数学教案一元一次方程
《一元一次方程》的优秀教案(9篇)精选全文完整版
可编辑修改精选全文完整版《一元一次方程》的优秀教案《一元一次方程》的优秀教案(精选9篇)《一元一次方程》的优秀教案篇1知识技能会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。
进一步发展符号意识。
2.通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。
教学难点分析实际问题中的相等关系,列出方程。
教学过程活动一知识回顾解下列方程:1.3x+1=42.x-2=33.2x+0.5x=-104.3x-7x=2提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)教师追问:变形的依据是什么?学生独立思考、回答交流。
本次活动中教师关注:(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二问题探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?教师:出示问题(投影片)提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?(学生尝试提问)学生:读题,审题,独立思考,讨论交流。
《解一元一次方程》数学教案精选3篇
《解一元一次方程》数学教案精选3篇.3 解一元一次方程篇一教学目标1.使学生掌握含有以常数为分母的一元一次方程的解法;2.培养学生观察、分析、归纳及概括的能力,加强他们的运算能力。
教学重点:含有以常数为分母的一元一次方程的解法。
教学难点:正确地去分母。
(一)情境创设:与书同(二)探索活动由情景问题入手,引导学生审清题意,根据等量关系:学生总数的+学生总数的+学生总数的+3=学生总数列出方程。
即设毕达哥拉斯的学生有x名,想一想由题意得+++3=x.学生独立思考问题,尝试解方程,交流自己的解法,相互加以比较。
思考: (1)怎样才能将它化成上节课中所学的方程的类型?(去分母)(2)如何去分母?(方程的每一项都乘以分母的最小公倍数)(三)自学例题1、解方程-=-1解:(本题应如何去分母?学生答)去分母,得4(2x-1)-(10x+1)=3(2x+1)-12,去括号,得移项,得合并同类项,得 -8x=-4,系数化1,得 x= (1)为了去分母,方程两边应乘以什么数? .(2)去分母应注意什么? .例2、解方程=+1 例 3、(2x-5)= (x-3)- 去分母时须注意:(1)(2)不要漏乘没有分母的项;(3)分数线有括号作用,去掉分母后,若分子是多项式,要加括号,视多项式为一整体。
建议进行专项训练,如,-乘以6,8……例4、-=3总结:解方程的一般步骤:1、去分母;2、去括号;3、移项;4、合并同类项;5、系数化为1(四)、教学小结:首先,应让学生思考以下问题,并回答:1.形式上比较复杂的一元一次方程是怎样求解的?2.它的解法的主要思路是什么?3.它的解法的主要步骤是什么?在计算或变形时,要养成良好的教学习惯,注意书写格式的规范性,避免在去分母,去括号、移项时易犯的错误。
.3 解一元一次方程篇二4.2 解一元一次方程的算法(三)教学目标1.在具体情景中建立方程模型。
2.能准确应用去括号法则解一元一次方程。
七年级上册数学教案《一元一次方程》
七年级上册数学教案《一元一次方程》教学目标1、了解方程及一元一次方程,方程的解等概念;会找等量关系,列出方程。
2、在实际问题中探讨概念、数量关系,列出方程的方法,训练运用知识解决实际问题的能力。
3、通过列方程的过程,感受方程作为刻画现实世界的数学模型的意义;体会由算式到方程是数学的一大进步,从而体会方程的思想。
教学重点归纳出一元一次方程的概念教学难点根据具体问题中的数量关系,列出一元一次方程。
教学过程一、创设情境,解决问题一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地。
A,B 两地间的路程是多少?方法一:算术法以总路程为单位“1”行驶1km的路程,客车所用时间:1/70h。
行驶1km的路程,卡车所用时间:1/60h。
行驶[1÷(1/60 - 1/70)]km的路程,客车比卡车少用1h。
方法二:列方程解:设A,B两地相距x km。
因为客车比卡车早1h经过B地,所以x/70比x/60小1。
x/60 - x/70 = 170x/4200 - 60x/4200 = 42070x - 60x = 1010x = 10x = 1小结:用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只含有已知数;而方程是根据问题中的等量关系列出的等式,其中既含有已知数,又含有用字母表示的未知数。
二、比较方法,明确定义1、用算术方法和方程解决这个问题,各有什么特点?用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只含有已知数;而方程是根据问题中的相等关系列出的等式,其中既含有已知数,又含有用字母表示的未知数。
2、对于上面的问题,你还能列出其他方程吗?解:设卡车的时间为t h。
客车的路程 = 卡车的路程70 × (t+1)= 60 × t三、学以致用,巩固练习根据下列问题,设未知数并列出方程。
初中七年级上册数学《解一元一次方程》教案优质优秀10篇
初中七年级上册数学《解一元一次方程》教案优质优秀10篇初中七年级上册数学《解一元一次方程》教案优质篇一一、学生起点分析学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。
符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。
学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等。
同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力。
学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点。
二、教学任务分析对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。
为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。
教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。
本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则。
教学方法是“引导分类归纳”。
本课时的教学目标如下:1.经历探索有理数加法法则的过程,理解有理数的加法法则;2.能熟练进行整数加法运算;3.培养学生的数学交流和归纳猜想的能力;4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。
2024一元一次方程教案人教版数学七年级上册教案
2024一元一次方程教案人教版数学七年级上册教案一、教学目标1.理解一元一次方程的概念,掌握一元一次方程的解法。
2.能够运用一元一次方程解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
二、教学重难点重点:一元一次方程的解法。
难点:实际问题中的一元一次方程的应用。
三、教学准备1.教学课件2.实物投影仪3.小组讨论材料四、教学过程(一)导入新课1.情景引入:同学们,你们在生活中有没有遇到过这样的问题,比如:一个物品的价格是多少?一个物品的重量是多少?这些问题都可以通过一元一次方程来解决。
2.提问:同学们,你们知道什么是一元一次方程吗?(二)探究新知1.讲解一元一次方程的定义(1)引导学生观察一元一次方程的一般形式:ax+b=0(a、b是常数,a≠0)。
(2)讲解一元一次方程的解法:将方程两边同时加上或减去一个常数,使得方程的左边变为未知数的系数,右边变为常数。
2.讲解一元一次方程的解法(1)教师示范:解方程2x6=0。
(2)引导学生模仿:解方程3x+4=7。
(3)学生独立完成:解方程5x9=2。
3.小组讨论:如何将实际问题转化为方程?(1)引导学生观察实际问题,找出未知数和等量关系。
(2)小组讨论,给出解决方案。
4.练习:解下列方程(1)2x5=3(2)3x+4=11(3)4x7=5(4)5x+2=0(2)教师点评,强调注意事项。
(三)巩固提高1.小组讨论:如何运用一元一次方程解决实际问题?2.学生展示:展示解题过程,讲解思路。
3.练习:解决实际问题(1)一个物品的价格是50元,如果降价x元后,售价为45元,求x的值。
(2)一个水果摊上的苹果每斤5元,小明买了3斤,花费了y元,求y的值。
(3)一个长方形的长是宽的2倍,如果宽为x厘米,求长方形的长。
(四)课堂小结五、课后作业1.解下列方程(1)3x4=7(2)4x+5=9(3)5x3=2(4)2x+7=02.解决实际问题(1)一辆汽车行驶了x小时,平均速度为60千米/小时,求行驶的距离。
一元一次方程数学教案
一元一次方程数学教案第一章:一元一次方程的概念与解法一、教学目标1. 了解一元一次方程的概念,理解方程中的未知数、系数、常数等基本元素。
2. 学会一元一次方程的解法,能够熟练地求解简单的一元一次方程。
3. 能够应用一元一次方程解决实际问题,培养学生的数学应用能力。
二、教学内容1. 一元一次方程的概念:未知数、系数、常数等。
2. 一元一次方程的解法:加减法、乘除法、移项、化简等。
3. 一元一次方程的应用:实际问题求解。
三、教学重点与难点1. 重点:一元一次方程的概念、解法及应用。
2. 难点:一元一次方程的解法,特别是移项和化简。
四、教学方法1. 采用讲授法,讲解一元一次方程的概念、解法及应用。
2. 利用例题,引导学生掌握一元一次方程的解法。
3. 利用小组讨论法,让学生合作解决实际问题。
五、教学步骤1. 引入未知数、系数、常数等概念,讲解一元一次方程的定义。
2. 通过例题,讲解一元一次方程的解法,引导学生掌握解题步骤。
3. 布置练习题,让学生巩固一元一次方程的解法。
4. 利用小组讨论,让学生应用一元一次方程解决实际问题。
5. 总结本章内容,布置课后作业。
第二章:一元一次方程的解法与应用一、教学目标1. 掌握一元一次方程的解法,能够熟练地求解复杂的一元一次方程。
2. 培养学生的数学思维能力,提高学生解决实际问题的能力。
二、教学内容1. 一元一次方程的解法:加减法、乘除法、移项、化简等。
2. 一元一次方程的应用:实际问题求解。
三、教学重点与难点1. 重点:一元一次方程的解法及应用。
2. 难点:复杂一元一次方程的解法。
四、教学方法1. 采用讲授法,讲解一元一次方程的解法及应用。
2. 利用例题,引导学生掌握复杂一元一次方程的解法。
3. 利用小组讨论法,让学生合作解决实际问题。
五、教学步骤1. 通过复习,回顾一元一次方程的解法。
2. 讲解复杂一元一次方程的解法,引导学生掌握解题步骤。
3. 布置练习题,让学生巩固复杂一元一次方程的解法。
初中七年级上册数学《解一元一次方程》教案优质范文五篇
初中七年级上册数学《解一元一次方程》教案优质范文五篇星星从不嫉妒太阳的灿烂辉煌,它在自己的岗位上尽力发光。
今天小编为大家带来的是初中七年级上册数学《解一元一次方程》教案优质范文,希望可以帮助到大家。
初中七年级上册数学《解一元一次方程》教案优质范文一教材分析:《解一元一次方程(一)合并同类项与移项》是义务教育教科书七年级数学上册第三章第二节的内容。
在此之前,学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中。
这为过渡到本节的学习起着铺垫作用。
合并同类项与移项是解方程的基础,解方程它的移项根据是等式性质1、系数化为1它的根据是等式性质2,解方程是今后进一步学习不可缺少的知识。
因而,解方程是初中数学中必须要掌握的重点内容。
设计思路:《数学课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
基于以上理念,结合本节课内容及学生情况,教学设计中采用了探究发现法和多媒体辅助教学法,在学生已有的知识储备基础上,利用课件,鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生始终处于积极探索的过程中,通过学生动手练习,动脑思考,完成教学任务。
其基本程序设计为:复习回顾、设问题导入探索规律、形成解法例题讲解、熟练运算巩固练习、内化升华回顾反思、进行小结达标测试、反馈情况作业布置、反馈情况。
教学目标:1、知识与技能:(1)通过分析实际问题中的数量关系,建立方程解决实际问题,进一步认识方程模型的重要性;(2)、掌握移项方法,学会解“a·+b=c·+d”的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。
2、过程与方法:通过解形如“a·+b=c·+d”形式的方程,体验数学的建模思想。
3、情感、态度与价值观:通过合作探究,培养学生积极思考、勇于探索的精神。
教学重点:建立方程解决实际问题,会解“a·+b=c·+d”类型的一元一次方程。
第十讲一元一次方程(教案)
最后,我感到欣慰的是,尽管存在一些挑战,但大多数学生在课程结束时都能够掌握一元一次方程的基本解法,并能够将其应用到简单的实际问题中。我期待在接下来的课程中,看到他们在数学学习上的更多进步。
第十讲一元一次方程(教案)
一、教学内容
第十讲一元一次方程(教案)
《数学》人教版七年级上册第五章第一节
1.一元一次方程的定义与特点
2.一元一次方程的解法:移项、合并同类项、系数化为1
3.应用问题:列出一元一次方程并求解
4.实践活动:运用一元一次方程解决现实生活中的问题
5.练习:课本第76页第1、2、3题,第77页第4、5题
1.讨论主题:学生将围绕“一元一次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
在讲解移项和合并同类项的过程中,我尽量使用了简单明了的语言和具体的步骤,但仍然有一些学生在这一环节上犹豫不决。我意识到,可能需要设计更多的互动环节,比如让学生到黑板上亲自操作,或者在小组内互相讲解,以提高他们的理解和操作能力。
实践活动环节,学生们的参与度很高,但我观察到有些小组在将实际问题抽象成方程时遇到了困难。这可能是因为他们对问题的理解不够深入,或者是数学建模的能力还不够强。在未来的课程中,我需要更多地引导学生如何从实际问题中提取关键信息,并帮助他们建立方程模型。
一元一次方程教案最新7篇
一元一次方程教案最新7篇元一次方程教学设计篇一一、教材分析1、教材地位和作用本节课是义务教育课程标准实验教科书数学六年级上册第五章《一元一次方程》中第一节课的内容。
是小学与初中知识的衔接点,学生在小学已经初步接触过方程,了解了什么是方程,什么是方程的解,并学会了用逆运算法解一些简单的方程。
并在前一章刚学过整式的概念及其运算的基础上,本节课将带领学生继续学习方程、一元一次方程等内容。
要求教师帮助学生在现实情境中,通过对多种实际问题的分析,感受方程作为刻画现实世界的模型的意义,建立方程归纳得出一元一次方程的概念并用尝试检验法来求解,同时也为学生进一步学习一元一次方程的解法和应用起到铺垫作用。
2、教学目标综上分析及教学大纲要求,本课时教学目标制定如下:⒈.通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义⒈.会根据简单数量关系列方程,通过观察、归纳一元一次方程的概念⒈.体会解决问题的一种重要的思想方法----尝试检验法⒈.回顾理解等式的两个性质,并初步学会利用等式的两个性质解一元一次方程3、教学重点和难点重点:一元一次方程的概念和用尝试检验法求方程的解难点:利用等式的两个性质解一元一次方程二、教法与学法分析:教法方法与手段:本节课利用多媒体教学平台,在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。
从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型。
采用教师引导,学生自主探索、观察、归纳的教学方式。
利用多媒体和天平演示等教学设备辅助教学,充分调动学生的积极性。
学法指导:根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。
通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力。
一元一次方程数学教案大全5篇
一元一次方程数学教案大全5篇一元一次方程数学教案大全5篇经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。
进一步发展符号意识。
下面给大家分享一元一次方程数学教案,欢迎阅读!一元一次方程数学教案【篇1】教学内容:人教版七年级上册3.1.1一元一次方程教学目标:知识与技能:1、理解一元一次方程,以及一元一次方程解的概念。
2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。
3、掌握检验某个数值是不是方程解的方法。
过程与方法:在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用新知识解决实际问题的能力。
情感态度和价值观:让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。
教学重点:建立一元一次方程的概念,寻找相等关系,列出方程。
教学难点:根据具体问题中的相等关系,列出方程。
教学准备:多媒体教室,配套课件。
教学过程:设计理念:数学教学要从学生的经验和已有的知识出发,创设有助于学生自主学习的问题情景,在数学教学活动中要创造性地使用数学教材。
课程标准的建议要求教师不再是“教教材”而是“用教材”。
本节课在抓住主要目标,用活教材,针对学生实际、激活学生学习热情等方面做了有益的探索,现就几个教学片断进行探讨。
一、游戏导入,设置悬念师:同学们,老师学会了一个魔术,情你们配合表演。
请看大屏幕,这是20__年10月的日历,请你用正方形任意框出四个日期,并告诉老师这四个数字的和,老师马上就告诉你这四个数字。
生1:24,师:2,3,9,10生2:84师:17,18,24,25师:同学们想学会这个魔术吗生:想!师:通过这节课的学习,同学们一定能学会!一些教师常用教材的章前图或者行程问题情景导入,但章前图过于平淡且较难,不易激发学生兴趣,本次课用游戏导入激发学生的求知欲,其实质是列一元一次方程x+(x+1)+(x+7)+(x+8)=任意框出的四个日期的和,x是第一个日期,这是本次课的第一个变化。
九年级数学教案 一元一次方程的应用9篇
九年级数学教案一元一次方程的应用9篇一元一次方程的应用 15.3 用方程解决问题(2)--打折销售学习目标:1、进一步经历运用方程解决实际问题的过程。
2、提高学生找等量关系列方程的能力。
3、培养学生的抽象、概括、分析和解决问题的能力。
4、学会用数学的眼光去看待、分析现实生活中的情景。
重点:1.如何从实际问题中寻找等量关系建立方程,解决问题后如何验证它的合理性.2. 解决打折销售中的有关利润、成本价、卖价之间的相关的现实问题。
难点:如何从实际问题中寻找等量关系建立方程.学习指导:一、知识准备1.通过社会调查,亲历打折销售这一现实情境,了解打折销售中的成本价、卖价和利润之间的关系。
进而能根据现实情境提出数学问题。
2.谈一谈:请举例说明打折、利润、利润率、提价及削价的含义分别是什么?3.算一算:(1)原价100元的商品,打8折后价格为元;(2)原价100元的商品,提价40%后的价格为元;(3)进价100元的商品,以150元卖出,利润是元。
二、学习新课一、思考:1、把下面的“折扣”数改写成百分数。
九折八八折七五折2、你是怎样理解某种商品打“八折”出售的?二、问题:1、说说“打折销售”中自己有过的亲身经历。
2、假设你是一个商店老板,你的追求是什么?3、你是怎样理解商品的利润?三、新知探讨1 、你认为商品的标价、折数与商品的卖价之间有怎样的关系?2、结合实际,说说你从打折销售中可以获得哪些数学问题?(1)某商店出售一种录音机,原价430元,现在打九折出售,比原价便宜多少钱?(2)一种画册原价每本16元,现在按每本11.2元出售。
这种画册按原价打了几折?(3)、为庆祝“六一儿童节”,某书店所有儿童读物一律八折优惠,小明花了24元买了一套读物,请问这套读物原价是多少?(4)一家商店将某种服装按成本价提高40%后卖出,已知每件服装的成本价是125元,每件服装获利多少?2、例题:一家商店将某种服装按成本价提高40%后标价,又以8 折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?如果设每件服装的成本价为x元,根据题意,(1)每件服装的标价为:()(2)每件服装的实际售价为:()(3)每件服装的利润为:()(4)列出方程,并解答:四、回顾与反思通过这节课的学习,你最大的收获是什么?在调查中你还遇到哪些难解的问题,看看大家是不是可以给你解答?作业:作业纸。
一元一次方程大班教案
一元一次方程大班教案一. 教学目标通过本堂课的学习,学生将能够:1. 理解一元一次方程的概念及其解的含义;2. 掌握解一元一次方程的基本方法;3. 运用所学知识解决实际问题。
二. 教学准备1. 教学工具:投影仪、黑板、白板、课件;2. 教学资料:一元一次方程练习题。
三. 教学过程1. 教学导入(5分钟)教师通过出示一道简单的一元一次方程练习题,让学生思考并尝试解答,引出本堂课的教学主题。
2. 知识讲解与示范(20分钟)(1)概念讲解:教师通过投影仪显示一元一次方程的定义,通过讲解和示范,向学生介绍方程中的未知数、系数和常数项的含义。
(2)解方程的基本方法:教师通过几个简单的例子,向学生展示如何通过运算将方程化为最简形式,并逐步解得未知数的值。
3. 合作探究(30分钟)(1)小组活动:学生分组进行一元一次方程的解答练习。
每个小组成员轮流担任解题者,其他小组成员协助思考并对解答过程提出意见和建议。
(2)学生探究:学生通过小组活动中的练习题,逐步掌握解一元一次方程的方法和技巧。
4. 错题讲解与扩展(25分钟)(1)错题讲解:教师选择几道常见易错题,对错误解答的原因进行讲解,并引导学生找到解题的关键步骤。
(2)扩展练习:教师提供一些扩展的一元一次方程练习题,要求学生尝试解答,并加强对解题过程的理解。
5. 总结与展望(10分钟)教师对本节课的重点内容进行总结,并巩固学生的学习成果。
同时,引导学生思考如何将所学知识应用于实际问题的解决。
四. 教学反思本节课采用了导入、知识讲解、合作探究、错题讲解和总结展望等多种教学方法,辅以多媒体教具和小组活动,使学生在师生互动的氛围中积极学习解一元一次方程的方法和技巧。
通过小组合作和扩展练习,学生的问题解决能力得到了提升。
同时,学生在解决实际问题的过程中,也对一元一次方程有了更深的理解。
教学目标基本达成。
五. 课后作业1. 完成课堂上未解答的练习题;2. 思考并解答一道与实际问题相关的一元一次方程。
七年级数学教案 一元一次方程9篇
七年级数学教案一元一次方程9篇一元一次方程 1一、素质教育目标(一)知识教学点1.要求学生学会用移项解方程的方法.2.使学生掌握移项变号的基本原则.(二)能力训练点由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力.(三)德育渗透点用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想.(四)美育渗透点用移项法解方程明显比用前面的方法解方程方便,体现了数学的方法美.二、学法引导1.教学方法:采用引导发现法发现法则,课堂训练体现学生的主体地位,引进竞争机制,调动课堂气氛.2.学生学法:练习→移项法制→练习三、重点、难点、疑点及解决办法1.重点:移项法则的掌握.2.难点:移项法解一元一次方程的步骤.3.疑点:移项变号的掌握.四、课时安排3课时五、教具学具准备投影仪或电脑、自制胶片、复合胶片.六、师生互动活动设计教师出示探索性练习题,学生观察讨论得出移项法则,教师出示巩固性练习,学生以多种形式完成.七、教学步骤(一)创设情境,复习导入师提出问题:上节课我们研究了方程、方程的解和解方程的有关知识,请同学们首先回顾上节课的有关内容;回答下面问题.(出示投影1)利用等式的性质解方程(1) ; (2) ;解:方程的两边都加7,解:方程的两边都减去,得,得,即 . 合并同类项得 .【教法说明】通过上面两小题,对用等式性质解方程进行巩固、回忆,为讲解新方法奠定基础.提出问题:下面我们观察上面方程的变形过程,从中观察变化的项的规律是什么?(二)探索新知,讲授新课投影展示上面变形的过程,用制作复合式运动胶片将上面的变形展示如下,让学生观察在变形过程中,变化的项的变化规律,引出新知识.(出示投影2)师提出问题:1.上述演示中,两个题目中的哪些项改变了在原方程中的位置?怎样变的?2.改变的项有什么变化?学生活动:分学习小组讨论,各组把讨论的结果派代表上报教师,最好分四组,这样节省时间.师总结学生活动的结果:大家讨论的结论,有如下共同点:①方程(1)的已知项从左边移到了方程右边,方程(2)的项从右边移到了左边;②这些位置变化的项都改变了原来的符号.【教法说明】在这里的投影变化中,教师要抓住时机,让学生发现变化的规律,准确掌握这种变化的法则,也是为以后解更复杂方程打下好的基础.师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.(三)尝试反馈,巩固练习师提出问题:我们可以回过头来,想一想刚解过的两个方程哪个变化过程可以叫做移项.学生活动:要求学生对课前解方程的变形能说出哪一过程是移项.【教法说明】可由学生对前面两个解方程问题用移项过程,重新写一遍,以理解解方程的步骤和格式.对比练习:(出示投影3)解方程:(1) ; (2) ;(3) ; (4) .学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解.师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、合并同类项、检验.)【教法说明】这部分教学旨在于使学生学会用移项这一手段解方程的方法,通过学生动手尝试,理解解方程的步骤,从而掌握移项这一法则.巩固练习:(出示投影4)通过移项解下列方程,并写出检验.(1) ; (2) ;(3) ; (4) .【教法说明】这组题训练学生解题过程的严密性,故采取学生亲自动手做,四个同学板演形式完成.(四)变式训练,培养能力(出示投影5)口答:1.下面的移项对不对?如果不对,错在哪里?应怎样改正?(1)从,得到;(2)从,得到;(3)从,得到;2.小明在解方程时,是这样写的解题过程:;(1)小明这样写对不对?为什么?(2)应该怎样写?【教法说明】通过以上两题进一步印证移项这种变形的规律,即“移项要变号”.要使学生认清这里的移项是把某项从方程的一边移到另一边而不是在同一边交换位置,弄懂解方程的书写格式是方程在变形,变形时保持“左右两边相等”这一数学模式.(出示投影6)用移项解方程:(1) ; (2) ;(3) ; (4) .【教法说明】这组题增加了难度,即移项变形是左右两边都有可移的项,教学时由学生思考后再进行解答书写,可提醒学生先分组讨论,各组由一名同学叙述解题过程,教师归纳出最严密最精炼的解题过程,最后全体学生都做这几个题目.学生活动:5分钟竞赛:规则是分两大组,基础分100分,每组同学全对1人加10分,不全对1人减10分,互相判题,学习委员记分.(出示投影7)解下列方程:(1) ; (2) ; (3) ;(4) ; (5) ; (6) .【教法说明】这组题用竞赛的形式,由学生独立完成是为了培养学生的解方程的速度和能力,同时激发学生的竞争意识,从而达到调动全体学生参与的目的,而互相评判更增加了课堂上的民主意识.(五)归纳小结师:今天我们学习了解方程的变形方法,通过学习我们应该明确两个方面的问题:①解方程需把方程中的项从一边移到另一边,移项要变号这是重点.②检验要把所得未知数的值代入原方程.八、随堂练习1.判断下列移项是否正确(1)从得()(2)从得()(3)从得()(4)从得()2.选择题(1)对于方程,移项正确的是()A. B.C. D.(2)对于方程移项正确的是()A. B.C. D.3.用移项法解方程,并写出检验(1) ;(2) ;(3) .九、布置作业课本第205页A组1.(1)(3)(5).十、板书设计随堂练习答案1.×××√2.D C3.略作业答案(5)解:移项得合并同类项得检验:略探究活动运动与学习成绩班里共有25个学生,其中17人会骑自行车,13人会游泳,8人会打篮球.全部掌握这三种运动项目的学生一个也没有.在这25个学生中,有6人数学成绩不及格.而参加以上运动的学生中,有2人数学成绩优秀,没有数学不及格的(学习成绩分优秀、良好、及格、不及格).问:全班数学成绩优秀的学生有几名?既会游泳又会打篮球的有几人?参考答案:全班数学成绩及格的学生有25-6=19(人),参加运动的人次共有17+13+8=38,因没有一个学生掌握三个运动项目,且数学没有不及格的,所以参加运动的学生共19人.每人掌握两个运动项目,19人中有17个会骑自行车,只有两个学生同时会游泳又会打篮球.参加运动的共19人,且数学成绩全部及格,不参加运动的数学全不及格,所以全班数学成绩优秀的学生只有2名.一元一次方程 2一元一次方程的复习复习目标:(1)了解方程、一元一次方程以及方程的解等基本概念。
苏科版2024新版七年级数学上册教案:4.2.1 一元一次方程
课题
4.2一元一次方程及其解法(1)
课型
新授课
编号
时间
主备
复备
审核
教学目标
1.掌握一元一次方程的概念Leabharlann 能判断所给的方程是否是一元一次方程.
2.能判断所给的值是否是一元一次方程的解
3.会解一些简单的一元一次方程,感受数学的实际价值,提高解决问题的能力.
教学重点难点
重点:一元一次方程的概念.
(2)2x-3 =x+1;
(3)3x= 6.
变式:若x=1是关于x的方程(m+2)x-5 =0的解,则m的值是.
例3:解下列方程:
(1)x+2 = -6
(2)0.5x= -3
(3)3x+5 =11
说明理由
通过例题巩固放的的解的概念
让学生基于等式的基本性质讨论(1)、(3)两个方程的关系,为后续解方程做铺垫
根据等式性质解一元一次方程.同时强调解方程后做检验.
检学
1.已知下列方程:
(1)x-2 = ;(2)0.3x=1;(3) =5x+1;(4)x2-4x=3;(5)x=6;(6)x+2y=0
其中一元一次方程的个数是( )
A.2 B. 3 C. 4 D. 5
2.下面是一个被墨水污染过的方程:2x-0.5=3x+ ,答案显示此方程的解是x=-1,被墨水遮盖的是一个常数,则这个常数是( )
难点:会判断所给的方程是否是一元一次方程.
教学环节
教学过程
师生活动
个人复备
知学
1.揭示课题
2.揭示目标
板书课题
齐读目标
预学
阅读课本P113-114页,完成课本练习T1
一元一次方程的解法数学教案设计5篇
一元一次方程的解法数学教案设计5篇元一次方程篇一方程是处理问题的一种很好的途径,而解方程又是这种途径必须要掌握的。
这节课上学生是带着上一节课的内容来学习的,现对这部分内容总结如下:本节课的整体过程是这样的:先利用等式的性质来解方程,从而引出了移项的概念,然后让学生利用移项的方法来解方程,当然今天是第一次接触这部分内容,所以在方程的选择上,都是移项后,同类项的合并比较简单,与前一节内容相比较,可轻易感受到这种解法的简洁性;讲解完成后,进一步给出了练一练的两个方程,让学生动手去做;仔细观察学生的练习过程,出现了很多困难。
总结一下,大致有以下几种比较常见的情况:①含未知数的项不知道如何处理;②移项没有变号;③没移动的项也改变了符号;(划线的两种情况出现最多);针对以上情况,利用课堂时间,先让有困难的学生说一下自己在解题过程中出现的困难,让其他同学帮助他找出错误并加以解决,这样更能促进同学间的相互进步。
(由于时间的关系,本节课这一点做得还不够完善,可从学生的作业中反应出来。
)再让学生总结注意点,教师进行点拨。
最后的学生小结并不是一种形式,通过小结教师能很好地看出学生的知识形成和掌握情况。
总的来说,虽然课堂上同学们总结错误点总结的不错,但学生对解方程的掌握仍浮于表面,练习少了,课后作业中的问题也就出来了;第一,解题中部分同学仍采用原来的等式性质进行;第二,移项时符号还是一个大问题;所以总的说来,这课堂效率不高,没有完成基本的课堂任务;学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的练习,从题目中去反馈会显得更加适合。
在新教材的讲解中,有时还是要借鉴老教材的一些好的方法。
另外,本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。
初中七年级上册数学《解一元一次方程》教案优质篇二教学目的:知识与技能目标:会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及其语言表达能力。
一元一次方程的应用说课稿范文(17篇)
一元一次方程的应用说课稿范文(17篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、党团范文、工作计划、演讲稿、活动总结、行政公文、文秘知识、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, Party and Youth League model essays, work plans, speeches, activity summaries, administrative documents, secretarial knowledge, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!一元一次方程的应用说课稿范文(17篇)教案模板可以帮助教师记录教学过程中的问题和反思,为教学改进提供参考。
初中七年级上册数学解一元一次方程教案优质(优秀5篇)
初中七年级上册数学解一元一次方程教案优质(优秀5篇)元一次方程篇一教学目标1.使学生正确认识含有字母系数的一元一次方程。
2.使学生掌握含有字母系数的一元一次方程的解法。
3.使学生会进行简单的公式变形。
4.培养学生由特殊到一般、由一般到特殊的逻辑思维能力。
5.通过公式变形例题,培养学生解决实际问题的能力,激发学生的求知欲望和学习兴趣。
教学重点:(1)含有字母系数的一元一次方程的解法。
(2)公式变形。
教学难点:(1)对字母函数的理解,并能准确区分字母系数与数字系数的区别与联系。
(2)在公式中会准确区分未知数与字母系数,并进行正确的公式变形。
教学方法启发式教学和讨论式教学相结合教学手段多媒体教学过程(一)复习提问提出问题:1.什么是一元一次方程?在学生答的基础上强调:(1)“一元”——一个未知数;“一次”——未知数的次数是1.2.解一元一次方程的步骤是什么?答:(1)去分母、去括号。
(2)移项——未知项移到等号一边常数项移到等号另一边。
注意:移项要变号。
(3)合并同类项——提未知数。
(4)未知项系数化为1——方程两边同除以未知项系数,从而解得方程。
(二)引入新课提出问题:一个数的a倍(a≠0)等于b,求这个数。
引导学生列出方程:ax=b(a≠0).让学生讨论:(1)这个方程中的未知数是什么?已知数是什么?(a、b是已知数,x是未知数)(2)这个方程是不是一元一次方程?它与我们以前所见过的一元一次方程有什么区别与联系?(这个方程满足一元一次方程的定义,所以它是一元一次方程。
)强调指出:ax=b(a≠0)这个一元一次方程与我们以前所见过的一元一次方程最大的区别在于已知数是a、b(字母).a是x的系数,b是常数项。
(三)新课1.含有字母系数的一元一次方程的定义ax=b(a≠0)中对于未知数x来说a是x的系数,叫做字母系数,字母b是常数项,这个方程就是一个含有字母系数的一元一次方程,今天我们就主要研究这样的方程。
2024年一元一次方程教案完整版
2024年一元一次方程教案完整版一、教学内容本节课选自人教版《数学》七年级上册第三章第一节“一元一次方程”,内容包括方程的概念、一元一次方程的定义及其解法。
具体章节内容为:3.1.1 方程的概念及3.1.2 一元一次方程的解法。
二、教学目标1. 理解方程的概念,掌握一元一次方程的定义及解法。
2. 能够根据实际问题列出一元一次方程,并运用所学知识解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点难点:一元一次方程解法的运用。
重点:一元一次方程的定义及其解法。
四、教具与学具准备教具:黑板、粉笔、PPT课件。
学具:练习本、铅笔、直尺。
五、教学过程1. 实践情景引入通过PPT展示小明和小华分苹果的情景,提出问题:“小明和小华一共分了10个苹果,小明分了3个,小华分了多少个?”引导学生列出方程。
2. 知识讲解(1)方程的概念:含有未知数的等式。
(2)一元一次方程的定义:含有一个未知数,且未知数的次数为1的方程。
(3)一元一次方程的解法:移项、合并同类项、化简。
3. 例题讲解讲解一个一元一次方程的例题,并详细解释解题过程。
4. 随堂练习让学生完成PPT上的两道练习题,巩固所学知识。
六、板书设计1. 方程的概念2. 一元一次方程的定义3. 一元一次方程的解法4. 例题及解题过程5. 练习题七、作业设计1. 作业题目:(1)求解一元一次方程:2x + 3 = 7(2)根据实际问题列出方程并求解。
2. 答案:(1)x = 2(2)答案不唯一,合理即可。
八、课后反思及拓展延伸1. 反思:本节课学生对一元一次方程的概念和解法掌握情况,及时调整教学方法。
2. 拓展延伸:引导学生思考一元一次方程在实际生活中的应用,提高学生的数学素养。
重点和难点解析1. 实践情景引入的设置。
2. 一元一次方程解法的详细讲解。
3. 例题的选择与讲解。
4. 随堂练习的设计与反馈。
5. 作业设计的合理性和答案的完整性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学教案-一元一次方程
一元一次方程
一、教学目标:
1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、通过观察,归纳一元一次方程的概念
3、积累活动经验。
二、重点和难点
重点:归纳一元一次方程的概念
难点:感受方程作为刻画现实世界有效模型的意义
三、教学过程
1、课前训练一
(1)如果 | | =9,则 =;如果 2 =9,则 =
(2)在数轴上距离原点4个单位长度的数为
(3)下列关于相反数的说法不正确的是()
A、两个相反数只有符号不同,并且它们到原点的距离
相等。
B、互为相反数的两个数的绝对值相等
C、0的相反数是0
D、互为相反数的两个数的和为0(字母表示为、互为相反数则)
E、有理数的相反数一定比0小
(4)乘积为1的两个数互为倒数,如:
(5)如果,则()
A、,互为倒数
B、,互为相反数
C、,都是0
D、,至少有一个为0
(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程()
A、 B、 C、 D、 00
2、由课本P149卡通图画引入新课
3、分组讨论P149两个练习
4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个
足球场的宽为米,那么长为( +25)米,依题意可列得方程为:()
A、 +25=310
B、 +( +25)=310
C、2 [ +( +25)]=310
D、[ +( +25)] 2=310
课本的宽为3厘米,长比宽多4厘米,则课本的面积为平方厘米。
5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0。
8元。
已知每个笔记本比练习本贵1。
2元,求每个练习本多少元?
解:设每个练习本要元,则每个笔记本要元,依题意可列得方程:
6、归纳方程、一元一次方程的概念
7、随堂练习PO151
8、达标测试
(1)下列式子中,属于方程的是()
A、 B、 C、 D、
(2)下列方程中,属于一元一次方程的是()
A、 B、 C、 D、
(3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。
甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。
求甲队胜了多少场?平了多少场?
解:设甲队胜了场,则平了场,依题意可列得方程:解得 =
答:甲队胜了场,平了场。
(4)根据条件“一个数比它的一半大2”可列得方程为
(5)根据条件“某数的与2的差等于最大的一位数”可列得方程为
四、课外作业 P151习题5。
1。