弹簧问题中的能量与动量

合集下载

高中物理弹性势能和弹性碰撞的计算方法

高中物理弹性势能和弹性碰撞的计算方法

高中物理弹性势能和弹性碰撞的计算方法在高中物理学中,弹性势能和弹性碰撞是重要的概念和计算方法。

掌握这些知识点对于解决与力学相关的问题至关重要。

本文将重点介绍弹性势能和弹性碰撞的计算方法,并通过具体题目举例,解析考点和解题技巧。

一、弹性势能的计算方法弹性势能是指物体由于形变而具有的储存能量。

当物体发生形变时,它的弹性势能会增加。

弹性势能的计算公式为:E = 1/2kx²其中,E表示弹性势能,k表示弹簧的劲度系数,x表示形变的位移。

举例来说,假设有一个质量为2kg的物体,通过一根劲度系数为100N/m的弹簧连接到固定支架上。

当物体受到一个力为10N的拉力,使得弹簧伸长了0.2m时,我们可以计算出该物体的弹性势能。

根据公式E = 1/2kx²,代入k = 100N/m和x = 0.2m,计算得到:E = 1/2 * 100N/m * (0.2m)² = 2J因此,该物体的弹性势能为2焦耳。

在解题过程中,需要注意单位的一致性。

劲度系数k的单位是牛顿/米,位移x的单位是米,因此弹性势能的单位是焦耳。

二、弹性碰撞的计算方法弹性碰撞是指碰撞过程中物体之间没有能量损失的碰撞。

在弹性碰撞中,动量和能量都得到了保持。

根据动量守恒定律和能量守恒定律,我们可以计算出碰撞前后物体的速度。

考虑一个简单的弹性碰撞问题,有两个质量分别为m1和m2的物体,它们在碰撞前的速度分别为v1和v2,碰撞后的速度分别为v1'和v2'。

假设碰撞前物体1的速度大于物体2的速度,即v1 > v2。

根据动量守恒定律,我们可以得到以下公式:m1v1 + m2v2 = m1v1' + m2v2'根据能量守恒定律,我们可以得到以下公式:1/2m1v1² + 1/2m2v2² = 1/2m1v1'² + 1/2m2v2'²通过解这组方程,可以计算出碰撞后物体的速度。

高中物理弹簧模型经典题型汇总

高中物理弹簧模型经典题型汇总

弹簧专题1、弹簧弹力的双向性弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可能是拉力,这类问题往往是一题多解.例1、如图3-7-15所示,质量为m的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为0120,已知弹簧a b、对质点的作用力均为F,则弹簧c对质点作用力的大小可能为( )A、0B、F mg+C、F mg-D、mg F-2、轻弹簧高中物理中描述一类物体时常在其前面加上限定词“轻”,如“轻结点”、“轻绳”、“轻弹簧”、“轻杆”、“轻滑轮”等.“轻"主要可以理解为物体质量对所研究的物理问题影响很小,可以忽略不计,它是一种理想化的物理模型。

根据牛顿第二定律F = ma知,由于“轻物体”质量为零,无论其加速度多大,所受合外力必然为零,与物体的运动状态无关.这也是它与常规物体的最大区别.例2、如图4所示,4个完全相同的轻质弹簧都处于水平位置,他们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以L1、L2、L3、L4依次表示4个弹簧的伸长量.则有()3、质量不可忽略的弹簧例3、如图所示,一质量为M、长为L的均质弹簧平放在光滑的水平面上,在弹簧右端施加一水平力F使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.答案解析Fx=FLx图3-7-154、三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是轻质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变,即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变。

例4、如图甲所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.求解下列问题:(1)现将线L2剪断,求剪断L2的瞬间物体的加速度.(2)若将图甲中的细线L1换成长度相同,质量不计的轻弹簧,如图乙所示,其他条件不变,求剪断L2的瞬间物体的加速度.例5、如图所示,一光滑圆环竖直固定在地面上,三个完全相同的质量均为m的小球穿在圆环上,其中小球A位于圆环最高点,小球B、C位于同一高度,小球A与小球B之间、小球A与小球C间用等长的轻质细绳相连,小球B与小球C用轻弹簧相连。

动量守恒和能量守恒联立公式的解

动量守恒和能量守恒联立公式的解

动量守恒和能量守恒联立公式的解动量守恒和能量守恒联立公式的解一、引言在物理学中,动量守恒和能量守恒是两个非常重要的基本原理。

动量守恒指的是系统总动量在任何时刻都保持不变,而能量守恒则是系统总能量在任何时刻也都保持不变。

这两个原理在物理学和工程学中都有着非常广泛的应用,而它们联立的公式的解则能够帮助我们更加深入地理解这两个原理的关系和应用。

二、动量守恒和能量守恒的关系1. 动量守恒的概念和公式让我们先来了解一下动量守恒的概念和公式。

动量守恒是指在一个封闭系统中,如果没有外力作用,系统的动量保持不变。

动量的守恒可以用数学公式来表示:ΣPi = ΣPf,即系统初态总动量等于系统末态总动量。

2. 能量守恒的概念和公式我们再来了解一下能量守恒的概念和公式。

能量守恒是指在一个封闭系统中,能量不会凭空消失,也不会凭空增加,能量只能从一种形式转换为另一种形式。

能量守恒可以用数学公式来表示:ΣEi = ΣEf,即系统初态总能量等于系统末态总能量。

3. 联立公式的解当动量守恒和能量守恒同时发生时,我们可以联立这两个公式来解决问题。

假设有一个系统,在某个过程中既满足动量守恒又满足能量守恒,那么我们可以得到如下的联立公式:ΣPi = ΣPfΣEi = ΣEf这样,我们就可以利用这两个联立公式来解决一些复杂的物理问题,尤其是在动能、动量和碰撞等方面有重要的应用。

三、实例分析为了更好地理解动量守恒和能量守恒联立公式的解,我们来看一个具体的例子:弹簧振子的能量转换。

假设有一个弹簧振子系统,开始时速度为v1,弹簧的劲度系数为k,质量为m。

当振子通过平衡位置时,动能转化为弹性势能;当振子最大位移时,弹性势能转化为动能。

这个过程既满足动量守恒又满足能量守恒。

根据动量守恒和能量守恒的原理,我们可以列出联立动量和能量守恒方程:1/2 * mv1^2 = 1/2 * k * x^2mv1 = mv2其中,v1为振子开始时的速度,x为振子最大位移,v2为振子最大位移时的速度。

高中物理重点经典力学问题----弹簧问题方法归类总结

高中物理重点经典力学问题----弹簧问题方法归类总结

高中物理重点经典力学问题----弹簧问题方法归类总结高考要求:轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,应引起足够重视.弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k=-(kx22-kx12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p=kx2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 - m2g /k2=m l g/k2.此题若求m l移动的距离又当如何求解?参考答案:C2.(1996全国)如图所示,倔强系数为k1的轻质弹簧两端分别与质量为m1、m2的物块1、2拴接,倔强系数为k2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。

力学中的动量与能量的守恒

力学中的动量与能量的守恒

力学中的动量与能量的守恒力学是物理学的一个重要分支,研究物体的运动和受力情况。

动量和能量是力学中两个基本的物理量,它们在物体运动过程中起着至关重要的作用。

本文将从动量守恒和能量守恒的角度来探讨力学中这两个关键概念的原理和应用。

1. 动量守恒原理动量是描述物体运动状态的物理量,它等于物体质量乘以速度。

动量的守恒原理指的是一个系统中的总动量在没有受到外力作用时保持不变。

动量守恒定律可以简述为:对于一个封闭系统中的物体,总动量在时间内保持恒定。

这意味着在没有外界力的情况下,物体的动量不会发生改变。

例如,打击一个静止的球,当球受到撞击后,动量在球体内部重新分配,但整个系统的总动量保持不变。

2. 动量守恒的应用动量守恒原理在实际生活中有着广泛的应用。

其中一个典型例子是汽车碰撞。

在车辆碰撞事故中,当两辆车相撞时,它们的动量发生改变。

根据动量守恒原理,车辆碰撞前后的总动量应该保持不变。

因此,根据碰撞前后的速度和质量,我们可以计算出碰撞后车辆运动的状态。

此外,动量守恒原理还可以应用于火箭推进系统、弹道学和运动力学的研究中。

这些应用进一步验证了动量守恒原理的重要性,并为人们提供了基础的物体运动描述和预测能力。

3. 能量守恒原理能量是物体所具有的做功能力,它是物体的物理属性。

能量守恒原理是指在一个封闭系统中,总能量在一个过程中保持不变。

根据能量守恒原理,能量可以相互转化,但总能量的大小始终保持不变。

一个典型的例子是弹簧。

当弹簧压缩时,机械能转化为弹性势能。

而当弹簧释放时,弹性势能转化为机械能。

无论是在机械领域还是其他领域,总能量守恒原理都是一个普遍适用的规律。

4. 能量守恒的应用能量守恒原理在能源领域有着重要的应用。

例如,在水电站中,流动的水通过水轮机进行转化,将水的动能转换为机械能。

而机械能通过电机转化为电能,最终为人们提供可靠的电力。

此外,能量守恒也应用于热力学、核能研究以及光学等领域。

通过总结能量的转化规律,科学家们能够深入理解不同领域中的物理过程,并应用于实际应用中。

动量能量---弹簧类问题

动量能量---弹簧类问题

我成功,因为我志在成功!一:形变量相同时,弹性势能相同1.如图所示,质量mB =3.5kg 的物体B 通过一轻弹簧固连在地面上,弹簧的劲度系数k =100N /m .一轻绳一端与物体B 连接,绕过无摩擦的两个轻质小定滑轮O1、O2后,另一端与套在光滑直杆顶端的、质量mA =1.6kg 的小球A 连接。

已知直杆固定,杆长L 为0.8m ,且与水平面的夹角θ=37°。

初始时使小球A 静止不动,与A 端相连的绳子保持水平,此时绳子中的张力F 为45N 。

已知AO1=0.5m ,重力加速度g 取10m /s2,绳子不可伸长.现将小球A 从静止释放,则:(1)在释放小球A 之前弹簧的形变量;(2)若直线CO1与杆垂直,求物体A 运动到C 点的过程中绳子拉力对物体A 所做的功;(3)求小球A 运动到底端D 点时的速度。

二.两过程代换2.(20分)如图所示,A 、B 两个矩形木块用轻弹簧相接静止在水 平地面上,弹簧的劲度系数为k ,木块A 和木块B 的质量均为m.(1)若用力将木块A 缓慢地竖直向上提起,木块A 向上提起多大高 度时,木块B 将离开水平地面.(2)若弹簧的劲度系数k 是未知的,将一物块C 从A 的正上方某位 置处无初速释放与A 相碰后,立即粘在一起(不再分离)向下运动,它 们到达最低点后又向上运动。

已知C 的质量为m 时,把它从距A 高H 处释放,则最终能使B 刚好要离开地面。

若C 的质量为2m,要使B 始终不离开地面,则释放时,C 距A 的高度h 不能超过多少? 三、完全压紧不能再压缩:3、如图6-13所示,A 、B 、C 三物块质量均为m ,置于光滑水平台面上.B 、C 间夹有原已完全压紧不能再压缩的弹簧,两物块用细绳相连,使弹簧不能伸展.物块A 以初速度v0沿B 、C 连线方向向B 运动,相碰后,A 与B 、C 粘合在一起,然后连接B 、C 的细绳因受扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离,脱离弹簧后C 的速度为v0. (1)求弹簧所释放的势能ΔE.(2)若更换B 、C 间的弹簧,当物块A 以初速v 向B 运动,物块C 在脱离弹簧后的速度为2v0,则弹簧所释放的势能ΔE ′是多少? (3)若情况(2)中的弹簧与情况(1)中的弹簧相同,为使物块C 在脱离弹簧后的速度仍为2v0,A 的初速度v 应为多大?变式:如图所示,在足够长的光滑水平轨道上静止三个小木块A 、B 、C ,质量分别为mA=1kg ,mB=1kg ,mC=2kg ,其中B 与C 用一个轻弹簧固定连接,开始时整个装置处于静止状态;A 和B 之间有少许塑胶炸药,A 的左边有一个弹性挡板(小木块和弹性挡板碰撞过程没有能量损失).现在引爆塑胶炸药,若炸药爆炸产生的能量有E=9J 转化为A 和B 沿轨道方向的动能,A 和B 分开后,A 恰好在B 、C 之间的弹簧第一次恢复到原长时追上B ,并且与B 发生碰撞后粘在一起.求: (1)在A 追上B 之前弹簧弹性势能的最大值; (2)A 与B 相碰以后弹簧弹性势能的最大值.四、弹簧中的临界问题:4、多过程分析(11分)在赛车场上,为了安全起见,在车道外围一定距离处一般都放有废旧的轮胎组成的围栏。

动量守恒定律的应用弹簧问题

动量守恒定律的应用弹簧问题

理解:弹簧被压缩至最短时的临界条件。
4.质量分别为3m和m的两个物体, 用一根细线
相连,中间夹着一个被压缩的轻质弹簧,整个系
统原来在光滑水平地面上以速度v0向右匀速运
动,如图所示.后来细线断裂,质量为m的物体离 开弹簧时的速度变为2v0. 求(1)质量为3m的物体离开弹簧时的速度 (2)弹簧的这个过程中做的总功.
1.注意弹簧弹力特点及运动过程。 弹簧弹力不能瞬间变化。 2.弹簧连接两种形式:连接或不连接。
连接:可以表现为拉力和压力。
不连接:只表现为压力。
3.动量问题:动量守恒。
4.能量问题:机械能守恒(弹性碰撞)。
动能和弹性势能之间转化.
题型一、判断动量是否守恒
1.木块a和b用一轻弹簧连接,放在光滑水平面上, a紧靠在墙壁上,在b上施加向左的水平力使弹簧 压缩,当撤去外力后,下列说法正确的是( ) BC A.a尚未离开墙壁前,a和b组成的系统动量守恒 B.a尚未离开墙壁前,a和b组成的系统动量不守恒 C.a离开墙壁后,a和b组成的系统动量守恒 D.a离开墙壁后,a和b组成的系统动量不守恒
mA m, mB m, mC 3m,
求:(1)滑块A与滑块B碰 撞结束瞬间的速度; (2)被压缩弹簧的最大弹 性势能;
例:如图所示,A,B,C三个木块的质量 均为m。置于光滑的水平面上,B,C之间 有一轻质弹簧,弹簧的两端与木块接触而 不固连,将弹簧压紧到不能再压缩时用细 线把B和C紧连,使弹簧不能伸展,以至于 B,C可视为一个整体,现A以初速v0沿B, C的连线方向朝B运动,与B相碰并黏合在 一起,以后细线突然断开,弹簧伸展,从 而使C与A,B分离,已知C离开弹簧后的 速度恰为v0,求弹簧释放的势能。
题型二、两个物体的问题

动量之弹簧类问题

动量之弹簧类问题

动量之弹簧类问题第一部分弹簧类典型问题1.弹簧类模型的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。

1、最大、最小拉力例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。

求此过程中所加外力的最大和最小值。

图12、最大高度例2. 如图2所示,质量为m的钢板与直立弹簧的上端连接,弹簧下端。

一物体从钢板正上方距离为固定在地面上,平衡时弹簧的压缩量为x3x的A处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,0它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O 点,若物体质量为2m仍从A处自由下落,则物块与钢板回到O点时还有向上的速度,求物块向上运动到达的最高点与O点的距离。

图23、最大速度、最小速度例3. 如图3所示,一个劲度系数为k 的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m 的平板B 相连而处于静止状态。

今有另一质量为m 的物块A 从B 的正上方h 高处自由下落,与B 发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v 。

图3例4. 在光滑水平面内,有A 、B 两个质量相等的木块,mm k g A B==2,中间用轻质弹簧相连。

现对B 施一水平恒力F ,如图4所示,经过一段时间,A 、B 的速度等于5m/s 时恰好一起做匀加速直线运动,此过程恒力做功为100J ,当A 、B 恰好一起做匀加速运动时撤除恒力,在以后的运动过程中求木块A 的最小速度。

弹簧 能量动量计算

弹簧 能量动量计算

图中有一个竖直固定在地面的透气圆筒,筒中有一劲度为k的轻弹簧,其下端固定,上端连接一质量为m的薄滑块,圆筒内壁涂有一层新型智能材料——ER流体,它对滑块的阻力可调.起初,滑块静止,ER流体对其阻力为0,弹簧的长度为L,现有一质量也为m的物体从距地面2L处自由落下,与滑块碰撞后粘在一起向下运动.为保证滑块做匀减速运动,且下移距离为2mgk时速度减为0,ER流体对滑块的阻力须随滑块下移而变。

试求(忽略空气阻力):(1)下落物体与滑块碰撞过程中系统损失的机械能;(2)滑块向下运动过程中加速度的大小;(3)滑块下移距离d时ER流体对滑块阻力的大小.如图所示,光滑坡道顶端距水平面高度为h,质量为m的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,另一端恰位于滑道的末端O点。

已知在OM段,物块A与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g,求:(1)物块速度滑到O点时的速度大小;(2)弹簧为最大压缩量d时的弹性势能(设弹簧处于原长时弹性势能为零)(3)若物块A能够被弹回到坡道上,则它能够上升的最大高度是多少?质量均为m 的小球B 与小球C 之间用一根轻质弹簧连接.现把它们放置在竖直固定的内壁光滑的直圆筒内,平衡时弹簧的压缩量为0x ,如图所示,设弹簧的弹性势能与弹簧的形变量(即伸长量或缩短量)的平方成正比.小球A 从小球B 的正上方距离为30x 的P 处自由落下,落在小球B 上立刻与小球B 粘连在一起向下运动,它们到达最低点后又向上运动.已知小球A 的质量也为m 时,它们恰能回到0点(设3个小球直径相等,且远小于0x 略小于直圆筒内径),求:小球A 与小球B 一起向下运动时速度的最大值.如图所示,半径分别为R 和r (R>r )的甲乙两光滑圆轨道安置在同一竖直平面内,两轨道之间由一条光滑水平轨道CD 相连,在水平轨道CD 上一轻弹簧a 、b 被两小球夹住,同时释放两小球,a 、b 球恰好能通过各自的圆轨道的最高点,求:(1)两小球的质量比.(2)若m m m b a ==,要求a b 都能通过各自的最高点,弹簧释放前至少具有多少弹性势能。

动量与能量综合问题归类分析

动量与能量综合问题归类分析

量守恒,故小物块恰能到达圆弧最高点A时,
两者旳共同速度 v共 =0

设弹簧解除锁定前旳弹性势能为EP,上述过程中系 统能量守恒,则有 EP=mgR+μmgL ②
代入数据解得 EP =7.5 J

⑵设小物块第二次经过O′时旳速度大小为vm,此时 平板车旳速度大小为vM ,研究小物块在圆弧面上下 滑过程,由系统动量守恒和机械能守恒有
1 2
Mv 2 2
题目 2页 3页 末页
代入数据可得:v1+3v2=4
v21 +3v22 =10
解得
v1
2
3 2
2 3.12m/s
2 2 v2 2 0.29m/s
以上为A、B碰前瞬间旳速度。

v1
23 2
2 1.12m/s
v2
2 2
2
1.71m/s
此为A、B刚碰后瞬间旳速度。
题目 2页 3页 末页
m
M
若小球只能在下半个圆周内作摆动 1/2m1V22 =m1gh ≤m1gL V2 2gL v0 m M 2gL
类型三:子弹射木块类问题
如图所示,质量为m旳小木块与水平面间旳动摩擦因数
μ=0.1.一颗质量为0.1m、水平速度为v0=33 Rg 旳子弹
打入原来处于静止状态旳小木块(打入小木块旳时间极短, 且子弹留在小木块中),小木块由A向B滑行5R,再 滑上半径为R旳四分之一光滑圆弧BC,在C点正上方有一 离C高度也为R旳旋转平台,平台同一直径上开有两个离轴 心等距旳小孔P和Q,平台旋转时两孔均能经过C点旳正上 方,若要使小木块经过C后穿过P孔,又能从Q孔落下,则平台 旳角速度应满足什么条件?
住一轻弹簧后连接在一起,两车从光滑弧形轨道上旳 某一高度由静止滑下,当两车刚滑入圆环最低点时连 接两车旳挂钩忽然断开,弹簧将两车弹开,其中后车 刚好停下,前车沿圆环轨道运动恰能越过圆弧轨道最 高点,求:

动量守恒与能量损失

动量守恒与能量损失

动量守恒与能量损失动量守恒与能量损失是物理学中两个重要的概念。

它们描述了在各种力的作用下,物体之间动量和能量的转移与转化过程。

本文将通过讨论动量守恒和能量损失的定义、原理、应用以及相关实验来深入解析这两个概念。

一、动量守恒的定义与原理动量守恒是指在一个独立系统内,总动量保持不变的现象。

根据牛顿第二定律,物体的动量等于其质量乘以速度。

当没有外力作用于一个系统时,系统内各个物体的动量之和将保持不变。

动量守恒可以通过下面的公式表示:m1v1 + m2v2 = m1v1' + m2v2'其中,m1和m2分别代表两个物体的质量,v1和v2分别代表它们的初始速度,v1'和v2'分别代表它们的最终速度。

根据这个公式,我们可以推导出动量守恒的原理。

动量守恒在很多领域都具有重要的应用,例如运动中的碰撞问题。

当两个物体发生碰撞时,它们之间的动量可以互相转移,但总动量始终保持不变。

这个原理在工程设计、交通运输领域及体育比赛中都有广泛的应用。

二、能量损失的概念与原因能量损失是指物体发生碰撞或运动过程中,由于各种内部和外部因素的存在,能量被转化或消耗掉的现象。

能量损失是不可逆的过程,能量在转化过程中永远是损失的。

能量损失的原因主要来自以下几个方面:1. 热能损失:由于摩擦和能量转化过程中的热量损失,能量会以热能的形式散失到周围环境中。

2. 声能损失:碰撞过程中会产生声音,将一部分能量转化为声能。

3. 形变能损失:物体发生形变或变形时,能量会以弹性势能的形式储存,但在实际过程中,会有一部分能量损失。

4. 其他能量损失:例如光能、电能等形式的能量损失。

能量损失的大小与物体之间碰撞的性质和外界环境有关。

在现实世界中,几乎所有的能量转化过程都会伴随着能量的损失,这是能源利用效率不高的一个表现。

三、动量守恒与能量损失的关系动量守恒和能量损失是两个相互联系的概念。

虽然在动量守恒的条件下总动量保持不变,但碰撞或其他运动过程中能量有可能损失。

高中物理压轴题04 用动量和能量的观点解题(解析版)

高中物理压轴题04 用动量和能量的观点解题(解析版)

压轴题04用动量和能量的观点解题1.本专题是动量和能量观点的典型题型,包括应用动量定理、动量守恒定律,系统能量守恒定律解决实际问题。

高考中既可以在选择题中命题,更会在计算题中命题。

2024年高考对于动量和能量的考查仍然是热点。

2.通过本专题的复习,不仅利于完善学生的知识体系,也有利于培养学生的物理核心素养。

3.用到的相关知识有:动量定理、动量守恒定律、系统机械能守恒定律、能量守恒定律等。

近几年的高考命题中一直都是以压轴题的形式存在,重点考查类型为弹性碰撞,完全非弹性碰撞,爆炸问题等。

考向一:动量定理处理多过程问题1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值。

2.动量定理的表达式F·Δt=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力。

3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt越短,力F就越大,力的作用时间Δt越长,力F就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎。

(2)当作用力F一定时,力的作用时间Δt越长,动量变化量Δp越大,力的作用时间Δt越短,动量变化量Δp越小。

4.应用动量定理解题的一般步骤(1)明确研究对象和研究过程。

研究过程既可以是全过程,也可以是全过程中的某一阶段。

(2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力。

(3)规定正方向。

(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.考向二:动量守恒定律弹性碰撞问题两球发生弹性碰撞时应满足动量守恒和机械能守恒。

以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有m1v1=m1v′1+m2v′2①12m 1v 21=12m 1v ′21+12m 2v ′22②由①②得v ′1=m 1-m 2v 1m 1+m 2v ′2=2m 1v 1m 1+m 2结论:①当m 1=m 2时,v ′1=0,v ′2=v 1,两球碰撞后交换了速度。

弹簧类问题中动量守恒和能量守恒的综合应用

弹簧类问题中动量守恒和能量守恒的综合应用

弹簧类问题中动量守恒和能量守恒的综合应用河北省鸡泽县第一中学 吴社英邮 编 057350手 机两个或两个以上的物体与弹簧组成的系统相互作用的物理过程,具有以下一些特点:能量变化上,如果只有重力和系统内弹簧弹力做功,系统的机械能守恒;如果系统所受合外力为零,则系统动量守恒;若系统每个物体除弹簧弹力外所受合外力为零,则当弹簧伸长或压缩最大程度时两物体速度相同(如光滑水平面上的弹簧连结体问题),且当弹簧为自然状态时系统内某一端的物体具有最大速度(如弹簧锁定的系统由静止释放)。

例1 如图1所示,物体A 和B 质量相等,它们连在一个轻质弹簧两端,置于左侧有一竖直挡板的光滑水平面上,B 与竖直挡板接触,此时弹簧处于原长,A 此时以速度v 0压缩弹簧,然后反弹回去。

若全过程始终未超过弹簧的弹性限度,对A 、B 和弹簧组成的系统,则(A) 从A 压缩弹簧开始,动量和机械能守恒(B) 弹簧第一次恢复原长开始,动量和机械能都守恒(C) 弹簧第一次拉伸最长时,弹簧的弹性势能与A 、B 此时的动能之和相等(D) 弹簧第二次恢复原长时,A 、B 的动量大小相等分析与解答 从A 开始压缩弹簧开始,至弹簧第一次变为原长,这个过程中挡板对系 统有向右的作用力,故系统动量不守恒,但这个作用力对系统并不作功,故系统机械能守恒,A 选项错。

从弹簧第一次恢复原长开始,挡板对系统不再有力的作用,系统所受合外力为零,除弹簧弹力对A 、B 做功外,无其它力做功,故系统机械能守恒,B 选项正确。

弹簧第一次拉伸最长时,AB 速度相同,设为v ,则mv 0=2mv (1),E P =21mv 02—212mv 2 (2) 由(1) (2) 得 E P =41mv 02此时的动能之和为E K =212mv 2=41mv 02,所以C 选项正确。

当弹簧恢复原长时,即A 、B 相互作用结束时,二者速度应交换,所以必有一个物体的速度为零,D 选项错。

答案 BC点拨:本题一定要注意挡板对系统有向右的作用力时,系统动量不守恒,但因为不做功,所以机械能守恒。

弹性碰撞与动量守恒定律

弹性碰撞与动量守恒定律

弹性碰撞与动量守恒定律弹性碰撞是物理学中重要的概念之一,它遵循着动量守恒定律。

在本文中,我们将深入探讨弹性碰撞及其与动量守恒定律之间的关系。

一、弹性碰撞的定义弹性碰撞是指碰撞过程中物体能量完全或几乎完全地转化为内能,碰撞前后物体的动能和动量守恒。

在弹性碰撞中,物体相互作用力较短,作用时间也较短。

二、动量守恒定律动量守恒定律是物理学中非常重要的定律之一。

它表明在没有外力作用的情况下,系统的总动量守恒。

具体而言,总动量在碰撞前后保持不变。

三、弹性碰撞的基本特性1. 相对速度必须反向在一个弹性碰撞的过程中,物体相撞后会反弹,并且相对速度方向与碰撞前相反。

这是弹性碰撞的一个基本特性。

2. 动能守恒弹性碰撞的另一个特性是动能守恒。

这意味着碰撞前后的总动能保持不变。

在弹性碰撞中,没有能量的损失。

3. 变形与恢复在弹性碰撞发生时,物体可能会发生变形,但碰撞结束后又能恢复到原来的形态。

这是因为弹性碰撞中物体的内能会发生相应的变化。

四、弹性碰撞的实例下面我们举几个实例来说明弹性碰撞的具体应用。

1. 乒乓球碰撞当乒乓球以较快的速度撞击球拍时,它会反弹回来。

这是因为乒乓球和球拍都是弹性体,在碰撞过程中它们的动能转化为内能,然后再转化回动能,实现了反弹。

2. 弹簧振子弹簧振子是一个经典的弹性碰撞实例。

当一个物体通过弹簧,弹簧受到压缩变形,然后将物体弹回。

在这个过程中,物体的动能转化为弹簧的弹性势能,然后再转化回动能。

3. 双球碰撞当两个小球以一定速度相撞时,它们也会发生弹性碰撞。

在碰撞过程中,动能会转化为内能,然后再转化回动能,使得小球反弹。

五、结论弹性碰撞是一种能量完全或几乎完全转化为内能,并且满足动量守恒定律的碰撞过程。

在弹性碰撞中,物体相互作用力较短,作用时间也较短。

弹性碰撞的基本特性包括相对速度反向、动能守恒以及变形与恢复。

弹性碰撞在乒乓球碰撞、弹簧振子以及双球碰撞等实际情境中都有重要应用。

总之,弹性碰撞与动量守恒定律之间有着密切的关系。

有关弹簧的动量问题

有关弹簧的动量问题

单击此处添加大标题 内容
如图所示,在足够长的光滑水平轨道上静止三个小木块A,B,C,质量分别为mA=1kg,mB=1kg, mC=2kg,其中B与C用一个轻弹簧固定连接,开始时整个装置处于静止状态;A和B之间有少许塑胶 炸药,A的左边有一个弹性挡板(小木块和弹性挡板碰撞过程没有能量损失)。现在引爆塑胶炸药, 若炸药爆炸产生的能量有E=9J转化为A和B沿轨道方向的动能,A和B分开后,A恰好在BC之间的弹 簧第一次恢复到原长时追上B,并且在碰撞后和B粘到一起。求:
单击添加大标题
E 车 Ep=mgR
2m2gR M2 Mm
四. 质量为M 的小车置于光滑水平面上, 小车的上表面由 光滑的1/4 圆弧和光滑平面组成, 圆弧半径为R , 车的 右端固定有一不计质量的弹簧.现有一质量为m 的滑块 从圆弧最高处无初速下滑(如图) ,与弹簧相接触并压缩 弹簧, 求: 1. 弹簧具有的最大的弹性势能; 2. 当滑块与弹簧分离时小车速度.
恢复到原长时A,B的速度各是多少?
由能量守恒得
1 2m V 0 201 2m V A 21 2m V B 2
2.已知A、B、C质量均为m,C的初速度为v0,碰撞后 B、C粘在一起,地面光滑。求弹簧的最大弹性势能EP
解:C与B碰撞动量守恒 mV0=2mV1
碰后到压缩弹簧到最短达共同速度V2,弹性势能达最大EP.
A
v0
B2 m
⑵设B球与挡板碰撞前瞬间的速度为vB,此时A的速度为vA。
系统动量守恒: m0vmAv2mBv
mAv2mBv3m共 v
B与挡板碰后,以vB向左运动,压缩弹簧,当A、B速度相同 (设为v共)时,弹簧势能最大,为Em,则:
1 2m02v1 23m共 2vEm

弹性碰撞与动量守恒定律

弹性碰撞与动量守恒定律

弹性碰撞与动量守恒定律在物理学中,弹性碰撞是指两个物体之间发生的碰撞过程中,能量和动量得到保持的碰撞。

与之相对的是非弹性碰撞,非弹性碰撞中,碰撞过程中会有能量损失,物体的形状也会发生改变。

而弹性碰撞则是一种理想化的碰撞模型,它在物理学中有着重要的应用。

在弹性碰撞中,动量守恒定律起着至关重要的作用。

动量守恒定律是指在一个孤立系统中,系统的总动量在碰撞前后保持不变。

这意味着,当两个物体发生碰撞时,它们的总动量在碰撞前后保持相等。

这一定律可以用数学公式来表示,即m1v1 + m2v2 = m1v1' + m2v2',其中m1和m2分别是两个物体的质量,v1和v2是碰撞前两个物体的速度,v1'和v2'是碰撞后两个物体的速度。

弹性碰撞的一个重要特点是碰撞后物体的动能保持不变。

动能是物体运动时所具有的能量,它与物体的质量和速度有关。

在弹性碰撞中,物体的动能在碰撞前后保持不变,这意味着碰撞后物体的速度会发生变化,但总的动能仍然保持不变。

这一特点可以通过动能守恒定律来解释,即碰撞前后物体的总动能保持不变。

弹性碰撞的另一个重要特点是碰撞后物体的动量可以互相转移。

当两个物体发生碰撞时,它们之间的动量可以通过碰撞过程进行转移,从而改变它们的速度和方向。

这种动量转移可以通过动量守恒定律来解释,即碰撞前后物体的总动量保持不变。

因此,在弹性碰撞中,物体之间的动量转移是一个重要的现象。

弹性碰撞在日常生活中有着广泛的应用。

例如,弹簧秤就是利用了弹性碰撞的原理来测量物体的质量。

当物体放在弹簧秤上时,它会产生一个与物体质量成正比的弹力,从而使弹簧发生弹性变形。

通过测量弹簧的变形程度,可以间接地得到物体的质量。

此外,弹性碰撞还在工程学和运动学中有着重要的应用。

在工程学中,弹性碰撞常常被用来设计和优化碰撞防护装置,以保护人员和设备的安全。

在运动学中,弹性碰撞的研究可以帮助我们理解物体在碰撞过程中的运动规律,从而提高运动的效率和安全性。

弹簧问题中的能量与动量

弹簧问题中的能量与动量

弹簧问题中的能量与动量教学目的:1.学会在物理问题的分析中重视物理情景的分析,明确每一物体的运动情况;2.物理答题规范的培养与指导;3.与弹簧连接类物体的运动情景的分析,动量、能量相关知识在解题中的应用。

教学重难点:1.物理情景的分析方法2.分析过程中突出的物理问题中的“三变”教学方法:讲授、讨论、多媒体演示教学过程:在今年的高考物理试卷中,力学和电学知识所占比例高达85%,越来越突出对物理的主干知识的考查。

在力学主干知识的考查中,能量与动量又永远是考查的重中之重。

一.弹簧基础知识弹簧类弹力:大小:F=kx (在弹性限度以内);方向:沿弹簧轴线而指向弹簧的恢复原状的方向二.弹簧问题中的能量与动量分析请学生看物理教材(必修加选修)第二册第10页“思考与讨论”: 在如图1所示的装置中,木块B 与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后,留在木块内,将弹簧压缩到最短。

若将子弹、木块和弹簧合在一起作为研究对象(系统),此系统从子弹开始射入木块到弹簧压缩到最短的整个过程中,动量是否守恒?机械能是否守恒?说明理由。

例1:如图1所示,若木块的质量为M,子弹的质量为m,弹簧为轻质弹簧,子弹以速度v 0射入木块B 后能在极短时间内达到共同速度。

求弹簧可能具有的最大弹性势能。

分析:学生在分析过程中,最容易怱略的就是的在A 、B 的碰撞过程中存在能量的损失。

运动情景分析:过程一:子弹A 射入木块B 的过程;过程二:子弹A 和木块B 一起压缩弹簧,做加速度越来越大的变减速直线运动。

对子弹A和木块B 构成的系统,在子弹A 射入木块B的过程中,内力远大于外力,系统动量守恒,设子弹射入木块后的共同速度为1v ,由动量守恒定律,有:10)(v m M mv +=①对子弹A、木块B 和弹簧构成的系统,从子弹射入木块后到弹簧压缩到最短的过程中,系统能量守恒,有:()21max 21v m M E P +=②图1联立①②两式得:弹簧具有的最大弹性势能为()m M v m E P +=2202max小结:例2:如图2所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态。

有关弹簧问题的例析

有关弹簧问题的例析

可弹簧问题的例析“弹簧”是高中物理学习过程中常见的一种理想模型,在高考物理试卷中频频出现。

2005年高考理综Ⅰ卷又出了一道该类的综合性题目,这类题综合性强、出题方式灵活。

因此,有关弹簧的试题也就成了高考命题的重点、难点、热点。

有关弹簧的考点一共有两个,一个是“形变和弹力、胡克定律”这是一个Ⅱ要求的知识点;另一个是“弹性势能”是一个Ⅰ要求的知识点,高考出题也正是从这两个方面着手的。

(一)考查弹簧弹力的特点,特别是弹簧的弹力和绳子的弹力的区别问题,这类问题实际上也就是胡克定律的定性考查,关健是要理解定律中x是“形变量”一根弹簧只有长度发生了新的变化才会发生弹力的变化,即弹簧弹力大小和方向不能发生“突变”例1、(2001上海)如图A所示,一质量为m的物体系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,物体处于平衡状态。

现将l2线剪断,求剪断瞬时物体的加速度。

(14分)(l)下面是某同学对该题的一种解法:解:设l1线上拉力为T1,l2线上拉力为T2,重力为mg,物体在这三力作用下保持平衡T1cosθ=mg,T1sinθ=T2,T2=mgtgθ剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度。

因为mg tgθ=ma,所以加速度a=g tgθ,方向在T2反方向。

你认为这个结果正确吗?请对该解法作出评价并说明理由。

(2)若将图A中的细线l1改为长度相同、质量不计的轻弹簧,如图B所示,其他条件不变,求解的步骤和结果与(l)完全相同,即a=g tgθ,你认为这个结果正确吗?请说明理由。

解析:该题是一道直接考绳和弹簧的区别的题目。

解:(1)结果错误。

因为L2被剪断的瞬间,L1上的张力大小突然变化为零。

实际上此瞬间应有:沿绳方向上T1=mgcosθ沿绳切线方向上 ma =mgsin θ即 a =gsin θ(2)结果正确。

因为L 2被剪断的瞬间,弹簧l 1的长度末及发生变化,其产生力的大小和方向都不变。

高考热点专题——有关弹簧问题的分析与计算

高考热点专题——有关弹簧问题的分析与计算

弹簧类问题在高中物理中占有相当重要的地位,且涉及到的物理问题多是一些综合性较强、物理过程又比较复杂的问题,从受力的角度看,弹簧上的弹力是变力;从能量的角度看,弹簧是个储能元件;因此,关于弹簧的问题,能很好的考察学生的分析综合能力,备受高考命题专家的青睐。

解决这些问题除了一般要用动量守恒定律和能量守恒定律这些基本规律之外,搞清物体的运动情景,特别是弹簧所具有的一些特点,也是正确解决这类问题的重要方法。

在有关弹簧类问题中,要特别注意使用如下特点和规律:1.弹簧的弹力是一种由形变而决定大小和方向的力。

当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。

在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。

2. 弹簧的弹力不能突变,它的变化要经历一个过程,这是由弹簧形变的改变要逐渐进行决定的。

在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。

3、弹簧上的弹力是变力,弹力的大小随弹簧的形变量发生变化,求弹力的冲量和弹力做功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。

弹簧的弹力与形变量成正比例变化,故它引起的物体的加速度、速度、动量、动能等变化不是简单的单调关系,往往有临界值。

如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。

4、对于只有一端有关联物体,另一端固定的弹簧,其运动过程可结合弹簧振子的运动规律去认识,突出过程的周期性、对称性及特殊点的应用。

如当弹簧伸长到最长或压缩到最短时,物体的速度最小(为零),弹簧的弹性势能最大,此时,也是关联物的速度方向发生改变的时刻。

若关联物与接触面间光滑,当弹簧恢复原长时,物体速度最大,弹性势能为零。

若关联物与接触面间粗糙,物体速度最大时弹力与摩擦力平衡,此时弹簧并没有恢复原长,弹性势能也不为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹簧问题中的能量与动量
教学目的:
1.学会在物理问题的分析中重视物理情景的分析,明确每一物体的运动情况;
2.物理答题规范的培养与指导;
3.与弹簧连接类物体的运动情景的分析,动量、能量相关知识在解题中的应用。

教学重难点:
1.物理情景的分析方法
2.分析过程中突出的物理问题中的“三变” 教学方法:
讲授、讨论、多媒体演示 教学过程:
在今年的高考物理试卷中,力学和电学知识所占比例高达85%,越来越突出对物理的主干知识的考查。

在力学主干知识的考查中,能量与动量又永远是考查的重中之重。

一.弹簧基础知识 弹簧类弹力:
大小:F=kx (在弹性限度以内);
方向:沿弹簧轴线而指向弹簧的恢复原状的方向 二.弹簧问题中的能量与动量分析
请学生看物理教材(必修加选修)第二册第10页“思
考与讨论”:
在如图1所示的装置中,木块B 与水平桌面间的接触
是光滑的,子弹A 沿水平方向射入木块后,留在木块内,将弹簧压缩到最短。

若将子弹、木块和弹簧合在一起作为研究对象(系统),此系统从子弹开始射入木块到弹簧压缩到最短的整个过程中,动量是否守恒机械能是否守恒说明理由。

例1:如图1所示,若木块的质量为M ,子弹的质量为m ,弹簧为轻质弹簧,子弹以速度v 0射入木块B 后能在极短时间内达到共同速度。

求弹簧可能具有的最大弹性势能。

图1
分析:学生在分析过程中,最容易怱略的就是的在A 、B 的碰撞过程中存在能量的损失。

运动情景分析:过程一:子弹A 射入木块B 的过程;过程二:子弹A 和木块B 一起压缩弹簧,做加速度越来越大的变减速直线运动。

对子弹A 和木块B 构成的系统,在子弹A 射入木块B 的过程中,内力远大于外力,系统动量守恒,设子弹射入木块后的共同速度为1v ,由动量守恒定律,有:
10)(v m M mv += ①
对子弹A 、木块B 和弹簧构成的系统,从子弹射入木块后到弹簧压缩到最短的过程中,系统能量守恒,有:
()21max 2
1
v m M E P +=
② 联立①②两式得:弹簧具有的最大弹性势能为()
m M v m E P +=220
2max 小结:
例2:如图2所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态。

另一质量与B 相同滑块A ,从导轨上的P 点以某一初速
度向B 滑行,当A 滑过距离1l 时,与B 相碰,碰撞时间极短,碰后B 紧贴在一起运动,但互不粘连。

已知最后A 恰好返回出发点P 并停止。

滑块A 和B 与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形变量为2l ,求A 从P 出发时的初速度0v 。

(2004年广东卷)
分析:此变式的物理情景较复杂,注意分析物理过程,再针对不同的过程选择恰当的规律列式。

过程一:对滑块A ,从P 到与B 碰撞之前做匀减速直线运动,设滑块A 与B 碰撞前瞬间的速度为1v ,由动能定理得
2
02112
121mv mv mgl -=
-μ ① 过程二:滑块A 与滑块B 发生碰撞,由于碰撞时间极短,内力远大于外力,A 、B 构成的系统动量守恒,设A 、B 碰撞后的速度为2v ,由动量守恒定律,得
图2
21)(v m m mv += ②
过程三:A 和B 一起压缩弹簧直到A 、B 速度变为零,然后A 、B 在弹簧弹力的作用下一起返回,直到弹簧恢复原长。

设当弹簧恢复原长时,A 、B 的速度为3v ,在这一过程中,弹簧的弹性势能始末两态都为零,对A 、B 和弹簧,由能量守恒定律得
()()()()223222222
1221
l g m v m v m μ=- ③ 过程四:当弹簧恢复原长时,滑块A 、B 分离(为什么学生讨论),A 单独向右滑到P 点停下;以后只需分析滑块A 的运动情况。

对滑块A ,在A 、B 分离之后,在滑动摩擦力的作用下匀减速运动到P 处停止。

由动能定理得
2
3
12
10mv mgl -=-μ ④ 联立①—④,得:)1610(210l l g v +=μ
小结:
例3:质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上。

平衡时,弹簧的压缩量为0x 如图3所示。

一物块从钢板正上方距离为
03x 的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连。

它们到达最底点后又向上运动。

已知物块质量也为m 时,它们恰能回到O
点。

若物块质量为2m ,仍从A 处自由落下,则物块与钢板回到O 点时,还具有向上的速度。

求物块向上运动到达的最高点与O 点的距离。

(1997年全国卷第25题)
分析:本题涉及两个物理过程,第一过程就是m 下落与钢板的作用过程,第二过程就是2m 下落与钢板的作用过程。

第一过程包括:自由落体、碰撞、振动3个过程;第二过程包括:自由落体、碰撞、振动、竖直上抛4个过程。

此题涉及的物理过程有4个,用到的物理规律和公式有4个,它将动量守恒和机械能守恒完美地统一在一起,交替使用,可以说是一道考查考生能力的好试题。

设物块与钢板碰撞时的速度为0v ,对物块,在下落过程中,由自由落体公式,得
02
032x g v •= ①
设1v 表示质量为m 的物块、钢板碰撞后一起向下运动的速度,因碰撞时间极短,系统
图3
所受外力远小于相互作用的内力,符合动量守恒,对质量为m 的物块和钢板,由动量守恒定律得
102mv mv = ②
设刚碰完时弹簧的弹性势能为P E ,当它们一起回到O 点时,弹簧无形变,弹簧势能为零,根据题意,由机械能守恒得
0212)2(2
1
mgx v m E P =+ ③
设2v 表示质量为2m 的物块与钢板碰后开始一起向下运动的速度,由动量守恒,则有
2032mv mv = ④
设刚碰完时弹簧势能为P
E ',它们回到O 点时,弹性势能为零,但它们仍继续向上运动,设此时速度为2v ,则由机械能守恒定律得
202
2)3(2
13)3(21v m mgx v m E P +=+' ⑤
在上述两种情况下,弹簧的初始压缩量都是0x ,故有
P P
E E =' ⑥ 当质量为2m 的物块与钢板一起回到O 点时,弹簧的弹力为零,物块与钢板只受到重力的作用,加速度为g ,一过O 点,钢板受到弹簧向下的拉力作用,加速度大于g ,由于物块与钢板不粘连,物块不可能受到钢板的拉力,其加速度仍为g ,方向向下,故在O 点物块与钢板分离。

分离后,物块以速度v 竖直上升,由竖直上抛最大位移公式得
g
v h 220
= ⑦
联立①—⑦式得:2
x L =
即物块向上运动到达的最高点距O 点的距离2
x L =。

小结:
课后思考与讨论:在光滑水平导轨上放置着质量
均为m 滑块B 和C ,B 和C 用轻质弹簧拴接,且都处于静止状态。

在B 的右端有一质量也为m 的滑块A 以速度0v 向左运动,与滑块B 碰撞的碰撞时间极短,碰后粘连在一起,如图4所示,求弹簧可能具有的最大弹性势能和滑块C 可能达到的最大速度。

分析:首先A 与B 发生碰撞,系统的动能损失一部分;C 在弹簧弹力的作用下加速,A 、B 在弹力的作用下减速,但A 、B 的速度大于C 的速度,故弹簧继续被压缩,直到A 、B 和C 的速度相等,弹簧的压缩量达到最大,此时弹簧的弹性势能最大。

此后,C 继续被加速,A 、B 减速,当弹簧第一次恢复原长时,C 的速度达到最大,同时A 、B 分离。

设A 、B 碰撞之后达到的共同速度为1v ,A 、B 、C 三者达到的共同速度为2v ,当弹簧第一次恢复原长时,A 、B 的速度为3v ,C 的速度为4v .
对A 、B ,在A 与B 的碰撞过程中,动量守恒,由动量守恒定律得
10)(v m m mv += ①
对A 、B 、C ,在压缩弹簧直至三者速度相等的过程中,动量守恒,由动量守恒定律得
21)()(v m m m v m m ++=+ ②
A 、
B 、
C 系统的能量守恒,有
max 2221)(2
1)(21P E v m m m v m m +++=+ ③ 联立以上三式得2
max 12
1mv E P = 对A 、B 、C 弹簧组成的系统,从A 、B 碰撞后到弹簧再次恢复原长的过程中,动量、能量守恒,有:
43122mv mv mv += ④
24
2
3212
1221221mv mv mv += ⑤ 联立④⑤得C 的最大速度为043
2
v v =
三.弹簧专题总结: 1.关键:物理情景的分析 2.突出一个字——“变”: “变”:变换研究对象
“变”:变换研究过程
“变”:变换物理规律
力争做到灵活选择对象,灵活选用规律,快速准确求解。

3.常用规律:
①力的观点:牛顿运动定律
②动量的观点:动量定理、动量守恒定律
③能量的观点:动能定理、机械能守恒定律、能量守恒定律。

相关文档
最新文档