It enables them to visualize and simulate the performance of their designs, leading to better decision-making. Furthermore, automation in analysis,such as finite element analysis (FEA), helps engineers predict the behavior of structures and systems under different conditions, ensuring safety and reliability.Automation in Construction:The construction industry has also embraced automation to enhance efficiency and safety. Robotic systems are used for tasks such as bricklaying, concrete pouring, and welding. These systems can work continuously without fatigue and perform tasks with precision, reducing the risk of accidents. Additionally, automation in construction allows for better project management, improved resource utilization, and faster completion times.Automation in Maintenance and Monitoring:Automation has revolutionized the field of maintenance and monitoring in engineering. Sensors and monitoring systems are used to collect real-time data on the performance of machines and structures. This data is then analyzed using automation techniques to detect anomalies and predict failures. By implementing proactive maintenance strategies based on automation, engineers can prevent costly breakdowns, minimize downtime, and optimize the lifespan of assets.Automation Terminology - English and Chinese Translation:Original English Text:1. Programmable Logic Controller (PLC): A digital computer used for automation of electromechanical processes.2. Human-Machine Interface (HMI): A graphical user interface that allows operators to interact with automation systems.3. Supervisory Control and Data Acquisition (SCADA): A system used for remote monitoring and control of industrial processes.4. Distributed Control System (DCS): A control system used to manage and control complex processes in various industries.5. Internet of Things (IoT): The network of physical devices, vehicles, and other objects embedded with sensors, software, and connectivity.Chinese Translation:1. 可编程逻辑控制器(PLC):用于电机电子过程自动化的数字计算机。
自动化专业英语》_作者:王军,孙舒_重庆大学出版社_教材部分课文翻译P168
2.1 直流马达一个直流电机是一种直流发电机能量流的逆转。
在直流马达中电能是转换成机械能形式。
有三种类型的直流电机:并励电机,复励电机,和串励电机。
复合电机是为了更加强调前缀确保串励磁通辅助并励磁通这样连接到串励绕组上。
串励马达,不像串励发电机,广泛的应用,特别是牵引力负荷。
因此,应有的注意是这台机器跟随处理。
直流马达操作性能在三个模式任何一个能方便的被表示一个等效电路关系,一系列性能方程。
等效电路是图4.6所示。
值得一提的是现在电枢感应电压被当作一个感应反电动势。
通过试驾限制与直流发电机应用相似,我们得到正确的等效电路所需要的运行模式。
例如,在除去Rf后的结果是一个串励电机等效电路如图4.6所示。
电枢绕组可以被一个电源的感应电动势和一个电阻Ea替代,代表电枢电路的电阻值。
串励磁通被Rs取代,并励磁通也是这样。
一套性能方程计算如下:略(4.29)略(4.30)略(4.31)略(4.32)如何对直流马达的轴负载作出应答?什么事直流马达根据负载提供电力需求的自适应机制?这些问题的答案可以从推导性能方程得到。
最初我们讨论的是局限于并励电机,但类似的推理方程适用于其他。
我们的目的是力矩和电流的两个相关方程。
因此略(4.33)注意到最后一个表达式是将公式(4.29)的Ea替换到了公式(4.31)中。
轴无负载应用,唯一需要克服的是扭矩的旋转损失。
由于并励电机运行在基本恒定流量,公式(4.30)表明与额定值相比只有一小部分电枢电流损失。
公式(4.33)所示的方式是假定电枢电流为一个恰当值。
在这个表达式里Vt,Ra,KE,和Φ是固定值。
因此速度是关键变量。
如果,在目前,假定速度的值太低,那么公式(4.33)分子的值过大Ia的值也比需求大很多。
在这点上电机对这种情况作出修正反应。
过多的的电枢电流产生一个调整扭矩,超过反摩擦力和偏差。
实际上这个多余的扭矩充当一个加速度,然后继续增加速度到一个相对平稳的电枢电流值得层面。
自动化专业英语教程第二版翻译
PART 1 Electrical and Electronic Engineering BasicsUNIT 1 A Electrical Networks ————————————3B Three-phase CircuitsUNIT 2 A The Operational Amplifier ———————————5B TransistorsUNIT 3 A Logical Variables and Flip-flop ——————————8B Binary Number SystemUNIT 4 A Power Semiconductor Devices ——————————11B Power Electronic ConvertersUNIT 5 A Types of DC Motors —————————————15B Closed-loop Control of DC DriversUNIT 6 A AC Machines ———————————————19B Induction Motor DriveUNIT 7 A Electric Power System ————————————22B Power System AutomationPART 2 Control TheoryUNIT 1 A The World of Control ————————————27B The Transfer Function and the Laplace Transformation —————29 UNIT 2 A Stability and the Time Response —————————30B Steady State—————————————————31 UNIT 3 A The Root Locus —————————————32B The Frequency Response Methods: Nyquist Diagrams —————33 UNIT 4 A The Frequency Response Methods: Bode Piots —————34B Nonlinear Control System 37UNIT 5 A Introduction to Modern Control Theory 38B State Equations 40UNIT 6 A Controllability, Observability, and StabilityB Optimum Control SystemsUNIT 7 A Conventional and Intelligent ControlB Artificial Neural NetworkPART 3 Computer Control TechnologyUNIT 1 A Computer Structure and Function 42B Fundamentals of Computer and Networks 43UNIT 2 A Interfaces to External Signals and Devices 44B The Applications of Computers 46UNIT 3 A PLC OverviewB PACs for Industrial Control, the Future of ControlUNIT 4 A Fundamentals of Single-chip Microcomputer 49B Understanding DSP and Its UsesUNIT 5 A A First Look at Embedded SystemsB Embedded Systems DesignPART 4 Process ControlUNIT 1 A A Process Control System 50B Fundamentals of Process Control 52UNIT 2 A Sensors and Transmitters 53B Final Control Elements and ControllersUNIT 3 A P Controllers and PI ControllersB PID Controllers and Other ControllersUNIT 4 A Indicating InstrumentsB Control PanelsPART 5 Control Based on Network and InformationUNIT 1 A Automation Networking Application AreasB Evolution of Control System ArchitectureUNIT 2 A Fundamental Issues in Networked Control SystemsB Stability of NCSs with Network-induced DelayUNIT 3 A Fundamentals of the Database SystemB Virtual Manufacturing—A Growing Trend in AutomationUNIT 4 A Concepts of Computer Integrated ManufacturingB Enterprise Resources Planning and BeyondPART 6 Synthetic Applications of Automatic TechnologyUNIT 1 A Recent Advances and Future Trends in Electrical Machine Drivers B System Evolution in Intelligent BuildingsUNIT 2 A Industrial RobotB A General Introduction to Pattern RecognitionUNIT 3 A Renewable EnergyB Electric VehiclesUNIT 1A 电路电路或电网络由以某种方式连接的电阻器、电感器和电容器等元件组成。
自动化专业英语中文翻译
PART 1Electrical and Electronic Engineering BasicsUNIT 1A Electrical Networks ————————————3B Three-phase CircuitsUNIT 2A The Operational Amplifier ———————————5B TransistorsUNIT 3A Logical Variables and Flip-flop ——————————8B Binary Number SystemUNIT 4A Power Semiconductor Devices ——————————11B Power Electronic ConvertersUNIT 5A Types of DC Motors —————————————15B Closed-loop Control of DC DriversUNIT 6A AC Machines ———————————————19B Induction Motor DriveUNIT 7A Electric Power System ————————————22B Power System AutomationPART 2Control TheoryUNIT 1A The World of Control ————————————27B The Transfer Function and the Laplace Transformation —————29 UNIT 2A Stability and the Time Response —————————30B Steady State—————————————————31 UNIT 3A The Root Locus —————————————32B The Frequency Response Methods: Nyquist Diagrams —————33 UNIT 4A The Frequency Response Methods: Bode Piots —————34B Nonlinear Control System 37UNIT 5 A Introduction to Modern Control Theory 38B State Equations 40UNIT 6 A Controllability, Observability, and StabilityB Optimum Control SystemsUNIT 7 A Conventional and Intelligent ControlB Artificial Neural NetworkPART 3 Computer Control TechnologyUNIT 1 A Computer Structure and Function 42B Fundamentals of Computer and Networks 43UNIT 2 A Interfaces to External Signals and Devices 44B The Applications of Computers 46UNIT 3 A PLC OverviewB PACs for Industrial Control, the Future of ControlUNIT 4 A Fundamentals of Single-chip Microcomputer 49B Understanding DSP and Its UsesUNIT 5 A A First Look at Embedded SystemsB Embedded Systems DesignPART 4 Process ControlUNIT 1 A A Process Control System 50B Fundamentals of Process Control 52UNIT 2 A Sensors and Transmitters 53B Final Control Elements and ControllersUNIT 3 A P Controllers and PI ControllersB PID Controllers and Other ControllersUNIT 4 A Indicating InstrumentsB Control PanelsPART 5 Control Based on Network and InformationUNIT 1 A Automation Networking Application AreasB Evolution of Control System ArchitectureUNIT 2 A Fundamental Issues in Networked Control SystemsB Stability of NCSs with Network-induced DelayUNIT 3 A Fundamentals of the Database SystemB Virtual Manufacturing—A Growing Trend in AutomationUNIT 4 A Concepts of Computer Integrated ManufacturingB Enterprise Resources Planning and BeyondPART 6 Synthetic Applications of Automatic TechnologyUNIT 1 A Recent Advances and Future Trends in Electrical Machine DriversB System Evolution in Intelligent BuildingsUNIT 2 A Industrial RobotB A General Introduction to Pattern RecognitionUNIT 3 A Renewable EnergyB Electric VehiclesUNIT 1A 电路电路或电网络由以某种方式连接的电阻器、电感器和电容器等元件组成。
自动化专业英语原文和翻译
自动化专业英语原文和翻译自动化专业英语原文和翻译是指将自动化专业相关的文本内容进行英文原文和翻译的处理。
自动化专业是现代工程技术领域的一个重要学科,涉及到自动控制、机械电子、计算机科学等多个方面的知识。
在国际交流和学术研究中,使用英语进行交流和发表论文是非常普遍的。
下面是一段关于自动化专业的英文原文和翻译示例:原文:Automation is the technology by which a process or procedure is performed with minimal human assistance. It plays a crucial role in various industries, including manufacturing, transportation, and healthcare. Automation systems are designed to increase efficiency, improve safety, and reduce human errors. With the rapid development of technology, automation has become an essential part of modern society.翻译:自动化是一种通过最小化人类干预来执行过程或者程序的技术。
它在包括创造业、交通运输和医疗保健等各个行业中起着至关重要的作用。
自动化系统旨在提高效率、改善安全性并减少人为错误。
随着技术的快速发展,自动化已成为现代社会不可或者缺的一部份。
原文:In the field of automation, there are various sub-disciplines, such as industrial automation, process automation, and home automation. Industrial automation focuses on the use of control systems to operate industrial machinery and processes. Process automation involves the use of technology to automate repetitive tasks and streamline workflows. Home automation aims to provide convenience and comfort by integrating various household devices and systems.翻译:在自动化领域中,有各种子学科,如工业自动化、过程自动化和家庭自动化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Part ⅤProcess Control1.1过程控制的定义术语“自动过程控制”被广泛使用,当人们学会了适应自管理程序以便有效处理产品的制造和原料加工。
这样的程序被称为自动因为没有人(手动)干预是他们管理所必须的。
所有过程控制系统由三个主要因素或条件构成:操纵变量,干扰,和控制变量如图5.1所示。
控制变量的那些条件,入温度,液位,压力,流量,和位置,它必须保持在期望值或设置点。
在过程控制里,操纵变量一边是流动量,这种流动量通常是阀门。
干扰进入或影响过程趋势于控制变量远离它们的期望值或设定点条件。
控制系统必须调整操纵变量到控制变量的设置点值尽管受干扰也能保持。
设置点可能会改变。
然而,操纵量需要改变调整控制变量以得到新的期望值。
一个过程控制系统的元素图5.2所示一个控制系统的基本特点。
在系统中显示,一个液位变送器,一个液位控制器,和一个控制阀是用于一个储罐液体液位控制过程。
该控制系统的目的是保持储罐底部到规定的液面高度。
它假定了流入储罐的流量是随机的。
液位变送器是一个测量储罐内的液面高度转换成有用的测量信号发送到液位控制器的装置。
液位控制器评估测量,比较它与预设点,过程管理的一系列校正动作发送到控制阀。
阀门控制排水管的流量保持储罐中的液位。
因此,过程控制由四个元素构成:工艺,测量,评估,和控制器。
图5.3显示这些元素的一个方块图。
图已经显示了过程中的扰动输入或影响。
没有扰乱一个工艺,也就不需要控制系统。
工艺控制一般来说,一个工艺由设备的装配和材料组成涉及到生产操作或序列。
如图5.2中的例子,在液面液位过程控制下的所涉及的部件,如一个储罐,储罐中的液体,液体的流入和流出储罐,和进口和出口管道。
一个给定过程可以有许多动态变量,它可能需要控制这些所有变量。
然而,在大多数情况下,只有一个变量控制在控制过程的可接受范围里。
偶尔会遇到一个许多变量的多变量工艺,一些相关的管理需要。
测量在过程中为了控制一个动态变量,必须有实体本身的信息。
这些信息是从测量变量获得。
测量是指一个模拟或数字信号转换到过程变量里,如一个气动或电器阀。
该装置是将过程变量的最初测量和能量转换到一个电动或者气动信号的传感器。
传感器可以被分类为液位,温度,压力,流量,位置,和分析类型。
任何测量的结果是动态变量的转换到一些相应的信息里需要通过过程控制环里的其他元素。
评价在过程控制序列里,评价了每一步的测量值,它与期望值或设置点的比较,并确定校正动作的数量存在保持自身控制。
这种评估通过一个装置执行被称为控制器。
控制器可以是气动,电动,或者机械设备安装在一个控制面板里或直接安装在工艺设备上。
它也可以是部分计算机通过软件执行的函数控制系统。
控制控制元素在一个控制环里是在工艺或制造顺序上发挥直接影响的装置。
这个末级控制元素在这个过程上接受一个来自控制器和操作执行比例转变的输入。
在大多数情况中,这个末端控制元素将控制一个阀门调节流体流量的一个过程。
驱动如电机,泵,和阻尼器也被当作控制元素。
工艺和仪表图纸在测量和控制领域里,一套标准的符号是用来准备控制系统的图纸和工艺。
所使用的符号在图纸中通常取材于ISA和ANSI标准ANSI/ISA5.1。
这个标准典型的应用是工艺和仪表图纸。
这种类型的图纸显示了连接工艺设备和工艺控制的仪表使用。
图5.4是一个典型的部分P&ID图。
在标准的P&ID图里,工艺流程线,如图在5.4里的工艺流体和蒸汽图,使用粗实线。
仪表信号线用特殊标志指出不论是信号还是气动,电气,液压,或者其他类似的。
在图5.4里,两个仪表信号的类型是使用:双交叉阴影线表示蒸汽控制阀的气动信号的工艺流出控制阀门,和一个虚线表示电气控制线路之间的各种仪表。
在过程控制应用里,气动信号通常在3到15psig,(例如,英镑/每平方英寸,表压),电气信号通常是直流4到20mA(毫安级)。
一个气球标志与一个封闭的字母和数字代码是表示使用仪表与工艺控制环的关系。
第一个字母通常选择表示测量或控制环的初始变量。
在图5.4图中的P&ID例子里,第一个字母是控制环中的温度仪表是T。
接下来的字母用来代表一个读数或被动功能,或一个输出功能,或一个可以被修改的字母。
例如,图5.4中明显的气球TE代表一个温度元素,和明显的TIC 是一个指示温度控制器。
通常,3-或4-的数字序列表示每个环。
在我们的工艺例子里(图5.4)我们用环编号是100和101。
大多数小工艺用3-环编号;较大的工艺或复杂的制造厂需要四个或更多可以正确识别所有控制环的数字。
特殊图形是用于展现工艺设备和仪表。
例如,图5.4中的孔板,是用来检测加热器工艺所排放出来的流量用两条平行线表示。
这两个控制阀门在相同的工艺中也使用基于ISA/ANSI S5.1的特殊符号。
2.1传感器和变送器在反馈控制系统、过程控制系统的元素定义一个单独的功能方面的部分系统。
这四个基本组件的控制系统是传感器、变送器、控制器和最终控制元素。
这些组件的三个基本操作每个表单的每个控制系统:测量的决定,和行动。
传感器和发射机执行测量操作的控制系统。
传感器产生一种现象,机械,或像相关的过程变量,它的措施。
的作用是将发射机反过来信号从传感器到需要的表单最终的控制装置。
信号,因此,相关过程变量。
两个模拟标准是常用的作为一种代表范围的变量控制系统。
对于电力系统我们使用范围的电流进行电线,和气动系统我们使用一系列的气体压力管道中携带。
这些信号是主要用来传递变量信息在一些距离,比如,从控制室和植物。
图5.9显示了一个过程——控制安装在当前用于传输测量数据对控制变量来控制房间,气体压力管道是用来传输一个反馈信号到一个阀改变流量作为控制变量。
电流信号最常见的电流传输信号是4到20mA。
因此,在前温度的例子,20℃可能用4mA代替,120℃可能用20mA代替,所有温度代表之间比例电流。
增益是:略。
也就是说,我们可以说,增加传感器/变送器是比输出的跨度输入的时间。
当前是用来代替电压,因为系统然后较少依赖负载。
电压不用于传输,因为它容易变化的抵抗线。
气动信号最常见的标准气压信号发射机是3到15 psi。
在这种情况下,当一个传感器测量些变量区间转化成了一个比例压力的气体在管。
天然气通常是干燥的空气。
管可能会很多数百米长,但只要没有泄漏在系统压力会传播下管。
这英语系统标准仍然是广泛用于U.S尽管移动到SI单位制。
相当于SI范围,将最终采用是20到100 kPa这两个病例临床表现表明,获得的传感器/变送器是恒定的完整的操作范围。
对于大多数传感器/变送器就是这样;然而,有一些姿态,如差压传感器用来测量流量,当这不是此案。
一个差压传感器测量差压,h,穿过一个孔板。
这个压差与广场的体积流率F。
这是F2ah。
这个方程,描述了输出信号形式电子差压发射机当用来测量体积流量范围从0 ~ Fmax gpm是代表:略从这个方程得到发射机的方法如下:略根据定义可得:略这个表达式显示增益不是常数而是一个函数的流。
这个流量越大,增益越大。
所以实际增益变化从零到两倍名义上的增益。
这一事实导致了流量控制系统的非线性。
现在多数生产提供差压信号传送器内置平方根提取器产生一个班轮发射机。
动态响应的大多数传感器/变送器年代比过程快得多。
因此,他们的时间常数和死时间通常可以被认为是微不足道的,因此,其传递函数给出了一个纯粹的增益。
然而,当动力必须认为,这是通常的做法代表了传递函数的一阶或二阶仪器由一个系统:略3.1数字控制数字控制是一个系统,使用预定的指令来控制一个序列的制造业务。
指令编码数值存储在某种类型的输入介质,如穿孔纸带、磁带,或共同的记忆程序存储器。
指示指定诸如位置、方向、速度、和切割速度。
一个部分程序包含所有的指示需要产生想要的部分。
一个机器程序包含所有的指令年代需要实现所需过程。
数控机器每个表单操作(比如无聊、钻孔、研磨,铣、冲压、路由、锯切、车削、绕组(线)、火焰切割、针织(服装)、铆接、弯曲、焊接和金属丝加工。
数控(NC)被称为柔性自动化,因为相对容易改变计划而改变凸轮、夹具和模板。
相同的机器可以用来产生任何数量的不同部分使用不同的程序。
数控工艺是最合理的,许多不同的部分是产生在一个特定的机器:它是很少用来产生一个单一的部分不断地在同一台机器上。
数控是理想当一个部分或过程定义在数学上。
随着使用电脑辅助设计(CAD),越来越多的过程和产品定义的数学。
当我们知道他们有图纸成为不必要的,一个部分是完全定义的数学可以制造由计算机控制的机器。
一个闭环数控机显示在图5.13。
数控程序始于一个规范(工程图纸或数学定义),完全定义了所需的部分或过程。
一个程序员使用规范确定必要的操作序列,产生部分或携带出过程。
程序员还指定了要使用的工具,切削速度,饲料利率。
程序员使用一个特殊的编程语言来准备一个符号程序。
APT(自动编程工具)是一种语言用于此目的。
一个计算机将符号程序进入部分程序或机程序。
在过去,部分或机程序是存储在纸或磁t猿。
数值控制机器操作员喂带进机和监控操作。
如果一个改变是必要的,一个新的磁带了。
现在,可以存储程序在一个共同的数据库一起提供随需应变的分布到数控机。
图形终端的匹配中心允许运营商审核程序和如果有必要进行更改。
x位置控制器使工件水平方向显示+ x一个r行。
位置控制器使铣床头的水平方向指示的箭头+ y。
z位置控制器使刀具垂直显示+ z箭头。
以下行动参与改变x轴位置。
(1)控制单元读取指令的程序,指定了一个+ 0。
004英寸(。
)改变x的位置。
(2)控制单元发送英寸代脉冲机执行机构。
(3)机传动装置旋转丝杠和提出了x -轴位置+ 0。
001英寸的。
(4)位置传感器测量+ 0。
001英寸。
测量运动和发送另一个脉冲。
步骤(1)通过(5)是重复,直到测量运动等于所需的+ 0。
004英寸的。
计算机数控(CNC)是开发利用存储和数字计算机的处理能力。
使用一个专用数控电脑接受输入的指令和执行控制功能生产所需的部分。
然而,数控并非旨在提供信息交换要求最近的趋势(CIM)电脑一体机制造。
CIM的想法是“得到正确的信息,给正确的人在正确的时间- - - - - -做出正确决定。
”“我不链接的所有方面的业务f罗报价和订单输入通过工程、过程计划、财务报告、制造和运输在一个高效的连锁生产。
”直接数字控制(DNC)开发促进电脑一体机制造业。
DNC系统中一个n赭的数控机器连接到一个中央计算机的实时访问常见的数据库部分程序和机器程序。
通用电气使用一个中央计算机连接到DNC的机器通过一个通信年代网络其蒸汽汽轮发电机的自动化操作年代(STGO)。
“一个典型的汽轮发电机由超过100部分,一些是制造成千上万的不同配置,以满足特定的需要每个单元的设计。
通过CIM系统,客户可以指定所需的部分和接收更换组件,适合原始配置的超过4000操作STGO设施。